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Abstract This paper presents a global heuristic search optimization technique, which is a hybrid-

ized version of the Gravitational Search Algorithm (GSA) and Wavelet Mutation (WM) strategy.

Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM) was adopted for the

design of an 8th-order infinite impulse response (IIR) filter. GSA is based on the interaction of

masses situated in a small isolated world guided by the approximation of Newtonian’s laws of grav-

ity and motion. Each mass is represented by four parameters, namely, position, active, passive and

inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploi-

tation in multidimensional search spaces, the WM strategy is applied to randomly selected particles

that enhance the capability of GSA for finding better near optimal solutions. An extensive simula-

tion study of low-pass (LP), high-pass (HP), band-pass (BP) and band-stop (BS) IIR filters

unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass

band and stop band ripples, smaller transition width and higher stop band attenuation with assured

stability.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Digital Signal Processing (DSP) provides greater flexibility, bet-
ter time and environment stability, higher performance and
lower equipment production costs traditional analog tech-
niques. Many microprocessor circuits are being replaced with
cost-effective DSP techniques and products. In the creation of

digital filters, DSP chips play an important role. A digital filter
is simply a discrete time and discrete amplitude convolver. In
the z-domain, the linear convolution of the input and filter

sequence in the time domain is equivalent to the multiplication
of the corresponding z-transforms. The filtered output sequence
is obtained by product inverse z-transform. Digital filters are
broadly classified into two main categories: finite impulse

response (FIR) filters and infinite impulse response (IIR) filters
Oppenheim et al., 1999; Proakis andManolakis, 1996. The out-
put of FIRfilters depends on the present and past input values of

input, so the name ‘non-recursive’ is aptly suited for these filter
types. However, the output of IIR filters depends not only on
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previous inputs but also on previous outputs with impulse
responses continuing forever in time at least theoretically, so
the name ‘recursive’ is aptly suited to this filter type. A large

amount of memory is required to store the previous outputs
for recursive IIR filters. Thus, because of these aspects, the cre-
ation of a FIR filter is easier given the lower memory space

requirements and design complexity. Ensured stability and the
linear phase response over awide frequency range are additional
advantages. However, IIR filters distinctly meet the desired

specifications of sharp transition width, lower pass band ripple
and higher stop band attenuation with lower order compared
with FIRfilters. As a consequence, a properly designed IIR filter
can meet close to the ideal magnitude response more finely than

an FIR filter, and IIR filters always ensure stability. Because of
these challenging features and a wide range of potential applica-
tions, the performances of IIR filters designed with various evo-

lutionary optimization algorithms were compared to determine
the comparative effectiveness of the algorithms and the best
design of optimal IIR filters.

In the conventional approach, IIR filters of various types
(Butterworth, Chebyshev and Elliptic, etc.) can be imple-
mented using two methods. In the first case, a frequency sam-

pling technique is adopted for Least Square Error (Lang, 2000)
and Remez Exchange (Jackson and Lemay, 1990) process. In
the second method, filter coefficients and minimum order are
calculated for a prototype low pass filter in the analog domain,

which is then transformed to a digital domain via bilinear
transformation. This frequency mapping works well at low fre-
quency, but in high frequency domains, this method is liable to

result in frequency warping (Hussain et al., 2011).
IIR filter design is a challenging optimization problem.

Thus far, gradient-based classical algorithms, such as steepest

descent and quasi-Newton algorithms have been used aptly for
the design of IIR filters (Antoniou, 2005; Lu and Antoniou,
2000). In general, these algorithms are very fast and efficient

in obtaining the optimum solution of the objective function
for a unimodal problem, but the error surface (typically the
mean square error between the desired response and estimated
filter output) of an IIR filter is multimodal, and thus, superior

evolutionary optimization techniques are required to deter-
mine better global solution.

The shortfalls of classical optimization techniques in han-

dling any multimodal optimization problem are as follows:
(i) requires a continuous and differentiable error fitness func-
tion (cost or objective function), (ii) usually converges to the

local optimum solution or revisits the same sub-optimal solu-
tion, (iii) incapable of searching a large problem space, (iv)
requires a piecewise linear cost approximation (linear pro-
gramming) and (v) highly sensitive to the starting points when

the number of solution variables is increased, and as a result,
the solution space is also increased.

Thus, it can be concluded that classical search techniques

are only suitable for handling differentiable unimodal objec-
tive functions with constricted search space. Accordingly, the
various evolutionary heuristic search algorithms applied to fil-

ter optimization problems in recent times include the follow-
ing. Genetic Algorithms (GAs) are inspired by Darwin’s
‘‘Survival of the Fittest’’ strategy (Karaboga and Cetinkaya,

2004; Tsai et al., 2006; Yu and Xinjie, 2007). Simulated
Annealing (SA) was designed based on thermodynamic effects
(Chen et al., 2001); Artificial Immune Systems (AIS) mimic
biological immune systems (Kalinli and Karaboga, 2005).
Ant Colony Optimization (ACO) simulates ants’ food search-
ing behavior (Karaboga et al., 2004). Bee Colony Optimization
mimics the honey collecting behavior of a bee swarm

(Karaboga and Cetinkaya, 2011). Cat Swarm Optimization
(CSO) is based upon the behavior of cats when tracking and
seeking an object (Panda et al., 2011). In addition, Particle

Swarm Optimization (PSO) simulates the behavior of bird
flocking or fish schooling (Pan and Chang, 2011; Das and
Konar, 2007; Fang et al., 2009; Gao et al., 2008; Sun et al.,

2010; Chen and Luk, 2010; Luitel and Venayagamoorthy,
2008a,b; Mandal et al., 2011, 2012; Wang et al., 2011). In
Quantum-behaved PSO (QPSO), the quantum behavior of
particles in a potential well is applied to a conventional PSO

algorithm (Fang et al., 2009; Sun et al., 2010). To eliminate
premature convergence and stagnation, chaotic perturbation
is applied to the particles in the Chaos PSO (CPSO) technique

Gao et al., 2008. Differential Evolution PSO (DEPSO) reflects
the hybridization of DE and PSO in offspring that are created
by parental mutation (Luitel and Venayagamoorthy, 2008a). A

Particle Swarm Optimization with a quantum infusion tech-
nique is adopted in Luitel and Venayagamoorthy (2008b). In
Craziness-based PSO (CRPSO), the sudden direction changing

behavior of a particle in a swarm is mimicked in the conven-
tional velocity equation of PSO with the incorporation of a
‘craziness factor’ (Mandal et al., 2011, 2012).

In this paper, the comparative capability of the global

search and near optimum result finding features of RGA,
PSO, GSA and GSAWM are individually investigated thor-
oughly in the solving of 8th-order IIR filter design problems.

GA is a probabilistic heuristic search optimization technique
developed by Holland (1975). The features, such as multi-
objectivity, coded variables and natural selection, make this

technique distinct and suitable for finding the near global solu-
tion of filter coefficients.

Particle Swarm Optimization (PSO) is a swarm intelligence-

based algorithm developed by Kennedy and Eberhart (1995)
and Eberhart and Shi (1998). Several attempts have been made
to design digital filters with basic PSO and its modified ver-
sions (Pan and Chang, 2011; Das and Konar, 2007; Fang

et al., 2009; Gao et al., 2008; Sun et al., 2010; Chen and
Luk, 2010; Luitel and Venayagamoorthy, 2008a,b; Mandal
et al., 2011, 2012; Wang et al., 2011). The main attraction of

PSO is its simplicity in computation, and a few steps are
required in the implementation of the algorithm.

The limitations of the conventional PSO are premature

convergence and stagnation problems (Ling et al., 2008;
Biswal et al., 2009). To overcome these problems, a hybridized
version of the Gravitation Search Algorithm (GSA), called the
Gravitation Search Algorithm with Wavelet Mutation

(GSAWM), is suggested by the authors for the design of 8th-
order LP, HP, BP and BS IIR filters.

Wavelets are mathematical transient functions that are

characterized by translation and dilation factors. According
to the mutation strategy, every string has an unequal mutation
probability. Thus, randomly selected strings, dependent on the

mutation probability of mutation, and their elements undergo
the mutation process. Mutation introduces variation in the
string elements that aids in finding better near optimal solu-

tions. In wavelet mutation, iteration-dependent variable muta-
tion is addressed, i.e., in the exploration (early search stage)
larger wavelet mutation function values and in the exploitation
(fine tuning or the local search) stage steadily decreasing



Optimal IIR filter design 27
wavelet mutation function values are utilized for efficient
searching in the multidimensional search space (Ling et al.,
2008).

The paper is organized as follows: Section 2 describes the
IIR filter design problem. Evolutionary algorithms, namely,
RGA, PSO, GSA and GSAWM, as well as their comparative

results, are discussed in Section 3. Section 4 discusses the sim-
ulation results obtained for the designed IIR filters employing
different algorithms. Finally, Section 5 presents the paper’s

conclusions.

2. IIR filter design formulation

This section discusses the IIR filter design strategy. The input–
output relation is governed by the following difference equa-
tion (Proakis and Manolakis, 1996):

yðpÞ þ
Xn
k¼1

akyðp� kÞ ¼
Xm
k¼0

bkxðp� kÞ ð1Þ

where x(p), y(p), bk and ak are the filter’s input, output, numer-

ator and denominator coefficients, respectively, and nðP mÞ is
the filter’s order. With the assumption of the coefficient
a0 = 1, the transfer function of the IIR filter is expressed as
follows:

HðzÞ ¼
Pm

k¼0bkz
�k

1þ
Pn

k¼1akz
�k ð2Þ

Let z = ejX. Then, the frequency response of the IIR filter

becomes

HðXÞ ¼
Pm

k¼0bke
�jkX

1þ
Pn

k¼1ake
�jkX ð3Þ

or HðXÞ ¼ YðXÞ
XðXÞ ¼

b0 þ b1e
�jX þ b2e

�j2X þ :::þ bme
�jmX

1þ a1e�jX þ a2e�j2X þ :::þ bne�jnX
ð4Þ

where X ¼ 2p f
fs

� �
in [0, p] is the digital frequency; f is the ana-

log frequency, and fs is the sampling frequency. Different fit-

ness functions are used for IIR filter optimization problems
(Karaboga and Cetinkaya, 2004; Luitel and
Venayagamoorthy, 2008a,b). The commonly used approach

for IIR filter design is to represent the problem as an optimiza-
tion problem with the mean square error (MSE) as the error
fitness function (Karaboga and Cetinkaya, 2004; Luitel and
Venayagamoorthy, 2008a,b), as expressed in (5).

J1ðxÞ ¼
1

Ns

½ðdðpÞ � yðpÞÞ2� ð5Þ

where Ns is the number of samples used for the computation of
the error fitness function; d(p) and y(p) are the filter’s desired

and actual responses, respectively. The difference
e(p) = d(p) � y(p) is the error between the desired and the
actual filter responses. The design goal is to minimize the

MSE J1(x) with proper adjustment of coefficient vector x rep-
resented as follows:

x ¼ ½a0a1:::anb0b1:::bm�T ð6Þ

In this paper, a novel error fitness function given in (7) is
adopted to achieve higher stop band attenuation and better
control of the transition width. Using (7), the filter design

approach results in considerable improvement in stop band
attenuation over other optimization techniques.
J2ðxÞ ¼ RXabs½absðjHðXÞj � 1Þ � dp� þ RX½absðjHðXÞj � dsÞ�
ð7Þ

For the first term of (7), the X e pass band includes a por-
tion of the transition band, and for the second term of (7), the
X e stop band includes the remaining portion of the transition
band. The portions of the transition band chosen depend on

the pass band edge and stop band edge frequencies.
The error fitness function given in (7) represents the gener-

alized fitness function to be minimized when individually

employing the evolutionary algorithms RGA, conventional
PSO, GSA and the proposed GSAWM. Each algorithm
attempts to minimize this error fitness J2(x) and thus optimizes

the filter performance. Unlike other error fitness functions,
such as given in Karaboga and Cetinkaya (2004) and Luitel
and Venayagamoorthy, 2008a,b, that consider only the maxi-

mum errors, J2(x) involves the summation of all absolute
errors for the whole frequency band, and minimization of
J2(x) yields much higher stop band attenuation and lower pass
band and stop band ripples.
3. Employed evolutionary optimization algorithms

Evolutionary optimization algorithms stand upon the plat-

form of heuristic search methods, which are characterized
by features such as being stochastic, adaptive and learning
to produce intelligent optimization schemes. Such schemes

have the potential to adapt to their ever-changing dynamic
environment through previously acquired knowledge. A few
such efficient algorithms are discussed in the context of

designing IIR filters as well as comparison of performances
as part of handling the optimization problem of IIR filter
design.

3.1. Real coded genetic algorithm (RGA)

The Standard Genetic Algorithm (also known as real coded
GA) is mainly a probabilistic search technique, based on the

principles of natural selection and evolution as adapted from
Darwin’s ‘‘Survival of the Fittest’’ strategy (Holland, 1975).
Each encoded chromosome that constitutes the population is

a solution to the filter design optimization problem.
The steps of RGA as implemented for the optimization of

the coefficient vector x are as follows (Mondal et al., 2010,

2011, 2012):

Step 1: Initialize the real coded chromosome strings (x) of

the np population, each consisting of an equal number
of numerator and denominator filter coefficients bk
and ak, respectively; the total coefficients = (n + 1)\2
for the nth order filter to be designed; the minimum

and maximum values of the coefficients are �2 and
+2, respectively; the number of samples = 128; pass
band ripple dp = 0.01, and stop band ripple

ds = 0.001.
Step 2: Decoding of the strings and evaluation of error fitness

values J2(x) according to (7).

Step 3: Selection of elite strings to increase error fitness val-
ues from the minimum value.

Step 4: Copying of the elite strings over the non-selected
strings.
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Step 5: Crossover and mutation generate offspring.

Step 6: Genetic cycle updating.
Step 7: The iteration stops when the maximum number of

cycles is reached. The grand minimum error fitness

and its corresponding chromosome string or the
desired solution having (n+ 1)\2 number of filter
coefficients are finally obtained.

3.2. Particle Swarm Optimization (PSO)

PSO is a flexible, robust, population-based stochastic search

algorithm with the attractive features of simplicity in imple-
mentation and ability to quickly converge to a reasonably
good solution. In addition, it has the capability to handle a

larger search space and non-differential objective functions,
unlike traditional optimization methods. Kennedy and
Eberhart (1995), Eberhart and Shi (1998) developed PSO algo-
rithms to simulate the random movements of bird flocking or

fish schooling.
The algorithm starts with the random initialization of a

swarm of individuals, which are known as particles within

the multidimensional problem search space, in which each
particle attempts to move toward the optimum solution and
where next movement is influenced by the previously

acquired knowledge of particle best and global best positions,
once achieved, of the individuals and the entire swarm,
respectively.

To some extent, IIR filter design and other designs with
PSO are already reported in Pan and Chang (2011), Das and
Konar (2007), Fang et al. (2009), Gao et al. (2008), Sun
et al. (2010), Chen and Luk (2010), Luitel and

Venayagamoorthy (2008a,b) and Mandal et al. (2011, 2012).
The basic steps of the PSO algorithm are as follows

(Mandal et al., 2011, 2012):

Step 1: Initialize the real coded particles (x) of the np popula-
tion; each consists of an equal number of numerator

and denominator filter coefficients bk and ak, respec-
tively; the total coefficients D= (n+ 1)\2 for nth
order filter to be designed; the minimum and maxi-

mum values of the coefficients are �2 and +2, respec-
tively; the number of samples = 128; pass band ripple
dp = 0.01, and stop band ripple ds = 0.001, with a
maximum velocity Vmax = 1.0 and minimum velocity

Vmin = 0.01.
Step 2: Compute the error fitness value for the current posi-

tion, Si, of each particle.

Step 3: Each particle can remember its best position (pbest),
which is known as cognitive information that is
updated with each iteration.

Step 4: Each particle can also remember the best position the
swarm has ever attained (gbest), which is known as
social information and updated with each iteration.

Step 5: The velocity and position of each particle are modi-

fied according to (8) and (10), respectively Kennedy
and Eberhart, 1995.
V
ðkþ1Þ
i ¼ w � VðkÞi þ C1 � rand1 � pbest

ðkÞ
i � S

ðkÞ
i

n o
þ C2

� rand2 � gbest
ðkÞ
i � S

ðkÞ
i

n o
ð8Þ
where Vi ¼ Vmax forVi > Vmax

¼ Vmin for Vi < Vmin

ð9Þ

S
ðkþ1Þ
i ¼ S

ðkÞ
i þ V

ðkþ1Þ
i ð10Þ

Step 1: The iteration stops when the maximum number of
iteration cycles is reached. The grand minimum error

fitness and its corresponding particle or the desired
solution having (n + 1)\2 number of filter coefficients
are finally obtained.

3.3. Gravitation Search Algorithm (GSA)

In GSA Rashedi et al., 2009, 2011; Bahrololoum et al., 2012,
agents/solution vectors are considered as objects, and their
performances are measured by their masses. All these objects
attract each other via gravity forces, and these forces produce

a global movement of all objects toward the objects with hea-
vier masses. Thus, masses cooperate using a direct form of
communication through gravitational forces. The heavier

masses (which correspond to better solutions) move more
slowly than lighter ones. This guarantees the exploitation step
of the algorithm.

Three types of masses are defined in theoretical physics:

(a) Active gravitational mass (Ma) is a measure of the

strength of the gravitational field due to a particular
object. The gravitational field of an object with a small
active gravitational mass is weaker than that of an
object with a more active gravitational mass.

(b) Passive gravitational mass (Mp) is a measure of the
strength of an object’s interaction with the gravitational
field. Within the same gravitational field, an object with

a smaller passive gravitational mass experiences a smal-
ler force than an object with a larger passive gravita-
tional mass.

(c) Inertial mass (Mi) is a measure of an object’s resistance
to changing its state of motion when a force is applied.
An object with a large inertial mass changes its motion
more slowly, and an object with small inertial mass

changes it rapidly.

In GSA, each mass (agent) has four specifications: position,

inertial mass, active gravitational mass, and passive gravita-
tional mass. The position of the mass corresponds to the solu-
tion of the problem, and its gravitational and inertial masses

are determined using a fitness function. In other words, each
mass presents a solution, and the algorithm is navigated by
properly adjusting the gravitational and inertial masses. By

lapse of iteration cycles, it is expected that masses be attracted
by the heaviest mass. This heaviest mass will present an opti-
mum solution in the search space.

The GSA could be considered as an isolated system of

masses. It is similar to a small artificial world of masses obey-
ing the Newtonian laws of gravitation and motion. More pre-
cisely, masses obey the following two laws.

i. Law of gravitation: each particle attracts every other
particle, and the gravitational force between two parti-

cles is directly proportional to the product of their
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masses and inversely proportional to the square of the

distance (R) between them. R is used as RrPower (rPow-
er = 1) because R offered better results than R2 in all
the experimental cases with standard benchmark func-

tions (Rashedi et al., 2009). This difference is a deviation
of GSA from normal Newton’s law of gravitation.

ii. Law of motion: the current velocity of any mass is equal
to the sum of the fraction of its previous velocity and the

variation in the velocity. The variation in the velocity or
acceleration of any mass is equal to the force acted on
the system divided by the mass of inertia.

Currently, let us consider a system with N agents (masses).
The position of the ith agent is defined by

Xi ¼ ðx1
i ; ::::::::x

d
i ; ::::::::x

n
i Þ fori ¼ 1; 2; :::;N ð11Þ

where xd
i presents the position of ith agent in the dth

dimension.
At a specific iteration cycle t, the force acting on ith mass

from jth mass is defined as in the following equation

Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

ðRijðtÞ þ eÞrPower
Xd

j ðtÞ � Xd
i ðtÞ

� �
ð12Þ

where MajðtÞ is the active gravitational mass related to the jth

agent at iteration cycle t; MpiðtÞ is the passive gravitational
mass related to the jth agent at iteration cycle t; GðtÞ is gravi-
tational constant at iteration cycle t; e is a small constant,

and Rij ðtÞ is the Euclidian distance between the two agents i
and j given by (13).

RijðtÞ ¼ XiðtÞ;XjðtÞ
�� ��

rNorm
; rNormis usually 2 ð13Þ

To give a stochastic characteristic to the algorithm, it is
expected that the total force that acts on ith agent in dth

dimension be a randomly weighted sum of dth components
of the forces exerted from other agents (j) given by (14).

Fd
i ðtÞ ¼

XN
j¼1;j–i

randjF
d
ij ð14Þ

where randj is a random number in the interval [0, 1], corre-
sponding to the jth agent.

Thus, by the law of motion, the acceleration of the ith agent

at iteration cycle t, and in dth dimension, adi ðtÞ is given by (15).

adi ðtÞ ¼
Fd
i ðtÞ

MiiðtÞ
ð15Þ

where Mii ðtÞ is the inertial mass of the ith agent.
Furthermore, the next velocity of an agent is considered as

a fraction of its current velocity added to its acceleration.
Therefore, its position and its velocity can be calculated by

employing (16) and (17), respectively.

vdi ðtþ 1Þ ¼ randi � vdi ðtþ 1Þ þ adi ð16Þ

xd
i ðtþ 1Þ ¼ xd

i ðtÞ þ vdi ðtþ 1Þ ð17Þ

In (16), randi is a uniform random variable in [0, 1]. This
random number is utilized to obtain a randomized character-
istic to the search. The gravitational constant (G) is initialized

at the beginning and will be reduced with the iteration cycle to
control the search accuracy. In other words, G as a function of
the initial value (G0) and iteration cycle (t) is expressed as in

(18). a is a constant with a set value of 20.
G ¼ G0 exp �a�
t

maxcycles

� �� �
ð18Þ

Gravitational and inertia masses are simply calculated by the
error fitness evaluation as defined by (7). A heavier mass indi-
cates a more efficient agent. This means that better agents have
higher attractions and walk more slowly. Assuming the equality

of the gravitational and the inertia masses, the values of masses
are calculated using the error fitness values. Gravitational and
inertial masses are updated by the following equations:

Mai ¼Mpi ¼Mii fori ¼ 1; 2; :::::::::N ð19Þ

miðtÞ ¼
fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ ð20Þ

MiðtÞ ¼
miðtÞXN
1

miðtÞ
ð21Þ

where fitiðtÞ represents the error fitness value of the ith agent at
iteration cycle (t), and worst(t) and best(t) are defined in (22)
and (23), respectively, for the minimization problem as consid-

ered in this work.

bestðtÞ ¼ min
j2f1;::::::Ng

fitjðtÞ ð22Þ

worstðtÞ ¼ max
j2f1;::::::Ng

fitjðtÞ ð23Þ

One way to achieve a good compromise between explora-
tion and exploitation is to reduce the number of agents with

a lapse of time in (14). Thus, it is supposed that a set of agents
with bigger masses apply their forces to the other. However,
this policy should be adopted carefully because it may reduce

the exploration power and increase the exploitation capability.
To avoid local optimum trapping, the algorithm must

explore at the beginning. After lapses of iterations, exploration

must fade out, and exploitation must occur. In the improve-
ment of the performance of GSA by controlling exploration
and exploitation, only the Kbest agents will attract the others.
Kbest is a function of iteration cycle with the initial value K0,

and it decreases with the iteration cycle. In such a way, all
agents apply the force at the beginning, and as iteration cycle
progresses, Kbest is decreased linearly. In the end, there will be

only one agent applying force to the others. Therefore, (14)
could be modified as in (24).

Fd
i ðtÞ ¼

X
j2Kbest; j–i

randjF
d
ijðtÞ ð24Þ

In (24), Kbest is the set of first K agents with the minimum
error fitness values and the greatest masses.

3.4. Gravitation Search Algorithm with Wavelet Mutation
(GSAWM)

3.4.1. Basic wavelet theory: a concept

Certain seismic signals can be modeled by combining transla-
tions and dilations of an oscillatory function with a finite dura-

tion called a ‘‘wavelet’’, as shown in Fig. 1 and represented by
Ling et al. (2008, 2007) and Daubechies (1990).

wa;bðxÞ ¼
1ffiffiffi
a
p w

x� b

a

� �
; x 2 R; a; b 2 R; a > 0 ð25Þ



Figure 1 Morlet wavelet.

Figure 2 Effect of shape parameter nwm to a with respect to k
K

with g1 ¼ 10; 000; pm ¼ 0:15.
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In (25), a is the dilation (scale) parameter, and b is the

translation (shift) parameter. a controls the spread of the
wavelet, and b determines its control position. A set of basis
function wa,b(x) is derived from scaling and shifting the mother

wavelet. The basis function of the transform is called the
daughter wavelet. The mother wavelet has to satisfy the fol-
lowing admissibility condition:

Cw ¼ 2p
Z þ1

�1

jwðxÞj2

x
dx <1 ð26Þ

In addition, 99% of the energy of w(x) is confined to a finite

domain [�2.5, 2.5] and is bounded.

3.4.2. Association of wavelet based mutation with GSA
(GSAWM)

It is proposed that every element of the particle of the popula-
tion will mutate. Among the population, a randomly selected
ith particle and its jth element (within the limits

½Sj;min;Sj;max�) at the kth iteration (S
ðkÞ
i;j ) of vector S

ðkÞ
i will

undergo mutation, provided any random number generated
within [0, 1] is greater than the probability of mutation pm.
pm is assigned a low value of 0.15 to ensure mutation will occur

in most of the iteration cycles (k), as given by (27).

S
ðkÞ
i;j ¼

S
ðkÞ
i;j þ r� ðSj;max � S

ðkÞ
i;j Þ; if r > 0

S
ðkÞ
i;j þ r� ðSðkÞi;j � Sj;minÞ; if r 6 0

(
ð27Þ

r ¼ 1ffiffiffi
a
p e

� x
að Þ2
2 cos 5

x

a

� �� �
ð28Þ

where a is the dilation (scale) parameter, and translation

(shift) b = 0.
Eq. (27) represents the mutation strategy applied to GSA-

based solutions. This strategy is the only way GSAWM differs

from GSA. Otherwise, all other steps of GSA and GSAWM
are the same. Eq. (28) represents the mother wavelet.

Different dilated Morlet Wavelets are shown in Fig. 2.
From this figure, it is clear that as the dilation parameter a

increases, the amplitude of wa;0ðxÞ or r (wavelet mutation
parameters) will be scaled down. To enhance the searching per-
formance in the fine tuning stage, this property will be utilized

in mutation operation. As over 99% of the total energy of the
mother wavelet function is contained in the interval [�2.5, 2.5],
x can be randomly generated from½�2:5� a; 2:5� a� (Ling
et al., 2008, 2007). The value of the dilation parameter a is

set to vary with the value of k/K to meet the fine tuning needs,
where k is the current iteration number, and K is the maximum
number of iterations. To perform a local search when k is

large, the value of a should increase as k/K increases to reduce
the significance of the mutation. Thus, a monotonic increasing
function governing a and k/K may be written as given in the

following equation (Ling et al., 2008, 2007; Daubechies, 1990).

a ¼ e� lnðg1Þ� 1�k
Kð Þnxmþlnðg1Þ ð29Þ

where nxm is the shape parameter of the monotonic increasing
function, and g1 is the upper limit of the parameter a. The
value of a is thus between 1 and g1. The variation of a against

iteration cycle (k/t) with n as parameter is shown in Fig. 2. The
magnitude of mutation operator r decreases as a increases
toward g1 with the increase in iteration cycles (as referred to
Fig. 2), thus resulting in appreciable mutation during the early

search or exploration stages and fine tuning (i.e., lesser muta-
tion) during the local search or exploitation stage near the end
of the maximum iteration cycles. A perfect balance between

the exploration of new regions and the exploitation of the
already sampled regions in the search space is expected in
GSAWM. This balance, which critically affects the perfor-

mance of the GSAWM, is governed by the right choices of
the control parameters, e.g., the swarm size (np), the probabil-
ity of mutation (pm), and the shape parameter of WM (nxm).

Changing the parameter nxm will change the characteristics
of the monotonic increasing function of WM. The dilation
parameter a will take a value to perform fine tuning faster as
nxm increases (as referred to Fig. 2). In general, if the optimi-

zation problem is smooth and symmetric, it is easier to find the
solution, and the fine tuning can be accomplished in early iter-
ation cycles.

Thus, a larger value of nxm can be used to increase the step
size (r) for the early mutation. Rigorous sensitivity analysis
with respect to the dependence of a on (k/K), nxm and g1 is

performed to determine the individual best values of nxm and
g1 (Refer to Fig. 2). The individual best values of probability
of mutation, pm, nxm and g1 are 0.15, 2.0 and 10,000,

respectively.



Figure 3 Morlet wavelet dilated by higher and higher values of

parameter a.
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3.4.3. Implementation of the GSAWM for the IIR filter design
problem

The steps of the GSAWM, as implemented for the solution of

IIR filter design carried out in this work, are shown below:
Table 1 Design specifications of LP, HP, BP and BS IIR filters.

Type of filter Pass band ripple (dp) Stop band ripple

LP 0.01 0.001

HP 0.01 0.001

BP 0.01 0.001

BS 0.01 0.001

Table 2 Control parameters of RGA, PSO, GSA and GSAWM.

Parameters RGA

Population size 120

Iteration cycles 500

Crossover rate 1.0

Crossover Single point crossover

Mutation rate 0.01

Mutation Gaussian mutation

Selection Roulette

Selection probability 1/3

C1 –

C2 –

Vmin –

Vmax –

Maximum inertia weight (wmax) –

Minimum inertia weight (wmin) –

a –

G0 –

rNorm –

rPower –

nxm, pm, g1 –
Step 1. Initialization: Population (swarm size) of agent vec-
tors, np = 25; maximum iteration cycles = 500; for equal
number of numerator and denominator coefficients bk and

ak, respectively; total coefficients = (n+ 1)\2 for nth order fil-
ter to be designed; minimum and maximum values of the coef-
ficients are �2 and +2, respectively; number of samples =

128; dp = 0.01, ds = 0.001; a = 20; G0 = 1000; rNorm = 2;
rPower= 1; initial velocities = zeros (np, (n+ 1)\2);
nxm = 2.0; g1 = 10,000; pm = 0.15 (see Fig. 3).

Step 2. Generate the initial agent vectors np, each having
(n+ 1)\2 number of filter coefficients randomly generated
within limits.

Step 3. Compute the error fitness values of the total popu-

lation, np, as defined by (7).
Step 4. Compute the population-based best solution (hgbest)

vector.Step 5. Update G(t), best(t), worst(t) and MiðtÞ for

i= 1, 2, . . ., np; t is the current iteration cycle.Step 6. Calculate
the total forces in different directions.Step 7. Calculate the
accelerations and velocities of agents.Step 8. Update the

agents’ positions.
Step 9. Compute the wavelet parameters ‘a’ as per (29);

compute x = 2.5\a if rand(1) P 0.5; otherwise, x = �2.5\a;
Compute r as per (28); update the agents’ positions as per
the new mutation formula (27), and check against the limits
of the filter coefficients.Step 10. Repeat Steps 3–9 until the
stopping criterion (either maximum iteration cycles or near

global optimal solution or agent, hgbest) is met.
(ds) Pass band normalized

edge frequencies

Stop band normalized

edge frequencies

0.45 0.50

0.35 0.30

0.35 and 0.65 0.3 and 0.7

0.25 and 0.75 0.3 and 0.7

PSO GSA GSAWM

25 25 25

500 500 500

– – –

– – –

– – –

– – –

– – –

– – –

2.05 – –

2.05 – –

0.01 – –

1.0 – –

1.0 – –

0.4 – –

– 20 20

– 1000 1000

– 2 2

– 1 1

– – 2.0, 0.15, 10,000
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Figure 4 Gain plots in dB for the 8th-order IIR LP filters

designed using RGA, PSO, GSA and GSAWM.
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Figure 5 Normalized gain plots for the 8th-order IIR LP filters

designed using RGA, PSO, GSA and GSAWM.

Table 3 Optimized coefficients and performance comparison of co

Algorithms Numerator coefficients (bk) Deno

RGA 0.0415 0.1234 0.2676 0.9

0.3806 0.4206 0.3484 �2.3
0.2164 0.0925 0.0233 0.7

PSO 0.0413 0.1241 0.2668 1.0

0.3791 0.4202 0.3478 �2.3
0.2165 0.0936 0.0235 0.7

GSA 0.0298 0.0778 0.1680 1.0

0.2378 0.2717 0.2340 �3.4
0.1596 0.0739 0.0261 1.0

GSAWM 0.0300 0.0781 0.1675 1.0

0.2375 0.2713 0.2338 �3.4
0.1600 0.0742 0.0262 1.0
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Finally, hgbest is the vector of optimal filter coefficients of
number (n + 1)\2. Extensive simulation studies have been
individually performed to compare the optimization perfor-

mances of the four algorithms RGA, PSO, GSA and
GSAWM, respectively, for 8th-order LP, HP, BP and BS
IIR filter optimization problems. The design specifications

followed for all algorithms are given in Table 1.
4. Results and discussion

The values of the control parameters of RGA, PSO, GSA and
GSAWM are given in Table 2. Each algorithm was run 30
times to obtain the best solution, and the best results are

reported in this paper. All optimization programs were run
in MATLAB version 7.5 on a computer with a 3.00 GHz core
(TM) 2 duo processor with 2 GB of RAM.

Three aspects of the algorithms were investigated in this
work, namely, their accuracy, speed of convergence and stabil-
ity. Fig. 4 shows the comparative gain plots in dB for the
designed 8th-order IIR LP filters obtained using different algo-

rithms. Fig. 5 represents the comparative normalized gain
plots for 8th-order IIR LP filters. The best optimized numera-
tor coefficients (bk) and denominator coefficients (ak) obtained

are reported in Table 3. Maximum stop band attenuations of
27.5145 dB, 30.3635 dB, 49.3552 dB and 51.9880 dB (the high-
est) were obtained for the RGA, PSO GSA and GSAWM

algorithms, respectively. The gain plots and Tables 4 and 5
also explore that the proposed 8th-order IIR filter design
employing GSAWM, which achieved the highest stop band
attenuation and the lowest stop band ripple, variance and stan-
ncerned algorithms for the 8th-order IIR LP filters.

minator coefficients (ak) Maximum stop

band attenuation (dB)

994 �1.1555 2.7421 27.5145

022 2.4552 �1.4037
776 �0.2480 0.0524

001 �1.1546 2.7413 30.3635

016 2.4547 �1.4044
781 �0.2483 0.0519

001 �1.6888 3.3754 49.3552

260 3.2805 �2.0249
290 �0.3239 0.0594

005 �1.6891 3.3756 51.9880

265 3.2803 �2.0252
293 �0.3235 0.0598

Table 4 Statistical data for stop band attenuation (dB) for the

8th-order IIR LP filters.

Algorithm Maximum Mean Variance Standard deviation

RGA 27.5145 40.3870 165.7013 12.8725

PSO 30.3635 46.5478 130.9666 11.4441

GSA 49.3552 53.1923 5.1670 2.2731

GSAWM 51.9880 53.5667 1.2434 1.1151
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Figure 6 Pole-zero plot of the 8th-order IIR LP filter designed

using GSAWM.

Table 6 Radii of zeroes for the 8th order IIR LP filter.

Algorithm Zeroes

Z1 Z2 Z3 Z4

GSAWM 0.945084 0.981959 0.993659 1.013003

Table 5 Qualitatively analyzed data for the 8th-order IIR LP filters.

Algorithm Maximum pass band

ripple (normalized)

Stop band ripple (normalized) Transition width

Maximum Minimum Average

RGA 0.0095 4.2100 · 10�2 15.7130 · 10�4 2.1836 · 10�2 0.0297

PSO 0.0021 3.0300 · 10�2 6.2811 · 10�4 1.5464 · 10�2 0.0338

GSA 0.0028 0.3406 · 10�2 1.2959 · 10�4 0.1768 · 10�2 0.0400

GSAWM 0.0246 2.5154 · 10�3 3.0415 · 10�4 1.4098 · 10�3 0.0423
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Figure 7 Gain plots in dB for the 8th-order IIR HP filters

designed using RGA, PSO, GSA and GSAWM.
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Figure 8 Normalized gain plots for the 8th-order IIR HP filter

designed using RGA, PSO, GSA and GSAWM.
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dard deviation with an appreciably small transition width and
pass band ripple compared with the other algorithms.

Fig. 6 shows the pole-zero plot for a 8th-order IIR LP filter
designed with the GSAWM algorithm. This figure
demonstrates the existence of poles within the unit circle,
which ensures the bounded input bounded output (BIBO)

stability condition. The radii of zeroes are also presented in
Table 6.

Fig. 7 shows the comparative gain plots in dB for 8th-order

IIR HP filters following the individual application of RGA,
PSO, GSA and GSAWM optimization techniques, respec-
tively. Fig. 8 represents the comparative normalized gain plots

for the 8th-order IIR HP filters. The best optimized numerator
coefficients (bk) and denominator coefficients (ak) obtained are
reported in Table 7. Maximum stop band attenuations of

46.2199 dB, 47.7018 dB, 52.1714 dB and 53.5630 dB (the
highest) were obtained for RGA, PSO, GSA and GSAWM
algorithms, respectively. Gain plots and Tables 8 and 9 also
prove that the proposed optimization technique, GSAWM,
achieves the highest stop band attenuation and lowest
stop band and pass band ripples, along with the smallest
variance and standard deviation, compared with the other
algorithms.



Table 7 Optimized coefficients and performance comparison of concerned algorithms for the 8th-order IIR HP filters.

Algorithms Numerator coefficients (bk) Denominator coefficients (ak) Maximum stop

band attenuation (dB)

RGA 0.1250 �0.7092 1.9588 0.9999 �2.1875 3.8221 46.2199

�3.3672 3.9090 �3.1264 �3.6220 2.9095 1.3332

1.6821 �0.5585 0.0881 0.5678 �0.0861 0.0285

PSO 0.1252 �0.7091 1.9587 1.0001 �2.1874 3.8222 47.7018

�3.3671 3.9091 �3.1263 �3.6220 2.9096 �1.3333
1.6821 �0.5584 0.0881 0.5678 �0.0861 0.0285

GSA 0.1252 �0.7092 1.9587 0.9999 �2.1875 3.8222 52.1714

�3.3672 3.9090 �3.1264 �3.6220 2.9095 �1.3333
1.6820 �0.5585 0.0882 0.5679 �0.0861 0.0285

GSAWM 0.1065 �0.6162 1.7393 1.0000 �2.0569 3.6329 53.5630

�3.0661 3.6660 �3.0369 �3.4260 2.7458 �1.2287
0.1600 �0.5974 0.1018 0.5476 �0.0778 0.0284

Table 8 Statistical data for stop band attenuation (dB) for the

8th-order IIR HP filters.

Algorithm Maximum Mean Variance Standard deviation

RGA 46.2199 49.8589 13.2467 2.6391

PSO 47.7018 50.7807 9.4796 3.0789

GSA 52.1714 53.3914 2.7025 1.6439

GSAWM 53.5630 54.6475 1.3718 1.1712
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Figure 9 Pole-zero plot of the 8th-order IIR HP filter designed

using GSAWM.

Table 10 Radii of zeroes for the 8th order IIR HP filter.

Algorithm Zeroes

Z1 Z2 Z3 Z4

GSAWM 1.002023 0.996799 0.999433 0.979007

34 S.K. Saha et al.
Fig. 9 shows the pole-zero plot of the 8th-order IIR HP fil-
ter designed with the GSAWM optimization technique. All

poles are within the unit circle, which ensures the stability con-
dition of the designed filter. The radii of zeroes located above
the real part of the z plane are shown in Table 10.

Comparative gain plots in dB are provided in Fig. 10.
Fig. 11 also represents the comparative normalized gain plots
for the 8th-order IIR BP filters designed using the optimization

techniques. The best optimized numerator coefficients (bk) and
denominator coefficients (ak) obtained are reported in Table 11.
Maximum stop band attenuations of 18.2445 dB, 20.1389 dB,

24.3104 dB and 25.2100 dB (the highest) were obtained using
the RGA, PSO, GSA and GSAWM optimization techniques,
respectively. Gain plots and Tables 12 and 13 also indicate that
the proposed 8th-order IIR filter design employing GSAWM

attains the highest stop band attenuation and lowest pass band
and stop band ripples, variance and standard deviation, with
the smallest transition width compared with the results pro-

duced by others.
Fig. 12 shows the pole-zero plot of the 8th-order IIR BP fil-

ter designed with the GSAWM optimization technique. The
Table 9 Qualitatively analyzed data for the 8th order IIR HP filter

Algorithm Maximum pass band

ripple (normalized)

Stop band ripple (nor

Maximum

RGA 0.0146 0.48863 · 10�2

PSO 0.0186 0.41201 · 10�2

GSA 0.0207 0.24628 · 10�2

GSAWM 0.0050 2.0982 · 10�3
designed filter is stable because of the locations of poles within
the unit circle. The radii of zeroes located above the real part

of the z plane are reported in Table 14.
.

malized) Transition width

Minimum Average

0.39587 · 10�4 0.24629 · 10�2 0.0598

0.47667 · 10�4 0.20839 · 10�2 0.0500

3.11350 · 10�4 0.13871 · 10�2 0.0518

2.3257 · 10�5 1.0607 · 10�3 0.0379
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Figure 10 Gain plots in dB for the 8th-order IIR BP filters

designed using RGA, PSO, GSA and GSAWM.
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Figure 11 Normalized gain plots for the 8th-order IIR BP filter

designed using RGA, PSO, GSA and GSAWM.

Table 11 Optimized coefficients and performance comparison of co

Algorithms Numerator coefficients (bk) Denominator

RGA 0.1369 �0.0069 �0.0200 0.9971

�0.0043 0.1897 0.0069 �0.0094
�0.0338 �0.0056 0.1253 0.8246

PSO 0.1274 0.0071 �0.0209 0.9927

0.008 0.1857 0.0001 0.0029

�0.0292 �0.0052 0.1299 0.8079

GSA 0.1040 �0.0003 �0.0158 1.0005

0.0006 0.1543 0.0005 0.0003

�0.0162 �0.0003 0.1043 0.8934

GSAWM 0.1069 0.0000 �0.0289 1.0000

0.0000 0.1607 0.0000 0.0000

�0.0290 0.0000 0.1067 0.8458

Table 12 Statistical data for the stop band attenuation (dB)

for the 8th-order IIR BP filters.

Algorithm Maximum Mean Variance Standard deviation

RGA 18.2445 20.3032 4.2382 2.0587

PSO 20.1389 21.4826 1.8054 1.3437

GSA 24.3104 24.5265 0.0467 0.2161

GSAWM 25.2100 25.22 0.00035 0.0187
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Fig. 13 shows the comparative gain plot in dB for the 8th-
order IIR BS filters with the application of RGA, PSO, GSA

and GSAWM optimization techniques, respectively. Fig. 14
represents the comparative normalized gain plots for the 8th-
order IIR BS filters. The best optimized numerator coefficients

(bk) and denominator coefficients (ak) obtained after extensive
simulation study are reported in Table 15. Maximum stop
band attenuations of 17.4734 dB, 21.9740 dB, 24.7606 dB

and 29.7532 dB (the highest) were obtained for the RGA,
PSO, GSA and GSAWM algorithms, respectively. Gain plots
and Tables 16 and 17 also explore the proposed optimization
technique. GSAWM achieves the highest stop band attenua-

tion, the lowest pass band and stop band ripples and apprecia-
bly small transition width compared with the results produced
by other algorithms.

Fig. 15 shows the pole-zero plot of a 8th-order IIR BS filter
designed using the GSAWM optimization technique. The
designed filter is stable because of the locations of poles within

the unit circle. The radii of zeroes located above the real part
of the z plane are reported in Table 18.

It is observed from Table 4 that maximum stop band atten-
uations of 27.5145 dB, 30.3635 dB, 49.3552 dB and 51.9880 dB

(the highest) were obtained for the RGA, PSO, GSA and
GSAWM algorithms, respectively, for the 8th-order IIR LP fil-
ter design. In (Gao et al., 2008), Gao et al. applied the CPSO

technique for designing an 8th-order IIR LP filter and reported
a maximum stop band attenuation of approximately 34 dB. In
this work, the proposed algorithm GSAWM displays a much

greater stop band attenuation. Luitel et al. reported the design
of 9th-order IIR LP filters employing PSO and PSO-QI and
approximate attenuations of 22 dB and 27 dB, respectively,
ncerned algorithms for the 8th order IIR BP filter.

coefficients (ak) Maximum stop band attenuation (dB)

�0.0075 1.5866 18.2445

1.7020 0.0000

�0.0025 0.2247

�0.002 1.5940 20.1389

1.6978 �0.0002
�0.0034 0.2058

�0.0000 1.7574 24.3104

1.8299 0.0004

�0.0008 0.2168

0.0000 1.6826 25.2100

1.7546 0.0000

0.0000 0.2084



Table 13 Qualitatively analyzed data for the 8th-order IIR BP filters.

Algorithm Maximum pass band

ripple (normalized)

Stop band ripple (normalized) Transition width

Maximum Minimum Average

RGA 0.0134 12.24 · 10�2 12.0000 · 10�3 6.7200 · 10�2 0.0311

PSO 0.0399 9.84 · 10�2 3.7771 · 10�3 5.1089 · 10�2 0.0277

GSA 0.0130 6.09 · 10�2 0.1756 · 10�3 3.0538 · 10�2 0.0366

GSAWM 0.0057 5.7610 · 10�2 1.9104 · 10�4 2.8901 · 10�2 0.037
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Figure 12 Pole-zero plot of the 8th-order IIR BP filter designed

using GSAWM.

Table 14 Radii of zeroes for the 8th order IIR BP filter.

Algorithm Zeroes

Z1 Z2 Z3 Z4

GSAWM 0.999441 0.999956 0.999956 0.999441
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Figure 13 Gain plots in dB for the 8th-order IIR BS filters

designed using RGA, PSO, GSA and GSAWM.
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Figure 14 Normalized gain plots for the 8th-order IIR BS filters

designed using RGA, PSO, GSA and GSAWM.
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were achieved in Luitel and Venayagamoorthy (2008b). Luitel
and Venayagamoorthy (2008a) reported for a 9th-order IIR

LP filter employing PSO and DEPSO in which maximum
attenuations approximately of 25 dB and 22 dB, respectively,
were reported. In this paper, the maximum attenuation

obtained for PSO is higher even though it is designed with a
lower order. In (Karaboga and Cetinkaya, 2004), Karaboga
et al. have reported for a 10th-order minimum phase IIR LP
filter with a maximum attenuation approximately of 14 dB

when GA was employed. In our work, the maximum
attenuation of 27.5145 dB for RGA with a lower order was
achieved. In (Wang et al., 2011), Wang et al. reported

maximum stop band ripples of approximately 0.12, 0.16,
0.15 and 0.05 for 11th-order IIR LP, HP, BP and BS filters,
respectively, when the LS-MOEA technique is adopted. In this

study, GSAWM yields the improved stop band ripples even
with lower-order IIR LP, HP, BP and BS filters, as
2.5154 · 10�3, 2.0982 · 10�3, 5.7610 · 10�2 and 3.25 · 10�2,

respectively. The aforementioned results can be verified from
Table 19.
5. Comparative effectiveness and convergence profiles of RGA,

PSO, GSA and GSAWM

To compare the algorithms in terms of the error fitness values,
Fig. 16 depicts the comparative convergences of the error



Table 15 Optimized coefficients and performance comparison of concerned algorithms for the 8th-order IIR BS filters.

Algorithms Numerator coefficients (bk) Denominator coefficients (ak) Maximum stop

band attenuation (dB)

RGA 0.2269 �0.0189 0.5039 1.0190 �0.0067 0.0968 17.4734

0.0170 0.6409 �0.0136 0.0109 0.8671 0.0180

0.4866 0.0093 0.2189 �0.0322 0.0177 0.1182

PSO 0.2142 �0.0058 0.4833 1.0073 �0.0069 0.0980 21.9740

�0.0008 0.6503 0.0097 �0.0077 0.8902 �0.0073
0.4976 0.0041 0.2091 �0.0198 �0.0048 �0.1089

GSA 0.2215 0.0000 0.5175 1.0000 �0.0001 0.1572 24.7606

0.0001 0.6995 �0.0000 0.0000 0.9085 0.0000

0.5172 0.0001 0.2211 0.0055 �0.0001 0.1181

GSAWM 0.1642 0.0001 0.3912 1.0001 �0.0001 �0.1697 29.7532

�0.0000 0.5260 0.0001 0.0001 0.8363 0.0000

0.3909 0.0001 0.1638 �0.1179 �0.0000 0.0928

Table 16 Statistical data for stop band attenuation (dB) for

the 8th-order IIR BS filters.

Algorithm Maximum Mean Variance Standard deviation

RGA 17.4734 21.0867 13.0559 3.6133

PSO 21.9740 24.1658 4.8038 2.1918

GSA 24.7606 24.7761 0.0001 0.0116

GSAWM 29.7532 29.7877 0.0010 0.0318
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Figure 15 Pole-zero plot of the 8th-order IIR BS filter designed

using GSAWM.

Table 18 Radii of zeroes for the 8th-order IIR BS filter.

Algorithm Zeroes

Z1 Z2 Z3 Z4

GSAWM 0.999874 0.999708 0.999157 1.000129
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fitness values obtained by RGA, PSO, GSA and GSAWM for
the 8th-order IIR LP filters. Similar plots were also obtained

for the other filters and are not shown.
As shown in Fig. 16, RGA converges to the minimum

error fitness value of 4.054 in 38.9791 s. PSO converges to

the minimum error fitness value of 2.850 in 28.4670 s. GSA
converges to the minimum error fitness value of 1.825 in
20.185515 s, whereas GSAWM converges to the minimum

error fitness value of 1.231 in 22.751 s. The above-mentioned
execution times may be verified from Table 20. Similar obser-
vations were made for the other filters but are not shown.
Table 20 summarizes the convergence profile results for

RGA, PSO, GSA and GSAWM applied for the design of
IIR LP filters.

From Fig. 16, it can be concluded that the proposed fil-

ter design technique using GSAWM obtains the minimum
error fitness values compared with PSO, RGA, and GSA.
Given the above, it may finally be inferred that the perfor-

mance of GSAWM is the best among all the mentioned
algorithms.
Table 17 Qualitatively analyzed data for the 8th-order IIR BS filters.

Algorithm Maximum Pass band

ripple (normalized)

Stop band ripple (normalized) Transition width

Maximum Minimum Average

RGA 0.0268 13.38 · 10�2 30.6000 · 10�3 8.2200 · 10�2 0.0535

PSO 0.0303 7.97 · 10�2 5.8373 · 10�3 4.2769 · 10�2 0.0377

GSA 0.0063 5.78 · 10�2 0.2207 · 10�3 2.9010 · 10�2 0.0395

GSAWM 0.0037 3.25 · 10�2 4.3684 · 10�4 1.6468 · 10�2 0.0563
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Figure 16 Convergence profiles for RGA, PSO, GSA and

GSAWM for the 8th-order IIR LP filters.

Table 19 Comparison of performance criteria from by other reported works.

Reference Algorithm

considered

Filter type Order Stop band

attenuation (dB)

Pass band

RIPPLE

Stop band

ripple

Transition

Width

Karaboga and Cetinkaya (2004) GA LP 10th 14 – – –

Gao et al. (2008) CPSO LP 8th 34 – – –

Luitel and Venayagamoorthy (2008a) PSO,

DEPSO

LP 9th 25, 22 – –

Luitel and Venayagamoorthy (2008b) PSO,

PSO-QI

LP 9th 22, 27 – – –

Wang et al. (2011) LS-MOEA LP, HP, BP, BS 11th – – 0.12, 0.16, 0.15, 0.05 –

Present paper GSAWM LP, HP, BP, BS 8th 51.9880 0.0246 2.5154 · 10�3 0.0423

53.5630 0.0050 2.0982 · 10�3 0.0373

25.2100 0.0057 5.7610 · 10�2 0.0370

29.7532 0.0037 3.2500 · 10�2 0.0563

Table 20 Convergence profile results for RGA, PSO, GSA

and GSAWM for the 8th order IIR LP filter.

Algorithms Minimum

error

value

Iteration

cycles

Convergence

speed

(per cycle)

Execution

time for

100 cycles (s)

RGA 4.054 500 8.608 · 10�3 7.795833

PSO 2.850 500 7.918 · 10�3 5.693405

GSA 1.825 500 11.530 · 10�3 4.037103

GSAWM 1.231 500 10.284 · 10�3 4.568521
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6. Conclusions

In this paper, the Gravitational Search Algorithm with Wave-

let Mutation (GSAWM) along with RGA, PSO and GSA
algorithms was applied to the solution of the constrained,
multi-modal, non-differentiable, and highly nonlinear IIR

low pass, high pass, band pass and band stop filter design
problems. It has been established from the results obtained
after extensive simulation that the optimal filters, designed

with GSAWM, meet the stability criterion and display the best
attenuation characteristics with reasonably good transition
widths and ripple profiles. GSAWM converges fast to the best

quality optimal solutions and reaches the lowest minimum
error fitness value in moderately low execution time. It is also
evident from the results obtained with a large number of trials

that GSAWM is consistently free from the shortcoming of pre-
mature convergence exhibited by other optimization algo-
rithms. The statistically improved results obtained for the
GSAWM justify the potential of the proposed algorithm in

the design of digital IIR filters. It should be noted that the only
limitation of the method is the rigorous trials required for the
tuning of the long queue of control parameters for the gravita-

tional search algorithm and the wavelet mutation method.
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