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SUMMARY

Alternative splicing acts on transcripts from almost
all human multi-exon genes. Notwithstanding its
ubiquity, fundamental ramifications of splicing on
protein expression remain unresolved. The number
and identity of spliced transcripts that form stably
folded proteins remain the sources of considerable
debate, due largely to low coverage of experimental
methods and the resulting absence of negative
data. We circumvent this issue by developing a
semi-supervised learning algorithm, positive unla-
beled learning for splicing elucidation (PULSE;
http://www.kimlab.org/software/pulse), which uses
48 features spanning various categories. We vali-
dated its accuracy on sets of bona fide protein iso-
forms and directly on mass spectrometry (MS)
spectra for an overall AU-ROC of 0.85. We predict
that around 32% of ‘‘exon skipping’’ alternative
splicing events produce stable proteins, suggesting
that the process engenders a significant number of
previously uncharacterized proteins. We also pro-
vide insights into the distribution of positive isoforms
in various functional classes and into the structural
effects of alternative splicing.
INTRODUCTION

Alternative splicing (AS) canmodify important molecular aspects

of a large number of proteins (Stamm et al., 2005). AS can result
in complete loss of function or the acquisition of new function,

but the majority of cases reported predict subtle functional mod-

ulations. Evidence for AS almost exclusively comes from tran-

scriptional profiling, and isoform databases have exploded in

the last couple of years, achieving substantial coverage (Wang

et al., 2008).Yet, the number of isoforms that are known to pro-

duce functional proteins is still considerably limited, and the

lack of proteomic evidence for most isoforms raises uncertainty

about their expression as proteins and physiological activity. In

particular, the fraction of splice isoforms that produce stably

folded proteins is an intensely debated topic (Melamud and

Moult, 2009a; Tress et al., 2007, 2008a).Wewill refer to this issue

for the remainder of the article as the ‘‘stably folded isoform dis-

covery’’ (SFID) problem; our working definition of a ‘‘functional’’

protein is simply stably folded, viable, and not degraded.

Unfortunately, this debate is unlikely to be settled in the near

future through experimental means. Mass spectrometry (MS) is

the main high-throughput technique for detecting protein vari-

ants in cell lysates. Its chief limitation is that the false-negative

rate is unknown, meaning that a particular isoform may not be

expressed in a given time, tissue, or experimental setup or pep-

tides that would distinguish it from the canonical isoform may be

difficult to detect via MS (Blakeley et al., 2010). Therefore,

whereas we have reasonably sized positive sets of bona fide ex-

pressed and stable protein isoforms, we do not have a reliable

negative set, hindering the use of traditional computational

approaches, such as supervised machine-learning algorithms,

to predict which isoforms lead to a stably folded protein. These

algorithms require both positive and negative training data.

Instead of predictive models, computational work has thus far

focused on the exploratory analysis of bio-molecular properties

that characteristically differentiate functional from non-func-

tional isoforms. Many groups focused on structural attributes
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Figure 1. Overview of PULSE Framework

The PULSE framework consists of four main steps: (1) mapping splicing events to their protein counterparts and the canonical and identification of alternative

isoforms; (2) comparison of the reference and the alternative isoforms across 48 features coming from five major categories of predictive features; (3) generation

of a machine-learning algorithm-based prediction using the features; and (4) validation of the predictions using independent data. See also Table S1.
such as domains, folding (Birzele et al., 2008), and disordered re-

gions (Tress et al., 2008a), whereas others developed generative

models that include features such as expression levels, number

of exons (Melamud and Moult, 2009a, 2009b), signal peptides,

conservation, and exonic structure (Rodriguez et al., 2013).

These studies illuminate important properties but draw diverse

conclusions with respect to the percentage of functional iso-

forms. The limited—often non-overlapping—features that are

used for analysis by different groups have thus far precluded

consensus, and no single feature is a strong predictor of func-

tionality in its own right (Birzele et al., 2008; Ezkurdia et al.,

2012; Floris et al., 2011; Leoni et al., 2011; Melamud and Moult,

2009a; Rodriguez et al., 2013; Tress et al., 2008b). For instance,

the recently developed APPRIS pipeline uses a subset of the

aforementioned features to assign one particular isoform as

the principal isoform, which is a related but different problem.

Whereas a highly useful exploratory analysis tool, the scope of

APPRIS does not extend to predicting which alternative isoforms

will form stably folded proteins. Therefore, there is a need for a

practical, comprehensive, unbiased, and robust computational

model that can reliably identify functional (or stably folded) iso-

form products at a genome-wide scale.

RESULTS AND DISCUSSION

Overcoming the Missing Negative Data Problem: PULSE
Algorithm
Supervised learning algorithms have been used in various bio-

logical problems with tremendous success. The input to a
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traditional binary classifier usually consists of a positive and a

negative set. Unfortunately for the SFID problem, negative sets

are unobtainable due to experimental limitations in proving the

non-existence of an isoform’s protein expression. As such, tradi-

tional supervised learning approaches can’t be applied to the

SFID problem, whereas unsupervised learning approaches are

suboptimal as they cannot make use of the positive set. Here,

we sidestep the problem of missing negative data by formulating

SFID as an instance of a positive unlabeled learning (Elkan and

Keith, 2008) problem. As a semi-supervised algorithm, it does

not require a negative set for training and thereby overcomes

the biggest hurdle in creating a predictive model. Given both a

positive and unlabeled set, it can train a model that infers labels

for the unlabeled set and also can predict labels for future data

points. To do this, PULSE first trains a binary classifier wherein

unlabeled data points are treated as negatives. Using the

classifier’s predictions for each data point, PULSE generates a

modified (re-weighted) version of the data points, on which the

second and the final classifier are built (see Figure 1 and Section

S3a for algorithmic and implementation details).

PULSE leverages 48 predictive features spanning five cate-

gories: splicing, evolutionary, regulatory, proteomic, and struc-

tural features (see Section S1 for detailed descriptions). These

features represent a unification and expansion of several feature

sets that were individually but never jointly analyzed in previous

studies (Blakeley et al., 2010; Ezkurdia et al., 2012; Floris et al.,

2011; Hegyi et al., 2011; Leoni et al., 2011; Melamud and Moult,

2009a; Rodriguez et al., 2013; Severing et al., 2011; Tress et al.,

2008b; Table S1; Section S1).
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Figure 2. Performance Analysis

(A) AU-ROC analysis of PULSE prediction performance. The Hegyi set is used as positive training set, and MS-based sets are used for validation (see also

Figure S1A).

(B) Distribution of PULSE scores, i.e., probability of being stably folded, for mass-spectrometry based isoforms from GPM (Global Proteome Machine, blue), PA

(PeptideAtlas, magenta), NCI60 (green), and for NMD targets (red).

(C) Distribution of PULSE scores for the full isoform set using Uniprot (black) and APPRIS (gray) canonical isoforms for anchoring. Predictive feature values used

for training, as well as amino acid sequence, identifier annotation, and the PULSE scores for the full isoform set can be found in Table S2.

(D) Density plot of relative location of splicing events causing NMD. Positive predicted isoforms tend to happen closer to the 30 end, which is expected as the

closer the event to the end, the shorter the length of the affected downstream regions.

(E) AU-ROC analysis withMS-based isoformswith varying confidence levels (the three-way intersection, three different two-way interactions, and the union of the

GPM/PA/NCI60 sets).

(F) AU-ROC analysis of PULSE predictions, where MS-based isoforms are used as positive isoforms for both training and validation in a 10-fold cross-validation

experiment.

See also Tables S2, S3, and S4.
Performance Evaluation
We undertook a comprehensive performance evaluation to

ensure robustness of PULSE (see Figure S1A for schematic visu-

alization of validation experiments). We trained PULSE using the

set named as ‘‘verified’’ from Hegyi et al. (2011) as the positive

set (we also evaluated performance when training our algorithm

with other data sets; see Section S3b). This set consists ofmanu-

ally curated isoforms that have been detected on the protein

level—usually from western-blot-based expression studies.

Next, we separated the unlabeled set into training and held-out

validation sets (Figure S1A). The training unlabeled set along

with the Hegyi set is fed into PULSE algorithm, and the obtained

model is used for labeling of the non-overlapping validation sets:

held-out unlabeled set (negative) and theMS-based isoform sets

(positive). This process is repeated ten times, each time with a

different subset of the unlabeled set used as held-out set. For

validation, we extracted isoforms from MS peptide databases

(PeptideAtlas [PA]; Desiere et al., 2006; and Global Proteome

Machine [GPM]; Craig et al., 2004) to independently assess the

accuracy of our predictions. These isoforms are discovered by

matching MS peptides to splice junctions of our isoforms (Sec-

tion S2) and are non-overlapping and independent from our
training data. Assuming these experimentally validated isoforms

are positives and that the algorithm’s performance is roughly the

same in the positives of the unlabeled set, we are able to approx-

imate the true-positive and false-positive rates of PULSE. Our re-

sults are summarized in the receiver operating characteristic

(ROC) curve shown in Figure 2A. PULSE achieves an AU-ROC

value of 0.85, suggesting that it outputs high probability values

for functional isoforms.

Next, we had an in-depth look at the distribution of predicted

scores for the three categories of isoforms (Figure 2B). As ex-

pected, both MS-verified isoform sets, namely GPM (blue) and

PA (magenta) have a uni-modal distribution peaking at a score

of 0.9, reaffirming our conclusions from Figure 2A. On the other

hand, isoforms annotated to undergo nonsense-mediated decay

(NMD) have a distribution peaking at 0.2, consistent with the

expectation that most of these isoforms would not produce sta-

bly folded proteins.

To minimize the risk of bias from external data, we tested

PULSE’s performance on three distinct additional sets ofMS-vali-

dated isoforms, based on proteome analysis of the NCI-60 cell

lines (NCI-60), the Human Proteome Map (HPM) (Kim et al.,

2014), and a draft human proteome (‘‘Munich set’’; Wilhelm
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Table 1. Top 15 Predictive Features

Feature Category RI Score (%)

Positive

Mean

Negative

Mean

lengthDelta splicing 100 64.57 301.0

lengthDeltaNormalized splicing 80 0.10 0.49

disorderRateCanonical structure 48 0.36 0.16

lengthAfter splicing 45 315.4 99.2

disorderRateC2 structure 45 0.43 0.11

isFrameShift splicing 39 0.24 0.69

seqConAve evolution 39 0.71 0.62

disorderRateA structure 37 0.41 0.12

elmRateCanonical regulatory 33 0.16 0.09

seqConMin evolution 31 0.51 0.34

coreRateA structure 26 0.10 0.23

coreRateCanonical structure 24 0.14 0.22

coreRateC2 structure 23 0.11 0.24

disorderRateC1 structure 22 0.40 0.13

ptmRateCanonical regulatory 21 0.026 0.02

Category, relative importance score (RI score), and mean value in the

positive set (positive mean) and in the negative set (negative mean) for

the top 15 predictive features.
et al., 2014; see Section S2 for details). PULSE gives high scores

for MS-validated isoforms (Figures 2B [green], S2D, and S2E),

again confirming the high accuracy of our predictor. In addition,

to account for the imperfect threshold selection and unknown

false-positive rate in identification of spectra, we performed addi-

tional validation experiments to gaugePULSE’s performancewith

validation sets of various confidence levels (Figure 2E). Isoforms

that exist in the intersection of GPM, PA, and NCI-60 set (triple

intersection) are the most reliable, followed by isoforms overlap-

ping in only two data sets (double intersection), and finally by iso-

forms observed only in one set (no intersection). PULSE achieved

AU-ROC values of 0.8, 0.84, and 0.9 for no-, double-, and triple-

intersection sets, respectively, thus achieving better accuracy

when using more-reliable validation sets (see also Section S3

and Figures S2C–S2F for FDR-based robustness analyses).

Feature Predictive Importance
Having confirmed PULSE’s ability to correctly differentiate func-

tional isoforms, we next analyzed the relative predictive power of

features used (Section S4a).

Table 1 summarizes the 15 most-important features (see Fig-

ure S3A for the complete distribution) normalized against the

most important feature. Almost all the features contribute to pre-

dictive power, and the top predictive features are from a diverse

set of categories. Structural and splicing features constitute

42%and 33%, respectively, of the total importance. Notably, iso-

form length difference (i.e., the length of the AS exon) is the most

important feature, consistent with the intuition that a longer inser-

tion/deletion in a protein is more difficult to accommodate (Table

1). Likewise, AS exons that are disordered or flanked by disor-

dered regions are easier to accommodate, whereas those that

map to the protein core or a domain are not (Table 1). As ex-

pected, frameshifts are also not well tolerated. Most positive
186 Cell Reports 12, 183–189, July 14, 2015 ª2015 The Authors
frameshift events arise from frame shifting near the end of the pro-

tein, which does not significantly affect the alternative isoform.We

found, however, that a number of frame-shifted isoforms are likely

to be functional (see Structural Characterization of Predicted Pro-

tein Variants). Interestingly, more positive isoforms arise when

the alternative isoform is longer in length due to frameshift (Fig-

ure S3C). The remaining are regulatory (13% of importance),

evolutionary (10%), and proteomic (2%) features. This finding im-

plies that the problem at hand involves interactions of tens of fea-

tures, and hence, any conclusion based on analysis of subsets of

these features will be—to a large extent—suboptimal and non-

conclusive (see Section S4 for additional details and analyses).

Predicted Functional Proteins and Characterization of
Highly Spliced Genes
Given the relatively high accuracy of our predictions, we ran

PULSE to label 15,639 unlabeled transcripts from the BodyMap

data set (Cabili et al., 2011; Colak et al., 2013; see Figure S1B for

the experimental setup). At a 90% true-positive rate, we predict

that about 32% of isoforms are functional (Figure 2C), roughly

consistent with one school of thought, which estimate around

20%–30% to be functional (Floris et al., 2011; Rodriguez et al.,

2013). Thus, AS leads to a sizeable number of previously unchar-

acterized proteins (a total of 5,023 in this data set alone). To pre-

vent any biases/errors that might be caused by using Uniprot

canonical isoforms for anchoring (the mechanism by which we

quantify how much an alternative isoform differs from its canon-

ical pair—see Experimental Procedures), we repeated the anal-

ysis using APPRIS principal isoforms for anchoring. The score

distribution remains qualitatively unchanged (Figure 2C).

Interestingly, we find that our predicted negative isoforms are

enriched (p < 0.03) in poorly expressed genes, supporting the

notion that some of these events may just be noisy splicing (Mel-

amud and Moult, 2009a, b). The adaptability of protein isoforms

to tolerate larger insertions and deletions is also better than pre-

viously predicted. For example, some isoforms maintain func-

tionality despite splicing events affecting globular domains (see

below).

Next, we analyzed high-level functional characteristics of

highly spliced genes, which are genes (n = 1,898) that have

at least three scored isoforms (Section S5a). We split these

genes into two categories based on the ratio of positive pre-

dicted isoforms.We designate the first group as ‘‘highly positive’’

(HP), containing 384 genes that have a ratio of more than 0.5. The

second group, termed ‘‘highly negative’’ (HN), contains 1,514

genes that have more than half of their isoforms negative (ratio

% 0.5). According to Gene Ontology enrichment analysis per-

formed at biological process (level 2), the HP group has greater

regulatory and developmental functions compared to the HN

group, which tend to be involved in localization and metabolic

processes. Compared to the HN group, the HP group also tends

to be enriched with essential (p < 4.8e�7), non-house-keeping

(p < 7e�4), and highly expressed (p < 0.03) genes (Figure S4).

Structural Characterization of Predicted Protein
Variants
Most human proteins are composed of multiple domains that

carry out different molecular processes required for prescribed
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Figure 3. Structural Analysis of the Predicted Viable Protein Isoforms

(A) Distribution of spliced domains based on the relative percentage of fold removal. Negative numbers show domain growth by insertions.

(B) Most-abundant domain families within the predicted functional protein isoforms. Stars indicate significant enrichment compared to background (p < 0.01;

chi-square test).

(C) Selection of multidomain containing protein isoforms in which a domain is fully removed. Uniprot and Isoform identifiers of the wild type protein are

shown from top to bottom, where the domain deleted in the isoform is shown in red (O43390:IHs.373763.1, Q9ULU4:IHs.446240.4, Q9UGI8:IHs.592286.1,

P10586:IHs.272062.1, Q9NWS9:IHs.697107.2).

(D) PKinase domain of BRSK2 protein isoform with region 261–271 spliced out.

(E) WD40 domain of Pleiotropic regulator 1 protein isoform with region 431–496 spliced out.

(F) Ankyrin repeat domain of ANKRD6 protein isoform with region 296–322 spliced out.

(G) First RNA-binding domain from DAZ-associated protein 1 isoform with region 80–102 spliced out.

Domain structures are represented in white ribbons, and deleted regions are shown in red. Structural mapping was done using PDB structures 1ZMU, 3CFS,

3B7B, 2DH8 as templates for (D), (E), (F), and (G), respectively.
biological function. Of the set of events that are predicted to

generate functional isoforms, 36% affect the structural integrity

of globular domains. In total, 3,089 positive events happen at

non-structured regions of the canonical proteins and 67.4% of

these affect disordered regions—intuitively easier to accommo-

date. This overrepresentation was previously observed by us

and others (Colak et al., 2013; Romero et al., 2006). Interestingly,

AS provides a mechanism to remove or add domains in protein

isoforms in order tomodulate biological processes. For instance,

in tenascin C, AS determines the number of fibronectin type III

domains that regulate binding to fibronectin (Chiquet-Ehrismann

et al., 1991; Figure 3C). We find that 91% of the predicted iso-

forms with full domain removal (proteins with >90% domain

removal in Figure 3A) contain more than one domain (versus

58% in the whole data set; p < 0.01; chi-square test). In fact,

54% of these cases contain multiple copies of the same domain

family (see Figure 3C for examples). In addition, we observe

some enrichment in our data for several modular and promiscu-

ous domains in proteins, such as SH3, PDZ, LIM, zinc fingers,

SH2, and PH domains (Figure 3B).
Perhaps surprisingly, our results show that 36% (1,820 in total)

of our predicted functional isoforms have the alternatively spliced

exon within a domain. It has been structurally shown that certain

domain folds can accommodate relatively small modifications

and still become soluble folded units (Birzele et al., 2008; Hegyi

et al., 2009, 2011). Subtle structural changes have also been

shown to affect the function of a protein by changing the affinity,

specificity, or catalytic activity to native protein partners. Interest-

ingly, the distribution of our predicted domain-affecting splice

events by percentage of domain spliced is bimodal (Figure 3A).

The major peak (80% of all events) represents domain folds

with short truncations, where AS may influence the molecular

properties of proteins, whereas a minor peak (6.1% of events)

represents complete domain removal, presumably leading to a

major functional change of the isoform (see Section S5b for

examples and discussion of splicing tolerant domains).

Conclusions
In this paper, we present the first algorithm to predict the likeli-

hood of yielding stably folded protein isoforms from AS events.
Cell Reports 12, 183–189, July 14, 2015 ª2015 The Authors 187



We solve the problem of a missing negative set by leveraging

advancements in theoretical machine learning. To our best

knowledge, this is the first analysis/algorithm that incorporates

all existing—and some new—features, surpassing the depth

and breadth of previous work. We estimate that around 32% of

alternatively spliced isoforms lead to functional proteins, and

we obtain a large list of putative and previously unobserved pro-

teins that can be prioritized in future experimental studies.

Ongoing sequencing efforts will continue to identify new splicing

isoforms, and knowledge of those that will produce functional

proteins is crucial. In this study, we only applied our methods

to the most-simple form of AS events, that of exon skipping. It

would, however, be straightforward to extend the approach to

more-complex cases. Understanding the effects of AS at the

protein level will be one of themajor challenges in the near future.

Having here made an important first step toward this goal, we

expect PULSE’s performance to further improve with ever

increasing ground truth available for training.
EXPERIMENTAL PROCEDURES

Data Sets

An overview of our methodology is given in Figure 1. We use Uniprot (version

2013_04; 20,253 sequences) as our main source of canonical (principal/refer-

ence) isoforms, against which we compare the alternative isoform to derive

comparative statistics. Note that, as Uniprot principal isoforms are not always

correct, we also used alternative APPRIS canonical isoforms (Figure 2C). We

observed almost no difference in performance; hence, we used Uniprot as

source of canonical isoforms. In addition, it is important to oncemore underline

that the principal isoforms are not treated as positive isoforms in PULSE, they

are merely used for anchoring, the process through which we measure how

much an alternative isoform deviates from the representative isoform of the

gene, irrespective of whether or not the canonical one is functional.

We then used 27,240 AS events from Illumina’s Human BodyMap 2.0 project

(Cabili et al., 2011), which can be accessed at ArrayExpress (E-MTAB-513).

These splicing events are represented by the alternative exon A and flanking

exons C1 and C2. Of the 27,240 distinct human cassette exon AS events from

RNA-seq data corresponding to a pair of isoforms each (C1-A-C2 and C1-

C2), we were able to map 15,784 pairs of them such that one isoform from

each pair maps to a canonical Uniprot protein. During mapping, we required a

95% identity match and absolute length difference of the matched C1-A-C2

peptidesegment tobe less thanor equal to three inorder toallow for sequencing

errors and imperfect mappings. Out of the mapped pairs, we identified 12,015

had inclusion events (C1-A-C2) and 3,769 exclusion ones (C1-C2). We used

the canonical pair as an anchor to derive predictive features in comparison to

the alternative isoform. To account for the fact that we may be incorrect in our

assignment of the canonical isoform, we also ‘‘inverted’’ all our predictions,

i.e., we treated each inclusion event as an exclusion event and vice versa. Our

prediction accuracy remained almost unchanged (Figure S2A). Isoforms are

then mapped to Ensembl transcript data to obtain the isoforms at a transcript

sequence level, which we used for translation. A subset of these isoforms con-

taining 145 experimentally validated alternative isoforms (Hegyi set; Hegyi et al.,

2011) is treatedas thepositive set to train ourmodel. Unfortunately, a significant

portion of the Hegyi set (�350) did not overlap with our gene set and/or the

above mapping criteria was not satisfied. For validation, we used five distinct

MS-validated isoform sets, which are described in detail in Section S2.
SUPPLEMENTAL INFORMATION
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Supplemental Experimental Procedures, four figures, and four tables and
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