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Abstract

Starting from Jacobi–Trudi type determinantal expressions for the Schur functions of types B, C

and D, we define a natural q-analogue of the multiplicity [V (�) : M(�)] when M(�) is a tensor
product of row or column shaped modules defined by �. We prove that these q-multiplicities are equal
to certain Kostka–Foulkes polynomials related to the root systems C or D. Finally we express the
corresponding multiplicities in terms of Kostka numbers
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Given two partitions � and � of length n, the Kostka number K
An−1
�,� is equal to the

dimension of the weight space � in the finite dimensional irreducible sln+1-module V (�) of
highest weight �. The Schur duality is a classical result in representation theory establishing
that K

An−1
�,� is also equal to the multiplicities of V (�) and V (�′) respectively in the tensor

products

V (�1�1) ⊗ · · · ⊗ V (�n�1) and V (��1
) ⊗ · · · ⊗ V (��n

),
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where �′ is the conjugate partition of � and the �i’s, i = 1, . . . , n − 1 are the fundamental
weights of sln+1. Another way to define K

An−1
�,� is to use the Jacobi–Trudi identity which

gives a determinantal expression of the Schur function s� = char(V (�)) in terms of the
characters hk = char(V (k�1)) of the kth symmetric power representation. This formula
can be rewritten

s� =
∏

1� i<j �n

(1 − Ri,j )h� (1)

where h� = h�1
· · · h�n

and the Ri,j are the commuting raising operators acting on Zn (see
3.2). Then one can prove that it makes sense to write

h� =
∏

1� i<j �n

(1 − Ri,j )
−1s� (2)

which gives the decomposition of h� on the basis of Schur functions. From this decompo-

sition we derive the following expression for K
An−1
�,� :

K
An−1
�,� =

∑
�∈Sn

(−1)l(�)PAn−1(�(� + �) − (� + �)) (3)

where Sn is the symmetric group of order n and PAn the ordinary Kostant partition function
defined from the equality:∏

� positive root

1

(1 − x�)
=
∑
�

PAn−1(�)x�

with � running over the set of nonnegative integral combinations of positive roots of sln.
There exists a q-analogue K

An−1
�,� (q) of K

An−1
�,� obtained by replacing the ordinary Kostant

partition function PAn−1 by its q-analogue PAn−1
q satisfying∏

� positive root

1

(1 − qx�)
=
∑
�

PAn−1
q (�)x�.

So we have

K
An−1
�,� (q) =

∑
�∈Sn

(−1)l(�)PAn−1
q (�(� + �) − (� + �)) (4)

which is a polynomial in q with nonnegative integer coefficients [9,11]. In [13], Nakayashiki
and Yamada have shown that K

An−1
�,� (q) can also be computed from the combinatorial R

matrix corresponding to Kashiwara’s crystals associated to some Uq(ŝln)-modules.
For g = so2n+1, sp2n or so2n there also exist expressions similar to (3) for the multi-

plicities K
g

�,� of the weight � in the finite dimensional irreducible module V (�) but such
a simple duality as for sln does not exist although it is possible to obtain certain duality
results between multiplicities of weights and tensor product multiplicities of representations
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by using duals pairs of algebraic groups [7]. This implies that the quantizations of weight
multiplicities and tensor product multiplicities cannot coincide for the root systems Bn, Cn

and Dn. The Kostka–Foulkes polynomials K
g

�,�(q) are the q-analogues of K
g

�,� defined as
in (4) by quantizing the partition function corresponding to the root system associated to g
(see 2.2). In [4], Hatayama et al. have introduced for type Cn a quantization X

Cn

�,�(q) of the
multiplicity of V (�) in the tensor product

W(�1�1) ⊗ · · · ⊗ W(�n�1)

where for any i = 1, . . . , n,

W(�i�1) = V (�i�1) ⊕ V ((�i − 2)�1) ⊕ · · · ⊕ V ((�i mod 2)�1).

This quantization is based on the determination of the combinatorial R matrix of some
U ′

q(ĝ)-crystals in the spirit of [13]. Note that there also exist q-multiplicities for the sp2-
module V (�) in a tensor product

V (�1)
⊗k ⊗ V (�2)

⊗l

where k, l are positive integers obtained by Yamada [17].
In this paper we first use Jacobi–Trudi type determinantal expressions for the Schur

functions associated to g to introduce q-analogues of the multiplicity of V (�) in the tensor
products

(i) h(�) = V (�1�1) ⊗ · · · ⊗ V (�n�1),H(�) = W(�1�1) ⊗ · · · ⊗ W(�n�1)

(ii) e(�) = V (��′
1
) ⊗ · · · ⊗ V (��′

m
),E(�) = W(��′

1
) ⊗ · · · ⊗ W(��′

m
) with n� |�|

where

W(�k) = V (�k) ⊕ V (�k−2) ⊕ · · · ⊕ V (�k mod 2).

With the condition n� |�| for (ii), these multiplicities are independent of the type Bn, Cn or
Dn of the Lie algebra considered. When q = 1, we recover a remarkable property already
used by Koike and Terada in [8]. Next we prove that these q-multiplicities are in fact equal to
Kostka–Foulkes polynomials associated to the root systems of types C and D. It is possible
to extend the definition (4) of the Kostka–Foulkes polynomials associated to the root system
An−1 by replacing � by � ∈ Nn where � is not a partition. In this case K

An−1
�,� (q) may have

negative coefficients but K
An−1
�,� (1) is equal to the dimension of the weight space � in V (�)

that is

K
An−1
�,� (1) =

{
K

An−1
�,� if there exists a partition � and � ∈ Sn such that �(�) = �,

0 otherwise.

Now if we extend (4) by replacing � by � ∈ Nn, the polynomial K
An−1
�,� (q) is equal up

to a sign to a Kostka–Foulkes polynomial K
An−1
	,� (q) where 	 is a partition. We obtained

two expressions of the q-multiplicities defined above respectively in terms of the polyno-
mials K

An−1
�,� (q) and K

An−1
�,� (q). By specializing at q = 1, this yields expressions of the

corresponding multiplicities in terms of Kostka numbers.
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In Section 1 we recall the background on the root systems Bn, Cn and Dn and the corre-
sponding Kostka–Foulkes polynomials. We review in Section 2 the determinantal identities
for Schur functions that we need in the sequel and we introduce the formalism suggested in
[1] to prove the expressions of Schur functions in terms of raising and lowering operators
implicitly contained in [15]. Thanks to this formalism, we are able to obtain expressions
for multiplicities similar to (3). We quantize these multiplicities to obtain the desired q-
analogues in Section 3. We prove in Section 4 two duality theorems between our q-analogues
and certain Kostka–Foulkes polynomials of types C and D. Finally we establish formulas
expressing the associated multiplicities in terms of Kostka numbers.

Notation. In the sequel we frequently define similar objects for the root systems Bn, Cn

and Dn. When they are related to type Bn (resp. Cn, Dn), we implicitly attach to them the
label B (resp. the labels C, D). To avoid cumbersome repetitions, we sometimes omit the
labels B, C and D when our definitions or statements are identical for the three root systems.

Note: While writing down this work, I have been informed that Shimozono and Zabrocki
[16] have introduced independently and by using creating operators essentially the same
tensor power multiplicities. Thanks to this formalism they recover in particular Jacobi–Trudi
type determinantal expressions of the Schur functions associated to the root systems B, C

and D which constitute the starting point of this article.

2. Background on the root systems Bn, Cn and Dn

2.1. Convention for the positive roots

Consider an integer n�1. The weight lattice for the root system Cn (resp. Bn and Dn) can

be identified with PCn = Zn

(
resp. PBn = PDn

(
Z

2

)n)
equipped with the orthonormal

basis εi, i = 1, . . . , n. We take for the simple roots⎧⎪⎨⎪⎩
�Bn
n = εn and �Bn

i
= εi − εi+1, i = 1, . . . , n − 1 for the root system Bn,

�Cn
n = 2εn and �Cn

i
= εi − εi+1, i = 1, . . . , n − 1 for the root system Cn,

�Dn
n = εn + εn−1 and �Dn

i
= εi − εi+1, i = 1, . . . , n − 1 for the root system Dn.

(5)

Then the sets of positive roots are⎧⎪⎨⎪⎩
R+

Bn
= {εi − εj , εi + εj with 1� i < j �n} ∪ {εi with 1� i �n} for the root system Bn,

R+
Cn

= {εi − εj , εi + εj with 1� i < j �n} ∪ {2εi with 1� i �n} for the root system Cn,

R+
Dn

= {εi − εj , εi + εj with 1� i < j �n} for the root system Dn.

Denote respectively by P +
Bn

, P +
Cn

and P +
Dn

the sets of dominant weights of so2n+1, sp2n

and so2n.Let
be the involution in Zn such that
(x1, . . . , xn−1, xn) = (x1, . . . , xn−1, −xn).

Then R+
Dn

and P +
Dn,

are stable under the action of 
.

Let � = (�1, . . . , �n) be a partition with n parts. We will identify in the classical way �
with the dominant weight

∑n
i=1 �iεi . Note that there exists dominant weights associated

to the orthogonal root systems whose coordinates on the basis εi, i = 1, . . . , n are not
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positive integers (hence which cannot be regarded as a partition). For each root system of
type Bn, Cn or Dn, the set of weights having nonnegative integer coordinates on the basis
ε1, . . . , εn can be identified with the set �+

n of partitions of length n. For any partition �,

the weights of the finite dimensional so2n+1, sp2n or so2n-module of highest weight � are
all in �n = Zn. For any � = (�1, . . . , �n) ∈ �n we write |�| = �1 + · · · + �n.

The conjugate partition of the partition � is denoted �′ as usual. Consider �, � two parti-
tions of length n and set m = max(�1, �1). Then by adding to �′ and �′ the required numbers
of parts 0 we will consider them as partitions of length m.

The Weyl group WBn = WCn of so2n+1 and sp2n is identified to the subgroup of the
permutation group of the set {n, . . . , 2, 1, 1, 2, . . . , n} generated by si = (i, i+1)(i, i + 1),

i = 1, . . . , n − 1 and sn = (n, n) where for a �= b (a, b) is the simple transposition which
switches a and b. We denote by lB the length function corresponding to the set of generators
si, i = 1, . . . , n.

The Weyl group WDn of so2n is identified to the subgroup of WBn generated by si =
(i, i + 1)(i, i + 1), i = 1, . . . , n − 1 and s′

n = (n, n − 1)(n − 1, n). We denote by lD the
length function corresponding to the set of generators s′

n and si, i = 1, . . . , n − 1.

Note that WDn ⊂ WBn and any w ∈ WBn verifies w(i) = w(i) for i ∈ {1, . . . , n}. The
action of w on � = (�1, . . . , �n) ∈ Pn is given by

w · (�1, . . . , �n) = (�w
1 , . . . , �w

n ),

where �w
i = �w(i) if �(i) ∈ {1, . . . , n} and �w

i = −�w(i) otherwise.
The half sums �Bn

, �Cn
and �Dn

of the positive roots associated to each root system
Bn, Cn and Dn verify:

�Bn
= (

n − 1
2 , n − 3

2 , . . . , 1
2

)
, �Cn

= (n, n − 1, . . . , 1) and

�Bn
= (n − 1, n − 2, . . . , 0).

In the sequel we identify the symmetric groupSn with the subgroup ofWBn orWDn generated
by the si’s, i = 1, . . . , n − 1.

2.2. Schur functions and Kostka–Foulkes polynomials

We now briefly review the notions of Schur functions and Kostka–Foulkes polynomials
associated to the roots systems Bn, Cn and Dn and refer the reader to [14] for more details.

For any weight � = (�1, . . . , �n) ∈ �n we set x� = x
�1
1 · · · x�n

n where x1, . . . , xn are fixed
indeterminates. We set

a
Bn

� =
∑

w∈WBn

(−1)l(�)(w · x�)

where w · x� = xw(�). The Schur function s
Bn

� is defined as in [14] by

s
Bn

� =
a

Bn

�+�Bn

aB
�Bn

.
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When 	 ∈ �+
n , s

Bn
	 is the Weyl character of V (	) the finite dimensional irreducible

so2n+1-module with highest weight 	. For any w ∈ WBn, the dot action of w on � ∈ �n is
defined by

w ◦ � = w · (� + �Bn
) − �Bn

.

We have the following straightening law for the Schur functions. For any � ∈ �n, s
Bn

� = 0

or there exists a unique 	 ∈ �+
n such that s

Bn

� = (−1)l(w)s
Bn
	 with w ∈ WBn and 	 = w ◦ �.

Set K = Z[q, q−1] and write K[�n] for the K-module generated by the x�, � ∈ �n. Set
CBn = K[�n]WBn = {f ∈ K[�n], w · f = f for any w ∈ WBn}. Then {sBn

	 }, 	 ∈ �+
n is a

basis of K[�n]WBn .

We define s
Cn

� and s
Dn

� belonging to CCn = CBn and CDn in the same way and we

obtain similarly that {sCn
	 , 	 ∈ �+

n } and {sDn
	 , 	 ∈ �+

n ∪
(�+
n )} are respectively bases of CCn

and CDn.

The q-analogue PBn
q of Kostant partition function corresponding to the root system Bn

is defined by the equality∏
�∈R+

Bn

1

1 − qx� =
∑
�∈�n

PBn
q (�)x�.

Note that PBn
q (�) = 0 if � is not a linear combination of positive roots of R+

Bn
with nonneg-

ative coefficients. We write similarly PCn
q and PDn

q for the q-partition functions associated
respectively to the root systems Cn and Dn. Given � and � two partitions of length n, the
Kostka–Foulkes polynomials of types Bn, Cn and Dn are then respectively defined by

K�,�(q) =
∑
�∈W

(−1)l(�)Pq(�(� + �) − (� + �)).

Remarks.

(i) We have K�,�(q) = 0 when |�| < |�| .
(ii) When |�| = |�|, K

Bn

�,�(q) = K
Cn

�,�(q) = K
Dn

�,�(q) = K
An−1
�,� (q) that is, the Kostka–

Foulkes polynomials associated to the root systems Bn, Cn and Dn are Kostka–Foulkes
polynomials associated to the root system An−1 (see [15]).

3. Determinantal identities and multiplicities of representations

3.1. Determinantal identities for Schur functions

Consider k ∈ Z. When k is a nonnegative integer, write (k)n = (k, 0, . . . , 0) for the
partition of length n with a unique non-zero part equal to k. Then set

h
Bn

k = s
Bn

(k)n
, h

Cn

k = s
Cn

(k)n
, h

Dn

k = s
Dn

(k)n
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and

H
Bn

k = h
Bn

k + h
Bn

k−2 + · · · + h
Bn

k mod 2, H
Cn

k = h
Cn

k + h
Cn

k−2 + · · · + h
Bn

k mod 2,

H
Dn

k = h
Dn

k + h
Dn

k−2 + · · · + h
Dn

k mod 2.

When k is a negative integer we set h
Bn

k = h
Cn

k = h
Dn

k = 0 and H
Bn

k = H
Cn

k = H
Dn

k = 0.

For any � = (�1, . . . , �n) ∈ Zn define

uBn
� = det

⎛⎜⎜⎜⎜⎜⎝
h

Bn
�1 h

Bn

�1+1 + h
Bn

�1−1 · · · h
Bn

�1+n−1 + h
Bn

�1−n+1

h
Bn

�2−1 h
Bn
�2 + h

Bn

�2−2 · · · h
Bn

�2+n−2 + h
Bn
�2−n

· · · · · ·
· · · · · ·

h
Bn

�n−n+1 h
Bn

�n−n+2 + h
Bn
�n−n · · · h

Bn
�n

+ h
Bn

�n−2n+2

⎞⎟⎟⎟⎟⎟⎠ . (6)

By using the equalities h
Bn

k = H
Bn

k − H
Bn

k−2 and simple computations on determinants we
have also

uBn
� = det

⎛⎜⎜⎜⎜⎜⎜⎝
H

Bn
�1

− H
Bn
�1−2 H

Bn
�1+1 − H

Bn
�1−3 · · · H

Bn
�1+n−1 − H

Bn
�1−n−1

H
Bn
�2−1 − H

Bn
�2−3 H

Bn
�2 − H

Bn
�2−4 · · · H

Bn
�2+n−2 − H

Bn
�2−n−2

· · · · · ·
· · · · · ·

H
Bn
�n−n+1 − H

Bn
�n−n−1 H

Bn
�n−n+2 − H

Bn
�n−n−2 · · · H

Bn
�n − H

Bn
�n−2n−2

⎞⎟⎟⎟⎟⎟⎟⎠ . (7)

We define u
Cn
� and u

Dn
� similarly by replacing h

Bn

k respectively by h
Cn

k and h
Dn

k .
Consider p and n two integers such that n�1. When p is nonnegative and n�p, write

(1p)n = (1, . . . , 1, 0, . . . , 0) for the partition of length n having p non-zero parts equal to
1. Accordingly to Propositions 1.2.3, 1.2.4 and 1.2.5 of [8], we set⎧⎪⎪⎨⎪⎪⎩

e
Bn
p =s

Bn
(1p)n

, e
Cn
p = s

Cn
(1p)n

if 0�p�n, e
Dn
p =s

Dn
(1p)n

if 0�p�n − 1 and e
Dn
n =s

Dn
(1n)n

+ s
Dn

(1n)n

,

e
Bn
p =e

Bn
2n+1−p if n + 1�p�2n + 1, e

Cn
p = − e

Cn
2n+2−p, e

Dn
p =e

Dn
2n−p if n + 1�p�2n,

e
Bn
p =e

Cn
p =e

Dn
p = 0 otherwise

and

E
Bn

k = e
Bn

k + e
Bn

k−2 + · · · + e
Bn

k mod 2, E
Cn

k = e
Cn

k + e
Cn

k−2 + · · · + e
Bn

k mod 2,

E
Dn

k = e
Dn

k + e
Dn

k−2 + · · · + e
Dn

k mod 2.

For any � = (�1, . . . , �m) ∈ Zn define

v
Bn

� = det

⎛⎜⎜⎜⎜⎜⎜⎝
e
Bn

�1
e
Bn

�1+1 + e
Bn

�1−1 · · · e
Bn

�1+m−1 + e
Bn

�1−m+1

e
Bn

�2−1 e
Bn

�2
+ e

Bn

�2−2 · · · e
Bn

�2+m−2 + e
Bn

�2−m

· · · · · ·
· · · · · ·

e
Bn

�m−m+1 e
Bn

�m−m+2 + e
Bn

�n−m
· · · e

Bn

�m
+ e

Bn

�m−2m+2

⎞⎟⎟⎟⎟⎟⎟⎠ .
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By using the equalities e
Bn

k = E
Bn

k − E
Bn

k−2 and simple computations on determinants we
have also

v
Bn
� = det

⎛⎜⎜⎜⎜⎜⎜⎝
E

Bn
�1

− E
Bn
�1−2 E

Bn
�1+1 − E

Bn
�1−3 · · · E

Bn
�1+m−1 − E

Bn
�1−m−1

E
Bn
�2−1 − E

Bn
�2−3 E

Bn
�2

− E
Bn
�2−4 · · · E

Bn
�2+m−2 − E

Bn
�2−m−2

· · · · · ·
· · · · · ·

E
Bn
�m−m+1 − E

Bn
�m−m−1 E

Bn
�m−m+2 − E

Bn
�m−m−2 · · · E

Bn
�m

− E
Bn
�m−2m−2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The determinants v
Cn

� , v
Dn

� are defined similarly. Note that vBn

� , v
Cn

� , v
Dn

� are polynomials

in the indeterminates x1, . . . , xn,
1
xn

, . . . , 1
x1

.

Proposition 3.1.1 (see Fulton and Harris [3, §24.2]). Consider � a partition of length n
and suppose that �′ = (�′

1, . . . , �
′
m) is a partition of length m. Then for types B, C and D

we have u� = s� and v�′ = s�.

Lemma 3.1.2 (straightening law for u� and v�). Consider � ∈ �n then

u� =
{

(−1)l(�)u� if there exists � ∈ Sn and � ∈ �+
n such that � ◦ � = �,

0 otherwise.

Consider � ∈ �m then

v� =
{

(−1)l(�)v	 if there exists � ∈ Sm and 	 ∈ �+
m such that � ◦ � = 	,

0 otherwise.

Proof. By exchanging the rows i and i + 1 in the determinant (7) we see that usi◦� =
−u�. This implies that u�◦� = (−1)l(�)u� for any � ∈ Sn. Then it follows from the
definition of the dot action that u� = 0 or there exists � ∈ �n and � ∈ Sn such that
�1 � · · · ��n and � = � ◦ �. In this last case we have u� = (−1)l(�)u�. Now if �i < 0 for
some i then u� = 0 since all the Hk which appear in the lowest row of (7) are equal to 0.

Thus � is a partition. The proof is similar for v�. �

3.2. Determinantal identities in terms of raising and lowering operators

Denote by Ln = K[[x1, x
−1
1 , . . . , xn, x

−1
n ]] the vector space of formal Laurent series

in the indeterminates x1, x
−1
1 , . . . , xn, x

−1
n . We identify the ring of polynomials Pn =

K[x1, x
−1
1 , . . . , xn, x

−1
n ] with the sub-space of Ln containing the finite formal series. The

vector space Ln is not a ring since the formal series are in the two directions. More precisely,
the product F1 · · · Fr of the formal series Fi = ∑

�i∈Ei
x�i i = 1, . . . , r is defined if and

only if for any � ∈ Zn the number N� of decompositions � = �1 + · · · + �r such that �i∈Ei

is finite and in this case we have

F1 · · · Fr =
∑
�∈Zn

N�x
�.

In particular the product P · F with P ∈ Pn and F ∈ Ln is well defined.
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Consider the following two determinants

�n(�) = det

⎛⎜⎜⎜⎜⎝
x

�1
1 x

�1+1
1 + x

�1−1
1 · · · x

�1+n−1
1 + x

�1−n+1
1

x
�2+1
2 x

�2
2 + x

�2−2
2 · · · x

�2+n−2
2 + x

�2−n
2· · · · · ·

· · · · · ·
x

�n−n+1
n x

�n−n+2
n + x

�n−n
n · · · x

�n
n + x

�n−2n+2
n

⎞⎟⎟⎟⎟⎠
and

�n(�) = det

⎛⎜⎜⎜⎜⎝
x

�1
1 − x

�1−2
1 x

�1+1
1 − x

�1−3
1 · · · x

�1+n−1
1 − x

�1−n−1
1

x
�2−1
2 − x

�2−3
2 x

�2
2 − x

�2−4
2 · · · x

�2+n−2
2 − x

�2−n−2
2· · · · · ·

· · · · · ·
x

�n−n+1
n + x

�n−n−1
n x

�n−n+2
n − x

�n−n
n · · · x

�n
n − x

�n−2n−2
n

⎞⎟⎟⎟⎟⎠
From a simple computation we derive the equalities:

�n(�) =
∏

1� i<j �n

(
1 − xi

xj

) ∏
1� r<s �n

(
1 − 1

xrxs

)
x� and

�n(�) =
∏

1� i<j �n

(
1 − xi

xj

) ∏
1� r � s �n

(
1 − 1

xrxs

)
x�. (8)

We set h� = h�1 · · · h�n , H� = H�1 · · · H�n , e� = e�1 · · · e�n and E� = E�1 · · · E�n .

Remarks.
(i) For any partition � of length n, h� is the character of h(�) = V (�1�1)⊗· · ·⊗V (�n�1)

and H� is the character of H(�) = W(�1�1) ⊗ · · · ⊗ W(�n�1) where for any k ∈ N,
W(k1) = V (k�1) ⊕ V ((k − 2)�1) ⊕ · · · ⊕ V ((k mod 2)�1).

(ii) For any partition � of length n such that �′ is of length m, e�′ is the character of e(�) =
V (��′

1
) ⊗ · · · ⊗ V (��′

m
) and E�′ is the character of E(�) = W(��′

1
) ⊗ · · · ⊗ W(��′

m
)

where for any k ∈ N with k�n, W(�k) = V (�k) ⊕ V (�k−2) ⊕ · · · ⊕ V (�k mod 2).

For the root system Bn we introduce six linear maps hBn, HBn , uBn and eBn, EBn , vBn as
follows:{

hBn : Ln → CBn

x� 
→ h
Bn
�

,

{
HBn : Ln → CBn

x� 
→ H
Bn
�

,

{
uBn : Ln → CBn

x� 
→ u
Bn
�

and {
eBn : Ln → CBn

x� 
→ e
Bn
�

,

{
EBn : Ln → CBn

x� 
→ E
Bn
�

,

{
vBn : Ln → CBn

x� 
→ v
Bn
�

.

Note that the restriction of these maps on Pn are not ring homomorphisms. For the roots
systems Cn and Dn we define respectively the maps hCn, HCn, uCn, eCn, ECn, vCn and
hDn, HDn, uDn, eDn, EDn, vDn similarly.
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Let 
n and �n be the endomorphisms of Ln corresponding respectively to the multipli-
cation by

�n =
∏

1� i<j �n

(
1 − xi

xj

) ∏
1� r<s �n

(
1 − 1

xrxs

)
and

�n =
∏

1� i<j �n

(
1 − xi

xj

) ∏
1� r � s �n

(
1 − 1

xrixs

)
.

Proposition 3.2.1. We have

1. un = hn · 
n and un = Hn · �n,
2. vn = en · 
n and vn = En · �n.

Proof. (1) We have seen that hn is not a ring-homomorphism. Nevertheless we have by
definition of the h�

hn(x
�) = hn(x

�1
1 ) · · · hn(x

�n
n ) = h�1 · · · h�n .

More generally if P1, . . . , Pn are polynomials respectively in the indeterminates x1, . . . , xn,
we have

hn(P1(x1) · · · Pn(xn)) = hn(P1(x1)) · · · hn(Pn(xn))

by linearity of hn. We can write

�n(�) =
∑
�∈Sn

(−1)l(�)x
�1−�(1)+1
�(1)

×(x
�2−�(2)+2
�(2) + x

�2−�(2)
�(2) ) · · · (x�n−�(n)+n

�(n) + x
�n−�(n)−n+2
�(n) )

and by the previous argument

hn(�n(�)) =
∑
�∈Sn

(−1)l(�)h�1−�(1)+1

×(h�2−�(2)+2 + h�2−�(2)) · · · (h�n−�(n)+n + h�n−�(n)−n+2) = u�

where the last equality follows from (6). By (8) we have �n(�) = 
n(x
�). Thus by applying

hn to this equality we obtain hn(
n(x
�)) = u� = un(x

�). Hence un = hn · 
n. We derive
the equality un = Hn · �n in a similar way starting from

�n(�) =
∑
�∈Sn

(−1)l(�)(x
�1−�(1)+1
�(1) + x

�1−�(1)−1
�(1) ) · · · (x�n−�(n)+n

�(n) + x
�n−�(n)−n
�(n) ).

(2) The arguments are the same as in 1 once replacing the characters h and H respectively
by the characters e and E. �

Consider � = (�1, . . . , �n) ∈ �n and two integers i, j such that 1� i�j �n. The raising
operator Ri,j and the lowering operator Li,j are respectively defined on �n by Ri,j (�) =
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� + εi − εj and Li,j (�) = � − εi − εj . From the previous lemma we obtain:

Corollary 3.2.2. For any partition � = (�1, . . . , �n) we have

s� =
⎛⎝ ∏

1� i<j �n

(1 − Ri,j )
∏

1� r<s �n

(1 − Lr,s)

⎞⎠h�,

s� =
⎛⎝ ∏

1� i<j �n

(1 − Ri,j )
∏

1� r � s �n

(1 − Lr,s)

⎞⎠H�,

s� =
⎛⎝ ∏

1� i<j �m

(1 − Ri,j )
∏

1� r<s �m

(1 − Lr,s)

⎞⎠ e�′ ,

s� =
⎛⎝ ∏

1� i<j �m

(1 − Ri,j )
∏

1� r � s �m

(1 − Lr,s)

⎞⎠E�′

where �′ = (�′
1, . . . , �

′
m) is the conjugate partition of �.

Proof. Let us write

�n =
∏

1� i<j �n

(
1 − xi

xj

) ∏
1� r<s �n

(
1 − 1

xrxs

)
=
∑
�∈�n

a(�)x�.

Then by 1 of Proposition 3.2.1, we have for any � ∈ �+
n ,

un(x
�) = hn

(∑
�∈�n

a(�)x�+�

)
=
∑
�∈�n

a(�)h�+� = u� = s�

where the last equality follows from Proposition 3.1.1. This is exactly equivalent to

s� =
⎛⎝ ∏

1� i<j �n

(1 − Ri,j )
∏

1� r<s �n

(1 − Lr,s)

⎞⎠h�.

The arguments are essentially the same for the other equalities. �

3.3. Expressions for the multiplicities of representations

Lemma 3.3.1. The products

�−1
n =

∏
1� i<j �n

(
1 − xi

xj

)−1 ∏
1� r<s �n

(
1 − 1

xrxs

)−1

and

�−1
n =

∏
1� i<j �n

(
1 − xi

xj

)−1 ∏
1� r � s �n

(
1 − 1

xrxs

)−1

are well defined in Ln.
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Proof. Given any � ∈ Zn, the number of decompositions

� =
∑

1� i<j �n

ai,j (εi − εj ) −
∑

1� r<s �n

br,s(εr + εs)

with ai,j and br,s some positive integers is finite. Thus �−1
n is well defined. The proof is

similar for �−1
n . �

Write

�−1
n =

∑
�∈�n

f (�)x� and �−1
n =

∑
�∈�n

F (�)x�.

Then �−1
n and �−1

n belong to Ln.

Lemma 3.3.2. Consider � a partition of length n with �′ of length m. We have

(i) h� =
∑
�∈�n

f (�)u�+�, (ii) H� =
∑
�∈�n

F (�)u�+�,

(iii) e�′ =
∑
�∈�m

f (�)v�′+�, (iv) E�′ =
∑
�∈�m

F (�)v�′+�.

Proof. Write 
n for the linear map


n : Pn → Ln,

P 
→ �−1
n P .

Then for any � ∈ �n, we have 
n(
n(x
�)) = x�. By Proposition 3.2.1 we know that

un = hn · 
n. We derive

un(
n(x
�)) = hn · 
n(
n(x

�)) = hn(x
�) = h�

for any � ∈ �n. When � = � this is equivalent to (i). We obtain (ii) similarly by using
the linear map �n : P 
→ �−1

n P . The arguments are the same for the equalities (iii)
and (iv). �

The identities of the above lemma can be rewritten by using raising and lowering operators
as in Corollary 3.2.2. Namely we have

h� =
⎛⎝ ∏

1� i<j �n

1

1 − Ri,j

∏
1� r<s �n

1

1 − Lr,s

⎞⎠ s�,

H� =
⎛⎝ ∏

1� i<j �n

1

1 − Ri,j

∏
1� r � s �n

1

1 − Lr,s

⎞⎠ s�,
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e�′ =
⎛⎝ ∏

1� i<j �m

1

1 − Ri,j

∏
1� r<s �m

1

1 − Lr,s

⎞⎠ s� and

E�′ =
⎛⎝ ∏

1� i<j �m

1

1 − Ri,j

∏
1� r � s �m

1

1 − Lr,s

⎞⎠ s�.

For any positive integer n write �l = (n, n − 1, . . . , 1).

Proposition 3.3.3. Consider a partition � of length n such that �′ has length m. Then for
the three roots systems Bn, Cn and Dn we have:

(i)

{
h� = ∑

�∈�+
n

∑
�∈Sn

(−1)l(�)f (�(� + �n) − � − �n)u�

H� = ∑
�∈�+

n

∑
�∈Sn

(−1)l(�)F (�(� + �n) − � − �n)u�
,

(ii)

{
e�′ = ∑

	∈�+
m

∑
�∈Sm

(−1)l(�)f (�(	 + �m) − �′ − �m)v	

E�′ = ∑
	∈�+

m

∑
�∈Sm

(−1)l(�)F (�(	 + �m) − �′ − �m)v	
.

Proof. (i) Note first that the above relations do not depend on the root system considered.
Indeed for any nonnegative integer n, we have �Bm

= �n−( 1
2 , . . . , 1

2 ), �Cn
= �n and �Dm

=
�n−(1, . . . , 1). Thus �(�+�Bn

)−�−�Bn
= �(�+�Cn

)−�−�Cn
= �(�+�Dn

)−�−�Dn
=

�(� + �n) − � − �n. We have

h� =
∑
�∈�n

f (�)u�+�.

From Lemma 3.1.2 we deduce that for any � ∈ �n we have u�+� = 0 or there exists
a partition � such that � + � = �(� + �n) − �n and u�+� = (−1)l(�)u�. By setting
� = �(�+�n)−�−�n in the above sum we obtain h� = ∑

�∈�n

∑
�∈Sn

(−1)l(�)f (�(�+
�n) − � − �n)u�. The arguments are similar for the other assertions. �

From relations (i) and by using the fact that u� = s� for any partition � of length n, we
derive the equalities

h� =
∑
�∈�n

u�,�s� and H� =
∑
�∈�n

U�,�s�

where

u�,� =
∑
�∈Sn

(−1)l(�)f (�(� + �n) − � − �n) and

U�,� =
∑
�∈Sn

(−1)l(�)F (�(� + �n) − � − �n) (9)

are respectively the multiplicities of V (�) in h(�) andH(�). Note that u�,� = 0 and U�,� = 0
unless |�| � |�|.

For the relations (ii) the situation is more complicated since the partitions 	 obtained by
applying straightening laws to the v�′+� yields polynomials v	 where 	 ∈ �+

m is a partition of



752 C. Lecouvey / Journal of Combinatorial Theory, Series A 113 (2006) 739–761

length m so cannot be necessarily regarded as the conjugate partition of a partition � ∈ �+
n .

The straightening law of Lemma 3.1.2 implies that |	| = ∣∣�′∣∣ . Since |�| = ∣∣�′∣∣, this problem
disappears if we suppose n� |�| for we will have 	1 � |	| �n and thus 	′ ∈ �+

n . We can
then set 	 = �′ with � ∈ �n and obtain

e�′ =
∑
�∈�n

v�,�s� and E�′ =
∑
�∈�n

V�,�s�.

We deduce that

v�,� = u�′,�′ =
∑

�∈Sm

(−1)l(�)f (�(�′ + �m) − �′ − �m), (10)

V�,� = U�′,�′ =
∑

�∈Sm

(−1)l(�)F (�(�′ + �m) − �′ − �m), (11)

are respectively the multiplicities of V (�) in the tensor products e(�) andE(�) when n� |�|.

4. Quantization of the multiplicities

4.1. The functions fq and Fq

Set

�n(q) =
∏

1� i<j �n

(
1 − q

xi

xj

) ∏
1� r<s �n

(
1 − q

xixj

)
and

�n(q) =
∏

1� i<j �n

(
1 − q

xi

xj

) ∏
1� r � s �n

(
1 − q

xixj

)
.

The functions fq and Fq are obtained by considering the formal series expansions of �−1
n (q)

and �−1
n (q). Namely we have

�−1
n (q) =

∑
�∈�n

fq(�)x� and �−1
n (q) =

∑
�∈�n

Fq(�)x�. (12)

4.2. Some q-analogues of multiplicities of V (�) in h(�), H(�), e(�) or E(�)

Given � and � two partitions of length n, let c�,�(q) and C�,�(q) be the two polynomials
defined by

u�,�(q) =
∑
�∈Sn

(−1)l(�)fq(�(� + �n) − � − �n) and

U�,�(q) =
∑
�∈Sn

(−1)l(�)Fq(�(� + �n) − � − �n).
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Then from the equalities (9), (10) and (11) we obtain:

Proposition 4.2.1. Let � and � be two partitions of length n. Then

1. u�,�(q) and U�,�(q) are q-analogues of the multiplicity of the representation V (�) in
h(�) and H(�),

2. v�,�(q) = u�,′�′(q) and V�,�(q) = U�′,�′(q) are q-analogues of the multiplicity of the
representation V (�) in e(�) and E(�) when the condition n� |�| is satisfied.

The following example is obtained from the explicit computation of the function fq

when n = 2.

Example 4.2.2. Consider � a partition of length 2 and set E� = {� ∈ �+
2 , � = (�1 + r −

s, �2 − r − s), s ∈ {0, . . . , �2}, r ∈ {0, . . . , �2 − s}}. Then for any partition � of length 2
we have:

u�,�(q) =
{

q�1−�1 if � ∈ E�,

0 otherwise.

Remarks.
(i) It follows from the definition of the q-functions fq and Fq that u�,�(q) = U�,�(q) = 0

if |�| > |�|.
(ii) It is not trivial from the very definitions that u�,�(q) and U�,�(q) are polynomials in

q with nonnegative integer coefficients. This property will be proved in Section 5 as a
corollary of Theorem 5.1.5.

5. The duality theorems

5.1. A duality theorem for the q-multiplicities in h(�) and H(�)

For any nonnegative integer n, set �n = (1, . . . , 1) ∈ �n.

Lemma 5.1.1. Consider �, � two partitions of length n such that |�| � |�| . Let k be any

integer such that k� |�|−|�|
2 . Then we have

K�+k�n,�+k�n
(q) =

∑
�∈Sn

(−1)l(�)Pq(�(� + �n) − (� + �n)). (13)

Proof. Since Pq(�) = 0 if � is not a linear combination of positive roots with nonneg-
ative coefficients, we have Pq(�) = 0 for any � ∈ �n such that |�| < 0. Consider � =
(�1, . . . , �n) ∈ �n and w ∈ Wn. Write w(�) = (�w

1 , . . . , �w
n ) and set Ew = {i, w(i) /∈

{1, . . . , n}}. Define the sum Sw,� = ∑
i∈Ew

�ik . Then |w(�)| = |�| − 2Sw,�. Now con-
sider k a nonnegative integer and set � = (� + �n + k�n). We have

∣∣w(� + �n + k�n)
∣∣ =∣∣(� + �n + k�n)

∣∣ − 2Sw,�. But Sw,� = Sw,�+�n
+ kp where p = card(Ew). Thus we
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obtain ∣∣w(� + �n + k�n) − (� + �n + k�n)
∣∣

= ∣∣(� + �n + k�n)
∣∣− 2Sw,�+�n

− ∣∣(� + �n + k�n)
∣∣− 2kp

= |�| − |�| − 2Sw,�+�n
− 2kp.

When w /∈ Sn, we have p�1 and Sw,�+�n
�1 since the coordinates of � + �n are all

positive. Hence
∣∣w(� + �n + k�n) − (� + �n + k�n)

∣∣ < |�| − |�| − 2k and is negative

as soon as k� |�|−|�|
2 . For such an integer k the sum defining K�+k�n,�+k�n

(q) normally
running over Wn can be restricted to (13) and we obtain

K�+k�n,�+k�n
(q) =

∑
�∈Sn

(−1)l(�)Pq(�(� + �n + k�n) − (� + �n + k�n)).

Since � ∈ Sn, we have �(k�n) = k�n. Thus

K�+k�n,�+k�n
(q) =

∑
�∈Sn

(−1)l(�)Pq(�(� + �n) − (� + �n)). �

We define the involution I on �n by I (�1, . . . , �n) = (−�n, . . . ,−�1) for any � =
(�1, . . . , �n) ∈ �n.

Lemma 5.1.2. For any � = (�1, . . . , �n) ∈ �n we have

fq(�) = PDn
q (I (�)) and Fq(�) = PCn

q (I (�))

where PCn
q and PDn

q are the q-partition functions associated respectively to the root systems
Bn and Dn.

Proof. By abuse of notation we also denote by I the ring automorphism of Ln defined by
I (x�) = xI (�). The images of the root systems Cn and Dn by I are respectively{ {εi − εj , −εi − εj with 1� i < j �n} ∪ {−2εi with 1� i �n} for the root system Cn,

{εi − εj , −εi − εj with 1� i < j �n} for the root system Dn.
(14)

By applying I to the equality∏
�∈R+

Cn

1

1 − qx� =
∑
�∈�n

PCn
q (�)x�

we obtain∏
1� i<j �n

1

(1 − q
xi

xj
)

∏
1� r � s �n

1

(1 − q
xrxs

)
=
∑
�∈�n

PCn
q (�)xI (�).

Set � = I (�). The equality becomes

�−1
n (q) =

∑
�∈�n

PCn
q (I (�))x�
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and from the definition (see 12) of the functionFq,we obtainPCn
q (I (�)) = Fq(�).The asser-

tion with fq is proved in the same way by considering the positive root
system Dn. �

Given � ∈ Sn, denote by �∗ the permutation defined by

�∗(k) = �(n − k + 1).

For any i ∈ {1, . . . , n − 1}, we have s∗
i = sn−i . The following lemma is straightforward:

Lemma 5.1.3. The map � → �∗ is an involution of the group Sn. Moreover we have
�(I (�)) = I (�∗(�)) and l(�) = l(�∗) for any � ∈ �n, � ∈ Sn.

Lemma 5.1.4. Let �, � two partitions of length n and � ∈ Sn. Then

(−1)l(�)fq(�(� + �n) − (� + �n)) = (−1)l(�
∗)PDn

q (�∗(I (�) + �n) − (I (�) + �n))

and

(−1)l(�)Fq(�(� + �n) − (� + �)) = (−1)l(�
∗)PCn

q (�∗(I (�) + �n) − (I (�) + �n)).

Proof. Since l(�) = l(�∗), it suffices to prove the equalities

fq(�(� + �n) − (� + �n)) = PDn
q (�∗(I (�) + �n) − (I (�) + �n))

and

Fq(�(� + �n) − (� + �n)) = PCn
q (�∗(I (�) + �n) − (I (�) + �n)).

Set P = PCn
q (�∗(I (�) + �n) − (I (�) + �n)). From the above lemma we deduce

P = PCn
q (I (�(�)) + �∗(�n) − I (�) − �n).

Now an immediate computation shows that �∗(�n) − �n = I (�(�n) − �n). Thus we derive

P = PCn
q (I (�(� + �n) − � − �n)) = Fq(�(� + �n) − � − �n)

where the last equality follows from Lemma 5.1.2.
We obtain the equality fq(�(� + �n) − (� + �n)) = PDn

q (�(I (�) + �n) − (I (�) + �n))

in a similar way. �

Theorem 5.1.5. Consider �, � two partitions of length n and set m = max(�1, �1). Let

k be any integer such that k� |�|−|�|
2 . Then �̂ = (m − �n, . . . , m − �1) and �̂ = (m −

�n, . . . , m − �1) are partitions of length n and⎧⎨⎩ u�,�(q) = K
Dn

�̂+k�n,̂�+k�n
(q),

U�,�(q) = K
Cn

�̂+k�n,̂�+k�n
(q).
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Proof. First �̂ and �̂ are clearly partitions of length n since m = max(�1, �1). It follows
from the definition of U�,�(q) and the above lemma that

U�,�(q) =
∑
�∈Sn

(−1)l(�)Fq(�(� + �n) − � − �n)

=
∑

�∗∈Sn

(−1)l(�
∗)PCn

q (�∗(I (�) + �n)) − (I (�) + �n)).

Then by Lemma 5.1.3 we obtain

U�,�(q) =
∑
�∈Sn

(−1)l(�)PCn
q (�(I (�) + �n)) − (I (�) + �n)).

We have �(I (�) + �n + m�n) = �(I (�) + �n) + m�n since � ∈ Sn. So we can write

U�,�(q) =
∑
�∈Sn

(−1)l(�)PCn
q (�(I (�) + m�n + �n)) − (I (�) + m�n + �n)).

Since �̂ = I (�) + m�n and �̂ = I (�) + m�n we derive

U�,�(q) =
∑
�∈Sn

(−1)l(�)PCn
q (�(̂� + �n) − (̂� + �n)) = K

Cn

�̂+k�n,̂�+k�n
(q)

by Lemma 5.1.1.
We obtain similarly the equality u�,�(q) = K

Dn

�̂+k�n,̂�+k�n
(q) by replacing PCn

q by PDn
q .

�

Example 5.1.6. Consider � = (4, 2, 1) and � = (2, 1, 0). We have m = 4, �̂ = (3, 2, 0)

and �̂ = (4, 3, 2). We choose k = 2. Then we obtain the equalities{
u�,�(q) = K

Dn

(6,5,4),(5,4,2)(q) = q3 + q2,

U�,�(q) = K
Cn

(6,5,4),(5,4,2))(q) = q5 + 2q4 + 3q3 + 2q2.

By using the fact that the Kostka–Foulkes polynomials have nonnegative integer coeffi-
cients [11] we obtain the following corollary.

Corollary 5.1.7. The polynomials u�,�(q) and U�,�(q) have nonnegative integers coeffi-
cients.

We also recover a property of the Kostka–Foulkes polynomials associated to the root
system An−1 proved in [9].

Corollary 5.1.8. Consider �, � two partitions of length n such that |�| = |�| and set
m = max(�1, �1). Then the Kostka–Foulkes polynomials associated to the root system



C. Lecouvey / Journal of Combinatorial Theory, Series A 113 (2006) 739–761 757

An−1 verifies

K
An−1
�,� (q) = K

An−1

�̂,̂�
(q)

where �̂ = (m − �n, . . . , m − �1) and �̂ = (m − �n, . . . , m − �1).

Proof. Suppose that � is a linear combination of I (R+
Cn

) with nonnegative coefficients such
that |�| = 0. Then � is necessarily a linear combination of the roots εi − εj , 1� i < j �n

with nonnegative coefficients (see (14)) that is, a linear combination with nonnegative
coefficients of the positive roots associated to the root system An−1. This implies that

fq(�) = Fq(�) = PAn−1
q (�)

where PAn−1
q is the q-partition function associated to the root system An−1. For any � ∈ Sn,

we have
∣∣�(� + �n) − (� + �n)

∣∣ = 0 since |�| = |�| . Thus

fq(�(� + �n) − (� + �n)) = Fq(�(� + �n) − (� + �n))

= PAn−1
q (�(� + �n) − (� + �n))

and the multiplicities u�,�(q) and U�,�(q) coincide with the Kostka–Foulkes polynomial

K
An−1
�,� (q) when |�| = |�| . Moreover by applying Theorem 5.1.5 with |�| = |�| and k = 0,

we obtain U�,�(q) = K
Cn

�̂,̂�
(q) = K

An−1

�̂,̂�
(q) where the last equality is due to the fact that

the Kostka–Foulkes polynomials of types Bn, Cn or Dn are Kostka–Foulkes polynomials
associated to the root system An−1 when |�| = |�| . So we derive the equality K

An−1
�,� (q) =

K
An−1

�̂,̂�
(q). �

We have seen that U�,�(q) can be regarded as a q-analogue of the multiplicity of the

representation V (�) inHCn(�). In [4], Hatayama et al. have introduced another quantization
X�,�(q) of this multiplicity based on the determination of the combinatorial R matrix of the

U ′
q(C

(1)
n )-crystals Bk . Considered as the crystal graph of the Uq(Cn)-module Mk, Bk can

be identified with

B(k�1) ⊕ B((k − 2)�1) ⊕ · · · · ⊕B(k mod 2�1)

where for any i ∈ {k, k − 2, . . . , k mod 2}, B( k�1) is the crystal graph of the irreducible
finite dimensional Uq(Cn)-module of highest weight k�1. Note that the character of Mk is

equal to H
Cn

k .
Recall that the combinatorial R-matrix associated to crystals Bk is equivalent to the

description of the crystal graph isomorphisms{
Bl ⊗ Bk

�→ Bk ⊗ Bl,

b1 ⊗ b2 
−→ b′
2 ⊗ b′

1
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together with the energy function H on Bl ⊗ Bk. The multiplicity of V (�) in HCn(�)

is then equal to the number of highest weight vertices of weight � in the crystal B� =
B�1

⊗ · · · ⊗ B�n
. Then X�,�(q) is defined by

X�,�(q) =
∑
b∈E�

q
∑

0 � i<j � n H(bi⊗b
(i+1)
j )

where E� is the set of highest weight vertices b = b1 ⊗ · · · ⊗ bn in B� of highest weight

�, b
(i)
j is determined by the crystal isomorphism

B�i
⊗ B�i+1

⊗ B�i+2
⊗ · · · ⊗ B�j

→ B�i
⊗ B�j

⊗ B�i+1
· · · ⊗ B�j−1

,

bi ⊗ bi+1 ⊗ · · · ⊗ bj → b
(i)
j ⊗ b′

i ⊗ · · · ⊗ b′
j−1

and for any j = 1, . . . , n, H(b0 ⊗ b
(1)
j ) depends only on b

(1)
j .

Many computations suggest the following conjecture

Conjecture 5.1.9. For any partition � and � of length n with |�| � |�|
U�,�(q) = q |�|−|�|X�,�(q).

Note that the conjecture is in particular true for all the examples given in the tables
of [4].

5.2. A duality theorem for the q-multiplicities in e(�) and E(�)

Consider �, � two partitions of length l such that l� |�| � |�| . Write n = max(�1, �1).
Then by adding to �′ and �′ the required numbers of parts 0 we can consider them as
partitions of length n. Set m = max(�′

1, �
′
1). We define the partitions �̃ and �̃ belonging to

�n by �̃ = (m − �′
n, . . . , m − �′

1) and �̃ = (m − �′
n, . . . , m − �′

1).

Theorem 5.2.1. With the above notations, we have for any integer k� |�|−|�|
2⎧⎨⎩ (i) v�,�(q) = K

Dn

�̃+k�n,̃�+k�n
(q),

(ii) V�,�(q) = K
Cn

�̃+k�n,̃�+k�n
(q).

Proof. Since l� |�|, we have by Proposition 4.2.1 the equality v�,�(q) = u�′,�′(q). More-

over we have m� max(�′
1, �

′
1) and k� |�′|−|�′|

2 for
∣∣�′∣∣ = |�| and

∣∣�′∣∣ = |�| . Hence

by applying Theorem 5.1.5 we obtain v�,�(q) = K
Dn

�̂′+k�n,�̂′+k�n

(q) where �̂′ = (m −
�′
n, . . . , m − �′

1) = �̃ and �̂′ = (m − �′
n, . . . , m − �′

1) = �̃. So (i) is proved. We obtain (ii)
similarly. �

Example 5.2.2. For � = (2, 1, 0, 0, 0) and � = (2, 2, 1, 0, 0) we have l = 5, n = 2.
Moreover �′ = (2, 1), �′ = (3, 2) and m = 3. So �̃ = (2, 1) and �̃ = (1, 0). Hence for
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k = 1{
(i) v�,�(q) = K

Dn

(3,2),(2,1)(q) = q,

(ii) V�,�(q) = K
Cn

(3,2),(2,1)(q) = q2 + q.

Remark. When �, � are considered as weights associated to the root system Cl , the above
theorem is essentially the quantization of a duality result explicited by Foulle [2] from
results of [7] for the dual pair (Sp(2l), Sp(2n)).

6. Identities for the q-multiplicities U�,µ(q) and u�,µ(q)

6.1. A relations between q-partition functions

Consider a nonnegative integer k and define the finite sets{ Cn
k = {� ∈ �n, � = ∑

1� r � s �n er,s(εr + εs) with er,s �0 and |�| = 2k},
Dn

k = {� ∈ �n, � = ∑
1� r<s �n er,s(εr + εs) with er,s �0 and |�| = 2k}.

Note that each � ∈ Cn
k (resp. � ∈ Dn

k ) verifies |�| = 2
∑

1� r � s �n er,s (resp. |�| =
2
∑

1� r<s �n er,s). This implies that∏
1� r � s �n

1(
1 − q

xrxs

) =
∑
k �0

∑
�∈Cn

k

c
Cn

� qkx� and

∏
1� r<s �n

1(
1 − q

xrxs

) =
∑
k �0

∑
�∈Cn

k

c
Dn

� qkx�

where c
Cn

� (resp. cDn

� ) is the number of ways to decompose � as � = ∑
1� r � s �n er,s(εr +

εs) (resp. � = ∑
1� r<s �n er,s(εr + εs)) with er,s �0.

Lemma 6.1.1. For any � ∈ �n with |�| = 2k�0, we have

Fq(�) =
∑
�∈Cn

k

c
Cn

� qkPAn−1
q (� + �) and fq(�) =

∑
�∈Dn

k

c
Dn

� qkPAn−1
q (� + �).

Proof. We have:∏
1� i<j �n

1(
1 − q

xi

xj

) ∏
1� r � s �n

1(
1 − q

xrxs

) =
∑
�∈�n

∑
�∈�n

c
Cn

� q|�|/2PAn−1
q (�)x�−�

which implies the equality Fq(�) = ∑
�−�=� c

Cn

� q|�|/2PAn−1
q (�). Since PAn−1

q (�) = 0
when |�| �= 0, we can suppose |�| = 0 and |�| = |�| in the previous sum. Then � ∈ Cn

k and
the result follows immediately. The proof for fq(�) is similar. �
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6.2. Expressions of the multiplicities u�,� and U�,� in terms of Kostka numbers

Suppose that � and � belong to �n. Then we can define the polynomial

K
An−1
�,� (q) =

∑
�∈Sn

(−1)l(�)PAn−1
q (�(� + �n) − (� + �n)).

Note that the coefficients of K
An−1
�,� (q) may be negative. When � = � is a partition, KAn−1

�,� =
K

An−1
�,� (1) is equal to the dimension of the weight space of weight � in V (�). When � = �

is a partition, we have{
K

An−1
�,� (q) = (−1)l(�)K

An−1
	,� (q) if � = � ◦ (	) with � ∈ Sn and 	 a partition,

0 otherwise.

Proposition 6.2.1. Consider �, � two partitions of length n such that k = |�| − |�| �0.

Then

u�,�(q) =
∑
�∈Dn

k

c
Dn

� q
|�|−|�|

2 K
An−1
�,�−�(q) =

∑
�∈Dn

k

c
Dn

� q
|�|−|�|

2 K
An−1
�+�,�(q)

and

U�,�(q) =
∑
�∈Cn

k

c
Cn

� q
|�|−|�|

2 K
An−1
�,�−�(q) =

∑
�∈Cn

k

c
Cn

� q
|�|−|�|

2 K
An−1
�+�,�(q).

Proof. By definition we have

U�,�(q) =
∑
�∈Sn

(−1)l(�)Fq(�(� + �n) − (� + �n)).

Hence from the above lemma we derive

U�,�(q) =
∑
�∈Cn

k

c
Cn

� q|�|/2
∑
�∈Sn

(−1)l(�)PAn−1
q (�(� + �n) − (� − � + �n)) (15)

which yields the first desired equality since K
An−1
�,�−�(q) = ∑

�∈Sn
(−1)l(�)PAn−1

q (�(� +
�n) − (� − � + �n)). For any � ∈ Sn, we have �(Cn

k ) = Cn
k and c

Cn

�(�)
= c

Cn

� . Thus (15) can
also be rewritten

U�,�(q) = q|�|/2
∑
�∈Sn

(−1)l(�)
∑
�∈Cn

k

c
Cn

� PAn−1
q (�(� + �n + �) − (� + �n))

=
∑
�∈Cn

k

c
Cn

� q
|�|−|�|

2 K
An−1
�+�,�(q).

The proof is similar for u�,�(q). �

By setting q = 1 in the above relations we obtain the following expressions of the
multiplicities U�,� and u�,� in terms of Kostka numbers.
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Corollary 6.2.2.{
U�,� = ∑

�∈Cn
k

c
Cn

� K
An−1
�,�−� = ∑

�∈Cn
k

c
Cn

� K
An−1
�+�,�,

v�,� = ∑
�∈Dn

k
c
Dn

� K
An−1
�,�−� = ∑

�∈Dn
k

c
Dn

� K
An−1
�+�,�.
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