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Abstract

A new notion of weak Clarke epiderivative for a set-valued map is introduced using the concept of Clarke tangent cone. The
existence, characterization and properties of weak Clarke epiderivative are then studied. Finally optimality criteria are established
for a constrained set-valued optimization problem in terms of weak Clarke epiderivative.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Several notions of derivatives of single valued maps have been studied in literature. Using the concept of tangency
for any set it is possible to have the concept of derivative of set-valued maps as well. In this regard using the concept
of contingent cone Aubin [1] introduced the notion of contingent derivative of a set-valued map. It is defined as the
set-valued map whose graph coincides with the contingent cone to the graph of the set-valued map. It can be seen
that in case of contingent derivative, necessary and sufficient optimality conditions do not coincide under the standard
assumptions [5]. Therefore, while characterizing optimality conditions, it is useful to consider derivatives involving
epigraph of set-valued maps rather than their graph [8,10,13].

In order to obtain optimality conditions, generalizing the known classical conditions, another notion of differentia-
bility of set-valued maps known as contingent epiderivative was introduced by Jahn and Rauh [8] where they related
epigraph of the derivative with the contingent cone. Since contingent cones are not necessarily convex, Sach and
Craven [13] introduced a derivative by relating Clarke tangent cone to the epigraph where the derivative is a set-
valued map. Later on Lalitha, Dutta and Govil [10] introduced the notion of Clarke epiderivative of a set-valued map
in terms of Clarke tangent cone where epiderivative is a single valued map.

Chen and Jahn [4] introduced the concept of generalized contingent epiderivative in terms of minimizers of projec-
tion of the contingent cone to epigraph of a set-valued map. Refer the excellent book of Jahn [7] for further discussions
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and commentaries on the generalized contingent epiderivative. This concept was improved by Chen [3] by considering
Clarke tangent cone instead of contingent cone. Jahn and Khan [7] introduced the notion of weak contingent epideriv-
ative and proper contingent epiderivative where derivatives are in terms of weak minimizers and proper minimizers of
projection sets, respectively.

Since Clarke tangent cone is convex and provides a complete characterization of optimality therefore it is relevant
to introduce the notion of weak Clarke epiderivative. The existence, characterization and properties of these epideriv-
atives are studied in this paper and their relations with the existing generalized notions of epiderivatives are observed.
Finally optimality criteria for a constrained set-valued optimization problem are established in terms of weak Clarke
epiderivative.

The paper is organized as follows. Section 2 presents some basic definitions and results used in the paper. In
Section 3 the notion of weak Clarke epiderivative is introduced and its existence criteria is studied. Section 4 deals with
the characterization and properties of weak Clarke epiderivative. Also its relation with some of the existing notions of
epiderivatives is examined. Section 5 deals with both Fritz John and Kuhn Tucker type necessary optimality criteria
and concludes with sufficient optimality criteria using a weakened form of cone convexity assumption. Finally some
concluding remarks are made at the end.

2. Preliminaries

Throughout the paper we assume that X = Rn, Y = Rm and K ⊆ Y is a convex pointed cone with nonempty
interior. For a nonempty set B in Y we denote the interior of B by int B . For a set-valued map F : X → 2Y we denote
by domF the set {x ∈ X | F(x) �= ∅}.

An element ȳ ∈ B is said to be a minimizer of B if (B − ȳ) ∩ (−K) = {0} and a weak minimizer of B if (B − ȳ) ∩
(−intK) = ∅. The set of all minimizers and weak minimizers of B with respect to the cone K is denoted by Min(B,K)

and WMin(B,K), respectively. It is obvious that Min(B,K) ⊆ WMin(B,K).
The Clarke tangent cone to B at ȳ ∈ B is defined as

T (B, ȳ) := {
y ∈ Y

∣∣ ∀ȳn → ȳ, ȳn ∈ B, tn → ∞, tn > 0, ∃yn ∈ B such that yn → ȳ and tn(yn − ȳn) → y
}
.

Equivalently it is also defined as

T (B, ȳ) := {
y ∈ Y

∣∣ ∀ȳn → ȳ, ȳn ∈ B, tn ↓ 0, ∃yn → y with ȳn + tnyn ∈ B ∀n
}
.

It can be seen that T (B, ȳ) is a closed convex cone.
The following notion of Clarke epiderivative for set-valued maps was introduced by Lalitha, Dutta and Govil [10]

where the epiderivative is a single valued map.
Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X. A single valued map DeF(x̄, ȳ) : X → Y whose

epigraph equals the Clarke tangent cone to epiF at (x̄, ȳ), that is,

epiDeF(x̄, ȳ) = T
(
epiF, (x̄, ȳ)

)
is called the Clarke epiderivative of F at (x̄, ȳ) where

epiF := {
(x, y) ∈ X × Y

∣∣ x ∈ domF, y ∈ F(x) + K
}
.

In practice there are numerous set-valued maps for which Clarke epiderivative does not exist. The following example
is one such simple case where the ordinary Clarke epiderivative does not exist. In this example epiF is convex,
however similar situation may occur for the set-valued maps with nonconvex epigraph, which would be discussed in
other examples given later.

Example 2.1. Let F : R → 2R2
be a set-valued map defined by

F(x) =
{ {(y1, y2) ∈ R2 | y2

1 + 2y2
2 � x2} if x � 0,

∅ if x < 0,

and K = R2+ where R2+ = {(y1, y2) | y1 � 0, y2 � 0}. For x̄ = 0, ȳ = (0,0) it can be seen that T (epiF, (x̄, ȳ)) = epiF
and that the Clarke epiderivative at (x̄, ȳ) does not exist for any x in domF .
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Later Chen [3] introduced the concept of generalized Clarke epiderivative. Here instead of considering the Clarke
tangent cone to the epigraph of F at (x̄, ȳ), its projection on the image space is taken at a point and minimizers of this
projection set is the value of the generalized Clarke epiderivative at that point. A set-valued map DgF(x̄, ȳ) :X → 2Y

is said to be the generalized Clarke epiderivative of F at (x̄, ȳ) if

Dg(x̄, ȳ)(x) = Min
(
G(x),K

)
where

G(x) := {
y ∈ Y

∣∣ (x, y) ∈ T
(
epiF, (x̄, ȳ)

)}
.

It can be easily observed that G(x) is a closed convex set and G(x) = G(x) + K .

However there are set-valued maps for which even the generalized Clarke epiderivative may not exist. The follow-
ing example highlights one such set-valued map.

Example 2.2. Let F : R → 2R2
be a set-valued map defined by

F(x) =
{ {(y,−y2) ∈ R2 | 0 � y � x} ∪ {(−1,0)} if x � 0,

∅ if x < 0,

and K = R2+. Clearly epiF is a nonconvex set and for x̄ = 0, ȳ = (0,0), T (epiF, (x̄, ȳ)) = {(x, (y1, y2)) ∈ R3 | x � 0,

y2 � 0, y1 ∈ R}. The set-valued map G : R → 2R2
is given by

G(x) =
{ {(y1, y2) ∈ R2 | y2 � 0, y1 ∈ R} if x � 0,

∅ if x < 0,

and hence DgF(x̄, ȳ)(x) = ∅ for all x ∈ R. Observe that for this set-valued map even DeF(x̄, ȳ)(x) = ∅ for all x ∈ R.
To deal with the situation where the minimizers do not exist, we are motivated to consider the notion in terms of

the weak minimizers of the projection set G(x). In the following section we introduce this weaker notion and study
its existence criteria.

3. Existence criteria for weak Clarke epiderivative

We first introduce the notion of weak Clarke epiderivative.

Definition 3.1. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X. A set-valued map DwF(x̄, ȳ) : X → 2Y

is said to be the weak Clarke epiderivative of F at (x̄, ȳ) if

DwF(x̄, ȳ)(x) = WMin
(
G(x),K

)
.

As the set of minimizers is contained in the set of weak minimizers, it is obvious that

DgF(x̄, ȳ)(x) ⊆ DwF(x̄, ȳ)(x) (1)

for all x in X.

In Example 2.2 considered above it can be seen that at x̄ = 0, ȳ = (0,0),

DwF(x̄, ȳ)(x) =
{

{(y,0) ∈ R2 | y ∈ R} if x � 0,

∅ if x < 0.

We now provide an example where the generalized Clarke epiderivative exists and is a proper subset of weak Clarke
epiderivative.

Example 3.1. Let F : R → 2R2
be a set-valued map defined by

F(x) = {
(y1, y2) ∈ R2

∣∣ y1y2 � 0
}
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and K = R2+. Here epiF = R × (R2 \ intR2−) is a nonconvex set where R2− = {(y1, y2) | y1 � 0, y2 � 0}. For x̄ = 0,

ȳ = (0,0), T (epiF, (x̄, ȳ)) = R × R2+ and G : R → 2R2
is G(x) = R2+. Here for all x in R

DgF(x̄, ȳ)(x) = {
(0,0)

}
which is a proper subset of

DwF(x̄, ȳ)(x) = {
(y1, y2) ∈ R2+

∣∣ y1y2 = 0
}
.

We now give an example of a set-valued map where the Clarke epiderivative does not exist and the associated cone
is not closed but both DwF(x̄, ȳ)(x) and DgF(x̄, ȳ)(x) exist and coincide for all x in domF .

Example 3.2. Let F : R → 2R2
be a set-valued map defined by

F(x) =
{ {(y1, y2) ∈ R2 | y1 + y2 = 0} ∪ {(y1, y2) ∈ R2 | 0 � y1 � x, y2 � 0} if x � 0,

∅ if x < 0,

and K = intR2+ ∪ {(0,0)}. Here epiF is a nonconvex set. For x̄ = 0, ȳ = (0,0), we have T (epiF, (x̄, ȳ)) = {(x, y) |
x � 0, y = (y1, y2) ∈ R2, y1 + y2 � 0, y1 � 0} and G : R → 2R2

is given by

G(x) =
{

{(y1, y2) ∈ R2 | y1 + y2 � 0, y1 � 0} if x � 0,

∅ if x < 0.

Here DeF(x̄, ȳ)(x) does not exist for any x in domF whereas DgF(x̄, ȳ)(x) and DwF(x̄, ȳ)(x) both exist and
coincide for all x in domG and are given by

DgF(x̄, ȳ)(x) =
{

{(y1, y2) ∈ R2 | y1 + y2 = 0, y1 � 0} ∪ {(0, y2), y2 � 0} if x � 0,

∅ if x < 0.

We now discuss the existence of the weak Clarke epiderivative for which we recall the following definitions.

Definition 3.2. (See [7,11].) Let B ⊆ Y and ȳ ∈ Y .

(i) The set B ∩ (ȳ − K) is said to be a K-lower section of B at ȳ.
(ii) The set B is said to be minorized if there exists y ∈ Y such that B ⊆ {y} + K .

(iii) The cone K is said to be Daniell if any decreasing sequence in Y having a lower bound converges to its infimum.
(iv) The set B is said to satisfy weak domination property if B ⊆ WMin(B,K) + intK ∪ {0Y }.

Since Min(B,K) ⊆ WMin(B,K) it may be noted that the weak domination property is a weaker condition in
comparison with the domination property namely, B ⊆ Min(B,K) + K (see [3]).

In view of existence theorems for the efficient points given by Borwein [2], the following conclusions can be made.

Lemma 3.1. If the convex pointed cone K in Y is closed and B is nonempty in Y , then the following implications
hold:

(i) If K is Daniell and the set B has a nonempty minorized closed K-lower section, then WMin(B,K) �= ∅ and
weak domination property holds.

(ii) If the set B has a nonempty compact K-lower section, then WMin(B,K) �= ∅ and weak domination property
holds.

(iii) Let B be closed and convex and K has a compact base. If WMin(B,K) �= ∅, then weak domination property
holds.

We now give the existence theorems for weak Clarke epiderivative.
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Theorem 3.1. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X. If the cone K is closed and Daniell
and if G(x) has a nonempty minorized K-lower section for every x ∈ domG, then DwF(x̄, ȳ)(x) exists for every
x ∈ domG and

epiDwF(x̄, ȳ) = T
(
epiF, (x̄, ȳ)

)
. (2)

Moreover, if DeF(x̄, ȳ) exists, then epiDwF(x̄, ȳ) = epiDeF(x̄, ȳ).

Proof. The existence of DwF(x̄, ȳ)(x) follows directly from Lemma 3.1(i) which also assures that G(x) ⊆
DwF(x̄, ȳ)(x)+K . As DwF(x̄, ȳ)(x)+K ⊆ G(x)+K and G(x) = G(x)+K it follows that DwF(x̄, ȳ)(x)+K =
G(x). Hence (x, y) ∈ epiDwF(x̄, ȳ) if and only if y ∈ G(x), which is equivalent to the fact that (x, y) ∈
T (epiF, (x̄, ȳ)). �
Theorem 3.2. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X and the cone K be closed. If G(x) has a
nonempty bounded K-lower section for every x ∈ domG, then DwF(x̄, ȳ)(x) exists for all x ∈ domG and (2) holds.

Proof. Proof follows on using Lemma 3.1(ii) as the set G(x) is a closed set. �
Remark 3.1. If DwF(x̄, ȳ)(x) and DeF(x̄, ȳ)(x) both exist for every x ∈ domG, then the inclusion epi(DeF (x̄, ȳ)) ⊆
epiDwF(x̄, ȳ) holds trivially, whereas equality holds if weak domination property holds for G(x).

Remark 3.2. The conditions for the existence in the above theorems are necessary but not sufficient. For instance in
Example 2.2, DwF(x̄, ȳ)(x) exists for every x ∈ domG but none of the assumptions stated above hold true as the
K-lower section of G(x) are neither minorized nor bounded. Also in Example 3.2 it may be noted that DwF(x̄, ȳ)(x)

exists for all x ∈ domG despite the fact that the underlying cone is not closed.

The following theorem states the condition under which relation (2) holds, assuming the existence of DwF(x̄, ȳ).

Theorem 3.3. Let F : X → 2Y be a set-valued map, ȳ ∈ F(x̄)f orx̄ ∈ X and the cone K be closed. If DwF(x̄, ȳ)(x)

exists for any x ∈ domG, then (2) holds.

Proof. The proof follows on using Lemma 3.1(iii) since G(x) is a closed convex set for any x ∈ domG and K has
a compact base as Y is a finite dimensional space. �
Theorem 3.4. If DwF(x̄, ȳ)(x) exists for every x ∈ domG, and if DwF(x̄, ȳ)(X) := ⋃{DwF(x̄, ȳ)(x) | x ∈ domG}
and F(X) := ⋃{F(x)|x ∈ domF }, then the following hold:

(i) DwF(x̄, ȳ)(X) ⊆ T (F (X) + K, ȳ);
(ii) epiDwF(x̄, ȳ) ⊆ T (domF, x̄) × Y .

Proof. (i) If T (F (X) + K, ȳ) = Y , there is nothing to prove. For T (F (X) + K, ȳ) �= Y , let x ∈ domG and y ∈
DwF(x̄, ȳ)(x) ⊆ G(x). Clearly (x, y) ∈ T (epiF, (x̄, ȳ)) and hence by the definition of Clarke tangent cone, for every
(x̄n, ȳn) → (x̄, ȳ) with (x̄n, ȳn) ∈ epiF and tn ↓ 0 there exists (xn, yn) → (x, y) such that (x̄n, ȳn) + tn(xn, yn) ∈
epiF . This implies ȳn + tnyn ∈ F(x̄n + tnxn) + K ⊆ F(X) + K for every positive integer n or equivalently y ∈
T (F (X) + K, ȳ).

(ii) It can be seen that for every x̄n → x̄ and tn ↓ 0 there exists xn → x such that x̄n + tnxn ∈ domF , that is
x ∈ T (domF, x̄) which implies (x, y) ∈ T (domF, x̄) × Y . �
4. Nature of weak Clarke epiderivative

As mathematical methodology on the comparison between sets is not so popular for practical researches therefore
like any other vector optimization problem, one of the most suitable approaches to obtain optimal solution to a set-
valued optimization problem is to study characterizations of set-valued maps via scalarization. By means of some
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scalarization methods an equivalent scalar problem can be formulated whose optimal solution is comparatively easier
to obtain as the target space is one-dimensional and is a total ordering space.

In the following section the projection set G(x) is scalarized and weak Clarke epiderivative is characterized in
terms of a set related to scalarized form of G(x).

For a cone K ⊆ Y,K∗ denotes the dual cone K and is given by

K∗ := {
k ∈ Y

∣∣ 〈k, c〉 � 0, ∀c ∈ K
}
.

The scalarization of the set G(x) by an element k in Y is defined as 〈k,G(x)〉 := {〈k, y〉 | y ∈ G(x)} and〈
k,G(x)

〉− := {
y ∈ G(x)

∣∣ 〈k, y〉 �
〈
k,G(x)

〉}
.

We now characterize weak Clarke epiderivative in terms of 〈k,G(x)〉− for k ∈ K∗ \ {0Y }. Similar characterization has
been made by Jahn and Khan [7] for weak contingent epiderivative where the contingent cone to the epigraph of F at
(x̄, ȳ) is assumed to be convex whereas no such assumption is required in case of weak Clarke epiderivative.

Theorem 4.1. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X. If DwF(x̄, ȳ) exists, then
DwF(x̄, ȳ)(x) = ⋃{〈k,G(x)〉− | k ∈ K∗ \ {0}} for each x ∈ domG.

Proof. Let y∗ ∈ DwF(x̄, ȳ)(x) for x ∈ domG. This implies (G(x) − y∗) ∩ (−intK) = ∅. Since (G(x) − y∗) and
(−intK) are both convex, by standard separation theorem [6] there exists k∗ ∈ K∗ \ {0} such that 〈k∗, y − y∗〉 � 0,
that is 〈k∗, y〉 � 〈k∗, y∗〉, for every y ∈ G(x). Hence y∗ ∈ 〈k∗,G(x)〉− ⊆ ⋃{〈k,G(x)〉− | k ∈ K∗ \ {0}}.

Conversely, let k∗ ∈ K∗ \ {0} be arbitrary such that y∗ ∈ 〈k∗,G(x)〉− for some x ∈ domG. This implies for each
y ∈ G(x), 〈k∗, y − y∗〉 � 0. On the contrary suppose that y∗ /∈ WMin(G(x),K) and let z ∈ (G(x) − y∗) ∩ (−intK).
As z ∈ −intK we have 〈k∗, z〉 < 0 contradicting the given hypothesis for z ∈ G(x) − y∗. Thus y∗ ∈ DwF(x̄, ȳ)(x)

and hence the result holds. �
The above theorem is now illustrated for a set-valued map. For the function F considered in Example 3.2 and for

any k = (k1, k2) ∈ K∗ \ {(0,0)} where K∗ = R2+ we have
〈
k,G(x)

〉 = {〈k, y〉 | y ∈ G(x)
} = {

k1y1 + k2y2
∣∣ (y1, y2) ∈ R2, y1 + y2 � 0, y1 � 0

}
and hence

〈
k,G(x)

〉− = {
y ∈ G(x)

∣∣ 〈k, y〉 �
〈
k,G(x)

〉} =

⎧⎪⎨
⎪⎩

{(y1, y2) | y1 = 0, y2 � 0} if 0 = k2 < k1,

{(0,0)} if 0 < k2 < k1,

{(y1, y2) | y1 + y2 = 0, y1 � 0} if k1 = k2,

∅ if k2 > k1.

We thus have DwF(x̄, ȳ)(x) = ⋃{〈k,G(x)〉− | k ∈ K∗ \ {0}}.
We now discuss the nature of weak Clarke epiderivative by means of certain properties. For this purpose we recall

the following definitions given in literature [7,8].

Definition 4.1. A set-valued map F : X → 2Y is said to be

(i) strictly positive homogeneous if for all x ∈ X and α > 0,

F(αx) = αF(x);
(ii) subadditive if for all x1, x2 ∈ X,

F(x1) + F(x2) ⊆ F(x1 + x2) + K;
(iii) K-lower semicontinuous in X if for all y ∈ Y , the set{

x ∈ X
∣∣ F(x) ∩ (y − K) �= ∅}

is closed.
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Theorem 4.2. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X and the cone K be closed. If
DwF(x̄, ȳ)(x) exists for all x in domG, then it is strictly positive homogeneous. Moreover, DwF(x̄, ȳ) is subad-
ditive if G(x) fulfills the weak domination property for all x in X.

Proof. As T (epiF, (x̄, ȳ)) is convex, the proof follows on the lines of Theorem 1 in [4]. �
Cone-lower semicontinuity of weak contingent epiderivative has been proved by Jahn and Khan (Corollary 3.5

of [7]). We now have the following theorem for cone-lower semicontinuity of weak Clarke epiderivative.

Theorem 4.3. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X and the cone K be closed. If
DwF(x̄, ȳ)(x) exists for all x in domG, then DwF(x̄, ȳ)(x) is K-lower semicontinuous.

Proof. Observe that
{
x ∈ X

∣∣ DwF(x̄, ȳ)(x) ∩ (y − K) �= ∅} × {y} = epiDwF(x̄, ȳ) ∩ (
X × {y}) = T

(
epiF, (x̄, ȳ)

) ∩ (
X × {y}),

for all y ∈ Y . Since the Clarke tangent cone is closed it follows that, for all y ∈ Y the set {x ∈ X | DwF(x̄, ȳ)(x) ∩
(y − K) �= ∅} is closed, that is, DwF(x̄, ȳ)(x) is K-lower semicontinuous. �

We now study the relations between the notions of Clarke epiderivatives and the contingent epiderivatives. The
contingent (Bouligand tangent) cone to B at ȳ ∈ B is defined as

Tc(B, ȳ) := {
y ∈ Y

∣∣ ∃yn → ȳ, yn ∈ B, tn > 0 such that tn(yn − ȳ) → y
}
.

It can be seen that Tc(B, ȳ) is a closed cone, T (B, ȳ) ⊆ Tc(B, ȳ) and T (B, ȳ) = Tc(B, ȳ) if B is a convex set.
The epiderivatives in terms of contingent cone are defined as the respective minimizers of the projection set Gc(x)

of the contingent cone on the image space given by the set

Gc(x) := {
y ∈ Y

∣∣ (x, y) ∈ Tc

(
epiF, (x̄, ȳ)

)
, ∀x ∈ X

}
.

Based on the nature of the contingent cone, it can be seen that Gc(x) is a closed set. Moreover G(x) ⊆ Gc(x), for
every x ∈ domG and G(x) = Gc(x) if epiF is a convex set. Also Gc(x) = Gc(x) + K .

We now recall the definitions of the generalized contingent epiderivative and weak contingent epiderivative given
by Jahn and Khan [7].

Definition 4.2. Let F : X → 2Y be a set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X.

(i) A set-valued map Dc
gF (x̄, ȳ) : X → 2Y defined by

Dc
gF (x̄, ȳ) = Min

(
Gc(x),K

)
is said to be the generalized contingent epiderivative of F at (x̄, ȳ).

(ii) A set-valued map Dc
wF(x̄, ȳ) : X → 2Y defined by

Dc
wF(x̄, ȳ) = WMin

(
Gc(x),K

)
is said to be the weak contingent epiderivative of F at (x̄, ȳ).

The weak (generalized) Clarke epiderivative defined as the set of weak minimizers (minimizers) of the underlying set
G(x) is always convex even if epiF is nonconvex which is not the case for contingent epiderivatives.

Apart from the convexity feature lacking in case of contingent epiderivative, another overriding characteristic of
Clarke epiderivative over contingent epiderivative is based on their existence. We now have a set-valued map for which
the generalized contingent epiderivative does not exist whereas the generalized Clarke epiderivative exists.

For the set-valued map considered in Example 3.1, it can be seen that for x̄ = 0, ȳ = (0,0), Tc(epiF, (x̄, ȳ)) =
R × (R2 \ intR2−). Therefore Gc(x) : R → R2 is given by Gc(x) = (R2 \ intR2−) for all x ∈ R. Hence
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Dc
gF (x̄, ȳ)(x) = ∅ whereas as seen earlier DgF(x̄, ȳ)(x) = {(0,0)}, for every x ∈ R. Here we observe that weak

contingent epiderivative of F at (x̄, ȳ) is given by Dc
wF(x̄, ȳ)(x) = {(y1, y2) ∈ R2− | y1y2 = 0} which is different from

the weak Clarke epiderivative given in Example 3.1.
Based on the relationship between the set of minimizers of two sets, one being a subset of the other, as in (1),

the following relations hold true. If the weak and generalized contingent epiderivatives and corresponding Clarke
epiderivatives exist, then for every x ∈ domG,

(i) Dc
gF (x̄, ȳ)(x) ∩ G(x) ⊆ DgF(x̄, ȳ)(x) ⊆ Dc

gF (x̄, ȳ)(x) + K;
(ii) Dc

wF(x̄, ȳ)(x) ∩ G(x) ⊆ DwF(x̄, ȳ)(x) ⊆ Dc
wF(x̄, ȳ)(x) + K;

(iii) DgF(x̄, ȳ)(x) ⊆ DwF(x̄, ȳ)(x) ⊆ Dc
wF(x̄, ȳ)(x) + K .

Next theorem claims the coincidence of the weak Clarke epiderivative with the weak contingent epiderivative for
a cone convex set-valued map. We recall that a set-valued map F : X → 2Y defined on a convex set X is said to be
K-convex if for all x, x̄ ∈ X, y ∈ F(x) and ȳ ∈ F(x̄) we have (1 − λ)ȳ + λy ∈ F((1 − λ)x̄ + λx) + K for 0 � λ � 1.

Theorem 4.4. Let F : X → 2Y be a K-convex set-valued map with ȳ ∈ F(x̄) for x̄ ∈ X. Then DwF(x̄, ȳ)(x) =
Dc

wF(x̄, ȳ)(x) for every x ∈ domG.

Proof. The result follows trivially for all x in domG as G(x) = Gc(x) for a K-convex set-valued map as epiF of a
K-convex map is a convex set. �
Remark 4.1. In the above theorem, the condition of cone convexity of the set-valued map F cannot be relaxed. For
the set-valued map F considered in Example 3.1, F is not a K-convex set-valued map. Also it can be seen that

Dc
wF(x̄, ȳ)(x) =

{ {(y1, y2) ∈ R2− | y1y2 = 0} if x � 0,

∅ if x < 0,

which does not coincide with DwF(x̄, ȳ)(x) evaluated earlier.

5. Optimality conditions

Throughout this section we assume K and D to be closed convex pointed cones with nonempty interiors. We first
recall the notion of cone semilocal convexlikeness (see [9]) generalizing the well-known notion of cone convexity.

A set A is said to be a locally star shaped at a point x̄ ∈ A if for any x ∈ A, there exists a positive real number
a(x, x̄) � 1 such that (1 − λ)x̄ + λx ∈ A for 0 � λ � a(x, x̄). If A is locally star shaped at each x ∈ A, then A is said
to a locally star shaped set. For example union of open sets is a locally star shaped set. The set A = ]0,1[ ∪ ]2,3[ is
a locally star shaped set in R but is not a convex set in R.

If X is a locally star shaped set, then a set-valued map F : X → 2Y is said to be K-semilocally convexlike at a point
x̄ ∈ X if for all x ∈ X, y ∈ F(x) and ȳ ∈ F(x̄) there exists a positive real number d((x, y), (x̄, ȳ)) � a(x, x̄) such
that (1 − λ)ȳ + λy ∈ F(X) + K for 0 � λ � d((x, y), (x̄, ȳ)). F is said to be K-semilocally convexlike on X if F is
K-semilocally convexlike at each x ∈ X.

If F is K-semilocally convexlike on X with a(x, x̄) = 1 and d((x, y), (x̄, ȳ)) = 1 for all x̄, x ∈ X, y ∈ F(x) and
ȳ ∈ F(x̄), then it is K-convex on X. It has also been observed in [9] that F is K-semilocally convexlike on X if and
only if F(X) + K is a locally star shaped set.

Remark 5.1. The class of cone semilocally convexlike set-valued maps is larger than the class of cone convex set-
valued maps. We illustrate this fact by giving an example of a K-semilocally convexlike set-valued map, which is
not a K-convex set-valued map. If K = R2+, then the set-valued map F : X → 2Y is K-semilocally convexlike on X

where X = [0,1] and

F(x) =
{ {(y1, y2) ∈ R2+ | y1y2 > 1} if x ∈ [0,1[,

2
{(y1, y2) ∈ R | y2 > 2} if x = 1.
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However F is not K-convex because for x = 0, x̄ = 1, y = (4/3,4/3) ∈ F(x), ȳ = (−4/3,7/3) ∈ F(x̄) and λ = 1
2 ,

(1 − λ)ȳ + λy = (0,11/6) /∈ F(X) + K.

The following theorem gives necessary condition for K-semilocal convexlikeness of a set-valued map in terms of
weak Clarke epiderivative.

Theorem 5.1. If F : X → 2Y is a K-semilocally convexlike set-valued map defined on a locally star shaped set X and
DwF(x̄, ȳ)(x) exists for each x ∈ X where ȳ ∈ F(x̄) for some x̄ ∈ X, then

F(x) − {ȳ} ⊆ DwF(x̄, ȳ)(x − x̄) + K

for every x ∈ X.

Proof. For x ∈ X and y ∈ F(x) we need to prove that y − ȳ ∈ DwF(x̄, ȳ)(x − x̄) + K , that is (x − x̄, y − ȳ) ∈
epiDwF(x̄, ȳ). Since DwF(x̄, ȳ)(x) exists for each x ∈ X by Theorem 3.3, condition (2) holds and hence it is enough
to prove that (x − x̄, y − ȳ) ∈ T (epiF, (x̄, ȳ)). Let (x̄n, ȳn) → (x̄, ȳ) with (x̄n, ȳn) ∈ epiF and tn → ∞ with tn > 0.
Since X is a locally star shaped set there exists a positive real number a(x, x̄n) � 1 such that (1 − λ)x̄n + λx ∈ X for
0 � λ � a(x, x̄n). Clearly y ∈ F(x) ⊆ F(X) + K and ȳn ∈ F(x̄n) + K ⊆ F(X) + K as (x̄n, ȳn) ∈ epiF . We know
that F(X) + K is a locally star shaped set as F is a K-semilocally convexlike set-valued map and hence there exists
a positive real number b(y, ȳn) � 1 such that (1 − λ)ȳn + λy ∈ F(X) + K for 0 � λ � b(y, ȳn). For each n define
c(x, y, x̄n, ȳn) = min{a(x, x̄n), b(y, ȳn)}. Without loss of generality we can assume that 0 < 1/tn � c(x, y, x̄n, ȳn) for
each n. Define xn = (1 − 1/tn)x̄n + (1/tn)x and yn = (1 − 1/tn)ȳn + (1/tn)y for 0 < 1/tn < c(x, y, x̄n, ȳn). Hence
for each n we have xn ∈ X, yn ∈ F(xn)+K , {xn} → x̄ and {yn} → ȳ. This implies (xn, yn) ∈ epiF , (xn, yn) → (x̄, ȳ)

and tn{(xn, yn) − (x̄n, ȳn)} → (x − x̄, y − ȳ). �
We now consider the following set-valued optimization problem.

(VP) MinF(x)

subject to H(x) ∩ (−D) �= ∅,

where H : X → 2Z is a set-valued map.
The feasible region is given by the set S := {x ∈ X | H(x) ∩ (−D) �= ∅}. The image set of S under F is given by

F(S) = ⋃{F(x) | x ∈ S}.

Definition 5.1. A point (x̄, ȳ, z̄) is said to be a weak minimizer of (VP) if x̄ ∈ S, ȳ ∈ F(x̄) ∩ WMin(F (S),K) and
z̄ ∈ H(x̄) ∩ (−D).

Our main aim in this section is to establish the optimality conditions for (VP). In the following theorems we use
the set-valued map (F,H) : X → 2Y×Z defined as (F,H)(x) := F(x) × H(x), for every x ∈ X.

We first establish the Fritz John type necessary optimality criteria for (VP).

Theorem 5.2. If G(x) satisfies the weak domination property for every x ∈ X, G(0) is pointed and (x̄, ȳ, z̄) is a weak
minimizer of (VP), then there exists (ϕ,ψ) ∈ K∗ × D∗ \ {(0Y ,0Z)} such that for all (y, z) ∈ Dw(F,H)(x̄, ȳ, z̄)(X),

(i) ϕ(y) + ψ(z) � 0; (3)

(ii) ψ(z̄) = 0.

Proof. The proof follows on the lines of Theorem 3.1 in [3] by replacing generalized Clarke epiderivative by weak
Clarke epiderivative and domination property by weak domination property for each x in X. �

Next we have the Kuhn Tucker type necessary optimality criteria for (VP) under Slater’s type constraint quali-
fication and cone-semilocal convexlikeness conditions. We say the problem (VP) satisfies the generalized Slater’s
constraint qualification if there exists x′ ∈ X such that H(x′) ∩ (−intD) �= ∅.
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Remark 5.2. For nonsmooth optimization problem while dealing with Clarke subdifferential there is no need to
assume any convexity assumption as the Clarke subdifferential is a closed convex set. (See Mordukhovich [12] for
more details.) However for the set-valued optimization problem (VP) we need to express the optimality condition (3)
in terms of the set-valued map H if Slater’s constraint qualification is to be applied. This is achieved with the help of
Theorem 5.1 if the set-valued maps are cone semilocally convexlike.

Here we establish the optimality criteria by relaxing the convexity assumptions taken by Chen [3] for generalized
Clarke epiderivative.

Theorem 5.3. Suppose that F is K-semilocally convexlike on X and H is D-semilocally convexlike on X and (VP)
satisfies the generalized Slater’s constraint qualification. If G(x) satisfies the weak domination property for every
x ∈ X and G(0) is pointed and (x̄, ȳ, z̄) is a weak minimizer of (VP), then there exist ϕ ∈ K∗ \ {0Y } and ψ ∈ D∗ such
that for all (y, z) ∈ Dw(F,H)(x̄, ȳ, z̄)(X),

(i) ϕ(y) + ψ(z) � 0,
(ii) ψ(z̄) = 0.

Proof. As (x̄, ȳ, z̄) is a weak minimizer of (VP) therefore by Theorem 5.3, there exists (ϕ,ψ) ∈ K∗×D∗ \{(0Y ×0Z)}
such that ψ(z̄) = 0 and ϕ(y) + ψ(z) � 0 for each (y, z) in Dw(F,H)(x̄, ȳ, z̄)(X). In view of Theorem 5.1 for any
(y, z) in

⋃{F(x) × H(x) | x ∈ S} we have (y, z) − (ȳ, z̄) ∈ Dw(F,H)(x̄, ȳ, z̄)(x − x̄) + K × D. Since ϕ(k) � 0 for
every k ∈ K and ψ(d) � 0 for every d ∈ D, it follows that ϕ(y − ȳ) + ψ(z − z̄) � 0, that is ϕ(y − ȳ) + ψ(z) �
0. If ϕ = 0Y , then ψ �= 0Z and hence for all z ∈ ⋃{H(x) | x ∈ S}, we get ψ(z) � 0. As the generalized Slater’s
constraint qualification is satisfied there exists x′ ∈ X such that H(x′) ∩ (−intD) �= ∅ which implies that there exists
z′ ∈ H(x′) ∩ (−intD). Since z′ ∈ −intD it follows that ψ(z′) < 0 which is a contradiction. �

In order to establish the sufficiency optimality criteria some convexity assumption is required on the objective
function and the constraints. For example, dealing with the generalized tangent epiderivatives, Chen [3] established
the sufficient optimality criteria by assuming the cone convexity of the objective function and the set-valued map
involved in the constraints. As remarked above we impose convexlike assumptions as we need to express the optimality
condition (3) in terms of the set-valued maps F and H . The following sufficiency theorem involving weak Clarke
epiderivative uses the cone semilocal convexlikeness assumption.

Theorem 5.4. Suppose that F is K-semilocally convexlike on X and H is D-semilocally convexlike on X and G(x)

satisfies the weak domination property for all x in X. For x̄ ∈ S, ȳ ∈ F(x̄), z̄ ∈ H(x̄)∩ (−D) if there exist ϕ ∈ K∗ \ {0}
and ψ ∈ D∗ such that for all (y, z) ∈ Dw(F,H)(x̄, ȳ, z̄)(X),

(i) ϕ(y) + ψ(z) � 0,
(ii) ψ(z̄) = 0,

then (x̄, ȳ, z̄) is a weak minimizer of (VP).

Proof. In view of Theorem 5.1 for any (y, z) in
⋃{F(x) × H(x) | x ∈ S} we have

(y, z) − (ȳ, z̄) ∈ Dw(F,H)(x̄, ȳ, z̄)(x − x̄) + K × D.

Using the hypothesis we thus have ϕ(y − ȳ) + ψ(z) � 0, for every (y, z) in
⋃{F(x) × H(x) | x ∈ S}. If

ȳ /∈ WMin(F (S),K) there exists x∗ ∈ S, y∗ ∈ F(x∗) such that ϕ(y∗ − ȳ) < 0. Since x∗ ∈ S there exists z∗ ∈
G(x∗) ∩ (−D) which satisfies the relation ψ(z∗) � 0. Hence ϕ(y∗ − ȳ) + ψ(z∗) < 0 which is a contradiction. �
6. Conclusions

A new notion of weak Clarke epiderivative has been introduced in this paper. This concept is studied by means
of its existence, characterizations and properties. The study is significant as weak Clarke epiderivative is one of the
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most generalized versions of epiderivatives. One of the advantages of using the weak Clarke epiderivative is that
while deriving the Fritz John type necessary optimality criteria no convexity assumption is needed as in the case of
epiderivatives involving contingent cone. While dealing with the weak Clarke epiderivative the convexity assumption
has been weakened and a weaker condition namely weak domination property has been used to obtain the sufficiency
criteria. These facts signify the introduction and application of the concept of the weak Clarke epiderivative in the
field of set-valued optimization.

Acknowledgments

The authors are extremely grateful to the referee for careful reading and helpful remarks.

References

[1] J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in: Math-
ematical Analysis and Applications, Part A, in: Adv. Math. Suppl. Stud., vol. 7A, Academic Press, New York, 1981, pp. 159–229.

[2] J.M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983) 64–73.
[3] L. Chen, Generalized tangent epiderivative and applications to set-valued map optimization, J. Nonlinear Convex Anal. 3 (2002) 303–313.
[4] G.Y. Chen, J. Jahn, Optimality conditions for set-valued optimization problems. Set-valued optimization, Math. Methods Oper. Res. 48 (1998)

187–200.
[5] H.W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Theory Appl. 58 (1988) 1–10.
[6] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Series in Operations Research, Springer, Berlin, 2004.
[7] J. Jahn, A.A. Khan, Existence theorems and characterizations of generalized contingent epiderivatives, J. Nonlinear Convex Anal. 3 (2002)

315–330.
[8] J. Jahn, R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Methods Oper. Res. 46 (1997) 193–211.
[9] C.S. Lalitha, R. Arora, Proximal proper efficiency in set-valued optimization, Omega Internat. J. Management Sci. 33 (2005) 407–411.

[10] C.S. Lalitha, J. Dutta, Misha G. Govil, Optimality conditions in set-valued optimization, J. Aust. Math. Soc. 75 (2003) 1–11.
[11] D.T. Luc, Theory of Vector Optimization, Lecture Notes in Econom. and Math. Systems, vol. 319, Springer, 1998.
[12] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Math. Wiss. (Fundamental Principles

of Mathematical Sciences), vol. 331, Springer, Berlin, 2006.
[13] P.H. Sach, B.D. Craven, Invexity in multifunction optimization, Numer. Funct. Anal. Optim. 12 (1991) 383–394.


