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Abstract 

Error bounds for the eigenvalues computed in the isometric Amoldi method are derived. The Amoldi method applied to a 
unitary matrix U successively computes a sequence of unitary upper Hessenberg matrices Hk, k = 1,2,...  The eigenvalues 
of the Hk's are increasingly better approximations to eigenvalues of U. An upper bound for the distance of the spectrum 
of Hk from the spectrum of U, and an upper bound for the distance between each individual eigenvalue of Hk and one 
of U are given. Between two eigenvalues of Hk on the unit circle, there is guaranteed to lie an eigenvalue of U. The 
results are applied to a problem in signal processing. 
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I. Introduction 

A number of signal processing problems can be seen to require the numerical solution of unitary 
eigenvalue problems. The task of estimating dominant harmonics of a time series, e.g., arises in 
many applications, such as geology, astronomy and speech processing. The problem is to approximate 
frequencies and amplitudes of a discrete time signal {Sk}k~___~. One may, e.g., consider the signal 
as a superposition of exponentials corrupted by small-sized white noise, i.e., 

sk ,-~ ~ pte l~k°~+~') (1) 
f=l 

for some (unknown) n, amplitudes Pt > 0, distinct frequencies 0e C ] - ~, n], and phases ~be E ] - ~, 7t], 
t x/-S-1. Given a finite subsequence N = {S,}k= 1 the aim is to retrieve the frequencies 0b . . . ,  0n and the 
amplitudes Pl,...,Pn. Typically, N is very large and n is very small. 
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It is a common approach to determine the unknown quantities such that the first n autocorrelation 
lags of the signal s (or approximations of them) are matched. It can be shown and will be developed 
in detail in Section 4 that this task leads to an eigenvalue problem for the unitary N × N circular shift 
matrix J of  the following more generally formulated kind: Given a vector s E C N and a unitary N × N  
matrix U, where the dimension N is very large and U is sparse, find approximations to the (typically 

N very few) eigenvalues of U which are dominant in s, i.e., if s = ~k=l flkZk is an expansion of  s 
in terms of  the eigenvectors Z~,...,ZN of U, corresponding to the eigenvalues e ' ° ' , . . . , e  '°,', then the 
approximations to those eigenvalues e '°k are sought for which the weights flk of  the corresponding 
eigenvectors are much larger in magnitude than the remaining weights. 

The Arnoldi method is a well-known iterative method for approximating eigenvalues of  large and 
sparse matrices. For a given matrix A and a given vector ql with IIq~ 112 = 1 it computes the columns 
ql, q2,.., of  a unitary matrix Q which transforms A into an upper Hessenberg matrix H = QHAQ. 
It only requires matrix-vector multiplications, the sparse matrix itself is never modified. Using 
properties of  polynomials that are orthogonal with respect to an inner product on the unit circle 
(Szeg6 polynomials) Gragg [14] showed that the Arnoldi method is very special if  applied to 
an isometric operator and he developed an efficient isometric Arnoldi process. Jagels and Reichel 
presented in [21-23] an elementary derivation of the isometric Arnoldi process that does not re- 
quire knowledge of orthogonal polynomials. In [22, 21] the application of the isometric Arnoldi 
process to the computation of a few eigenvalues and eigenvectors of a large unitary matrix is 
discussed. 

After k steps of  the Arnoldi method applied to U and s we get 

uok = oknk + (akqk+l + (Tk -- ~k/l~kl)@k)e~, (2) 

where Qk= [q~,q2,...,qk] is a rectangular matrix with orthonormal columns and q~ =s/rlsll. Hk= 
H(?~,...,Tk-~,~k/]Tkl) is a unitary upper Hessenberg matrix, given in parameterized form with 
[Tjl<l for j = l , . . . k  (see [15] and also Sections 2 and 3). The ~l,-..,~k are called reflection 
coefficients or Schur parameters and the o-j E ~, o)>/0 are the complementary parameters for ?j 
satisfying I jl 2 + I jl= = 1. 

If 17k[ is close to 1 and therefore 7 k -  is v e r y  small, and e k e 0 ,  then the eigenvalues of  
H~ are in general good approximations to some of  the eigenvalues of  U which are dominant in s, 
and it would be desirable to have explicit bounds for the error. 

The general question is: Given a unitary matrix U and the sequence of  unitary Hessenberg matrices 
Hk, k = 0, 1 . . . .  derived in the isometric Arnoldi process for U. How far are the eigenvalues of  an Hk 
from the eigenvalues of  U? The main purpose of  this paper is to derive bounds for the corresponding 
errors. 

Note that in order to solve (1) via the isometric Arnoldi method, one has to compute eigenvalues 
of  unitary upper Hessenberg matrices. Special fast and efficient O(n 2) methods exist which make 
use of  the special structure of unitary matrices, see [15-19, 7]. 

The paper is organized as follows. Section 2 briefly reviews some well-known properties of  unitary 
(upper Hessenberg) matrices. The isometric Arnoldi method is described in Section 3. Applied to a 
unitary matrix U it successively computes unitary upper Hessenberg matrices Hk. The eigenvalues of  
the H~ are increasingly better approximations to eigenvalues of  U. An upper bound for the distance 
of  the spectrum of Hk to that of  U is given. Furthermore, we prove that if  the last component of an 
eigenvector of Hk is small, the corresponding eigenvalue is a good approximation to an eigenvalue 
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of U. An upper bound for the distance between each eigenvalue of Hk and one of U is given. 
As a consequence we will see that between two eigenvalues of Hk on the unit circle, there lies 
an eigenvalue of U. Section 4 discusses the signal processing application. The results of Section 3 
are applied. Section 5 presents some numerical examples to elucidate the statements of  Sections 3 
and 4. 

2. Some properties of unitary matrices 

Unitary matrices have a rich mathematical structure that is closely analogous to Hermitian matri- 
ces. For unitary matrices we can therefore often develop analogues for the good numerical methods 
and for the theoretical results that exist for the symmetric/Hermitian eigenvalue problem, which has 
intensively been studied see, e.g., [28, 13, 20, 26]. In some cases the Cayley transformation helps 
to develop such analogues. 

The one-dimensional Cayley transformation with respect to p, x = ffp + 2)-1(p - 2), [21 = 1, is a 
one-to-one mapping of the unit circle onto the extended real line. For simplicity let p = 1. Defining 
0=arctan[l(1 + 2)-1(1 - 2 ) ]  each 2 on the unit circle corresponds to an angle 0 ,0E [ _ i n ,  ½rt]. 
Hence, it is reasonable to define for 2i,2j E C, 14,1 = I J[ = 1 

1 - 2 i  1 - ,~j 
)'i<-2j i f l l ~ - ~ i  ~<11+  ~ -  

This gives a complete ordering of the points on the unit circle with respect to the cutting point 
p = - 1 .  Note that the complete ordering excludes the cutting point - 1 .  For a different cutting point 
the orders of  the eigenvalues are only changed cyclically. 

If  (1, ~2 are complex unimodular numbers such that (1 <(2,  then ((1, (2) will denote the open arc 
from the point (1 to the point (2 on the unit circle (moving counterclockwise). 

It is well known that any (unitary) n x n matrix A can be transformed to an upper Hessen- 
berg matrix H by a similarity transformation with a unitary matrix Q. If  the first column of Q 
is fixed and H is an unreduced upper Hessenberg matrix with positive subdiagonal elements, then 
the transformation is unique. If  A is unitary, then the resulting upper Hessenberg matrix H has 
to be unitary as well. Any n × n unitary upper Hessenberg matrix with nonnegative subdiagonal 
elements can be uniquely parameterized by 2n - 1 real parameters. This compact form is used in 
[1, 3, 7, 9, 11, 15-19, 31] to develop fast algorithms for the solution of the unitary eigenvalue 
problem. 

Let 

( [  ) Gk = Gk(Tk) = diag Ik-1, -?e  ,I,-k-1 ak ~7 

with 7k E C, ak C R+ and l ykl 2 + a 2 = 1, and 

G.(Tn) = diag(I._l,--Tn) 

with y n c C ,  ly,,I = 1. 
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The product 

H = H ( ~ ' I ,  ' ~ 2 , - . . ,  7n ) : =  G1 ( ~ ' 1 ) G 2 ( 7 2 )  • • • Gn-l(~n-1 )Gn(Tn ) 

- -Yl  --ff lY2 " ' "  

a l  --YlY2 " ' "  

a2  --72Y3 

. . . .  ~ l . . • ~ k - l ~ k  . . . .  ~ l . . . ~ n - l ~ n  

. . . .  ? l f f 2 . . .  ak-l?k . . . .  ? l a 2 . . .  an-17n 

. . . . . . .  ~ 2 f f 3 . . . ~ n _ l ? n  

".• 

f f k - -1  --?k-l?k . . . .  7 k - l a k . . .  ffn-l~n 

~n-1 --~n-l~n 

is a unitary upper Hessenberg matrix with positive subdiagonal elements. Conversely, if H E C "x" 
is a unitary upper Hessenberg matrix with positive subdiagonal elements, then it follows from 
elementary numerical linear algebra that one can determine matrices G1,G2,... ,Gn-1, Gn such that 
~ H  H . G n G~_ 1 .. G~G~H=I.  Thus, H has a unique factorization of  the form 

H = H ( 7 1 , 7 2 , . . .  , T n ) =  G l ( 7 1 ) G 2 ( 7 2 ) " " "  Gn-l(Tn-1)an(]~n). (3) 

The Schur parameters {Yk}~ = 1 and the complementary Schur parameters {ak}7,= 1 can be computed 
from the elements of  H by a stable O(n 2) algorithm [15]. In statistics the Schur parameters are 
referred to as partial correlation coefficients and in signal processing as reflection coefficients [2, 
9, 10, 25, 29, 30, 32]. 

If  ak = 0 ,  then I kl = 1, and we have the direct sum decomposition 

H = H ( ) ' I  . . . .  , ?k) • H(TkYk+l, • • •, Yk?n)- 

Hence, in general O'lO'2...O'n_l>0 is assumed, if the factorization (3) is used to solve a unitary 
eigenvalue problem. If  2 is an eigenvalue of  such an unreduced Hessenberg matrix, then its geometric 
multiplicity is one [13, Theorem 7.4.4]. Since unitary matrices are diagonalizable, no eigenvalue of  
an unreduced unitary upper Hessenberg matrix is defective, i.e., the eigenvalues of  an unreduced 
unitary upper Hessenberg matrix are distinct• 

The Arnoldi method for unitary matrices discussed in the next section computes the reflection coef- 
ficients directly• After k steps the first k reflection coefficients and a corresponding upper Hessenberg 
matrix HI = H ~ ( 7 1 , . . . ,  Yk) are known. These upper Hessenberg matrices HI are principal submatrices 
of  the desired n × n unitary upper Hessenberg matrix H = H ( y l , . . . , y , )  which is unitarily similar 
to the given unitary matrix U. Unfortunately, principal submatrices of  a unitary matrix are in 
general not unitary. As we will see, it is useful to consider the unitary k × k Hessenberg matrix 
Hk =Hk(y l , . . . ,  Yk-1, ~k) with [(kl = 1 instead of  HI. The following theorem relates the eigenvalues of  
H to those of  the unitary Hessenberg matrix Hk, called the modified kth leading principal submatrix 
Hk [12]. 
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Theorem 2.1 (Bohnhorst et al. [6, Corollary 3.1]). Let H =H(])l,...,Tn) E C nxn be a unitary upper 
Hessenber9 matrix with positive subdiaoonal elements. For ~ E C, I~[ = 1 let 

Hk=Hk(Tl , . . . ,yk_b()EC kxk, k E { 2 , . . . , n } .  

Then every arc on the unit circle formed by two eigenvalues of Hk contains an eigenvalue of  H. 

In particular, the above theorem says that the eigenvalues of two consecutive modified leading 
principal submatrices Hk and H M  of a unitary upper Hessenberg matrix with positive subdiagonal 
elements interlace on the unit circle. 

Finally, we state some results on the dependence of the eigenvalues on the last reflection param- 
eter, for a proof see [6]. To measure the distance between two spectra 21 , . . . ,2 ,  and fll,...,]An of 
matrices A and B we use the eigenvalue variation v(A,B) defined by 

v(A,B):=min(  max 12i-#mi)l, 11 permutation of  { 1 , . . . , n } } .  
1. iE { 1,...,n} 

Theorem 2.2. Let Ha=H(71  . . . .  ,]2n--l,~a), Hb=H(Yl,. . . ,7,-l,~b) be unitary upper Hessenber9 
matrices with positive subdiagonal elements, I~a[ : I~b[---- 1. 
1. The eigenvalues of  Ha and Hb interlace on the unit circle. 
2. v (na ,nb)<~l~a  -- ~b[. 
3. Let 2~,...,)~a and 2bl,...,)L b be the eigenvalues of  Ha and Hb. Let 

SHHaSn = diag(2~,.. . ,  2 a) 

be the Schur decomposition of  Ha, S, = Is1,... ,s,] = [sij]~j= 1. Then for i = 1,... ,n 

min [2~-  2b[ ~< IIHbSi- 27s,[[ 2 
j E {  1,...,n} 

Hence, eigenvalues of  a unitary upper Hessenberg matrix, whose eigenvectors have a small last 
component, are not sensitive to changes of  the last reflection parameter. 

3. The Arnoldi method for unitary matrices 

The Arnoldi method is a well-known technique for approximating eigenvalues of  large and sparse 
matrices or for building sparse linear equation solvers. Basically, it is one of  several methods to 
transform a matrix U into an upper Hessenberg matrix H by a similarity transformation with a 
unitary matrix Q. The matrices Q and H are built up columnwise from the equation UQ = QH such 
that after k steps, the factorization 

UQk = QkH~ + fke~ 

is computed where Q~Qk =Ik and HI E C k×k is an upper Hessenberg matrix. The vector fk is 
the residual vector and is orthogonal to the columns of Qk. If  the norm of  fk is small, the k 
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Arnoldi  m e t h o d  for u n i t a r y  mat r i ces  
i npu t  : U E C '~×'~ uni tary ,  ql E C '~ wi th  Ilqll12 = 1 

n n-1 
o u t p u t :  {TJ}j=l ,  {aj}j=o, Q = [ql, q2 . . . . .  qn] 

le t  q'l = ql 
f o r j  = 1 , 2 , . . . , n -  1 

7j = -qjttUqj 
aj = IIUqj +'r3~'jl[2 
qj+, = ~(Uqj + 7jqj )  

end  for 
7n = --~HUqn 

Fig. 1. 

eigenvalues of  H~ are approximations to k eigenvalues of  U. But even if the norm of  fk is not 
small, some of  the eigenvalues of  HI are typically good approximations to eigenvalues of  U. Gragg 
develops an Arnoldi method for isometric operators in [14]. Here we take a different approach for 
the development similar to the one of  Jagels and Reichel in [22, 21]. 

If  U is unitary then the resulting upper Hessenberg matrix H = QHUQ has to be unitary as well. 
Hence, H can be parameterized as H = H ( 7 1  . . . .  ,7n). Making use of  this fact, one can derive an 
Arnoldi method for unitary matrices which computes the n reflection coefficients ~k instead of  the 
upper Hessenberg matrix H.  This Arnoldi method builds up Q and H from the equation 

UQej = QG1(7, )G2(72) • • • Gn-l(Yn-I )an (Tn)e j ,  j = 1,2, . . . ,  n. (4) 

Let Qel = ql be given; then we obtain the algorithm given in Fig. 1. For a more detailed derivation 
see, e.g., [22]. 

After k steps we obtain 

U[ql, q2,. • •, q~] = [ql,  q2,..., qk]Ga (71)"" Gk-l(Tk-1 )Gk(?k) + akqk+le[, (5 )  

where Gj(Tj ) E C k×k for j =  1, . . . ,k,  i~ = QkQk=Ik (Qk [qbq2,... ,qk]) and q~+tQk=0. The auxilary 
vectors q~, q3,.., can be shown to satisfy 

qk=QkGl""Gk- lek ,  k = 2 , . . . , n ,  (6) 

and thus 

~ T  qk qJ = 0 for all j > k. 

In exact arithmetic, the process stops after n steps with on = 0. In case ak -- 0 for k < n, an invariant 
subspace of  U is found. Moreover, we know 

Theorem 3.1 (Sorensen [33, Theorem 2.9]). Let  

U[ql, q2 . . . .  , qk] - [ql, q2 . . . .  , qk]Gl(71 ) " "  Gk-l(Tk-1 )ak(~k) = akqk+le[ 

be a k-step Arnoldi factorization o f  U with Gl(T1 ) " "  Gk-l(Tk-1)Gk(?k) E C k×k unredueed. Then 
ak = 0 i f  and only i f  ql = Vy where UV = VR with V n V = Ik and R upper triangular o f  order k. 
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As pointed out before, if the norm of the residual fe = aeqe+l is small, then the k eigenvalues of 
the k x k matrix H~ = Gl(yl )"-Ge-l (ye-1)Ge(Te)  are good approximations to eigenvalues of U. But 
even if oe is not small, typically some eigenvalues of  H~ are good approximations to eigenvalues 
of U. Unfortunately, H~ is usually not unitary and therefore its eigenvalues are not on the unit 
circle. As U is unitary, it seems natural to force the approximating_ spectrum to lie on the unit 
circle. This can be done by working with He = Gl(T1) ' "  Ge-l(Te-1)Ge(~) where [~1 = 1 which can 
be viewed as a rank one modification of H i = G l ( ? l ) ' "  G k - l ( T k - 1 ) G e ( T e ) .  T h i s  was already noted 
by Gragg in [14]. Incorporating He into (5) yields 

UQe = QeHe + (aeqe+l + (~ - ?e)qe)e [ (7) 

since we see with (6) 

QeHi = QeHe + Qe(Hi - Ilk) 

= QeHe + QeGI""  Gk-l(Ge(?e) - Ge(~)) 

= QeHe + (~ - 7e)QeGl"'" Ge_leee~ 

: QeHe + (~ ~ T - ?e)qeee. 

Note: 
t H ~ ( • While HI = Qr~UQe is the orthogonal projection of U onto the range of Qe, Ilk = Qe UQeGe(~) 

in general is not a projection anymore. 
• While the residual aeqe+l in (5) is orthogonal to the columns of  Qe, this is in general no longer 

true for the residual o'eqe+l q- ( (  --  ?e)qe in (7). 
• While H i minimizes the norm of the residual R ( M ) =  U Q e -  QeM (where U E C "×" unitary, 

Qe E C n×e with Q~Qe =Ie and M E C e×e) (see, e.g., Theorem IV.I.15 in [34]), this is no longer 
true for He. 

But we can derive bounds for the distance between the eigenvalues of/ark and suitable eigenvalues 
of U. 

Theorem 3.2. Let U E C "×" be unitary with eigenvalues 21 . . . . .  2, and q~ E C n with ]lq~ [12 = 1. As- 
sume that k steps o f  the Arnoldi method for  unitary matrices are performed such that 

UQk QkHk +(akqk+l +(~  ~ T = -- 7k)qe)ee, 

where He=GI(?I ) -" 'Ge- l (Te-1)Ge(( ) ,  with I~1 = 1. Let  t~l,.. . ,#e be the eigenvalues o f  He and 
R(He) = UQe - QeHe. Then 

I I R ( H e ) I I 2  = + - 2, 

and furthermore, 

[ # i -2 j [  ~< ~ /o-~+[¢-7e[  2 for  i =  l . . . .  ,k. min 
je{l ...... } 
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For a suitable permutation 1I o f  i = 1 . . . . .  k 

I~i- ~n~i~l <. x/~ + I~- ?kl 2 

P r o o f .  

IIR(nk)ll~ I[(tTkqk+l-4-((  - -- T 2  = ?k)qk)ek 112 

= ~ + I C -  ?kl 2 

since ~Tqk+l = 0  and Ilqk+~ll=--II@kl12 = 1. 
Let L r = U - R ( H k ) Q ~ .  Then I [ u -  ~112= I[R(nk)[12 and UQk=QkHk, such that /~ . . . .  ,/~k are 

eigenvalues of  U. Therefore, by the Bauer-Fike theorem (see, e.g., [13, Theorem 7.2.2]) we obtain 
for i =  l , . . . , k ,  

min I#; - 2Jl ~< IIR(m)112 = V/o~ + IC - Ski = 
jE{ 1,...,n} 

Define H ( ( )  = H(71,. . . ,  ?k-l, (, ?k+l,..., ?~) E C ~×~ where ](I = 1 as before. Let F = H(?I . . . .  , ?k-l, 
?k, ?k+l,..., ?,) - H(() .  Then 

l iE[J2 = I I a ( ? l ) . .  a k - , ( ? k - , ) [ a k ( ~ k )  -- a k ( ~ ) ] a k + l ( ? k + , ) ' "  ~,(~.)ll2 

= Ilak(?k) -- ak(C)ll2 

= V/a,~ + I ¢ -  ski:. 

The last statement of  the theorem now follows using the following result of  Bhatia and Davis [4]: 

For all constant multiplies U = ctQ and B = flV o f  two unitary matrices Q and V we have 

v(U,B)<.IIU - BII=. 

(When U and B are Hermitian, the above inequality is a classical result of  Weyl). This yields 

v(n,H(())<~ IIFII2 -- V/a 2 + Iff - Ski =. [] 

' / °2  + l( - ?k[ 2 is an upper bound for the distance of  the spectrum of  Hk to that of  U. Hence, Y ~  

R e m a r k  3.3. The bound for the eigenvalue variation is minimal for ~=?k/[?kl. Then 

v(H,H(~))<~ V/2(1 - I?kl). 

In addition, we can give individual bounds for each eigenvalue of  Hk. 

T h e o r e m  3.4. The assumptions are the same as in Theorem 3.2. Let  

S~HkSk = diag(/tl . . . .  ,/~k) 
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be the Schur decomposit ion o f  Ilk and Yk = [Yl,. . . , Yk] = OkSk E C nxk. Then f o r  i :  1,. . .  ,k, 

min I#~-  2j-[ ~< IIUye- ~;y, l12 
jE  { 1,...,n} 

[s l + 

where Sk = k [Sij]i,j=l" 
= iYi ), because yinyi = 1. Therefore Proof. Let ri U y i -  #iYi. Then #i is an eigenvalue of  ( U -  r n 

from the Bauer-Fike Theorem we obtain 

man [#~- 2y] <~ Ilriy~[[2 = []Uyi - #iy~ll2, i =  1 , . . . , k .  
jE  { 1,...,n} 

Now, let Sk=[S l , . . . , s k ] ,  then yy=Qks j  for j =  1 . . . .  ,k. Since Hksi=#~s~ we get 

IIUy  - t~iy~[12 = II(UQ  - Q H )sill= 

= II(crkqk+, + ($ - 7k)'q,)e~si[12 

= Is~l [[akqk+l + (~ -- Yk)qk[[2 

The first part of  the theorem assures that in each circle around/~i with radius IlUy,- #iyi[]2 there 
is at least one eigenvalue of U. If  these circle do not intersect, the eigenvalues of Hk approximate 
different eigenvalues of  U. If  two circles intersect, then the corresponding # might approximate the 
same eigenvalue of  U. The second part of  the theorem shows that if the last component of  an 
eigenvector s; for H, is small, the eigenpair (#~, Yi) is a good approximation to an eigenpair of  U. 

Analogues of  Theorems 3.2 and 3.4 can be given for the unmodified version of  the Arnoldi 
method which compare the eigenvalues of  U and H~. The bounds are slightly tighter than the ones 
given here. 

A direct consequence of  Theorem 2.1 is 

Theorem 3.5. The assumptions are the same as in Theorem 3.2. Then, between two eigenvalues 

o f  Ilk on the unit circle, there lies an eigenvalue o f  U. 

Hence, if k steps of  the Arnoldi method for unitary matrices are performed and if the last reflection 
coefficient computed is modified to lie on the unit circle, then we can specify arcs on the unit circle, 
on which eigenvalues of U must lie. Furthermore, the eigenvalues of Hk and Hk+l interlace on the 
unit circle. 

We have seen (Theorem 2.2) that those eigenvalues of Hk whose eigenvectors have a small 
last component are not sensitive against changes of  the last reflection coefficient. These are the 
eigenvalues which are good approximations to eigenvalues of U (Theorem 3.4). Hence, the choice 
of  the parameter (k is not important for the approximating properties of  the eigenvalues. But the 
parameter (k does influence the distance to an invariant subspace (Theorem 3.2). 
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Remark 3.6. The entire discussion given here does not consider rounding errors. In practice, of  
course, one has to deal with rounding errors. For example, a loss of  orthogonality of  the computed 
vectors qj in the Arnoldi method has to be expected. We believe that the analysis of  Paige [27] for 
these problems in the symmetric case can be carried over to the unitary case. 

4. Computing dominant frequencies of a periodic signal 

Consider problem (1) of finding frequencies 01,. . . ,  On and amplitudes Pl , . . .  ,Pn for a given signal 
{sk}~_o¢ such that 

sk ,~ ~ p ~ e  '(k°¢+~) for all k. (8) 
f=l 

The finite subsequence {sk}~v= l, N>>n is explicitly known (measured) and we assume here that the 
signal is periodic with period N, i.e., 

Sk=Sju+k, k = l , . . . , N ,  j =  ±1 ,4 -2  . . . .  

This implies that all frequencies are multiples of  2r~/N. We denote by s the signal vector s = 
[S I , . . .  ,SN] T. 

A simple way to solve the problem is to perform a discrete Fourier transformation of  s: 

1 
y = ~ F s ,  where F = [e-'((27tk/N)E)]k,d=O,...,N_ 1. (9) 

IV 

Then 

N 

Sk = Z Yfeff(2nk/N)t) for  a l l  k, (10) 
t~=l 

and we could just neglect the terms with very small coefficients y~ in this sum. In order to illustrate 
the results of the previous sections, here we will consider methods that determine the unknown 
quantities via approximating the autocorrelation lags. This may be a useful alternative to the use of 
the fast Fourier transformation in case n<<N. But it should be noted that there is no guarantee that 
the approach presented here approximated all n of  the desired frequencies. 

As the kth autocorrelation lag of  the signal one considers the quantity 

N 

j=l  

With the signal s we associate the nth-order autocorrelation matrix Tn(s) n--1 = [tj--k]j,k=O, where 

tj:=rss(j),  j = 0 , + l , . . . , ± ( n - 1 ) .  (11) 

T~(s) is a Hermitian positive-semidefinite Toeplitz matrix. 
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It is a common approach to determine n such that T,+l(s) is the smallest dimensional autocorrela- 
, _7 o o  tion matrix which is almost singular and 01,.. . ,  0, and Pl , . . .  Pn such that for the signal { k}k=-oo 

with 
n 

z k =  ~ p l e  '(k°+) for all k (12) 
g = l  

the first n autocorrelation lags match those of the original signal s (see e.g. [9, 10, 24, 25, 29, 32]). 
This approach assumes that the noise level is small. In the following, we show how this problem 
is related to a large sparse unitary eigenvalue problem. 

Tn(s) can obviously be expressed as 

Tn(s ) = [s, Js ,  . . . , j n - l  s]H[S,JS, . . . , J n - l  s], (13) 

where J is the N × N  circular shift matrix 

J = [e2, e 3 , . . . ,  eN, el]. 

Thus, T~+t is almost singular if [s, J s , . . . , J " s ]  is almost singular. That is, s lies almost in an 
n-dimensional invariant subspace of J .  

The result of n steps of the isometric Amoldi method applied to J starting with the initial vector 
qt =s/ l ls l l2  yields (see (7)) 

J Q ,  = QnHn + (a ,q ,+l  + (~ - 7,)qn)en T, S---- IlSll2Qnet, (14) 

where Hn = G l ( V t ) ' "  G(V,-t)G,(()  is a unitary n x n  upper Hessenberg matrix. With (14) we can 
easily prove that 

J k s  = I[sll2JkQ, el = Ilsll2Q.Hknet for k < n .  (15) 

Note that because of the special form of G(Tj) and Gn(~) we have for k < n  

(Gl (71) ' "  G(7n-1 )Gn(~))kel ~- (Gl(71)""  G(]~n-t ))kel 

such that the expressions in (15) do not depend on ~ at all. 
Because QH, Qn = I  we see from (14) and (15) that Tn(s) can be written as 

T.(s)  = [[sll [et,H.et . . . . .  H",- l  et ]H[e t ,Hne t , . . .  ,Hn-tel] .  (16) 

Consider the spectral decomposition of Hn: 

SHHnSn = A = diag(e'° ' , . . . ,  e 1°" ), SHe1 ---- W = [COt,..., CO,]z, p; > 0, 

where S, is unitary. From (16) we get with this eigenvalue information a representation of T, ( s )  as 

Tn( s ) --- [Is[[~[w, A w ,  . . . , A " -  lw]n[w,  A w ,  . . . , A " -  l w] (17) 

and, therefore, for j -- 0 . . . .  , n 

t+ = Ilsll  CO~ el(O'j) 
f = l  

which is the j th  autocorrelation lag of  (12) (up to scaling). 
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Note that while Tn(s) does not depend on the choice of  ( at all, the quantities 0 1 , . . .  , O n and 
O ) 1 , . . . ,  (D n d o .  

Computing the dominant frequencies such that the first autocorrelation lags are matched can thus 
be interpreted as approximating the eigenvalues of  the circular shift J which are dominant in the 
signal s by the Arnoldi method. 

In [30] Reichel and Ammar already propose to compute the dominant frequencies via the eigen- 
problem for unitary Hessenberg matrices in the following way: Subsequently, compute the reflection 
coefficients ~1, Y2,... (which are all inside the unit circle) associated with the autocorrelation matrices 
TI(S), T2(s) . . . .  until you reach a 7, with magnitude close to 1. Then tr, ~ 0 and with ( =  y,/lTnl we 
get from (14) J Q n ~ Q ,  Hn. But then 

T , + l ( s ) ~  [Psl]~[el ,n.e l ,  " " . . . .  Hnel] [el,Hnel, . . . ,Hnel] 

and Tn+ 1 is almost singular. In fact, the latter matrix differs from Tn+ 1 only in the position of  the 
nth autocorrelation lag t,. Compute the eigenvalues and the first components of  the normalized 
eigenvectors of 11, to achieve the desired frequencies and amplitudes. This is one way of  computing 
the signal approximation in the CSM method [32]. 

The results of Section 3 can be used to give an estimate for the correctness of  the approximation. 
From Theorem 3.2 we obtain for H, = Gl (~ l ) . . .G(~n-1 )Gn(~)  

and 

IIJa. - Q,H,(~)] 12 = ~/a~ + I~ - 7,1 z 

min IOk--e~2=J/Nl~/cr~+lC--~=lZ, k =  l , . . . , n .  
j6  { I,...,N} 

The bounds are minimal for ( =  ~,/1~,1. If  a,  is small, then for this choice 

V/tr, 2 + I¢ - 7,[ z = ¢2(1  - [Tnl) 

is almost zero, indicating a good approximation. Choosing, e.g., ( = -  ~,, we obtain 

+ vnl: = v/2( 1 + [v.l) 

which is almost 2 if an is small. Thus, the way 7, is modified to lie on the unit circle does influence 
the quality of  the approximation. 

From Theorem 2.2 we obtain that those eigenvalues of H, whose eigenvectors have a small last 
component, are not sensitive to changes of  the last reflection coefficient. By Theorem 3.4, these are 
the eigenvalues that are good approximations to eigenvalues of J .  

Let e l°j, j = l , . . . , n  be the eigenvalues of  Hn, then the 0j are used as approximations to the 
dominant frequencies of  s. The bounds in Theorems 2.2 and 3.4 also give bounds for the errors. 
A simple calculation yields 

Corollary 4.1. Assume that n steps o f  the Arnoldi method are applied to J and s such that 

JQ, = Q,H,(~) + (a,q,+l + (~ - y,)q,)e T, 



A. Bunse-Gerstner, H. Faflbender l Journal of Computational and Applied Mathematics 86 (1997) 53-72 65 

where H,(( )  = G1(71)""" G,-l(7n-1)Gn((), ( E C, I(I = 1. The eigenvalues of  J are ea~J/N,j= 1,... ,N. 
Let (a,(b E C, I~a[ = I(bl = 1. Let e l~j be the eigenvalues o f  Hn((o) and e ~j be those of  H,((b), 
j = l , . . . , n .  Let 

S~, H,( (a )S, = diag(e la' . . . .  , e ~° ) 

be the Schur decomposition of  H,((~), Sn = [Sij],"j= 1. Then for i=  1 . . . .  ,n 

min 12i-ajl~<arccos (2-1("--~bl2[Snil2) .  
jG { 1,...,k} 

Furthermore, 

min IA~ - 2rq/Nl <~ arccos ( 2 - a~" + lL - ~bl2 ) 
j~{~,...,N} 2 

and 

jE{1,...,N}min ]J.i -- 2r~j/Nl <~ arccos ( 2 -1snil2( ffz -k- I~a - ~bl2) " 

5. Numerical examples 

In this section numerical experiments are presented to demonstrate the statements of  Sections 3 
and 4. First the eigenvalues of  a unitary upper Hessenberg matrix H are compared with the eigen- 
values of  modified kth leading principal submatrices Hk. All statements of Section 3 can be observed 
clearly: 
• Between two eigenvalues of  Hk on the unit circle there lies an eigenvalue of H (Theorem 2.1). 
• I f  the last component of  an eigenvector of  H, is small, then the corresponding eigenvalue is 

a good approximation to an eigenvalue of  H (Theorem 3.4). 
• The approximating properties of the eigenvalues of  Hk vary only slightly with the choice of the 

modified reflection coefficient (Theorem 2.2). 
In the second part of this section, two examples illustrate the discussion in Section 4. All computa- 
tions were done using MATLAB on a SUN SparcStation 10 with machine precision 
e~2.2204 x 10 -16. 

The first set of  tests was performed to demonstrate the statements of Section 3. A unitary upper 
Hessenberg matrix H=H(71, . . . ,72o)E C 2°x2° was constructed from 20 randomly chosen reflection 
coefficients 71,... ,720 c C. The eigenvalues 2j of H lie randomly on the unit circle. The eigenvalues 
#j of the modified kth leading principal submatrices Hk =Hk(7l , . . .  ,Tk-l,~k) were computed for 
different dimensions k < 20. For each eigenvalue #j the minimal distance to an eigenvalue of H and 
the error bound given in Theorem 3.4 was computed. 

For the first example ~k = 7k/[Tkl was chosen as the bound for the eigenvalue variation is minimal 
for this choice of  (k (see Remark 3.3). The eigenvalues of H and Hk are plotted for k = 10 and 
k = 15 in the following Fig. 2. The eigenvalues of  H are marked by 'o ' ,  the eigenvalues of ilk by ' . ' .  

Although o-10 = 0.58940774002982 and alS = 0.87680954800405 are not small, some of  the eigen- 
values of H10 and/-/15 are good approximations to eigenvalues of H. In Theorem 3.4 it was proven 
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Fig. 2. 

Table 1 
k = 10, N/a 2 + [( - yk] 2 ,~ 0.6199 

min[/2i - 2jl ub, 

.£/1 1.0071 • 1 0  - 7  4.1381 
/22 2.7263. 1 0  - 6  2.3746 
#3 2.4649.10 -4 4.8555 
/*4 2.9825 • 1 0  - 6  6.3154 
#5 3.9244.10 - 3  5.6481 
P6 2.0610.10 - 4  2.3190 
/27 3.5094.10 - 4  4.0212 
/28 8.2207- 10 -5 1.8990 
/A 9 8.4617.10 - 3  1.9755 
/21o 2.1661 • 1 0  - 1  5.8068 

10 - 4  

10 - 3  

10-2 
10 - 3  

10 - 2  

10 - 2  

10-2 
10 - 2  

10-1 
10-1 

that i f  the last component  o f  an eigenvector o f  Hk is small, then the corresponding eigenvalue is 
a good approximation to an eigenvalue o f  H .  Individual bounds for the minimal distance o f  each 
eigenvalue o f  Hk to the eigenvalues 2j o f  H can be given 

min l/z, - 2j[ ~< Is lw/   + Iff - ~n[ 2 = :  ubi, 
je{l , . . . ,n}  

where s~i, E E { 1 . . . .  , k} is the f th  component  o f  the eigenvector to the ith eigenvalue o f  Hk. Tables 1 
and 2 report the minimal distance between each eigenvalue o f  Hk and the eigenvalues 2j o f  H as 
well as the above error bounds for k = 10 and k--- 15. 

Comparing the actual minimal distance with the error bound one observes that the approximations 
are much better than the error bound predicts. Another  observation is that a small last component  and 
hence a small individual error bound for the eigenvalues indicates good eigenvalue approximations. 



mini]2, - ~.JL ub, 

]21 4.2658 • 

/z2 7.4752. 

#3 5.5443 • 

p4 5.9287. 

#s 3.5522. 

/26 1.6636. 

]27 2.3986 

#8 4,2465 

]29 1,4195 

]210 7.6101 

]211 3.7732 

]212 2.6922 

//13 4.9946 

]214 5.3077 

]215 1.5772 

10 10 2.1653 

10 -7 4.4540 

10 -8 4.2885 

10 -4 3.6914 

10 -9 3.0701 

10-  5 2.5023 

10 -2 5.7894 

10 -8 3.9597 

10 -12 9.4849 

10 -11 3.9866 

10 -3 7.7117 

10 -4 2.5062 

10 -6 5.0100 

10 -3 1.9032 

10 -1 8.1260. 

k = l O  

10 -5 

10 -4 

10 -4 

10 -3 

10-5 

10 -3 

10-1 

10 -4 

10 -6 

10-5 

10 -2 

10 -2 

10 -3 

10 -1 

10 - l  

k =  1 5  

Table 2 

k = 15 ,  + L; - rkb 2 1 . 0 1 8 9  

Fig. 3. 
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For the second example a random complex number ~k, [~k[ = 1 was chosen; hence the bound for 
the eigenvalue variation is not minimal (see Remark 3.3). The Fig. 3 and Tables 3 and 4 display 
the same information as before. 

Although the choice of  ~k is not optimal, we essentially obtain the same results as before. 
The eigenvalue approximation is much better than the error bound predicts. 

Comparing the results of  the two examples presented, one observes that independent of  the choice 
of  ffk the same eigenvalues of  H are approximated. If the last component of  an eigenvector is small, 
then the approximation is good no matter how ~k is chosen. The best results are obtained for 

We omitted an example to demonstrate that if  the last component of  an eigenvector is 
not small, then the quality of  the eigenvalue approximation depends on the choice of  ~k. Further it 
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Table 3 

k = 10, V/tr~ q- [ (  - Tkl 2 ~ 1.8211 

min]/2i - ,~j[ ubi 

/21 1.9902 "10 -6  

/22 8 -9514"10  -5  

/23 4 . 6 9 3 4 " 1 0  -2  

/24 3 - 8 4 1 4 ' 1 0  -4  

#5 1 . 9 7 3 4 ' 1 0  -2  

/26 2 .6689"10  -3  

/27 5 . 0 2 0 7 ' 1 0  -3  

/28 1 .2924"10  -5  

/29 3 .5443"10  -2  

/21o 2 . 4 8 9 9 " 1 0  -2  

2.7057 

2.1656 

5.5107 

3.5758 

1.6406 

6.2874 

7.8979 

2.9484 

1.2436 

1.7200 

10 -3  

10-2  

10-1 

10 -2  

10-1 

10 -2  

10-2  

10-3 

10 -1  

10 +0 

Table 4 

k = 15, V / a  2 + l( - Ykl 2 ~ 1.1519 

min[/2i - 2j[ ubi 

/21 9.3659" 10 -1°  3.5684 

[A2 1.1929" 10 -5  4 .3049 

/23 3 .1109 '  10 -9  1.8487 

6 . 0 7 0 5 . 1 0  -4  5.8196 

/25 2 . 6 5 4 3 . 1 0  -9  4 .4310 

#6 1 . 0 8 4 6 . 1 0  -5  3.5051 

/27 1 . 5 6 5 7 . 1 0  -2  1.6624 

/28 3 . 0 4 0 3 . 1 0  -7  1.3257 

/29 4 . 4 9 8 2 . 1 0  -11 7.4116 

/21o 7 . 9 7 0 6 . 1 0  -10 2.7398 

/211 6.5638" 10 - 4  8.6970 

1212 1.6478" lO -4  2.6234 

/213 8 . 6 4 8 8 . 1 0  -6  4.1257 

/214 2 .5703-  10 -3  7.6717 

/215 1 . 0 8 1 4 . 1 0  -1 8.3703 

. 1 0  - 5  

. 1 0  - 2  

. 1 0  - 4  

. 1 0  - 3  

. 1 0  - 5  

. 10 -3  

10-1 

10 -3  

10 -6  

10-5  

10 -2  

10 -2  

10-3 

10-1 

10 -1 

can be seen that between two eigenvalues of Hk on the unit circle there lies an eigenvalues of H 
(due to the poor resolution, this is very hard to see in the figures presented here). 

The same results can be observed for larger unitary upper Hessenberg matrices H. Moreover, one 
can observe that the eigenvalues of the modified leading principal submatrices Hk-1 and Hk interlace 
on the unit circle with respect to a cutting point p. Also, some eigenvalues of  the unmodified leading 
principal submatrices are good approximations to eigenvalues of H. 

The following two examples illustrate the discussion given in Section 4. In both examples, the 
length N of the signal is 1000 and the sk have the form 

5 
Sk ~ E pdelkOt "q- O~Vk' 

g = l  
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Table 5 

69 

minl'Oi - 0j[ a cosi ]'Pi - Pil 

01, pl 5.3429.10 -16  2.9802.10 -s 3.1919.10 -15 
02,p2 4.4409.10 -16 7.3000.10 -8 4.4964.10 -15 
03,P3 4.4409- 10 -16 1.1921 • 10 - 7  2.2204.10 -16 
04, j04 2.2204.10 -15 4.1215.10 - 7  6 . 3 8 3 8 "  10 -16  

05, P5 2.9976.10 -15 <~1 8.2157.10 -15 

01,pl 3.9862.10 - 9  8 . 7 2 3 6 "  10 - 6  7 . 4 6 7 8 "  10 - 9  

02, p2 9.3195- 10 -11 2.2166.10 -5 4.8939- 10 -1° 
03,p3 2.0961 • 10 -13 3.5988- 10 -5 5.7692.10 -9 
04, fl4 4 . 5 5 2 6 "  10 -11 1 . 2 4 7 1 "  10 - 4  1.0905.10 -8 
05,p5 4.1067- 10 -l° 9.6880- 10 - 7  1.3765.10 -8 

01, pl 3.9882.10 - 3  8 . 7 0 9 5 '  10 - 3  8 . 8 5 9 4 -  10 - 4  

02, p2 9.1643.10 -5 2.1697.10 -2 3.4548.10 -4 
03,P3 2 . 0 8 7 4 .  10 - 7  3.6867.10 -2 5.7266.10 - 6  

04,p4 4.5350.10 -5 1.2412.10 -1 8 . 9 3 8 9 . 1 0  - 6  

05, P5 4.2181 - 10 - 4  9.6624.10 - 4  1.1025.10 - 3  

Ol,pl 8.9834' 10 -3 8.6531 • 10 -2 1.2463- 10 -1 
02, p2 6.9043" 10  - 3  1.2295.10 -1 1.4979- 10 - 2  

03,P3 2.0030.10 -5 3.4552.10 -1 5.8261 • 10 -4 
04, p4 5.8260" 10 -2 6.1589' 10 -1 2.8760' 10 -2 
05,p5 1.8972.10 -2 2.4824.10 -1 2.2939.10 -2 

= 1 - 10 -12, a5 = 1.9029.10 -13  

---- 1 - 10 -6, o'5 = 1.7417.10 -8 

~=  1 • 10 -3, a5 = 1.7218- 10 - 2  

= 1 • 10 -1, as =4.4414.10 -1 

1 ~ ~ 2.2204.10 -16  

where  Vk is a r a n d o m  n u m b e r  (un i fo rmly  distr ibuted in (0, 1))  wh ich  represents  noise,  ~ ~ • is 

a scalar  and 0t = 2nmt /N  where  me E {1 . . . . .  N } ,  me ¢ mj for  Y C j ,  ve,j E { 1 , . . . ,  5) .  In  each example ,  
the signal vec to r  s --  [s~,...,sN] v is f o rmed  and 5 steps o f  the A m o l d i  m e t h o d  are appl ied to J and  

s. This yie lds  a uni tary  upper  Hessenbe rg  m a t r i x / / 5  =H5(71, . . . ,~4 ,75/ [751) .  In  case ~ = 0  (i.e., no  

noise) ,  we  k n o w  f rom T h e o r e m  3.1 that the e igenvalues  o f / / 5  have  to be  01 ,02 , . . . , 05 .  Hence ,  

for  small  noise,  we  expect  that  the e igenvalues  o f / / 5  are g o o d  approximat ions  to the desired 

0j, j = 1 , . . .  ,5.  Therefore ,  the e igendecompos i t i on  o f / / 5  is computed .  Es t imates  0 t  and Pt  for  

the f requencies  and ampl i tudes  are ob ta ined  f rom the e igenvalues  and the first c o m p o n e n t s  o f  the 

e igenvectors ,  respect ively.  Coro l la ry  4.1 gives  an upper  b o u n d  for  the distance o f  0t to 21t j /N:  

min  IOi - 2rtj/Nl <<, arccos ( 2 -1ssil2( a2 + [~ - ~512) ) =: a cosi, 
j E  { 1,...,N} 2 

where  s5~ denotes  the last entry  o f  the ith e igenvector .  For  each example  the actual  min ima l  distance 

o f  0 t  to O j, j = 1 . . . .  ,5  is c o m p u t e d  as well  as a cos t  for  ~ = 1 , . . . ,  5. As  we  do not  k n o w  o f  an 

error  b o u n d  for  the ampli tudes,  we  jus t  c om pu te  the distance be tween  Pe and Pt. 
For  the first example  

sk = 1.2e 2n'Sk/u + 3 . 5 e  2m37k/N + 5.7e zn'zvlk/N q- 0.3e 2n'400k/N q- 2. l e  2n'979k/N q- ~ * 1) k 

for  different ~ E R was  chosen.  The  f requencies  are well  separated. Table  5 lists the results for  

this example.  No t  surprisingly,  the smaller  the per turbat ion (~vk), the bet ter  are the approximat ions .  
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Table 6 

01,pl 9 . 0 2 0 6 . 1 0  -16 </ ;a  2 .4231"  10 -14 

02, p2 9 . 5 0 6 3 -  10-16 < ea 2 . 5 4 2 4 . 1 0 - I 4  

03,p3 6 . 6 6 1 3 -  10 -16 1.7881 • 10 7 2 . 2 2 0 4 . 1 0  -16 

04,/94 3 . 1 0 8 6 -  10 -15 1 .8492-  10 7 4 . 9 9 6 0 . 1 0  - 1 6  

05, p5 1 . 6 6 5 3 . 1 0  -15 < e a  5.4401 • 10 -15 

Ol,pl 3 . 3 1 0 4 . 1 0  -6  7 . 6 1 6 4 -  10 - 6  9 . 6 2 1 2 . 1 0  -5  

02,p2 3 . 0 6 5 0 . 1 0  - 6  6 . 9 8 8 7 . 1 0  -5  9 . 6 1 7 0 . 1 0  -5  

03,P3 1.4011 • 10 -13 3 . 4 9 5 4 . 1 0  -3  2 . 9 0 0 9 . 1 0  9 

04, p4 3 . 4 0 7 2 -  10 -11 3 . 6 1 9 0 . 1 0  - 3  9 . 6 2 1 2 . 1 0  -5  

05,p5 1 . 5 2 4 3 . 1 0  -9  7 . 9 7 6 0 . 1 0  -7  4 . 9 8 8 5 . 1 0  9 

01, p l  3 . 4 4 5 2 . 1 0  -5  4 . 2 0 5 4 -  10 -3  1 . 4 2 5 4 . 1 0  -1 

02,p2 3 . 0 3 1 4 . 1 0  -3  3 . 3 2 9 7 . 1 0  -3  7 . 8 5 8 5 . 1 0  -2  

03,P3 1 . 3 9 9 0 . 1 0  -8  4 . 2 7 6 4 . 1 0  -3  3 . 0 4 0 2 . 1 0  -6  

04, P4 3 . 4 4 8 2 . 1 0  6 7 . 5 6 5 2 . 1 0  - l  4 .7361 • 10 -2  

05, P5 1 . 8 4 1 7 . 1 0  -3  2 . 7 9 7 5 . 1 0  -2  1 .1769 .  10 - 4  

01, p l  1.6441 - 10 -2  2 . 3 5 9 6 . 1 0  -1 1 . 4 2 1 7 . 1 0  - 1  

02, p2 1 . 2 5 2 7 . 1 0  -2  2 . 2 4 0 2 . 1 0  -1 1 . 1 2 7 0 . 1 0  - 1  

03,p3 2 . 2 6 3 1 . 1 0  -5  2 . 7 4 9 8 . 1 0  -1 1 .7099-  10 -3  

04,p4 4 . 0 8 6 7 . 1 0  -2  5 . 3 1 4 5 . 1 0  -1 3 . 3 3 8 5 . 1 0  2 

Os,p5 1 . 9 5 9 1 . 1 0  -1 1 . 7 5 5 3 . 1 0  -1 2 . 5 9 1 8 . 1 0  -2  

~ =  1 - 10 -12,  as  = 6 . 6 1 6 9 . 1 0  - 1 4  

c~= 1 - 10 -6 ,  65 = 2 . 5 3 2 0 . 1 0  -5  

~ = 1 . 1 0  -3  , a 5 = 4 . 7 1 1 7 " 1 0  -1 

~ =  1 • 10 -1 ,  ~rs = 4 . 0 4 5 5 . 1 0  -1 

a e ~ 2 . 2 2 0 4 . 1 0  -16 

The approximations of  the frequencies are much better than the upper bounds indicate. For small 
perturbations the upper bounds a cosi overestimate the approximation error by several powers of  10. 
The method seems to approximate the amplitudes with about the same accuracy as the frequencies. 

In practice, o f  course, we would not know the exact value of  n, the number of  frequencies and 
amplitudes needed to express the signal as a sum of  exponentials. The above results indicate that 
a rule of  thumb could be to let the Arnoldi method run until a oj- is obtained which is smaller than 
some given tolerance. The quality of  the approximation depends on aj, the biggest perturbations 
observed are of  about the same size as ~rj. 

For the second example we modified the signal of  the first example a little bit. The second 
frequency was chosen to be as close as possibly to the first one, the second amplitude to be the 
same as the first one 

Sk = 1.2e 2~Sk/N q- 1.2e 2~6k/N q- 5 . 7 e  2n~271k/N q-  0.3e 2~14°°k/N q- 2 . 1 e  2~979k/N q-  o~ • ~3 k. 

Table 6 displays the same information as the table for the last example. 
The method has difficulties to approximate the first two frequencies and amplitudes. The results for 

these approximations have been better in the previous example, where the first two frequencies and 
amplitudes were much better separated. The actual approximation error for the first two frequencies 
are only of  the order of  the error estimate. 
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6. Concluding remarks 

Some properties of the isometric Amoldi method have been discussed. The Amoldi method applied 
to a unitary matrix U yields after k steps 

UQk = QkH~ + akqk+le~, 

where H ~ = G l ( 7 1 ) " .  Gk-l(yk-1)Gk(yk), Q~Qk=Ik, and q~+lQk =0 .  If ?k is modified to lie on the 
unit circle, one obtains 

UQk = QkHk + (akqk+l + (~ -- ~k )~  )e[, 

where Hk = Gl (71) ' "  Gk-l(Tk-1)G~(~), [~1 = 1 is a unitary upper Hessenberg matrix. The distance 
of the approximation to an invariant subspace of U given by Hk was determined. (Individual) error 
bounds for the eigenvalues of Hk were derived. 

In [1] it was noted that there is a simple equivalence transformation which transforms H = G1 • " 
Gn-~Gn to GoG~ where Go and Ge are block diagonal unitary matrices with block size at most two, 
Go is the product of  all the odd numbered reflectors and G~ is the product of  all the even numbered 
reflectors. Bohnhorst makes use of this fact in [5] to derive a Lanczos-like algorithm to transform 
a unitary matrix U to GoG~. She gives eigenvalue bounds similar to the ones presented here. 

A problem in signal processing and its connection to the isometric Arnoldi method was discussed 
in detail. 

References 

[1] G.S. Ammar, W.B. Gragg, L. Reichel, On the eigenproblem for orthogonal matrices, in: Proc. 25th IEEE Conf. on 
Decision and Control, 1986, pp. 1963-1966. 

[2] G.S. Ammar, W.B. Gragg, L. Reichel, Determination of Pisarenko frequency estimates as eigenvalues of an 
orthogonal matrix, in: F.T. Luk (Ed.), Advanced Algorithms and Architectures for Signal Processing II, vol. 826, 
Proc. SPIE, International Soc. for Optical Engineering, 1987, pp. 143-145. 

[3] G.S. Ammar, L. Reichel, D.C. Sorensen. An implementation of a divide and conquer algorithm for the unitary 
eigenproblem, ACM Trans. Math. Software (1992) 292-307. 

[4] R. Bhatia, C. Davis, A bound for the spectral variation of a unitary operator, Linear Multilinear Algebra 15 (1984) 
71-76. 

[5] B. Bohnhorst, Beitr/ige zur numerischen Behandlung des unit~ren Eigenwertproblems, Ph.D. Thesis, Fakult/it fiir 
Mathematik, Universit~it Bielefeld, Bielefeld, Germany, 1993. 

[6] B. Bohnhorst, A. Bunse-Gerstner, H. FaBbender, On the perturbation theory for the unitary eigenvalue problem, 
preprint, Fachbereich 3, Mathematik und Informatik, Universit~t Bremen, Bremen, Germany, 1996. 

[7] A. Bunse-Gerstner, L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra 
Appl. 154-156 (1991) 741-778. 

[8] A. Bunse-Gerstner, C. He, Unitary Hessenberg methods for the retrieval of harmonics, preprint, 1996. 
[9] G. Cybenko, Computing Pisarenko frequency estimates, in: Proc. Information Systems and Sciences, Princeton, NJ, 

1984, pp. 587-591. 
[10] Ph. Delsarte, Y. Genin, Y. Kamp, P. Van Dooren, Speech modelling and the trigonometric moment problem, Philips 

J. Res. 37 (1982) 277-292. 
[11] P. Eberlein, C.P. Huang, Global convergence of the QR algorithm for unitary matrices with some results for normal 

matrices, SIAM J. Numer. Anal. 12 (1975) 97-104. 
[12] L. Eisner, C. He, Perturbation and interlace theorems for the unitary eigenvalue problem, Linear Algebra Appl. 

188/189 (1993) 207-229. 



72 A. Bunse-Gerstner, 1t. Faflbender / Journal of Computational and Applied Mathematics 86 (1997) 53-72 

[13] G.H. Golub, C.F. Van Loan, Matrix Computation, 2nd ed., The John Hopkins University Press, Baltimore, MD, 
1989. 

[14] W.B. Gragg, Positive definite toeplitz matrices, the Amoldi process for isometric operators, and Gaussian quadrature 
on the unit circle, in: E,S. Nikolaev (Ed.), Numerical Methods in Linear Algebra, pages 16-32. Moscow University 
Press, Moscow, 1982, pp. 16-32 (in Russian). See also J. Comput. Appl. Math. 46 (1-2) (1993) 183-198. 

[15] W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1986) 1-8. 
[16] W.B. Gragg, L. Reichel, A divide and conquer algorithm for the unitary eigenproblem, in: M.T. Heath (Ed.), 

Hypercube Multiprocessors, SIAM Publications, Philadelphia, PA, 1987, pp. 639-647. 
[17] W.B. Gragg, L. Reichel, A divide and conquer method for the unitary and orthogonal eigenproblem, Numer. Math. 

57 (1990) 695-718. 
[18] W.B. Gragg, T.L. Wang, Convergence of the shifted QR algorithm for unitary Hessenberg matrices, Report NPS- 

53-90-007, Naval Postgraduate School, Monterey, CA, 1990. 
[19] W.B. Gragg, T.L. Wang, Convergence of the unitary Hessenberg QR algorithm with unimodular shifts, Report 

NPS-53-90-008, Naval Postgraduate School, Monterey, CA, 1990. 
[20] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985. 
[21] C.F. Jagels, Application of Szeg6 polynomials in numerical analysis, Ph.D. Thesis, University of Kentucky, 

Lexington, KY, 1992. 
[22] C.F. Jagels, L. Reichel, The isometric Arnoldi process and an application to iterative solution of large linear systems, 

in: R. Beauwens, P. de Groen (Eds.), Iterative Methods in Linear Algebra, Elsevier, Amsterdam, 1992, pp. 361- 
369. 

[23] C.F. Jagels, L. Reichel, A fast minimal residual algorithm for shifted unitary matrices, Numer. Linear Algebra Appl. 
1 (1994) 555-570. 

[24] S.M. Kay, S.L. Marple, Spectrum analysis - a modem perspective, Proc. IEEE 69 (1981) 1380-1419. 
[25] J. Makhoul, Linear prediction: a tutorial review, Proc. IEEE 63 (1975) 561-580. 
[26] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964. 
[27] C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph.D. Thesis, London 

University, London, England, 1971. 
[28] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980. 
[29] V.F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. Roy Astron. Soc. 33 (1973) 

347-366. 
[30] L. Reichel, G.S. Ammar, Fast approximation of dominant harmonics by solving an orthogonal eigenvalue problem, 

in: J. McWhirter et al. (Eds.), Proc. 2nd IMA Conf. on Mathematics in Signal Processing, Oxford University Press, 
Oxford, 1990. 

[31 ] H. Rutishauser, Bestimmung der Eigenwerte orthogonaler Matrizen, Numer. Math. 9 (1966) 104-108. 
[32] S. Sagayama, F. Itakura, Duality theory of composite sinusoidal modelling and linear prediction, in: Proc. Internat. 

Acoustics Speech Signal Processing, Tokyo, 1986, pp. 1261-1264, 
[33] D.C. Sorensen, Implicit application of polynomial filters in a k-step Amoldi method, SIAM J. Matrix Anal. Appl. 

13 (1) (1992) 357-385. 
[34] G.W. Stewart, J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. 


