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Abstract

The aim of this work is to propose implicit and explicit viscosity-like methods for finding specific
common fixed points of infinite countable families of nonexpansive self-mappings in Hilbert spaces. Two
numerical approaches to solving this problem are considered: an implicit anchor-like algorithm and a non-
implicit one. The considered methods appear to be of practical interests from the numerical point of view
and strong convergence results are proved.
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Keywords: Viscosity method; Nonexpansive mapping; Common fixed point; Convex optimization; Nearest point
projection

1. Introduction

Let H be a real Hilbert space endowed with inner product 〈·,·〉 and induced norm | · |. Let
(Ti)i�0 be an infinite countable family of nonexpansive self-mappings defined on a closed convex
subset D of H , such that S := ⋂

i�0 Fix(Ti) �= ∅, where Fix(Ti) := {x ∈ D | Tix = x} is the set
of fixed points of Ti . It is well known that S is a closed convex set of D (see for instance [14]).
Let us recall that a mapping T :D → D is called nonexpansive if |T x − Ty| � |x − y| for all
x, y ∈ D.
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In this paper our attention will be focused on the problem of finding a common fixed point of
(Ti)i�0:

find x̄ ∈ H such that Tix̄ = x̄ for all i � 0. (1.1)

More precisely, we propose and study implicit and nonimplicit algorithms for computing a spe-
cific point in S. Throughout, we denote

NI := {i ∈ N | Ti �= I } (I being the identity mapping on H ), (1.2)

and by C :D → D a given contraction with constant � ∈ [0,1), that is

|Cx − Cy| � �|x − y| for all x, y ∈ D. (1.3)

Two numerical approaches to solving (1.1) are considered; an implicit regularization-like algo-
rithm, a nonimplicit one:

(1) The first one consists in the solution xt (as t → 0) of the fixed point equation

xt = tCxt +
∑
i�0

wi,tTixt , (1.4)

where t ∈ (0,1), wi,t � 0 for all i � 0 and
∑

i�0 wi,t = 1 − t . Moreover, when i ∈ NI , we
assume wi,t �= 0 for t small enough.

Consider the map W(·,·) defined on (0,1)×D by W(t, x) := tCx+∑
i�0 wi,tTix for (t, x) ∈

(0,1) × D. Since t ∈ (0,1), it is clear that W(t,·) is a self-mapping on D. For all x, y in D, we
also have |W(t, x)−W(t, y)| � (1 − (1 −�)t)|x − y|, so that W(t,·) is a contraction on D. As a
straightforward consequence, Banach’s theorem ensures existence and uniqueness of xt as fixed
point of W(t,·).

As an interesting special case of (1.4), we also investigate the implicit method

xn = αnCxn + (1 − αn)∑n
k=1 γk

n∑
i=1

γiTixn, (1.5)

for all n � 0, where (αn) ⊂ (0,1) and (γn) ⊂ (0,+∞).
(2) The second one is the sequence (xn) generated by a given initial point x0 in D and the

iterative process

xn+1 := αnCxn +
∑
i�0

wi,nTixn, (1.6)

for all n � 0, where (αn) ⊂ (0,1), wi,n � 0 for all i � 0 and
∑

i�0 wi,n = 1 − αn. When i ∈ NI ,
we assume wi,n �= 0 for n sufficiently large.

As a practical special case of (1.6), setting α−1 := 1, we also investigate the iteration

xn+1 := αnCxn +
n∑

i=0

(αi−1 − αi)Tixn, (1.7)

for all n � 0, where (αn) is any decreasing sequence in (0,1).
There are already several viscosity-like methods for finding common fixed points of non-

expansive operators. Most of them are iterative processes for approximating common fixed
points of finite families of nonexpansive mappings (even for more general operators such as
asymptotically-nonexpansive or quasi-nonexpansive mappings) in Hilbert or Banach spaces.
These implicit or nonimplicit algorithms have been investigated by several authors, e.g.: see, for
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instance, Browder [2], Halpern [6], Lions [8], Wittman [12], Bauschke [1], O’Hara et al. [10],
Kimura et al. [7], Cirik et al. [4], Yamada et al. [14], Xu et al. [13], Zhou et al. [15], Sun [11].
Some of the existing methods cover the special cases of (1.4) and (1.6) when only one map T oc-
curs (that is, Ti = T for all i � 0) and C is either a constant operator (see Lions [8], Wittman [12],
Bauschke [1], O’Hara et al. [10], Xu et al. [13]) or a more general contraction (see Moudafi [9]).
In this latter framework, it turns out that the corresponding solution xt (as t → 0) of (1.4) con-
verges strongly to the unique fixed point of the map PFix(T ) ◦ C (where PFix(T ) is the metric
projection from H onto Fix(T )). Again in this setting, the same convergence result is obtained
for (xn) generated by (1.6) under the following conditions (P1) and (P2):

(P1) αn → 0,

∞∑
n=0

αn = ∞.

(P2)
αn+1

αn

→ 1 or
∑
n�0

|αn+1 − αn| < ∞.

For details on metric projection in Hilbert spaces the reader is referred to Goebel and Kirk [5].
It is worth noting that our considered problem (1.1) can certainly be solved by all the exist-

ing algorithms which involves only one operator. Indeed, if we denote T := ∑
i�0 wiTi , where

(wi)i�0 ⊂ (0,+∞) and
∑

i�0 wi = 1, then under the same hypotheses on (Ti), T is also a
nonexpansive mapping such that Fix(T ) = S := ⋂

i�0 Fix(Ti). Nevertheless this strategy does
not seem really realistic from the computational point of view, because of the infinite sum. To
the best of our knowledge, the most significant attempt to solve the proposed problem is due to
Combettes [3]. This author suggested a Mann-like iteration process which is applicable to infi-
nite countable families of firmly nonexpansive mappings (Ti)i∈K (where K ⊂ Z). The proposed
method has the following form:

xn+1 := xn + λn

( ∑
i∈Kn

wi,nTixn − xn

)
, (1.8)

for all n � 0, where Kn is a bounded block included in K , (αn) ⊂ (0,1], wi,n ∈ [0,1] (∀i ∈ Kn),∑
i∈Kn

wi,n = 1. At each step n, the parameters λn and wi,n ∈ [0,1] (∀i ∈ Kn) are depending on
the iterate xn. Strong convergence results regarding this algorithm are proved, but the hypotheses
made on the variable blocks (Kn)n�0 and the operators (Ti)i∈K are restrictive, except when H

is finite-dimensional.
The purpose of our work is to study the asymptotic convergence of the two viscosity-like

methods (1.4) and (1.6). Under suitable conditions on the involved parameters we establish the
convergence in norm of xt (as t → 0) defined by (1.4) and that of (xn) (as n → ∞) given by
(1.6) to the unique fixed point of the map PS ◦ C. It turns out that our convergence results cover
all the known ones as special cases of (1.4) and (1.6) for many finitely nonexpansive operators.
Moreover, by (1.5) and (1.7) we provide iterative processes of practical interest from the com-
putational point of view for solving (1.1). The proposed methods are also complementary to the
one defined by iteration (1.8), since the techniques used are completely different.

To begin with, we make the following useful remark.

Remark 1.1. A self-mapping T :D → D satisfies the demiclosedness principle means that if
(xn) converges weakly to q ∈ D and (xn − T xn) converges strongly to 0, then q is a fixed point
of T . It is well known that any nonexpansive mapping T :D → D is demiclosed on D.
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2. The fixed point equation

In this section, strong convergence results of the solution xt of (1.4) (as t → 0) are proved. To
this end, we need some preliminaries.

Lemma 2.1. The solution xt of (1.4) is bounded (as t → 0), besides it has at most one strong
limit point in S.

Proof. Let q in S. From (1.4), we have

|xt − q|2 = t〈Cxt − q, xt − q〉 +
∑
i�0

wi,t 〈Tixt − q, xt − q〉

� t〈Cxt − q, xt − q〉 +
(∑

i�0

wi,t

)
|xt − q|2;

since
∑

i�0 wi,t = 1 − t , it follows that

|xt − q|2 � 〈Cxt − q, xt − q〉. (2.1)

As C is a contraction with modulus � ∈ (0,1), the previous inequality yields

|xt − q|2 � 〈Cxt − Cq,xt − q〉 + 〈Cq − q, xt − q〉 � �|xt − q|2 + 〈Cq − q, xt − q〉,
hence

|xt − q|2 � 1

1 − �
〈Cq − q, xt − q〉, (2.2)

so that

|xt − q| � 1

1 − �
|Cq − q|,

which proves the boundedness of (xt ). Assume q1, q2 are two strong limit points of (xt ) in S.
Thanks to (2.1), we have the following two inequalities:

|q1 − q2|2 � 〈Cq1 − q2, q1 − q2〉, |q2 − q1|2 � 〈Cq2 − q1, q2 − q1〉.
By adding these inequalities, we get

2|q1 − q2|2 �
〈
(Cq1 − Cq2) + (q1 − q2), q1 − q2

〉
� (� + 1)|q1 − q2|2,

so that |q1 − q2| = 0, which proves uniqueness of a strong limit point of (xt ). �
Lemma 2.2. Let tn ∈ (0,1) such that tn → 0 (as n → +∞) and assume the following condition
(L) holds:

(L) ∀i ∈NI , lim
n→+∞

tn

wi,tn

= 0.

Then the solution xt of (1.4) satisfies

lim
n→+∞|xtn − Tixtn | = 0 for each i ∈NI . (2.3)
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Proof. By definition of scheme (1.4), we have

xt +
∑
i�0

wi,t (xt − Tixt ) − (1 − αt )xt = tCxt ,

that is∑
i�0

wi,t (xt − Tixt ) = t (Cxt − xt ).

Given any q ∈ S, it is then immediate that∑
i�0

wi,t 〈xt − Tixt , xt − q〉 = t〈Cxt − xt , xt − q〉. (2.4)

Moreover, for any nonexpansive (even quasi-nonexpansive) self-mapping T :D → D such that
Fix(T ) �= ∅ and for all (p, x) ∈ Fix(T ) × D, we have

|x − p|2 � |T x − p|2 = ∣∣(T x − x) + (x − p)
∣∣2

= |T x − x|2 + |x − p|2 + 2〈T x − x, x − p〉,
so that

|T x − x|2 � 2〈x − T x,x − p〉 ∀p ∈ Fix(T ), ∀x ∈ D. (2.5)

Thanks to this last inequality, from (2.4) we obtain

1

2

∑
i�0

wi,t |Tixt − q|2 � t〈Cxt − xt , xt − q〉, (2.6)

hence, for all i ∈ NI and for t small enough, since wi,t �= 0 we have

|Tixt − q|2 � t

wi,t

〈Cxt − xt , xt − q〉. (2.7)

By Lemma 2.1, the solution xt is bounded (as t → 0), then so it is for the quantity 〈Cxt − xt ,

xt −q〉; when condition (L) is also satisfied, it is easily deduced from (2.7) that |Tixtn −xtn | → 0,
as tn → 0, for all i ∈ NI , that is the desired result. �
Theorem 2.3. Under the hypotheses of Lemma 2.2, the solution xt of Eq. (1.4) satisfies

lim
n→+∞|xtn − x̄| = 0, (2.8)

where x̄ is the unique fixed point of the contraction PS ◦ C, PS being the metric projection from
H onto S.

Proof. Set yn := xtn . According to Lemma 2.2, we have limn→+∞ |yn − Tiyn| = 0 (for all
i ∈ NI ) under condition (L). By Lemma 2.1 noticing that (yn) is a bounded sequence, there
exists a subsequence of (yn) (labeled (ynk

)) which converges weakly to a point x̄ in S, because
of the demiclosedness of the mappings Ti (for all i ∈ NI ). From (2.2), we then have

(1 − �)|ynk
− x̄|2 � 〈Cx̄ − x̄, ynk

− x̄〉. (2.9)

As 〈Cx̄ − x̄, ynk
− x̄〉 → 0 by weak convergence of (ynk

) to x̄, inequality (2.9) shows that ynk

strongly converges to x̄. Adding to the fact that any strong cluster-point of (yn) is in S and since
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by Lemma 2.1 (yn) has a unique strong cluster-point in S, we deduce the strong convergence of
the whole sequence (yn) to x̄. It remains to characterize the limit x̄ of (xtn). Let q be any element
in S. By (2.7), it is easily seen that

〈xtn − Cxtn, xtn − q〉 � 0 since tn ∈ (0,1);

passing to the limit as tn → 0, we get

〈x̄ − Cx̄, x̄ − q〉 � 0 ∀q ∈ S, (2.10)

so that x̄ = PS(Cx̄), which ends the proof. �

Corollary 2.4. Assume the following condition (L′) is satisfied:

(L′) ∀i ∈NI , lim
t→0

t

wi,t

= 0.

Then, as t → 0, the solution xt of Eq. (1.4) converges strongly to the unique fixed point, x̄, of the
contraction PS ◦ C, where PS is the metric projection from H onto S.

Proof. This result is a straightforward consequence of Theorem 2.3. �

Corollary 2.5. If αn

∑n
k=1 γk → 0 as n → ∞, then the solution (xn) of (1.5) converges strongly

to x̄, the unique fixed point of the contraction PS ◦ C.

Proof. The solution (xn) of (1.5) corresponds to that of (1.4) when t = αn and wi,(t=αn) =
1−αn∑n
k=1 γk

γi if 0 � i � n, wi,(t=αn) = 0 otherwise. It is then clear that
∑

i�0 wi,(t=αn) = 1. There-

fore, the convergence result on (xn) is obtained from Theorem 2.3 since

lim
n→+∞

αn

wi,(t=αn)

= lim
n→+∞

αn

∑n
k=1 γk

(1 − αn)γi

= 0 (∀i � 0),

provided that αn

∑n
k=1 γk → 0 as n → ∞; that is the desired result. �

3. The iterative method

In this section, we prove strong convergence results regarding the sequence (xn) obtained with
(1.6), by involving the following conditions:

(Q1)

∞∑
αn = ∞.
n=0
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(Q2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For all i ∈ NI ,

• 1

wi,n

∣∣∣∣1 − αn−1

αn

∣∣∣∣ → 0, or
∑
n

1

wi,n

|αn − αn−1| < ∞,

• 1

αn

∣∣∣∣ 1

wi,n

− 1

wi,n−1

∣∣∣∣ → 0, or
∑
n

∣∣∣∣ 1

wi,n

− 1

wi,n−1

∣∣∣∣ < ∞,

• 1

wi,nαn

∑
k�0

|wk,n − wk,n−1| → 0, or
∑
n

1

wi,n

∑
k�0

|wk,n − wk,n−1| < ∞.

(Q3)
αn

wi,n

→ 0 (for all i ∈NI ).

The next lemmas will be needed in the proof of the main result of this section.

Lemma 3.1. Let (sn), (cn) ⊂ R+, (an) ⊂ (0,1) and (bn) ⊂ R be sequences such that

sn+1 � (1 − an)sn + bn + cn for all n � 0. (3.1)

Assume
∑

n�0 |cn| < ∞. Then the following results hold:

(1) If bn � βan (where β � 0), then (sn) is a bounded sequence.
(2) If we have

∞∑
n=0

an = ∞ and lim sup
n→∞

bn

an

� 0,

then limn→∞ sn = 0.

Proof. Let us prove (1). Set γn,k := ∏n
j=k(1−aj ) (for n � k � 0). If bn � βan, then by a simple

induction we have

sn+1 � (γn,0)s0 +
n−1∑
j=0

(γn,j+1)(ajβ + cj ) + (anβ + cn)

= (γn,0)s0 + β

(
n−1∑
j=0

(γn,j+1 − γn,j ) + an

)
+

n−1∑
j=0

γn,j+1cj + cn,

hence

sn+1 � (γn,0)s0 + β(1 − γn,0) +
n−1∑
j=0

γn,j+1cj + cn. (3.2)

Since γn,j � 1 for 0 � j � n, we deduce

sn+1 � s0 + β +
n∑

cj ;

j=0
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so that (sn) is bounded since
∑

j cj < ∞, which proves (1). By now we prove (2). Let ε be any

positive real number. If lim supn→∞ bn

an
� 0 then there exists p = p(ε) in N such that bn � εan

for all n � p; hence by (3.2) we get

sn+1 � (γn,p)sp + ε(1 − γn,p) +
n−1∑
j=p

γn,j+1cj + cn. (3.3)

Moreover, since
∑

j cj < ∞, then there exists qε in N such that

qε � p and
∑

j�qε+1

cj < ε,

hence

∀n > qε,

n−1∑
j=p

γn,j+1cj + cn � γn,qε+1

qε∑
j=p

cj +
∑

j�qε+1

cj + ε � γn,qε+1

∑
j�0

cj + 2ε.

Combining this last inequality with (3.3), for n > qε we then obtain

sn+1 � (γn,p)sp + ε(1 − γn,p) + γn,qε+1

∑
j�0

cj + 2ε. (3.4)

It is also seen that limn→+∞ γn,p = 0 and limn→+∞ γn,qε+1 = 0 if
∑∞

n=0 an = ∞; consequently,
using (3.4) we deduce limn→+∞ sn = 0, that is (2). �
Lemma 3.2. The sequence (xn) generated by scheme (1.6) is bounded.

Proof. From (1.6) and given any p ∈ S, we have

xn+1 − p = αn(Cxn − p) +
∑
i∈J

wi,n(Tixn − p), (3.5)

since αn + ∑
i�0 wi,n = 1; so that

|xn+1 − p| � αn|Cxn − Cp| + αn|Cp − p| +
∑
i∈J

wi,n|Tixn − p|

� αn�|xn − p| + αn|Cp − p| + (1 − αn)|xn − p|
= (

1 − (1 − �)αn

)|xn − p| + αn|Cp − p|.
Applying Lemma 3.1, we deduce the boundedness of the sequence (xn). �
Lemma 3.3. If conditions (Q1)–(Q2) hold, then the sequence (xn) given by scheme (1.6) satisfies

1

wi,n

|xn+1 − xn| → 0 for all i ∈ NI . (3.6)

Proof. By definition of scheme (1.6), we have

xn+1 − xn = αnCxn − αn−1Cxn−1 +
∑
i�0

wi,nTixn −
∑
i�0

wi,n−1Tixn−1

= αn(Cxn − Cxn−1) + (αn − αn−1)Cxn−1

+
∑

wi,n(Tixn − Tixn−1) +
∑

(wi,n − wi,n−1)Tixn−1.
i�0 i�0
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The operators Ti being nonexpansive, C being a contraction with modulus �, and since∑
i�0 wi,n = 1 − αn, we then obtain∣∣xn+1 − xn

∣∣ �
(
1 − (1 − �)αn

)|xn − xn−1| + |αn − αn−1| × |Cxn−1|
+

∑
i�0

|wi,n − wi,n−1| × |Tixn−1|.

Thus, for all i ∈ NI and n large enough, we get

1

wi,n

|xn+1 − xn| �
(
1 − (1 − �)αn

) 1

wi,n−1
|xn − xn−1|

+ (
1 − (1 − �)αn

)( 1

wi,n

− 1

wi,n−1

)
|xn − xn−1|

+ 1

wi,n

|αn − αn−1||Cxn−1| + 1

wi,n

∑
i�0

|wi,n − wi,n−1| × |Tixn−1|.

As (xn) is bounded (see Lemma 3.2), then by nonexpansiveness of each mapping Ti and C, it is
easily seen that the family (Tixn)i,n�0 and (Cxn) are also bounded. Consequently, there exists a
positive constant M such that

1

wi,n

|xn+1 − xn| �
(
1 − (1 − �)αn

)( 1

wi,n−1
|xn − xn−1|

)
+ M

∣∣∣∣ 1

wi,n

− 1

wi,n−1

∣∣∣∣
+ M

(
1

wi,n

|αn − αn−1| + 1

wi,n

∑
i�0

|wi,n − wi,n−1|
)

.

Thanks to this last inequality and taking into account Lemma 3.1, the desired result follows. �
Lemma 3.4. Assume conditions (Q1)–(Q3) hold. Then (xn) given by scheme (1.6) satisfies

lim
n→∞|xn − Tixn| = 0 ∀i ∈ NI .

Proof. Using scheme (1.6), we have

xn+1 +
∑
i�0

wi,n(xn − Tixn) − (1 − αn)xn = αnCxn,

that is∑
i�0

wi,n(xn − Tixn) = αn(Cxn − xn) + (xn − xn+1);

hence for any q in S, we get∑
i�0

wi,n〈xn − Ti,nxn, xn − q〉 = αn〈Cxn − xn, xn − q〉 + 〈xn − xn+1, xn − q〉. (3.7)

Moreover, as each Ti (i � 0) is nonexpansive, by inequality (2.5) we have

|Tixn − xn|2 � 2〈xn − Tixn, xn − q〉.
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Combining this last inequality with (3.7), we get

1

2

∑
i�0

wi,n|Tixn − xn|2 � αn〈Cxn − xn, xn − q〉 + 〈xn − xn+1, xn − q〉, (3.8)

so that, for all i ∈ NI ,

|Tixn − xn|2 � αn

wi,n

〈Cxn − xn, xn − q〉 + 1

wi,n

〈xn − xn+1, xn − q〉. (3.9)

Hence, by Lemma 3.2 there exists a positive constant M1 such that

|Tixn − xn|2 � M1

(
αn

wi,n

+ 1

wi,n

|xn − xn+1|
)

. (3.10)

Using Lemma 3.3 and condition (Q3), we complete the proof. �
The main result of this section is given by the following theorem.

Theorem 3.5. Under assumptions (Q1)–(Q3), the sequence (xn) given by scheme (1.6) converges
strongly to x̄ the unique fixed point of PS ◦ C, where PS is the metric projection from H onto S.

Proof. By scheme (1.6), we have

xn+1 − x̄ = αn(Cxn − x̄) + (1 − αn)
∑
i�0

wi,n(Tixn − x̄)

=
(

αn(Cxn − Cx̄) + (1 − αn)
∑
i�0

wi,n(Tixn − x̄)

)
+ αn(Cx̄ − x̄).

Recall that for any a, b in H , we have

|a + b|2 − 2〈b, a + b〉 = |a|2 − |b|2, (3.11)

so that

|xn+1 − x̄|2 − 2αn〈Cx̄ − x̄, xn+1 − x̄〉
�

∣∣∣∣αn(Cxn − Cx̄) +
∑
i�0

wi,n(Tixn − x̄)

∣∣∣∣
2

�
(

αn�|xn − x̄| +
(∑

i�0

wi,n

)
|xn − x̄|

)2

�
(
1 − (1 − �)αn

)2|xn − x̄|2;
noting that (1 − (1 − �)αn)

2 � (1 − (1 − �)αn), we deduce

|xn+1 − x̄|2 �
(
1 − (1 − �)αn

)|xn − x̄|2 + 2αn〈Cx̄ − x̄, xn+1 − x̄〉. (3.12)

Otherwise, Lemma 3.4 shows that any weak limit point of (xn) is in S because of the demiclosed-
ness of each operator Ti ; since x̄ = PS(Cx̄), it is easily checked that

lim sup
n→∞

〈Cx̄ − x̄, xn − x̄〉 � 0. (3.13)

By (3.12), (3.13) and using Lemma 3.1, we conclude that (xn) strongly converges to x̄, which
completes the proof. �
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Corollary 3.6. Assume the following conditions (P1′) is satisfied:

(P1′) αn ↘ 0,

∞∑
n=0

αn = ∞.

Then (xn) given by scheme (1.7) converges strongly to x̄ the unique fixed point of PS ◦ C, where
PS is the metric projection from H onto S.

Proof. Scheme (1.7) is a special case of (1.6) when wi,n = αi−1 − αi for 0 � i � n and wi,n = 0
for i � n + 1. Thus we have

∑
i�0 wi,n = 1 − αn, but also wi,n > 0 for all i � 0 and for n

large enough. In this setting, it is then immediate that conditions (Q1)–(Q3) in Theorem 3.5 are
reduced to (P1′) and the following (P2):

(P2)
αn+1

αn

→ 1 or
∑
n�0

|αn+1 − αn| < ∞.

Note that
∑

n�0 |αn+1 − αn| < ∞ if (αn) is a positive decreasing sequence. As a consequence
(P1′) yields (P2), which leads to the desired result. �
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