Available online at www.sciencedirect.com

European Journal of Combinatorics

ELSEVIER

Partition algebras

Tom Halverson ${ }^{\text {a }}$, Arun Ram ${ }^{\text {b }}$
${ }^{a}$ Mathematics and Computer Science, Macalester College, Saint Paul, MN 55105, United States
${ }^{\mathrm{b}}$ Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States

Available online 10 August 2004

Abstract

The partition algebra $\mathbb{C} A_{k}(n)$ is the centralizer algebra of S_{n} acting on the k-fold tensor product $V^{\otimes k}$ of its n-dimensional permutation representation V. The partition algebra $\mathbb{C} A_{k+\frac{1}{2}}(n)$ is the centralizer algebra of the restriction of $V^{\otimes k}$ to $S_{n-1} \subseteq S_{n}$. We apply the theory of the basic construction (generalized matrix algebras) to the tower of partition algebras $\mathbb{C} A_{0}(n) \subseteq$ $\mathbb{C} A_{\frac{1}{2}}(n) \mathbb{C} A_{1}(n) \subseteq \mathbb{C} A_{1 \frac{1}{2}}(n) \subseteq \cdots$. Our main results are: (a) a presentation on generators and relations for $\mathbb{C} A_{k}(n)$; (b) a derivation of "Specht modules" from the basic construction; (c) a proof that $\mathbb{C} A_{k}(n)$ is semisimple if and only if $k \leq(n+1) / 2$ (except for a few special cases); (d) Murphy elements for $\mathbb{C} A_{k}(n)$; and (e) an exposition on the theory of the basic construction and semisimple algebras. © 2004 Elsevier Ltd. All rights reserved.

0. Introduction

A centerpiece of representation theory is the Schur-Weyl duality, which says that:
(a) the general linear group $G L_{n}(\mathbb{C})$ and the symmetric group S_{k} both act on tensor space

$$
V^{\otimes k}=\underbrace{V \otimes \cdots \otimes V}_{k \text { factors }}, \quad \text { with } \quad \operatorname{dim}(V)=n,
$$

[^0](b) these two actions commute, and
(c) each action generates the full centralizer of the other, so that
(d) as a $\left(G L_{n}(\mathbb{C}), S_{k}\right)$-bimodule, the tensor space has a multiplicity free decomposition,
\[

$$
\begin{equation*}
V^{\otimes k} \cong \bigoplus_{\lambda} L_{G L_{n}}(\lambda) \otimes S_{k}^{\lambda}, \tag{0.1}
\end{equation*}
$$

\]

where the $L_{G L_{n}}(\lambda)$ are irreducible $G L_{n}(\mathbb{C})$-modules and the S_{k}^{λ} are irreducible S_{k} modules.

The decomposition in (0.1) essentially makes the study of the representations of $G L_{n}(\mathbb{C})$ and the study of representations of the symmetric group S_{k} two sides of the same coin.

The group $G L_{n}(\mathbb{C})$ has interesting subgroups,

$$
G L_{n}(\mathbb{C}) \supseteq O_{n}(\mathbb{C}) \supseteq S_{n} \supseteq S_{n-1}
$$

and corresponding centralizer algebras,

$$
\mathbb{C} S_{k} \subseteq \mathbb{C} B_{k}(n) \subseteq \mathbb{C} A_{k}(n) \subseteq \mathbb{C} A_{k+\frac{1}{2}}(n)
$$

which are combinatorially defined in terms of the "multiplication of diagrams" (see Section 1) and which play exactly analogous "Schur-Weyl duality" roles with their corresponding subgroup of $G L_{n}(\mathbb{C})$. The Brauer algebras $\mathbb{C} B_{k}(n)$ were introduced in 1937 by Brauer [3]. The partition algebras $\mathbb{C} A_{k}(n)$ arose in the early 1990s in the work of Martin [18-21] and later, independently, in the work of Jones [16]. Martin and Jones discovered the partition algebra as a generalization of the Temperley-Lieb algebra and the Potts model in statistical mechanics. The partition algebras $\mathbb{C} A_{k+\frac{1}{2}}(n)$ appear in [21] and [22], and their existence and importance were pointed out to us by Grood [14]. In this paper we follow the method of [21] and show that if the algebras $\mathbb{C} A_{k+\frac{1}{2}}(n)$ are given the same stature as the algebras $A_{k}(n)$, then well-known methods from the theory of the "basic construction" (see Section 4) allow for easy analysis of the whole tower of algebras

$$
\mathbb{C} A_{0}(n) \subseteq \mathbb{C} A_{\frac{1}{2}}(n) \subseteq \mathbb{C} A_{1}(n) \subseteq \mathbb{C} A_{1 \frac{1}{2}}(n) \subseteq \cdots
$$

all at once.
Let $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$. In this paper we prove:
(a) A presentation by generators and relations for the algebras $\mathbb{C} A_{\ell}(n)$.
(b) $\mathbb{C} A_{\ell}(n)$ has

$$
\text { an ideal } \quad \mathbb{C} I_{\ell}(n), \quad \text { with } \quad \frac{\mathbb{C} A_{\ell}(n)}{\mathbb{C} I_{\ell}(n)} \cong \mathbb{C} S_{\ell},
$$

such that $\mathbb{C} I_{\ell}(n)$ is isomorphic to a "basic construction" (see Section 4). Thus the structure of the ideal $\mathbb{C} I_{\ell}(n)$ can be analyzed with the general theory of the basic construction and the structure of the quotient $\mathbb{C} A_{\ell}(n) /\left(\mathbb{C} I_{\ell}(n)\right)$ follows from the general theory of the representations of the symmetric group.
(c) The algebras $\mathbb{C} A_{\ell}(n)$ are in "Schur-Weyl duality" with the symmetric groups S_{n} and S_{n-1} on $V^{\otimes k}$.
(d) The general theory of the basic construction provides a construction of "Specht modules" for the partition algebras, i.e. integral lattices in the (generically) irreducible $\mathbb{C} A_{\ell}(n)$-modules.
(e) Except for a few special cases, the algebras $\mathbb{C} A_{\ell}(n)$ are semisimple if and only if $\ell \leq(n+1) / 2$.
(f) There are "Murphy elements" M_{i} for the partition algebras that play exactly analogous roles to the classical Murphy elements for the group algebra of the symmetric group. In particular, the M_{i} commute with each other in $\mathbb{C} A_{\ell}(n)$, and when $\mathbb{C} A_{\ell}(n)$ is semisimple each irreducible $\mathbb{C} A_{\ell}(n)$-module has a unique, up to constants, basis of simultaneous eigenvectors for the M_{i}.

The primary new results in this paper are (a) and (f). There has been work towards a presentation theorem for the partition monoid by Fitzgerald and Leech [11], and it is possible that by now they have proved a similar presentation theorem. The statement in (b) has appeared implicitly and explicitly throughout the literature on the partition algebra, depending on what one considers as the definition of a "basic construction". The treatment of this connection between the partition algebras and the basic construction is explained very nicely and thoroughly in [21]. We consider this connection an important part of the understanding of the structure of the partition algebras. The Schur-Weyl duality for the partition algebras $\mathbb{C} A_{k}(n)$ appears in [18,21], and [22] and was one of the motivations for the introduction of these algebras in [16]. The Schur-Weyl duality for $\mathbb{C} A_{k+\frac{1}{2}}(n)$ appears in [21] and [22]. Most of the previous literature (for example [20,24,25,9]) on the partition algebras has studied the structure of the partition algebras using the "Specht" modules of (d). Our point here is that their existence follows from the general theory of the basic construction. This is a special case of the fact that quasi-hereditary algebras are iterated sequences of basic constructions, as proved by Dlab and Ringel [8]. The statements about the semsimplicity of $\mathbb{C} A_{\ell}(n)$ have mostly, if not completely, appeared in the work of Martin and Saleur [20,23]. The Murphy elements for the partition algebras are new. Their form was conjectured by Owens [27], who proved that the sum of the first k of them is a central element in $\mathbb{C} A_{k}(n)$. Here we prove all of Owens' theorems and conjectures (by a different technique than he was using). We have not taken the next natural step and provided formulas for the action of the generators of the partition algebra in the "seminormal" representations. We hope that someone will do this in the near future.

The "basic construction" is a fundamental tool in the study of algebras such as the partition algebra. Of course, like any fundamental construct, it appears in the literature and is rediscovered over and over in various forms. For example, one finds this construction in Bourbaki [1, Chapter 2, Section 4.2, Remark 1], in [4,5], in [12, Chapter 2], and in the wonderful paper of Dlab and Ringel [8] where it is explained that this construction is also the algebraic construct that "controls" the theory of quasi-hereditary algebras, recollement, and highest weight categories [6] and some aspects of the theory of perverse sheaves [26].

Though this paper contains new results in the study of partition algebras we have made a distinct effort to present this material in a "survey" style so that it may be accessible to non-experts and to newcomers to the field. For this reason we have included, in Sections 4 and 5, expositions, from scratch, of
(a) the theory of the basic construction (see also [12, Chapter 2]), and
(b) the theory of semisimple algebras, in particular, Maschke's theorem, the Artin-Wedderburn theorem, and the Tits deformation theorem (see also [7, Sections 3B and 68]).

Here the reader will find statements of the main theorems which are in exactly the correct form for our applications (generally difficult to find in the literature), and short slick proofs of all the results on the basic construction and on semisimple algebras that we need for the study of the partition algebras.

There are two sets of results on partition algebras that we have not had the space to treat in this paper:
(a) the "Frobenius formula", "Murnaghan-Nakayama" rule, and orthogonality rule for the irreducible characters given by Halverson [15] and Farina-Halverson [10], and
(b) the cellularity of the partition algebras proved by Xi [29] (see also Doran and Wales [9]).

The techniques in this paper apply, in exactly the same fashion, to the study of other diagram algebras; in particular, the planar partition algebras $\mathbb{C} P_{k}(n)$, the Temperley-Lieb algebras $\mathbb{C} T_{k}(n)$, and the Brauer algebras $\mathbb{C} B_{k}(n)$. It was our original intent to include in this paper results (mostly known) for these algebras analogous to those which we have proved for the algebras $\mathbb{C} A_{\ell}(n)$, but the restrictions of time and space have prevented this. While perusing this paper, the reader should keep in mind that the techniques we have used do apply to these other algebras.

1. The partition monoid

For $k \in \mathbb{Z}_{>0}$, let

$$
\begin{align*}
A_{k} & =\left\{\text { set partitions of }\left\{1,2, \ldots, k, 1^{\prime}, 2^{\prime}, \ldots, k\right\}\right\}, \quad \text { and } \\
A_{k+\frac{1}{2}} & =\left\{d \in A_{k+1} \mid(k+1) \text { and }(k+1)^{\prime} \text { are in the same block }\right\} . \tag{1.1}
\end{align*}
$$

The propagating number of $d \in A_{k}$ is

$$
\begin{equation*}
p n(d)=\binom{\text { the number of blocks in } d \text { that contain both an element }}{\text { of }\{1,2, \ldots, k\} \text { and an element of }\left\{1^{\prime}, 2^{\prime}, \ldots, k^{\prime}\right\}} \tag{1.2}
\end{equation*}
$$

For convenience, represent a set partition $d \in A_{k}$ by a graph with k vertices in the top row, labeled $1, \ldots, k$ left to right, and k vertices in the bottom row, labeled $1^{\prime}, \ldots, k^{\prime}$ left to right, with vertex i and vertex j connected by a path if i and j are in the same block of the set partition d. For example,

and has propagating number 3 . The graph representing d is not unique.
Define the composition $d_{1} \circ d_{2}$ of partition diagrams $d_{1}, d_{2} \in A_{k}$ to be the set partition $d_{1} \circ d_{2} \in A_{k}$ obtained by placing d_{1} above d_{2} and identifying the bottom dots of d_{1} with the top dots of d_{2}, removing any connected components that live entirely in the middle row.

For example,

Diagram multiplication makes A_{k} into an associative monoid with identity, $1=\varrho!\cdots!$. The propagating number satisfies

$$
\begin{equation*}
p n\left(d_{1} \circ d_{2}\right) \leq \min \left(p n\left(d_{1}\right), p n\left(d_{2}\right)\right) \tag{1.3}
\end{equation*}
$$

A set partition is planar [16] if it can be represented as a graph without edge crossings inside of the rectangle formed by its vertices. For each $k \in \frac{1}{2} \mathbb{Z}_{>0}$, the following are submonoids of the partition monoid A_{k} :

$$
\begin{align*}
S_{k}= & \left\{d \in A_{k} \mid p n(d)=k\right\}, \quad I_{k}=\left\{d \in A_{k} \mid p n(d)<k\right\} \\
& P_{k}=\left\{d \in A_{k} \mid d \text { is planar }\right\}, \tag{1.4}\\
B_{k}= & \left\{d \in A_{k} \mid \text { all blocks of } d \text { have size } 2\right\}, \quad \text { and } \quad T_{k}=P_{k} \cap B_{k} .
\end{align*}
$$

Examples are

For $k \in \frac{1}{2} \mathbb{Z}_{>0}$, there is an isomorphism of monoids

$$
\begin{equation*}
P_{k} \stackrel{1-1}{\longleftrightarrow} T_{2 k}, \tag{1.5}
\end{equation*}
$$

which is best illustrated by examples. For $k=7$ we have

and for $k=6+\frac{1}{2}$ we have

Let $k \in \mathbb{Z}_{>0}$. By permuting the vertices in the top row and in the bottom row each $d \in A_{k}$ can be written as a product $d=\sigma_{1} t \sigma_{2}$, with $\sigma_{1}, \sigma_{2} \in S_{k}$ and $t \in P_{k}$, and so

$$
A_{k}=S_{k} P_{k} S_{k}
$$

For example,

For $\ell \in \mathbb{Z}_{>0}$, define

$$
\text { the Bell number }, \quad B(\ell)=(\text { the number of set partitions of }\{1,2, \ldots, \ell\}),
$$

$$
\begin{align*}
& \text { the Catalan number, } \quad C(\ell)=\frac{1}{\ell+1}\binom{2 \ell}{\ell}=\binom{2 \ell}{\ell}-\binom{2 \ell}{\ell+1}, \tag{1.7}\\
& (2 \ell)!!=(2 \ell-1) \cdot(2 \ell-3) \cdots 5 \cdot 3 \cdot 1, \quad \text { and } \quad \ell!=\ell \cdot(\ell-1) \cdots 2 \cdot 1,
\end{align*}
$$

with generating functions (see [28, 1.24f, and 6.2]),

$$
\begin{align*}
& \sum_{\ell \geq 0} B(\ell) \frac{z^{\ell}}{\ell!}=\exp \left(e^{z}-1\right), \quad \sum_{\ell \geq 0} C(\ell-1) z^{\ell}=\frac{1-\sqrt{1-4 z}}{2 z} \\
& \sum_{\ell \geq 0}(2(\ell-1))!!\frac{z^{\ell}}{\ell!}=\frac{1-\sqrt{1-2 z}}{z}, \quad \sum_{\ell \geq 0} \ell!\frac{z^{\ell}}{\ell!}=\frac{1}{1-z} \tag{1.8}
\end{align*}
$$

Then

$$
\begin{equation*}
\text { for } k \in \frac{1}{2} \mathbb{Z}_{>0}, \quad \operatorname{Card}\left(A_{k}\right)=B(2 k) \text { and } \operatorname{Card}\left(P_{k}\right)=\operatorname{Card}\left(T_{2 k}\right)=C(2 k) \text {, } \tag{1.9}
\end{equation*}
$$

for $k \in \mathbb{Z}_{>0}, \quad \operatorname{Card}\left(B_{k}\right)=(2 k)!!, \quad$ and $\operatorname{Card}\left(S_{k}\right)=k!$.

Presentation of the partition monoid

In this section, for convenience, we will write

$$
d_{1} d_{2}=d_{1} \circ d_{2}, \quad \text { for } d_{1}, d_{2} \in A_{k}
$$

Let $k \in \mathbb{Z}_{>0}$. For $1 \leq i \leq k-1$ and $1 \leq j \leq k$, define

$$
\begin{align*}
& \text { i } i+1 \tag{1.10}\\
& s_{i}=\ldots \cdots \cdot \underbrace{}_{0} \cdot \cdots .
\end{align*}
$$

Note that $e_{i}=p_{i+\frac{1}{2}} p_{i} p_{i+1} p_{i+\frac{1}{2}}$.

Theorem 1.11.

(a) The monoid T_{k} is presented by generators e_{1}, \ldots, e_{k-1} and relations

$$
e_{i}^{2}=e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad \text { and } \quad e_{i} e_{j}=e_{j} e_{i}, \quad \text { for }|i-j|>1 .
$$

(b) The monoid P_{k} is presented by generators $p_{\frac{1}{2}}, p_{1}, p_{\frac{3}{2}}, \ldots, p_{k}$ and relations

$$
p_{i}^{2}=p_{i}, \quad p_{i} p_{i \pm \frac{1}{2}} p_{i}=p_{i}, \quad \text { and } \quad p_{i} p_{j}=p_{j} p_{i}, \quad \text { for }|i-j|>1 / 2 .
$$

(c) The group S_{k} is presented by generators s_{1}, \ldots, s_{k-1} and relations

$$
s_{i}^{2}=1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, \quad \text { and } \quad s_{i} s_{j}=s_{j} s_{i}, \quad \text { for }|i-j|>1 .
$$

(d) The monoid A_{k} is presented by generators s_{1}, \ldots, s_{k-1} and $p_{\frac{1}{2}}, p_{1}, p_{\frac{3}{2}}, \ldots, p_{k}$ and relations in (b) and (c) and

$$
\begin{aligned}
& s_{i} p_{i} p_{i+1}=p_{i} p_{i+1} s_{i}=p_{i} p_{i+1}, \quad s_{i} p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}} s_{i}=p_{i+\frac{1}{2}}, \quad s_{i} p_{i} s_{i}=p_{i+1}, \\
& s_{i} s_{i+1} p_{i+\frac{1}{2}} s_{i+1} s_{i}=p_{i+\frac{3}{2}}, \quad \text { and } \quad s_{i} p_{j}=p_{j} s_{i}, \\
& \quad \text { for } j \neq i-\frac{1}{2}, i, i+\frac{1}{2}, i+1, i+\frac{3}{2} .
\end{aligned}
$$

Proof. Parts (a) and (c) are standard. See [12, Proposition 2.8.1] and [2, Chapter IV, Section 1.3, Example 2], respectively. Part (b) is a consequence of (a) and the monoid isomorphism in (1.5).
(d) The right way to think of this is to realize that A_{k} is defined as a presentation by the generators $d \in A_{k}$ and the relations which specify the composition of diagrams. To prove the presentation in the statement of the theorem we need to establish that the generators and relations in each of these two presentations can be derived from each other. Thus it is sufficient to show that
(1) The generators in (1.10) satisfy the relations in Theorem 1.11.
(2) Every set partition $d \in A_{k}$ can be written as a product of the generators in (1.10).
(3) Any product $d_{1} \circ d_{2}$ can be computed using the relations in Theorem 1.11.
(1) is established by a direct check using the definition of the multiplication of diagrams.
(2) follows from (b) and (c) and the fact (1.6) that $A_{k}=S_{k} P_{k} S_{k}$. The bulk of the work is in proving (3).
Step 1. First note that the relations in (a)-(d) imply the following relations:
(e1) $p_{i+\frac{1}{2}} s_{i-1} p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}} s_{i} s_{i-1} p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}} s_{i} s_{i-1} p_{i+\frac{1}{2}} s_{i-1} s_{i} s_{i} s_{i-1}$
$=p_{i-\frac{1}{2}} p_{i+\frac{1}{2}} s_{i} s_{i-1}=p_{i-\frac{1}{2}} p_{i+\frac{1}{2}} s_{i-1}=p_{i+\frac{1}{2}} p_{i-\frac{1}{2}} s_{i-1}$
$=p_{i+\frac{1}{2}} p_{i-\frac{1}{2}}$.
(e2) $p_{i} s_{i} p_{i}=s_{i} s_{i} p_{i} s_{i} p_{i}=s_{i} p_{i+1} p_{i}=p_{i+1} p_{i}$.
(f1) $p_{i} p_{i+\frac{1}{2}} p_{i+1}=p_{i} p_{i+\frac{1}{2}} s_{i} p_{i+1}=p_{i} p_{i+\frac{1}{2}} p_{i} s_{i}=p_{i} s_{i}$.
(f2) $p_{i+1} p_{i+\frac{1}{2}} p_{i}=p_{i+1} s_{i} p_{i+\frac{1}{2}} p_{i}=s_{i} p_{i} p_{i+\frac{1}{2}} p_{i}=s_{i} p_{i}$.
Step 2. Analyze how elements of P_{k} can be efficiently expressed in terms of the generators.

Let $t \in P_{k}$. The blocks of t partition $\{1, \ldots, k\}$ into top blocks and partition $\left\{1^{\prime}, \ldots, k^{\prime}\right\}$ into bottom blocks. In t, some top blocks are connected to bottom blocks by an edge, but no top block is connected to two bottom blocks, for then by transitivity the two bottom blocks are actually a single block. Draw the diagram of t, such that if a top block connects to a bottom block, then it connects with a single edge joining the leftmost vertices in each block. The element $t \in P_{k}$ can be decomposed in block form as

$$
\begin{equation*}
t=\left(p_{i_{1}+\frac{1}{2}} \cdots p_{i_{r}+\frac{1}{2}}\right)\left(p_{j_{1}} \cdots p_{j_{s}}\right) \tau\left(p_{\ell_{1}} \cdots p_{\ell_{m}}\right)\left(p_{r_{1}+\frac{1}{2}} \cdots p_{r_{n}+\frac{1}{2}}\right) \tag{1.12}
\end{equation*}
$$

with $\tau \in S_{k}, i_{1}<i_{2}<\cdots<i_{r}, j_{1}<j_{2}<\cdots<j_{s}, \ell_{1}<\ell_{2}<\cdots<\ell_{m}$, and $r_{1}<r_{2}<\cdots<r_{n}$. The left product of p_{i} s corresponds to the top blocks of t, the right product of $p_{i} \mathrm{~s}$ corresponds to the bottom blocks of t, and the permutation τ corresponds to the propagation pattern of the edges connecting top blocks of t to bottom blocks of t. For example,

The dashed edges of τ are "non-propagating" edges, and they may be chosen so that they do not cross each other. The propagating edges of τ do not cross, since t is planar.

Using the relations (f1) and (f2), the non-propagating edges of τ can be "removed", leaving a planar diagram which is written in terms of the generators p_{i} and $p_{i+\frac{1}{2}}$. In our example, this process will replace τ by $p_{2 \frac{1}{2}} p_{2} p_{3 \frac{1}{2}} p_{3} p_{5 \frac{1}{2}} p_{5} p_{4 \frac{1}{2}} p_{4}$, so that

Step 3. If $t \in P_{k}$ and $\sigma_{1} \in S_{k}$ which permutes the top blocks of the planar diagram t, then there is a permutation σ_{2} of the bottom blocks of t such that $\sigma_{1} t \sigma_{2}$ is planar. Furthermore, this can be accomplished using the relations. For example, suppose

$$
=\underbrace{\left(p_{1 \frac{1}{2}} p_{2 \frac{1}{2}}\right)\left(p_{2} p_{3}\right)}_{T_{1}} \underbrace{\left(p_{6 \frac{1}{2}}\right)\left(p_{7}\right)}_{T_{2}} p_{4} p_{5} s_{5} \underbrace{\left(p_{2} p_{3} p_{4}\right)\left(p_{1 \frac{1}{2}} p_{2 \frac{1}{2}} p_{3 \frac{1}{2}}\right)}_{B_{1}} \underbrace{\left(p_{6} p_{7}\right)\left(p_{5 \frac{1}{2}} p_{6 \frac{1}{2}}\right)}_{B_{2}}
$$

is a planar diagram with top blocks T_{1} and T_{2} connected respectively to bottom blocks B_{1} and B_{2} and

then transposition of B_{1} and B_{2} can be accomplished with the permutation

which is planar. It is possible to accomplish these products using the relations from the statement of the theorem. In our example, with $\sigma_{1}=s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} s_{5} s_{2} s_{4} s_{6} s_{1} s_{3} s_{5} s_{2} s_{4} s_{3}$ and with $\sigma_{2}=s_{4} s_{5} s_{6} s_{3} s_{4} s_{5} s_{2} s_{3} s_{4} s_{1} s_{2} s_{3}$,

$$
\begin{aligned}
\sigma_{1} T_{1} T_{2} p_{4} p_{5} s_{5} B_{1} B_{2} \sigma_{2} & =\left(\sigma_{1} T_{1} T_{2} p_{4} p_{5} \sigma_{1}^{-1}\right)\left(\sigma_{1} s_{5} \sigma_{2}\right)\left(\sigma_{2}^{-1} B_{1} B_{2} \sigma_{2}\right) \\
& =T_{2}^{\prime} T_{1}^{\prime} p_{3} p_{4} s_{4} B_{2}^{\prime} B_{1}^{\prime},
\end{aligned}
$$

where $T_{2}^{\prime} T_{1}^{\prime}=\left(p_{1 \frac{1}{2}} p_{2}\right)\left(p_{5 \frac{1}{2}} p_{6 \frac{1}{2}} p_{6} p_{7}\right)$ and $B_{2}^{\prime} B_{1}^{\prime}=\left(p_{2} p_{3} p_{1 \frac{1}{2}} p_{2 \frac{1}{2}}\right)\left(p_{5} p_{6} p_{7} p_{4 \frac{1}{2}} p_{5 \frac{1}{2}} p_{6 \frac{1}{2}}\right)$.
Step 4. Let $t, b \in P_{k}$ and let $\pi \in S_{k}$. Then $t \pi b=t x \sigma$ where $x \in P_{k}$ and $\sigma \in S_{k}$, and this transformation can be accomplished using the relations in (b), (c), and (d).

Suppose T is a block of bottom dots of t containing more than one dot and which is connected, by edges of π, to two top blocks B_{1} and B_{2} of b. Using Step 3 find permutations $\gamma_{1}, \gamma_{2} \in S_{k}$ and $\sigma_{1}, \sigma_{2} \in S_{k}$ such that

$$
t^{\prime}=\gamma_{1} t \gamma_{2} \quad \text { and } \quad b^{\prime}=\sigma_{1} b \sigma_{2}
$$

are planar diagrams with T as the leftmost bottom block of t^{\prime} and B_{1} and B_{2} as the two leftmost top blocks of b^{\prime}. Then

$$
\begin{aligned}
t \pi b & =\gamma_{1}^{-1} t^{\prime} \gamma_{2}^{-1} \pi \sigma_{1}^{-1} b^{\prime} \sigma_{2}^{-1}=\gamma_{1}^{-1} t^{\prime}\left(\gamma_{2}^{-1} \pi \sigma_{1}^{-1}\right) b^{\prime} \sigma_{2}^{-1} \\
& =\gamma_{1}^{-1} t^{\prime}\left(\gamma_{2}^{-1} \pi \sigma_{1}^{-1}\right) b^{\prime \prime} \sigma_{2}^{-1}=t \pi \sigma_{1}^{-1} b^{\prime \prime} \sigma_{2}^{-1},
\end{aligned}
$$

where $b^{\prime \prime}$ is a planar diagram with fewer top blocks than b has. This is best seen from the following picture, where $t \pi b$ equals

and the last equality uses the relations $p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}}^{2}$ and the fourth relation in (d) (multiple times). Then $t \pi b=\gamma_{1}^{-1} t^{\prime} \gamma_{2}^{-1} \pi \sigma_{1}^{-1} b^{\prime \prime} \sigma_{2}^{-1}=t \pi^{\prime} b^{\prime \prime} \sigma_{2}^{-1}$, where $\pi^{\prime}=\pi \sigma_{1}^{-1}$.

By iteration of this process it is sufficient to assume that in proving Step 4 we are analyzing $t \pi b$ where each bottom block of t connects to a single top block of b. Then, since π is a permutation, the bottom blocks of t must have the same sizes as the top blocks of b and π is the permutation that permutes the bottom blocks of t to the top blocks of b. Thus, by Step 1, there is $\sigma \in S_{k}$ such that $x=\pi b \sigma^{-1}$ is planar and

$$
t \pi b=t\left(\pi b \sigma^{-1}\right) \sigma=t x \sigma
$$

Completion of the proof. If $d_{1}, d_{2} \in A_{k}$ then use the decomposition $A_{k}=S_{k} P_{k} S_{k}$ (from (1.6)) to write d_{1} and d_{2} in the form

$$
d_{1}=\pi_{1} t \pi_{2} \quad \text { and } \quad d_{2}=\sigma_{1} b \sigma_{2}, \quad \text { with } t, b \in P_{k}, \pi_{1}, \pi_{2}, \sigma_{1}, \sigma_{2} \in S_{k}
$$

and use (b) and (c) to write these products in terms of the generators. Let $\pi=\pi_{2} \sigma_{1}$. Then Step 4 tells us that the relations give $\sigma \in S_{k}$ and $x \in P_{k}$ such that

$$
d_{1} d_{2}=\pi_{1} t \pi_{2} \sigma_{1} b \sigma_{2}=\pi_{1} t \pi b \sigma_{2}=\pi_{1} t x \sigma \sigma_{2}
$$

Using Step 2 and that $A_{k}=S_{k} P_{k} S_{k}$, this product can be identified with the product diagram $d_{1} d_{2}$. Thus, the relations are sufficient to compose any two elements of A_{k}.

2. Partition algebras

For $k \in \frac{1}{2} \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$, the partition algebra $\mathbb{C} A_{k}(n)$ is the associative algebra over \mathbb{C} with basis A_{k},

$$
\mathbb{C} A_{k}(n)=\mathbb{C} s p a n-\left\{d \in A_{k}\right\}, \quad \text { and multiplication defined by } \quad d_{1} d_{2}=n^{\ell}\left(d_{1} \circ d_{2}\right),
$$

where, for $d_{1}, d_{2} \in A_{k}, d_{1} \circ d_{2}$ is the product in the monoid A_{k} and ℓ is the number of blocks removed from the middle row when constructing the composition $d_{1} \circ d_{2}$. For example,
if

since two blocks are removed from the middle row. There are inclusions of algebras given by

For $d_{1}, d_{2} \in A_{k}$, define

$$
d_{1} \leq d_{2}, \quad \text { if the set partition } d_{2} \text { is coarser than the set partition } d_{1},
$$

i.e., i and j in the same block of d_{1} implies that i and j are in the same block of d_{2}. Let $\left\{x_{d} \in \mathbb{C} A_{k} \mid d \in A_{k}\right\}$ be the basis of $\mathbb{C} A_{k}$ uniquely defined by the relation

$$
\begin{equation*}
d=\sum_{d^{\prime} \leq d} x_{d^{\prime}}, \quad \text { for all } d \in A_{k} \tag{2.3}
\end{equation*}
$$

Under any linear extension of the partial order \leq the transition matrix between the basis $\left\{d \mid d \in A_{k}\right\}$ of $\mathbb{C} A_{k}(n)$ and the basis $\left\{x_{d} \mid d \in A_{k}\right\}$ of $\mathbb{C} A_{k}(n)$ is upper triangular with 1s on the diagonal and so the x_{d} are well defined.

The maps

$$
\varepsilon_{\frac{1}{2}}: \mathbb{C} A_{k} \rightarrow \mathbb{C} A_{k-\frac{1}{2}}, \varepsilon^{\frac{1}{2}}: \mathbb{C} A_{k-\frac{1}{2}} \rightarrow \mathbb{C} A_{k-1} \text { and } \operatorname{tr}_{k}: \mathbb{C} A_{k} \rightarrow \mathbb{C}
$$

Let $k \in \mathbb{Z}_{>0}$. Define linear maps

so that $\varepsilon_{\frac{1}{2}}(d)$ is the same as d except that the block containing k and the block containing k^{\prime} are combined, and $\varepsilon^{\frac{1}{2}}(d)$ has the same blocks as d except with k and k^{\prime} removed. There is a factor of n in $\varepsilon^{\frac{1}{2}}(d)$ if the removal of k and k^{\prime} reduces the number of blocks by 1 . For example,

and

$$
\varepsilon_{1}^{2}\left(\begin{array}{lll}
0 & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet \cdots & 0 & 0 \\
\bullet & \bullet & 0
\end{array}\right)=n
$$

The map $\varepsilon^{\frac{1}{2}}$ is the composition $\mathbb{C} A_{k-\frac{1}{2}} \hookrightarrow \mathbb{C} A_{k} \xrightarrow{\varepsilon_{1}} \mathbb{C} A_{k-1}$. The composition of $\varepsilon_{\frac{1}{2}}$ and $\varepsilon^{\frac{1}{2}}$ is the map

By drawing diagrams it is straightforward to check that, for $k \in \mathbb{Z}_{>0}$,

$$
\begin{array}{ll}
\varepsilon_{\frac{1}{2}}\left(a_{1} b a_{2}\right)=a_{1} \varepsilon_{\frac{1}{2}}(b) a_{2}, & \text { for } a_{1}, a_{2} \in A_{k-\frac{1}{2}}, b \in A_{k} \\
\varepsilon^{\frac{1}{2}}\left(a_{1} b a_{2}\right)=a_{1} \varepsilon^{\frac{1}{2}}(b) a_{2} & \text { for } a_{1}, a_{2} \in A_{k-1}, b \in A_{k-\frac{1}{2}} \tag{2.5}\\
\varepsilon_{1}\left(a_{1} b a_{2}\right)=a_{1} \varepsilon_{1}(b) a_{2}, & \text { for } a_{1}, a_{2} \in A_{k-1}, b \in A_{k}
\end{array}
$$

and

$$
\begin{align*}
p_{k+\frac{1}{2}} b p_{k+\frac{1}{2}} & =\varepsilon_{\frac{1}{2}}(b) p_{k+\frac{1}{2}}=p_{k+\frac{1}{2}} \varepsilon_{\frac{1}{2}}(b), & & \text { for } b \in A_{k} \\
p_{k} b p_{k} & =\varepsilon^{\frac{1}{2}}(b) p_{k}=p_{k} \varepsilon^{\frac{1}{2}}(b), & & \text { for } b \in A_{k-\frac{1}{2}} \tag{2.6}\\
e_{k} b e_{k} & =\varepsilon_{1}(b) e_{k}=e_{k} \varepsilon_{1}(b), & & \text { for } b \in A_{k} .
\end{align*}
$$

Define $\operatorname{tr}_{k}: \mathbb{C} A_{k} \rightarrow \mathbb{C}$ and $\operatorname{tr}_{k-\frac{1}{2}}: \mathbb{C} A_{k-\frac{1}{2}} \rightarrow \mathbb{C}$ by the equations

$$
\begin{align*}
& \operatorname{tr}_{k}(b)=\operatorname{tr}_{k-\frac{1}{2}}\left(\varepsilon_{\frac{1}{2}}(b)\right), \quad \text { for } b \in A_{k}, \quad \text { and } \\
& \operatorname{tr}_{k-\frac{1}{2}}(b)=\operatorname{tr}_{k-1}\left(\varepsilon^{\frac{1}{2}}(b)\right), \quad \text { for } b \in A_{k-\frac{1}{2}} \tag{2.7}
\end{align*}
$$

so that

$$
\begin{align*}
& \operatorname{tr}_{k}(b)=\varepsilon_{1}^{k}(b), \quad \text { for } b \in A_{k}, \quad \text { and } \\
& \quad \operatorname{tr}_{k-\frac{1}{2}}(b)=\varepsilon_{1}^{k-1} \varepsilon^{\frac{1}{2}}(b), \quad \text { for } b \in A_{k-\frac{1}{2}} \tag{2.8}
\end{align*}
$$

Pictorially $\operatorname{tr}_{k}(d)=n^{c}$ where c is the number of connected components in the closure of the diagram d,

The ideal $\mathbb{C} I_{k}(n)$
For $k \in \frac{1}{2} \mathbb{Z}_{\geq 0}$ define

$$
\begin{equation*}
\mathbb{C} I_{k}(n)=\mathbb{C}-\operatorname{span}\left\{d \in I_{k}\right\} \tag{2.10}
\end{equation*}
$$

By (1.3),

$$
\begin{equation*}
\mathbb{C} I_{k}(n) \text { is an ideal of } \mathbb{C} A_{k}(n) \quad \text { and } \quad \mathbb{C} A_{k}(n) / \mathbb{C} I_{k}(n) \cong \mathbb{C} S_{k}, \tag{2.11}
\end{equation*}
$$

since the set partitions with propagating number k are exactly the permutations in the symmetric group S_{k} (by convention $S_{\ell+\frac{1}{2}}=S_{\ell}$ for $\ell \in \mathbb{Z}_{>0}$; see (2.2)).

View $\mathbb{C} I_{k}(n)$ as an algebra (without identity). Since $\mathbb{C} A_{k}(n) / \mathbb{C} I_{k} \cong \mathbb{C} S_{k}$ and $\mathbb{C} S_{k}$ is semisimple, $\operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right) \subseteq \mathbb{C} I_{k}(n)$. Since $\mathbb{C} I_{k}(n) / \operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$ is an ideal in $\mathbb{C} A_{k}(n) / \operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$ the quotient $\mathbb{C} I_{k}(n) / \operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$ is semisimple. Therefore $\operatorname{Rad}\left(\mathbb{C} I_{k}(n)\right) \subseteq \operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$. On the other hand, since $\operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$ is an ideal of nilpotent elements in $\mathbb{C} A_{k}(n)$, it is an ideal of nilpotent elements in $\mathbb{C} I_{k}(n)$ and so $\operatorname{Rad}\left(\mathbb{C} I_{k}(n)\right) \supseteq \operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)$. Thus

$$
\begin{equation*}
\operatorname{Rad}\left(\mathbb{C} A_{k}(n)\right)=\operatorname{Rad}\left(\mathbb{C} I_{k}(n)\right) \tag{2.12}
\end{equation*}
$$

Let $k \in \mathbb{Z}_{\geq 0}$. By (2.5) the maps

$$
\varepsilon_{\frac{1}{2}}: \mathbb{C} A_{k} \longrightarrow \mathbb{C} A_{k-\frac{1}{2}} \quad \text { and } \quad \varepsilon^{\frac{1}{2}}: \mathbb{C} A_{k-\frac{1}{2}} \longrightarrow \mathbb{C} A_{k-1}
$$

are $\left(\mathbb{C} A_{k-\frac{1}{2}}, \mathbb{C} A_{k-\frac{1}{2}}\right)$-bimodule and $\left(\mathbb{C} A_{k-1}, \mathbb{C} A_{k-1}\right)$-bimodule homomorphisms, respectively. The corresponding basic constructions (see Section 4) are the algebras

$$
\begin{equation*}
\mathbb{C} A_{k}(n) \otimes_{\mathbb{C} A_{k-\frac{1}{2}}(n)} \mathbb{C} A_{k}(n) \quad \text { and } \quad \mathbb{C} A_{k-\frac{1}{2}}(n) \otimes_{\mathbb{C} A_{k-1}(n)} \mathbb{C} A_{k-\frac{1}{2}}(n) \tag{2.13}
\end{equation*}
$$

with products given by

$$
\begin{align*}
& \left(b_{1} \otimes b_{2}\right)\left(b_{3} \otimes b_{4}\right)=b_{1} \otimes \varepsilon_{\frac{1}{2}}\left(b_{2} b_{3}\right) b_{4}, \quad \text { and } \\
& \quad\left(c_{1} \otimes c_{2}\right)\left(c_{3} \otimes c_{4}\right)=c_{1} \otimes \varepsilon^{\frac{1}{2}}\left(c_{2} c_{3}\right) c_{4}, \tag{2.14}
\end{align*}
$$

for $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbb{C} A_{k}(n)$, and for $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{C} A_{k-\frac{1}{2}}(n)$.
Let $k \in \frac{1}{2} \mathbb{Z}_{>0}$. Then, by the relations in (2.6) and the fact that

$$
\begin{equation*}
\text { every } d \in I_{k} \quad \text { can be written as } \quad d=d_{1} p_{k} d_{2}, \quad \text { with } d_{1}, d_{2} \in A_{k-\frac{1}{2}} \tag{2.15}
\end{equation*}
$$

the maps

$$
\begin{align*}
\mathbb{C} A_{k-\frac{1}{2}}(n) \otimes_{\mathbb{C A}_{k-1}(n)} \mathbb{C} A_{k-\frac{1}{2}}(n) & \longrightarrow \mathbb{C} I_{k}(n) \tag{2.16}\\
b_{1} \otimes b_{2} & \longmapsto b_{1} p_{k} b_{2}
\end{align*}
$$

are algebra isomorphisms. Thus the ideal $\mathbb{C} I_{k}(n)$ is always isomorphic to a basic construction (in the sense of Section 4).

Representations of the symmetric group

A partition λ is a collection of boxes in a corner. We shall conform to the conventions in [17] and assume that gravity goes up and to the left, i.e.,

Numbering the rows and columns in the same way as for matrices, let

$$
\begin{align*}
& \lambda_{i}=\text { the number of boxes in row } i \text { of } \lambda, \\
& \lambda_{j}^{\prime}=\text { the number of boxes in column } j \text { of } \lambda, \quad \text { and } \tag{2.17}\\
& |\lambda|=\text { the total number of boxes in } \lambda .
\end{align*}
$$

Any partition λ can be identified with the sequence $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$ and the conjugate partition to λ is the partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$. The hook length of the box b of λ is

$$
\begin{equation*}
h(b)=\left(\lambda_{i}-i\right)+\left(\lambda_{j}^{\prime}-j\right)+1, \quad \text { if } b \text { is in position }(i, j) \text { of } \lambda \tag{2.18}
\end{equation*}
$$

Write $\lambda \vdash n$ if λ is a partition with n boxes. In the example above, $\lambda=(553311)$ and $\lambda \vdash 18$.

See [17, Section I.7] for details on the representation theory of the symmetric group. The irreducible $\mathbb{C} S_{k}$-modules S_{k}^{λ} are indexed by the elements of

$$
\begin{equation*}
\hat{S}_{k}=\{\lambda \vdash n\} \quad \text { and } \quad \operatorname{dim}\left(S_{k}^{\lambda}\right)=\frac{k!}{\prod_{b \in \lambda} h(b)} \tag{2.19}
\end{equation*}
$$

For $\lambda \in \hat{S}_{k}$ and $\mu \in \hat{S}_{k-1}$,

$$
\begin{equation*}
\operatorname{Res}_{S_{k-1}}^{S_{k}}\left(S_{k}^{\lambda}\right) \cong \bigoplus_{\lambda / \nu=\square} S_{k-1}^{\nu} \quad \text { and } \quad \operatorname{Ind}_{S_{k-1}}^{S_{k}}\left(S_{k-1}^{\mu}\right) \cong \bigoplus_{\nu / \mu=\square} S_{k}^{\nu} \tag{2.20}
\end{equation*}
$$

where the first sum is over all partitions v that are obtained from λ by removing a box, and the second sum is over all partitions v which are obtained from μ by adding a box (this result follows, for example, from [17, Section I. 7 Example 22(d)]).

The Young lattice is the graph \hat{S} given by setting
vertices on level $k: \hat{S}_{k}=\{$ partitions λ with k boxes $\}, \quad$ and an edge $\lambda \rightarrow \mu, \lambda \in \hat{S}_{k}, \mu \in \hat{S}_{k+1}$ if μ is obtained from λ by adding a box.

It encodes the decompositions in (2.20). The first few levels of \hat{S} are given by

For $\mu \in \hat{S}_{k}$ define

$$
\hat{S}_{k}^{\mu}=\left\{T=\left(T^{(0)}, T^{(1)}, \ldots, T^{(k)}\right) \left\lvert\, \begin{array}{l}
T^{(0)}=\emptyset, T^{(k)}=\mu, \quad \text { and, } \quad \text { for each } \ell, \\
T^{(\ell)} \in \hat{S}_{\ell} \text { and } T^{(\ell)} \rightarrow T^{(\ell+1)} \text { is an edge in } \hat{S}
\end{array}\right.\right\}
$$

so that \hat{S}_{k}^{μ} is the set of paths from $\emptyset \in \hat{S}_{0}$ to $\mu \in \hat{S}_{k}$ in the graph \hat{S}. In terms of the Young lattice,

$$
\begin{equation*}
\operatorname{dim}\left(S_{k}^{\mu}\right)=\operatorname{Card}\left(\hat{S}_{k}^{\mu}\right) \tag{2.22}
\end{equation*}
$$

This is a translation of the classical statement (see [17, Section I.7.6(ii)]) that $\operatorname{dim}\left(S_{k}^{\mu}\right)$ is the number of standard Young tableaux of shape λ (the correspondence is obtained by putting the entry ℓ in the box of λ which is added at the ℓ th step $T^{(\ell-1)} \rightarrow T^{(\ell)}$ of the path).

Structure of the algebra $\mathbb{C} A_{k}(n)$

Build a graph \hat{A} by setting vertices on level $k: \hat{A}_{k}=\left\{\right.$ partitions $\mu\left|k-|\mu| \in \mathbb{Z}_{\geq 0}\right\}$, vertices on level $k+\frac{1}{2}: \hat{A}_{k+\frac{1}{2}}=\hat{A}_{k}=\left\{\right.$ partitions $\mu\left|k-|\mu| \in \mathbb{Z}_{\geq 0}\right\}$, an edge $\lambda \rightarrow \mu, \lambda \in \hat{A}_{k}, \mu \in \hat{A}_{k+\frac{1}{2}}$ if $\lambda=\mu$ or if μ is obtained from λ by removing a box, an edge $\mu \rightarrow \lambda, \mu \in \hat{A}_{k+\frac{1}{2}}, \lambda \in \hat{A}_{k+1}$, if $\lambda=\mu$ or if λ is obtained from μ by adding a box.

The first few levels of \hat{A} are given by

The following result is an immediate consequence of the Tits deformation theorem, Theorems 5.10 and 5.13 in this paper (see also [7, (68.17)]).

Theorem 2.24.

(a) For all but a finite number of $n \in \mathbb{C}$ the algebra $\mathbb{C} A_{k}(n)$ is semisimple.
(b) If $\mathbb{C} A_{k}(n)$ is semisimple then the irreducible $\mathbb{C} A_{k}(n)$-modules, A_{k}^{μ} are indexed by elements of the set $\hat{A}_{k}=\left\{\right.$ partitions $\mu\left|k-|\mu| \in \mathbb{Z}_{\geq 0}\right\}$, and $\operatorname{dim}\left(A_{k}^{\mu}\right)=($ number of paths from $\emptyset \in \hat{A}_{0}$ to $\mu \in \hat{A}_{k}$ in the graph $\left.\hat{A}\right)$.

Let
so that \hat{A}_{k}^{μ} is the set of paths from $\emptyset \in \hat{A}_{0}$ to $\mu \in \hat{A}_{k}$ in the graph \hat{A}. If $\mu \in \hat{S}_{k}$ then $\mu \in \hat{A}_{k}$ and $\mu \in \hat{A}_{k+\frac{1}{2}}$ and, for notational convenience in the following theorem,

$$
\begin{aligned}
\text { identify } & P=\left(P^{(0)}, P^{(1)}, \ldots, P^{(k)}\right) \in \hat{S}_{k}^{\mu} \text { with the corresponding } \\
& P=\left(P^{(0)}, P^{(0)}, P^{(1)}, P^{(1)}, \ldots, P^{(k-1)}, P^{(k-1)}, P^{(k)}\right) \in \hat{A}_{k}^{\mu}, \\
\text { and } & P=\left(P^{(0)}, P^{(0)}, P^{(1)}, P^{(1)}, \ldots, P^{(k-1)}, P^{(k-1)}, P^{(k)}, P^{(k)}\right) \in \hat{A}_{k+\frac{1}{2}}^{\mu} .
\end{aligned}
$$

For $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{C}$ such that $\mathbb{C} A_{\ell}(n)$ is semisimple let $\chi_{A_{\ell}(n)}^{\mu}, \mu \in \hat{A}_{\ell}$, be the irreducible characters of $\mathbb{C} A_{\ell}(n)$. Let $\operatorname{tr}_{\ell}: \mathbb{C} A_{\ell}(n) \rightarrow \mathbb{C}$ be the traces on $\mathbb{C} A_{\ell}(n)$ defined in (2.8) and define constants $\operatorname{tr}_{\ell}^{\mu}(n), \mu \in \hat{A}_{\ell}$, by

$$
\begin{equation*}
\operatorname{tr}_{\ell}=\sum_{\mu \in \hat{A}_{\ell}} \operatorname{tr}_{\ell}^{\mu}(n) \chi_{A_{\ell}(n)}^{\mu} \tag{2.25}
\end{equation*}
$$

Theorem 2.26.

(a) Let $n \in \mathbb{C}$ and let $k \in \frac{1}{2} \mathbb{Z}_{\geq 0}$. Assume that

$$
\operatorname{tr}_{\ell}^{\lambda}(n) \neq 0, \quad \text { for all } \lambda \in \hat{A}_{\ell}, \ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}, \ell<k
$$

Then the partition algebras

$$
\begin{equation*}
\mathbb{C} A_{\ell}(n) \text { are semisimple for all } \ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}, \ell \leq k \tag{2.27}
\end{equation*}
$$

For each $\ell \in \frac{1}{2} \mathbb{Z}_{\geq 0}$, $\ell \leq k-\frac{1}{2}$, define

$$
\varepsilon_{\mu}^{\lambda}=\frac{\operatorname{tr}_{\ell-\frac{1}{2}}^{\lambda}(n)}{\operatorname{tr}_{\ell-1}^{\mu}(n)} \text { for each edge } \mu \rightarrow \lambda, \mu \in \hat{A}_{\ell-1}, \lambda \in \hat{A}_{\ell-\frac{1}{2}} \text {, in the graph } \hat{A}
$$

Inductively define elements in $\mathbb{C} A_{\ell}(n)$ by

$$
\begin{equation*}
e_{P Q}^{\mu}=\frac{1}{\sqrt{\varepsilon_{\mu}^{\tau} \varepsilon_{\mu}^{\gamma}}} e_{P^{-} T}^{\tau} p_{\ell} e_{T Q^{-}}^{\gamma}, \quad \text { for } \mu \in \hat{A}_{\ell},|\mu| \leq \ell-1, P, Q \in \hat{A}_{\ell}^{\mu} \tag{2.28}
\end{equation*}
$$

where $\tau=P^{\left(\ell-\frac{1}{2}\right)}, \gamma=Q^{\left(\ell-\frac{1}{2}\right)}, R^{-}=\left(R^{(0)}, \ldots, R^{\left(\ell-\frac{1}{2}\right)}\right)$ for $R=\left(R^{(0)}, \ldots\right.$, $\left.R^{\left(\ell-\frac{1}{2}\right)}, R^{(\ell)}\right) \in \hat{A}_{\ell}^{\mu}$ and T is an element of $\hat{A}_{\ell-1}^{\mu}$ (the element $e_{P Q}^{\lambda}$ does not depend on the choice of $T)$. Then define

$$
\begin{align*}
e_{P Q}^{\lambda} & =(1-z) s_{P Q}^{\lambda}, \quad \text { for } \quad \lambda \in \hat{S}_{\ell}, P, Q \in \hat{S}_{\ell}^{\lambda}, \quad \text { where } \\
z & =\sum_{\substack{\mu \in \hat{A}_{\ell} \\
|\mu| \leq \ell-1}} \sum_{P \in \hat{A}_{\ell}^{\mu}} e_{P P}^{\mu} \tag{2.29}
\end{align*}
$$

and $\left\{s_{P Q}^{\lambda} \mid \lambda \in \hat{S}_{\ell}, P, Q \in \hat{S}_{\ell}^{\lambda}\right\}$ is any set of matrix units for the group algebra of the symmetric group $\mathbb{C} S_{\ell}$. Together, the elements in (2.28) and (2.29) form a set of matrix units in $\mathbb{C} A_{\ell}(n)$.
(b) Let $n \in \mathbb{Z}_{\geq 0}$ and let $k \in \frac{1}{2} \mathbb{Z}_{>0}$ be minimal such that $\operatorname{tr}_{k}^{\lambda}(n)=0$ for some $\lambda \in \hat{A}_{k}$. Then $\mathbb{C} A_{k+\frac{1}{2}}(n)$ is not semisimple.
(c) Let $n \in \mathbb{Z}_{\geq 0}$ and $k \in \frac{1}{2} \mathbb{Z}_{>0}$. If $\mathbb{C} A_{k}(n)$ is not semisimple then $\mathbb{C} A_{k+j}(n)$ is not semisimple for $j \in \mathbb{Z}_{>0}$.
Proof. (a) Assume that $\mathbb{C} A_{\ell-1}(n)$ and $\mathbb{C} A_{\ell-\frac{1}{2}}(n)$ are both semisimple and that $\operatorname{tr}_{\ell-1}^{\mu}(n) \neq$ 0 for all $\mu \in \hat{A}_{\ell-1}$. If $\lambda \in \hat{A}_{\ell-\frac{1}{2}}$ then $\varepsilon_{\mu}^{\lambda} \neq 0$ if and only if $\operatorname{tr}_{\ell-\frac{1}{2}}^{\lambda}(n) \neq 0$, and, since the ideal $\mathbb{C} I_{\ell}(n)$ is isomorphic to the basic construction $\mathbb{C} A_{\ell-\frac{1}{2}}(n) \otimes_{\mathbb{C} A_{\ell-1}(n)} \mathbb{C} A_{\ell-\frac{1}{2}}(n)$
(see (2.13)), it then follows from Theorem 4.28 that $\mathbb{C} I_{\ell}(n)$ is semisimple if and only if $\operatorname{tr}_{\ell-\frac{1}{2}}^{\lambda}(n) \neq 0$ for all $\lambda \in \hat{A}_{\ell-\frac{1}{2}}$. Thus, by (2.12), if $\mathbb{C} A_{\ell-1}(n)$ and $\mathbb{C} A_{\ell-\frac{1}{2}}(n)$ are both semisimple and $\operatorname{tr}_{\ell-1}^{\mu}(n) \neq 0$ for all $\mu \in \hat{A}_{\ell-1}$ then

$$
\begin{equation*}
\mathbb{C} A_{\ell}(n) \quad \text { is semisimple if and only if } \quad \operatorname{tr}_{\ell-\frac{1}{2}}^{\lambda}(n) \neq 0 \text { for all } \lambda \in \hat{A}_{\ell-\frac{1}{2}} \tag{2.30}
\end{equation*}
$$

By Theorem 4.28, when $\operatorname{tr}_{\ell-\frac{1}{2}}^{\lambda}(n) \neq 0$ for all $\lambda \in \hat{A}_{\ell-\frac{1}{2}}$, the algebra $\mathbb{C} I_{\ell}(n)$ has matrix units given by the formulas in (2.28). The element z in (2.29) is the central idempotent in $\mathbb{C} A_{\ell}(n)$ such that $\mathbb{C} I_{\ell}(n)=z \mathbb{C} A_{\ell}(n)$. Hence the complete set of elements in (2.28) and (2.29) form a set of matrix units for $\mathbb{C} A_{\ell}(n)$. This completes the proof of (a) and (b) follows from Theorem 4.28(b).
(c) Part (g) of Theorem 4.28 shows that if $\mathbb{C} A_{\ell-1}(n)$ is not semisimple then $\mathbb{C} A_{\ell}(n)$ is not semisimple.

Specht modules

Let A be an algebra. An idempotent is a nonzero element $p \in A$ such that $p^{2}=p$. A minimal idempotent is an idempotent p which cannot be written as a sum $p=p_{1}+p_{2}$ with $p_{1} p_{2}=p_{2} p_{1}=0$. If p is an idempotent in A and $p A p=\mathbb{C} p$ then p is a minimal idempotent of A since, if $p=p_{1}+p_{2}$ with $p_{1}^{2}=p_{1}, p_{2}^{2}=p_{2}$, and $p_{1} p_{2}=p_{2} p_{1}=0$, then $p p_{1} p=k p$ for some constant p and so $k p_{1}=k p p_{1}=p p_{1} p p_{1}=p_{1}$ giving that either $p_{1}=0$ or $k=1$, in which case $p_{1}=p p_{1} p=p$.

Let p be an idempotent in A. Then the map

$$
\begin{align*}
& (p A p)^{\mathrm{op}} \xrightarrow{\sim} \operatorname{End}_{A}(A p), \quad \text { where } \quad \phi_{p b p}(a p)=(a p)(p b p)=a p b p, \\
& p b p \mapsto \phi_{p b p} \quad \text { for } a p \in A p, \tag{2.31}
\end{align*}
$$

is a ring isomorphism.
If p is a minimal idempotent of A and $A p$ is a semisimple A-module then $A p$ must be a simple A-module. To see this suppose that $A p$ is not simple so that there are A submodules V_{1} and V_{2} of $A p$ such that $A p=V_{1} \oplus V_{2}$. Let $\phi_{1}, \phi_{2} \in \operatorname{End}_{A}(A p)$ be the A-invariant projections on V_{1} and V_{2}. By (2.31) ϕ_{1} and ϕ_{2} are given by right multiplication by $p_{1}=p \tilde{p}_{1} p$ and $p_{2}=p \tilde{p}_{2} p$, respectively, and it follows that $p=p_{1}+p_{2}$, $V_{1}=A p_{1}, V_{2}=A p_{2}$, and $A p=A p_{1} \oplus A p_{2}$. Then $p_{1}^{2}=\phi_{1}\left(p_{1}\right)=\phi_{1}^{2}(p)=p_{1}$ and $p_{1} p_{2}=\phi_{2}\left(p_{1}\right)=\phi_{2}\left(\phi_{1}(p)\right)=0$. Similarly $p_{2}^{2}=p_{2}$ and $p_{2} p_{1}=0$. Thus p is not a minimal idempotent.

If p is an idempotent in A and $A p$ is a simple A-module then

$$
p A p=\operatorname{End}_{A}(A p)^{\mathrm{op}}=\mathbb{C}(p \cdot 1 \cdot p)=\mathbb{C} p
$$

by (2.31) and Schur's lemma (Theorem 5.3).
The group algebra of the symmetric group S_{k} over the ring \mathbb{Z} is

$$
\begin{equation*}
S_{k, \mathbb{Z}}=\mathbb{Z} S_{k} \quad \text { and } \quad \mathbb{C} S_{k}=\mathbb{C} \otimes_{\mathbb{Z}} S_{k, \mathbb{Z}} \tag{2.32}
\end{equation*}
$$

where the tensor product is defined via the inclusion $\mathbb{Z} \hookrightarrow \mathbb{C}$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ be a partition of k. Define subgroups of S_{k} by

$$
\begin{equation*}
S_{\lambda}=S_{\lambda_{1}} \times \cdots \times S_{\lambda_{\ell}} \quad \text { and } \quad S_{\lambda^{\prime}}=S_{\lambda_{1}^{\prime}} \times \cdots \times S_{\lambda_{r}^{\prime}} \tag{2.33}
\end{equation*}
$$

where $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{r}^{\prime}\right)$ is the conjugate partition to λ, and let

$$
\begin{equation*}
\mathbf{1}_{\lambda}=\sum_{w \in S_{\lambda}} w \quad \text { and } \quad \varepsilon_{\lambda^{\prime}}=\sum_{w \in S_{\lambda^{\prime}}}(-1)^{\ell(w)} w \tag{2.34}
\end{equation*}
$$

Let τ be the permutation in S_{k} that takes the row reading tableau of shape λ to the column reading tableau of shape λ. For example for $\lambda=(553311)$,

$$
\begin{aligned}
& \tau=(2,7,8,12,9,16,14,4,15,10,18,6)(3,11)(5,17), \quad \text { since } \\
& \tau \cdot \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & & \\
\hline 14 & 15 & 16 & \\
\hline 17 & & & \\
\hline 18 & & & \begin{array}{ll|l|l|l|l|}
\hline 1 & 7 & 11 & 15 & 17 \\
\hline 2 & 8 & 12 & 16 & 18 \\
\hline 3 & 9 & 13 & \\
\hline 4 & 10 & 14 \\
\hline 5 & 5 & \\
\hline 6 & & \\
\hline 2 & & \\
\hline
\end{array} . \\
\hline
\end{array}
\end{aligned}
$$

The Specht module for S_{k} is the $\mathbb{Z} S_{k}$-module

$$
\begin{equation*}
S_{k, \mathbb{Z}}^{\lambda}=\operatorname{im} \Psi_{S_{k}}=\left(\mathbb{Z} S_{k}\right) p_{\lambda}, \quad \text { where } p_{\lambda}=\mathbf{1}_{\lambda} \tau \varepsilon_{\lambda^{\prime}} \tau^{-1}, \text { and } \tag{2.35}
\end{equation*}
$$

where $\Psi_{S_{k}}$ is the $\mathbb{Z} S_{k}$-module homomorphism given by

$$
\begin{align*}
\Psi_{S_{k}}:\left(\mathbb{Z} S_{k}\right) \mathbf{1}_{\lambda} & \stackrel{\iota}{\longrightarrow} \mathbb{Z} S_{k} \tag{2.36}\\
b \mathbf{1}_{\lambda} & \longmapsto\left(\mathbb{Z} S_{k}\right) \tau \varepsilon_{\lambda^{\prime}} \tau^{-1} \\
b b \mathbf{1}_{\lambda} & \longmapsto b \mathbf{1}_{\lambda} \tau \varepsilon_{\lambda^{\prime}} \tau^{-1}
\end{align*}
$$

By induction and restriction rules for the representations of the symmetric groups, the $\mathbb{C} S_{k}$ modules $\left(\mathbb{C} S_{k}\right) \mathbf{1}_{\lambda}$ and $\left(\mathbb{C} S_{k}\right) \tau \varepsilon_{\lambda^{\prime}} \tau^{-1}$ have only one irreducible component in common and it follows (see [17, Section I.7, Example 15]) that

$$
\begin{equation*}
S_{k}^{\lambda}=\mathbb{C} \otimes_{\mathbb{Z}} S_{k, \mathbb{Z}}^{\lambda} \quad \text { is the irreducible } \mathbb{C} S_{k} \text {-module indexed by } \lambda, \tag{2.37}
\end{equation*}
$$

once one shows that $\Psi_{S_{k}}$ is not the zero map.
Let $k \in \frac{1}{2} \mathbb{Z}_{>0}$. For an indeterminate x, define the $\mathbb{Z}[x]$-algebra by

$$
\begin{equation*}
A_{k, \mathbb{Z}}=\mathbb{Z}[x]-\operatorname{span}\left\{d \in A_{k}\right\} \tag{2.38}
\end{equation*}
$$

with multiplication given by replacing n with x in (2.1). For each $n \in \mathbb{C}$,

$$
\begin{equation*}
\mathbb{C} A_{k}(n)=\mathbb{C} \otimes_{\mathbb{Z}[x]} A_{k, \mathbb{Z}}, \tag{2.39}
\end{equation*}
$$

where the \mathbb{Z}-module homomorphism $\quad \begin{aligned} \mathrm{ev}_{n}: \mathbb{Z}[x] & \rightarrow \mathbb{C}, \\ x & \mapsto n\end{aligned}$
is used to define the tensor product. Let λ be a partition with $\leq k$ boxes. Let $b \otimes p_{k}^{\otimes(k-|\lambda|)}$ denote the image of $b \in A_{|\lambda|, \mathbb{Z}}$ under the map given by

For $k \in \frac{1}{2} \mathbb{Z}_{>0}$, define an $A_{k, \mathbb{Z}}$-module homomorphism

$$
\begin{align*}
\Psi_{A_{k}}: \quad A_{k, \mathbb{Z}} t_{\lambda} & \xrightarrow{\psi_{1}} A_{k, \mathbb{Z}} s_{\lambda^{\prime}} \tag{2.40}\\
b t_{\lambda} & \longmapsto b A_{k, \mathbb{Z}} / I_{|\lambda|}, \mathbb{Z} \\
b t_{\lambda} s_{\lambda^{\prime}} & \longmapsto>
\end{align*}
$$

where $I_{|\lambda|, \mathbb{Z}}$ is the ideal

$$
I_{|\lambda|, \mathbb{Z}}=\mathbb{Z}[x] \text {-span }\left\{d \in A_{k} \mid d \text { has propagating number }<|\lambda|\right\}
$$

and $t_{\lambda}, s_{\lambda^{\prime}} \in A_{k, \mathbb{Z}}$ are defined by

$$
\begin{equation*}
t_{\lambda}=\mathbf{1}_{\lambda} \otimes p_{k}^{\otimes(k-|\lambda|)} \quad \text { and } \quad s_{\lambda^{\prime}}=\tau \varepsilon_{\lambda^{\prime}} \tau^{-1} \otimes p_{k}^{\otimes(k-|\lambda|)} \tag{2.41}
\end{equation*}
$$

The Specht module for $\mathbb{C} A_{k}(n)$ is the $A_{k, \mathbb{Z}}$-module

$$
\begin{align*}
A_{k, \mathbb{Z}}^{\lambda}=\operatorname{im} \Psi_{A_{k}} & =\left(\text { image of } A_{k, \mathbb{Z}} e_{\lambda} \text { in } A_{k, \mathbb{Z}} / I_{|\lambda|, \mathbb{Z}}\right) \\
& \text { where } \quad e_{\lambda} \tag{2.42}
\end{align*}=p_{\lambda} \otimes p_{k}^{\otimes(k-|\lambda|)} .
$$

Proposition 2.43. Let $k \in \frac{1}{2} \mathbb{Z}_{>0}$, and let λ be a partition with $\leq k$ boxes. If $n \in \mathbb{C}$ such that $\mathbb{C} A_{k}(n)$ is semisimple, then

$$
A_{k}^{\lambda}(n)=\mathbb{C} \otimes_{\mathbb{Z}[x]} A_{k, \mathbb{Z}}^{\lambda} \quad \text { is the irreducible } \mathbb{C} A_{k}(n) \text {-module indexed by } \lambda,
$$

where the tensor product is defined via the \mathbb{Z}-module homomorphism in (2.39).
Proof. Let $r=|\lambda|$. Since

$$
\mathbb{C} A_{r}(n) / \mathbb{C} I_{r}(n) \cong \mathbb{C} S_{r}
$$

and p_{λ} is a minimal idempotent of $\mathbb{C} S_{r}$, it follows from (4.20) that $\overline{e_{\lambda}}$, the image of e_{λ} in $\left(\mathbb{C} A_{k}(n)\right) /\left(\mathbb{C} I_{r}(n)\right)$, is a minimal idempotent in $\left(\mathbb{C} A_{k}(n)\right) /\left(\mathbb{C} I_{r}(n)\right)$. Thus

$$
\left(\frac{\mathbb{C} A_{k}(n)}{\mathbb{C} I_{r}(n)}\right) \bar{e}_{\lambda} \quad \text { is a simple }\left(\mathbb{C} A_{k}(n)\right) /\left(\mathbb{C} I_{r}(n)\right) \text {-module }
$$

Since the projection $\mathbb{C} A_{k}(n) \rightarrow\left(\mathbb{C} A_{k}(n)\right) /\left(\mathbb{C} I_{r}(n)\right)$ is surjective, any simple $\left(\mathbb{C} A_{k}(n)\right) /$ $\left(\mathbb{C} I_{r}(n)\right)$-module is a simple $\mathbb{C} A_{k}(n)$-module.

3. Schur-Weyl duality for partition algebras

Let $n \in \mathbb{Z}_{>0}$ and let V be a vector space with basis v_{1}, \ldots, v_{n}. Then the tensor product

$$
V^{\otimes k}=\underbrace{V \otimes V \otimes \cdots \otimes V}_{k \text { factors }} \text { has basis }\left\{v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \mid 1 \leq i_{1}, \ldots, i_{k} \leq n\right\} .
$$

For $d \in A_{k}$ and values $i_{1}, \ldots, i_{k}, i_{1^{\prime}}, \ldots, i_{k^{\prime}} \in\{1, \ldots, n\}$ define

$$
(d)_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}= \begin{cases}1, & \text { if } i_{r}=i_{s} \text { when } r \text { and } s \text { are in the same block of } d, \tag{3.1}\\ 0, & \text { otherwise. }\end{cases}
$$

For example, viewing $(d)_{i_{1}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}$, as the diagram d with vertices labeled by the values i_{1}, \ldots, i_{k} and $i_{1^{\prime}}, \ldots, i_{k^{\prime}}$, we have

$i_{1^{\prime}} i_{2^{\prime}} \quad i_{3^{\prime}} i_{4^{\prime}} i_{5^{\prime}} \quad i_{6^{\prime}} i_{7^{\prime}} i_{8^{\prime}}$
With this notation, the formula

$$
\begin{equation*}
d\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{1 \leq i_{1^{\prime}}, \ldots, i_{k^{\prime}} \leq n}(d)_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}} i_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}} \tag{3.2}
\end{equation*}
$$

defines actions

$$
\begin{equation*}
\Phi_{k}: \mathbb{C} A_{k} \longrightarrow \operatorname{End}\left(V^{\otimes k}\right) \quad \text { and } \quad \Phi_{k+\frac{1}{2}}: \mathbb{C} A_{k+\frac{1}{2}} \longrightarrow \operatorname{End}\left(V^{\otimes k}\right) \tag{3.3}
\end{equation*}
$$

of $\mathbb{C} A_{k}$ and $\mathbb{C} A_{k+\frac{1}{2}}$ on $V^{\otimes k}$, where the second map $\Phi_{k+\frac{1}{2}}$ comes from the fact that if $d \in A_{k+\frac{1}{2}}$, then d acts on the subspace

$$
\begin{align*}
V^{\otimes k} & \cong V^{\otimes k} \otimes v_{n}=\mathbb{C}-\operatorname{span}\left\{v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n} \mid 1 \leq i_{1}, \ldots, i_{k} \leq n\right\} \\
& \subseteq V^{\otimes(k+1)} \tag{3.4}
\end{align*}
$$

In other words, the map $\Phi_{k+\frac{1}{2}}$ is obtained from Φ_{k+1} by restricting to the subspace $V^{\otimes k} \otimes v_{n}$ and identifying $V^{\otimes k}$ with $V^{\otimes k} \otimes v_{n}$.

The group $G L_{n}(\mathbb{C})$ acts on the vector spaces V and $V^{\otimes k}$ by

$$
\begin{align*}
g v_{i} & =\sum_{j=1}^{n} g_{j i} v_{j}, \quad \text { and } \quad g\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}\right) \\
& =g v_{i_{1}} \otimes g v_{i_{2}} \otimes \cdots \otimes g v_{i_{k}} \tag{3.5}
\end{align*}
$$

for $g=\left(g_{i j}\right) \in G L_{n}(\mathbb{C})$. View $S_{n} \subseteq G L_{n}(\mathbb{C})$ as the subgroup of permutation matrices and let

$$
\operatorname{End}_{S_{n}}\left(V^{\otimes k}\right)=\left\{b \in \operatorname{End}\left(V^{\otimes k}\right) \mid b \sigma v=\sigma b v \text { for all } \sigma \in S_{n} \text { and } v \in V^{\otimes k}\right\}
$$

Theorem 3.6. Let $n \in \mathbb{Z}_{>0}$ and let $\left\{x_{d} \mid d \in A_{k}\right\}$ be the basis of $\mathbb{C} A_{k}(n)$ defined in (2.3). Then
(a) $\Phi_{k}: \mathbb{C} A_{k}(n) \rightarrow \operatorname{End}\left(V^{\otimes k}\right)$ has
$\operatorname{im} \Phi_{k}=\operatorname{End}_{S_{n}}\left(V^{\otimes k}\right) \quad$ and
ker $\Phi_{k}=\mathbb{C}$-span $\left\{x_{d} \mid d\right.$ has more than n blocks $\}, \quad$ and
(b) $\Phi_{k+\frac{1}{2}}: \mathbb{C} A_{k+\frac{1}{2}}(n) \rightarrow \operatorname{End}\left(V^{\otimes k}\right)$ has
$\operatorname{im} \Phi_{k+\frac{1}{2}}=\operatorname{End}_{S_{n-1}}\left(V^{\otimes k}\right) \quad$ and
ker $\Phi_{k+\frac{1}{2}}=\mathbb{C}$-span $\left\{x_{d} \mid d\right.$ has more than n blocks $\}$.
Proof. (a) As a subgroup of $G L_{n}(\mathbb{C}), S_{n}$ acts on V via its permutation representation and S_{n} acts on $V^{\otimes k}$ by

$$
\begin{equation*}
\sigma\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma\left(i_{1}\right)} \otimes v_{\sigma\left(i_{2}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)} . \tag{3.7}
\end{equation*}
$$

Then $b \in \operatorname{End}_{S_{n}}\left(V^{\otimes k}\right)$ if and only if $\sigma^{-1} b \sigma=b$ (as endomorphisms on $V^{\otimes k}$) for all $\sigma \in S_{n}$. Thus, using the notation of (3.1), $b \in \operatorname{End}_{S_{n}}\left(V^{\otimes k}\right)$ if and only if

$$
b_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}=\left(\sigma^{-1} b \sigma\right)_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}=b_{\sigma\left(i_{1^{\prime}}\right), \ldots, \sigma\left(i_{k^{\prime}}\right)}^{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)}, \quad \text { for all } \sigma \in S_{n} .
$$

It follows that the matrix entries of b are constant on the S_{n}-orbits of its matrix coordinates. These orbits decompose $\left\{1, \ldots, k, 1^{\prime}, \ldots, k^{\prime}\right\}$ into subsets and thus correspond to set partitions $d \in A_{k}$. It follows from (2.3) and (3.1) that for all $d \in A_{k}$,

$$
\left(\Phi_{k}\left(x_{d}\right)\right)_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}= \begin{cases}1, & \text { if } i_{r}=i_{s} \text { if and only if } r \text { and } s \text { are in the same block of } d, \tag{3.8}\\ 0, & \text { otherwise. }\end{cases}
$$

Thus $\Phi_{k}\left(x_{d}\right)$ has 1 s in the matrix positions corresponding to d and 0 s elsewhere, and so b is a linear combination of $\Phi_{k}\left(x_{d}\right), d \in A_{k}$. Since $x_{d}, d \in A_{k}$, form a basis of $\mathbb{C} A_{k}, \operatorname{im} \Phi_{k}=\operatorname{End}_{S_{n}}\left(V^{\otimes k}\right)$.

If d has more than n blocks, then by (3.8) the matrix entry $\left(\Phi_{k}\left(x_{d}\right)\right)_{i_{1}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots i_{k}}=0$ for all indices $i_{1}, \ldots, i_{k}, i_{1^{\prime}}, \ldots, i_{k^{\prime}}$, since we need a distinct $i_{j} \in\{1, \ldots, n\}$ for each block of d. Thus, $x_{d} \in \operatorname{ker} \Phi_{k}$. If d has $\leq n$ blocks, then we can find an index set $i_{1}, \ldots, i_{k}, i_{1^{\prime}}, \ldots, i_{k^{\prime}}$ with $\left(\Phi_{k}\left(x_{d}\right)\right)_{i_{1}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}=1$ simply by choosing a distinct index from $\{1, \ldots, n\}$ for each block of d. Thus, if d has $\leq n$ blocks then $x_{d} \notin$ ker Φ_{k}, and so ker $\Phi_{k}=\mathbb{C}$-span $\left\{x_{d} \mid d\right.$ has more than n blocks $\}$.
(b) The vector space $V^{\otimes k} \otimes v_{n} \subseteq V^{\otimes(k+1)}$ is a submodule both for $\mathbb{C} A_{k+\frac{1}{2}} \subseteq \mathbb{C} A_{k+1}$ and $\mathbb{C} S_{n-1} \subseteq \mathbb{C} S_{n}$. If $\sigma \in S_{n-1}$, then $\sigma\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n}\right)=v_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma\left(i_{k}\right)} \otimes v_{n}$. Then as above $b \in \operatorname{End}_{S_{n-1}}\left(V^{\otimes k}\right)$ if and only if

$$
b_{i_{1}, \ldots, i_{k^{\prime}}, n}^{i_{1}, \ldots, i_{k}, n}=b_{\sigma\left(i_{1^{\prime}}\right), \ldots, \sigma\left(i_{k^{\prime}}\right), n}^{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right), n} \quad \text { for all } \sigma \in S_{n-1} .
$$

The S_{n-1} orbits of the matrix coordinates of b correspond to set partitions $d \in A_{k+\frac{1}{2}}$; that is, vertices i_{k+1} and $i_{(k+1)^{\prime}}$ must be in the same block of d. The same argument as in part
(a) can be used to show that ker $\Phi_{k+\frac{1}{2}}$ is the span of x_{d} with $d \in A_{k+\frac{1}{2}}$ having more than n blocks. We always choose the index n for the block containing $k+1$ and $(k+1)^{\prime}$.

The maps $\varepsilon_{\frac{1}{2}}: \operatorname{End}\left(V^{\otimes k}\right) \rightarrow \operatorname{End}\left(V^{\otimes k}\right)$ and $\varepsilon^{\frac{1}{2}}: \operatorname{End}\left(V^{\otimes k}\right) \rightarrow \operatorname{End}\left(V^{\otimes(k-1)}\right)$ If $b \in \operatorname{End}\left(V^{\otimes k}\right)$ let $b_{i_{1}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}} \in \mathbb{C}$ be the coefficients in the expansion

$$
\begin{equation*}
b\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{1 \leq i_{1^{\prime}}, \ldots, i_{k^{\prime}} \leq n} b_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}} v_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}} \tag{3.9}
\end{equation*}
$$

Define linear maps

$$
\begin{align*}
& \varepsilon_{\frac{1}{2}}: \operatorname{End}\left(V^{\otimes k}\right) \rightarrow \operatorname{End}\left(V^{\otimes k}\right) \quad \text { and } \quad \varepsilon^{\frac{1}{2}}: \operatorname{End}\left(V^{\otimes k}\right) \rightarrow \operatorname{End}\left(V^{\otimes(k-1)}\right) \text { by } \\
& \varepsilon_{\frac{1}{2}}(b)_{i_{1}^{\prime}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}}=b_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}}^{i_{1}, \ldots, i_{k}} \delta_{i_{k} i_{k^{\prime}}} \text { and } \varepsilon^{\frac{1}{2}}(b)_{i_{1^{\prime}}, \ldots, i_{(k-1)^{\prime}}}^{i_{1}, \ldots i_{k-1}}=\sum_{j, \ell=1}^{n} b_{i_{1}, \ldots, i_{(k-1)^{\prime}, \ell}^{i_{1}, \ldots, i_{k-1}, j}} \tag{3.10}
\end{align*}
$$

The composition of $\varepsilon_{\frac{1}{2}}$ and $\varepsilon^{\frac{1}{2}}$ is the map

$$
\begin{align*}
\varepsilon_{1} & : \operatorname{End}\left(V^{\otimes k}\right) \rightarrow \operatorname{End}\left(V^{\otimes(k-1)}\right) \text { given by } \varepsilon_{1}(b)_{i_{1}, \ldots, i_{(k-1)^{\prime}}}^{i_{1}, \ldots, i_{k-1}} \\
& =\sum_{j=1}^{n} b_{i_{1_{1}^{\prime}}, \ldots, i_{(k-1)^{\prime}, j}}^{i_{1}, \ldots, i_{k-1}, j} \tag{3.11}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Tr}(b)=\varepsilon_{1}^{k}(b), \quad \text { for } b \in \operatorname{End}\left(V^{\otimes k}\right) \tag{3.12}
\end{equation*}
$$

The relation between the maps $\varepsilon^{\frac{1}{2}}, \varepsilon_{\frac{1}{2}}$ in (3.10) and the maps $\varepsilon^{\frac{1}{2}}, \varepsilon_{\frac{1}{2}}$, in Section 2 is given by

$$
\begin{array}{rlrl}
\Phi_{k-\frac{1}{2}}\left(\varepsilon_{\frac{1}{2}}(b)\right) & =\left.\varepsilon_{\frac{1}{2}}\left(\Phi_{k}(b)\right)\right|_{V^{\otimes(k-1)} \otimes v_{n}}, & \text { for } b \in \mathbb{C} A_{k}(n), \\
\Phi_{k-1}\left(\varepsilon^{\frac{1}{2}}(b)\right) & =\frac{1}{n} \varepsilon^{\frac{1}{2}}\left(\Phi_{k}(b)\right), & & \text { for } b \in \mathbb{C} A_{k-\frac{1}{2}}(n), \quad \text { and } \tag{3.13}\\
\Phi_{k-1}\left(\varepsilon_{1}(b)\right) & =\varepsilon_{1}\left(\Phi_{k}(b)\right), & & \text { for } b \in \mathbb{C} A_{k}(n),
\end{array}
$$

where, on the right hand side of the middle equality b is viewed as an element of $\mathbb{C} A_{k}$ via the natural inclusion $\mathbb{C} A_{k-\frac{1}{2}}(n) \subseteq \mathbb{C} A_{k}(n)$. Then

$$
\begin{equation*}
\operatorname{Tr}\left(\Phi_{k}(b)\right)=\varepsilon_{1}^{k}\left(\Phi_{k}(b)\right)=\Phi_{0}\left(\varepsilon_{1}^{k}(b)\right)=\varepsilon_{1}^{k}(b)=\operatorname{tr}_{k}(b) \tag{3.14}
\end{equation*}
$$

and, by (3.4), if $b \in \mathbb{C} A_{k-\frac{1}{2}}(n)$ then

$$
\begin{align*}
\operatorname{Tr}\left(\Phi_{k-\frac{1}{2}}(b)\right) & =\operatorname{Tr}\left(\left.\Phi_{k}(b)\right|_{V \otimes(k-1)} \otimes v_{n}\right. \\
& =\frac{1}{n} \operatorname{Tr}\left(\Phi_{k}(b)\right)=\frac{1}{n} \operatorname{tr}_{k-\frac{1}{2}}(b) . \tag{3.15}
\end{align*}
$$

The representations $\left(\operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\right)^{k}\left(\mathbf{1}_{n}\right)$ and $\operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\right)^{k}\left(\mathbf{1}_{n}\right)$
Let $\mathbf{1}_{n}=S_{n}^{(n)}$ be the trivial representation of S_{n} and let $V=\mathbb{C}$-span $\left\{v_{1}, \ldots, v_{n}\right\}$ be the permutation representation of S_{n} given in (3.5). Then

$$
\begin{equation*}
V \cong \operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\mathbf{1}_{n}\right) \tag{3.16}
\end{equation*}
$$

More generally, for any S_{n}-module M,

$$
\begin{align*}
\operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}(M) & \cong \operatorname{Ind}_{S_{n-1}}^{S_{n}}\left(\operatorname{Res}_{S_{n-1}}^{S_{n}}(M) \otimes \mathbf{1}_{n-1}\right) \\
& \cong \operatorname{Ind}_{S_{n-1}}^{S_{n}}\left(\operatorname{Res}_{S_{n}}^{S_{n-1}}(M) \otimes \operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\mathbf{1}_{n}\right)\right) \\
& \cong M \otimes \operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\mathbf{1}_{n}\right) \cong M \otimes V \tag{3.17}
\end{align*}
$$

where the third isomorphism comes from the "tensor identity",

$$
\begin{align*}
\operatorname{Ind}_{S_{n-1}}^{S_{n}}\left(\operatorname{Res}_{S_{n-1}}^{S_{n}}(M) \otimes N\right) & \sim M \otimes \operatorname{Ind}_{S_{n-1}}^{S_{n}} N \tag{3.18}\\
g \otimes(m \otimes n) & \mapsto g m \otimes(g \otimes n),
\end{align*}
$$

for $g \in S_{n}, m \in M, n \in N$, and the fact that $\operatorname{Ind}_{S_{n-1}}^{S_{n}}(W)=\mathbb{C} S_{n} \otimes_{S_{n-1}} W$. By iterating (3.17) it follows that

$$
\begin{equation*}
\left(\operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\right)^{k}(\mathbf{1}) \cong V^{\otimes k} \quad \text { and } \quad \operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\operatorname{Ind}_{S_{n-1}}^{S_{n}} \operatorname{Res}_{S_{n-1}}^{S_{n}}\right)^{k}(\mathbf{1}) \cong V^{\otimes k} \tag{3.19}
\end{equation*}
$$

as S_{n}-modules and S_{n-1}-modules, respectively.
If

$$
\begin{equation*}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right), \quad \text { define } \quad \lambda_{>1}=\left(\lambda_{2}, \ldots, \lambda_{\ell}\right) \tag{3.20}
\end{equation*}
$$

to be the same partition as λ except with the first row removed. Build a graph $\hat{A}(n)$ which encodes the decomposition of $V^{\otimes k}, k \in \mathbb{Z}_{\geq 0}$, by letting
vertices on level k : $\hat{A}_{k}(n)=\left\{\lambda \vdash n\left|k-|\lambda>1| \in \mathbb{Z}_{\geq 0}\right\}\right.$,
vertices on level $k+\frac{1}{2}: \hat{A}_{k+\frac{1}{2}}(n)=\left\{\lambda \vdash n-1\left|k-|\lambda>1| \in \mathbb{Z}_{\geq 0}\right\}\right.$, and an edge $\lambda \rightarrow \mu$, if $\mu \in \hat{A}_{k+\frac{1}{2}}(n)$ is obtained from $\lambda \in \hat{A}_{k}(n)$
by removing a box,
an edge $\mu \rightarrow \lambda$, if $\lambda \in \hat{A}_{k+1}(n)$ is obtained from $\mu \in \hat{A}_{k+\frac{1}{2}}(n)$
by adding a box.

For example, if $n=5$ then the first few levels of $\hat{A}(n)$ are

The following theorem is a consequence of Theorem 3.6 and the Centralizer Theorem, Theorem 5.4 (see also [13, Theorem 3.3.7]).

Theorem 3.22. Let $n, k \in \mathbb{Z}_{\geq 0}$. Let S_{n}^{λ} denote the irreducible S_{n}-module indexed by λ.
(a) As $\left(\mathbb{C} S_{n}, \mathbb{C} A_{k}(n)\right)$-bimodules,

$$
V^{\otimes k} \cong \bigoplus_{\lambda \in \hat{A}_{k}(n)} S_{n}^{\lambda} \otimes A_{k}^{\lambda}(n)
$$

where the vector spaces $A_{k}^{\lambda}(n)$ are irreducible $\mathbb{C} A_{k}(n)$-modules and

$$
\operatorname{dim}\left(A_{k}^{\lambda}(n)\right)=\left(\text { number of paths from }(n) \in \hat{A}_{0}(n) \text { to } \lambda \in \hat{A}_{k}(n)\right.
$$

in the graph $\hat{A}(n))$.
(b) As $\left(\mathbb{C} S_{n-1}, \mathbb{C} A_{k+\frac{1}{2}}(n)\right)$-bimodules,

$$
V^{\otimes k} \cong \bigoplus_{\mu \in \hat{A}_{k+\frac{1}{2}}(n)} S_{n-1}^{\mu} \otimes A_{k+\frac{1}{2}}^{\mu}(n)
$$

where the vector spaces $A_{k+\frac{1}{2}}^{\mu}(n)$ are irreducible $\mathbb{C} A_{k+\frac{1}{2}}(n)$-modules and $\operatorname{dim}\left(A_{k+\frac{1}{2}}^{\mu}(n)\right)=$ (number of paths from $(n) \in \hat{A}_{0}(n)$ to $\mu \in \hat{A}_{k+\frac{1}{2}}(n)$ in the graph $\hat{A}(n)$).

Determination of the polynomials $\operatorname{tr}^{\mu}(n)$

Let $n \in \mathbb{Z}_{>0}$. For a partition λ, let

$$
\lambda_{>1}=\left(\lambda_{2}, \ldots, \lambda_{\ell}\right), \quad \text { if } \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right),
$$

i.e., remove the first row of λ to get $\lambda_{>1}$. Then, for $n \geq 2 k$, the maps

$$
\begin{array}{rlr}
\hat{A}_{k}(n) & \longleftrightarrow \hat{A}_{k} \tag{3.23}\\
\lambda & \longmapsto \lambda_{>1}
\end{array} \quad \text { are bijections }
$$

which provide an isomorphism between levels 0 to n of the graphs $\hat{A}(n)$ and \hat{A}.
Proposition 3.24. For $k \in \frac{1}{2} \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{C}$ such that $\mathbb{C} A_{k}(n)$ is semisimple, let $\chi_{A_{k}(n)}^{\mu}, \mu \in \hat{A}_{k}$, be the irreducible characters of $\mathbb{C} A_{\ell}(n)$ and let $\operatorname{tr}_{k}: \mathbb{C} A_{k}(n) \rightarrow \mathbb{C}$ be the trace on $\mathbb{C} A_{k}(n)$ defined in (2.25). Use the notation for partitions in (2.17). For $k>0$ the coefficients in the expansion

$$
\operatorname{tr}_{k}=\sum_{\mu \in \hat{A}_{k}} \operatorname{tr}^{\mu}(n) \chi_{A_{k}(n)}^{\mu}, \quad \text { are } \quad \operatorname{tr}^{\mu}(n)=\left(\prod_{b \in \mu} \frac{1}{h(b)}\right) \prod_{j=1}^{|\mu|}\left(n-|\mu|-\left(\mu_{j}-j\right)\right) .
$$

If $n \in \mathbb{C}$ is such that $\mathbb{C} A_{k+\frac{1}{2}}(n)$ is semisimple then for $k>0$ the coefficients in the expansion

$$
\begin{aligned}
\operatorname{tr}_{k+\frac{1}{2}} & =\sum_{\mu \in \hat{A}_{k+\frac{1}{2}}} \operatorname{tr}_{\frac{1}{2}}^{\mu}(n) \chi_{A_{k+\frac{1}{2}}^{\mu}(n)}^{\mu}, \quad \text { are } \\
\operatorname{tr}_{\frac{1}{2}}^{\mu}(n) & =\left(\prod_{b \in \mu} \frac{1}{h(b)}\right) \cdot n \cdot \prod_{j=1}^{|\mu|}\left(n-1-|\mu|-\left(u_{j}-j\right)\right)
\end{aligned}
$$

Proof. Let λ be a partition with n boxes. Beginning with the vertical edge at the end of the first row, label the boundary edges of λ sequentially with $0,1,2, \ldots, n$. Then the
vertical edge label for row $i=$ (number of horizontal steps)

$$
\begin{aligned}
& + \text { (number of vertical steps) } \\
= & \left(\lambda_{1}-\lambda_{i}\right)+(i-1) \\
= & \left(\lambda_{1}-1\right)-\left(\lambda_{i}-i\right), \quad \text { and the }
\end{aligned}
$$

horizontal edge label for column $j=$ (number of horizontal steps)

+ (number of vertical steps)

$$
=\left(\lambda_{1}-j+1\right)+\left(\lambda_{j}^{\prime}-1\right)
$$

$$
=\left(\lambda_{1}-1\right)+\left(\lambda_{j}^{\prime}-j\right)+1 .
$$

Hence

$$
\begin{aligned}
\{1,2, \ldots, n\}= & \left\{\left(\lambda_{1}-1\right)-\left(\lambda_{j}^{\prime}-j\right)+1 \mid 1 \leq j \leq \lambda_{1}\right\} \\
& \sqcup\left\{\left(\lambda_{1}-1\right)-\left(\lambda_{i}-i\right) \mid 2 \leq i \leq n-\lambda_{1}+1\right\} \\
= & \{h(b) \mid b \text { is in row } 1 \text { of } \lambda\} \\
& \sqcup\left\{\left(\lambda_{1}-1\right)-\left(\lambda_{i}-i\right) \mid 2 \leq i \leq n-\lambda_{1}+1\right\} .
\end{aligned}
$$

For example, if $\lambda=(10,7,3,3,1) \vdash 24$, then the boundary labels of λ and the hook numbers in the first row of λ are

Thus, since $\lambda_{1}=n-\left|\lambda_{>1}\right|$,

$$
\begin{equation*}
\operatorname{dim}\left(S_{n}^{\lambda}\right)=\frac{n!}{\prod_{b \in \lambda} h(b)}=\left(\prod_{b \in \lambda>1} \frac{1}{h(b)}\right)^{\left|\lambda_{>1}\right|+1} \prod_{i=2}\left(n-\left|\lambda_{>1}\right|-\left(\lambda_{i}-(i-1)\right)\right) . \tag{3.25}
\end{equation*}
$$

Let $n \in \mathbb{Z}_{>0}$ and let $\chi_{S_{n}}^{\lambda}$ denote the irreducible characters of the symmetric group S_{n}. By taking the trace on both sides of the equality in Theorem 3.22,

$$
\operatorname{Tr}\left(b, V^{\otimes k}\right)=\sum_{\lambda \in \hat{A}_{k}(n)} \chi_{S_{n}}^{\lambda}(1) \chi_{A_{k}(n)}(b)=\sum_{\lambda \in \hat{A}_{k}(n)} \operatorname{dim}\left(S_{n}^{\lambda}\right) \chi_{A_{k}(n)}(b),
$$

$$
\text { for } b \in \mathbb{C} A_{k}(n) \text {. }
$$

Thus the equality in (3.25) and the bijection in (3.23) provide the expansion of tr_{k} for all $n \in \mathbb{Z}_{\geq 0}$ such that $n \geq 2 k$. The statement for all $n \in \mathbb{C}$ such that $\mathbb{C} A_{k}(n)$ is semisimple is then a consequence of the fact that any polynomial is determined by its evaluations at an infinite number of values of the parameter. The proof of the expansion of $\operatorname{tr}_{k+\frac{1}{2}}$ is exactly analogous.

Note that the polynomials $\operatorname{tr}^{\mu}(n)$ and $\operatorname{tr}_{\frac{1}{2}}^{\mu}(n)$ (of degrees $|\mu|$ and $|\mu|+1$, respectively) do not depend on k. By Proposition 3.24,

$$
\begin{align*}
& \left\{\text { roots of } \left.\operatorname{tr}_{\frac{1}{2}}^{\mu}(n) \right\rvert\, \mu \in \hat{A}_{\frac{1}{2}}\right\}=\{0\}, \\
& \left\{\text { roots of } \operatorname{tr}_{1}^{\mu}(n) \mid \mu \in \hat{A}_{1}\right\}=\{1\}, \\
& \left\{\text { roots of } \left.\operatorname{tr}_{1 \frac{1}{2}}^{\mu}(n) \right\rvert\, \mu \in \hat{A}_{1 \frac{1}{2}}\right\}=\{0,2\}, \quad \text { and } \tag{3.26}\\
& \left\{\text { roots of } \operatorname{tr}_{k}^{\mu}(n) \mid \mu \in \hat{A}_{k}\right\}=\{0,1, \ldots, 2 k-1\}, \quad \text { for } k \in \frac{1}{2} \mathbb{Z}_{\geq 0}, k \geq 2 .
\end{align*}
$$

For example, the first few values of tr^{μ} and $\operatorname{tr}_{\frac{1}{2}}^{\mu}$ are

$$
\begin{aligned}
& \operatorname{tr}^{\natural}(n)=1, \\
& \operatorname{tr}^{\square}(n)=n-1 \text {, } \\
& \operatorname{tr}_{\frac{1}{2}}^{\natural}(n)=n \\
& { }_{\mathrm{tr}} \square_{(n)}=\frac{1}{2} n(n-3), \\
& \mathrm{tr}^{\boxminus} \exists_{(n)}=\frac{1}{2}(n-1)(n-2), \\
& \begin{aligned}
& \frac{1}{\frac{1}{2}}(n)=n \\
& \operatorname{tr}_{\frac{1}{2}}^{2}(n) \\
&=n(n-2),
\end{aligned} \\
& \operatorname{tr}_{\frac{1}{2}}^{\frac{1}{2}}(n)=\frac{1}{2} n(n-1)(n-4), \\
& \operatorname{tr}^{\square}(n)=\frac{1}{6} n(n-1)(n-5), \\
& \operatorname{tr}_{\frac{1}{2}}^{\stackrel{\rightharpoonup}{2}}(n)=\frac{1}{2} n(n-2)(n-3), \\
& \mathrm{tr}^{\mp}(n)=\frac{1}{6} n(n-2)(n-4), \quad \operatorname{tr}_{\frac{1}{2}}^{\frac{1}{2}}(n)=\frac{1}{6} n(n-1)(n-3)(n-5), \\
& \mathrm{tr}^{\boxminus} \mathrm{B}_{(n)=} \frac{1}{6}(n-1)(n-2)(n-3), \quad \operatorname{tr}_{\frac{1}{2}}^{\mathrm{E}}(n)=\frac{1}{6} n(n-2)(n-3)(n-4),
\end{aligned}
$$

Theorem 3.27. Let $n \in \mathbb{Z}_{\geq 2}$ and $k \in \frac{1}{2} \mathbb{Z}_{\geq 0}$. Then
$\mathbb{C} A_{k}(n)$ is semisimple if and only if $k \leq \frac{n+1}{2}$.
Proof. By Theorem $2.26(a)$ and the observation (3.26) it follows that $\mathbb{C} A_{k}(n)$ is semisimple if $n \geq 2 k-1$.

Suppose n is even. Then Theorems 2.26(a) and 2.26(b) imply that $\mathbb{C} A_{\frac{n}{2}+\frac{1}{2}}(n)$ is semisimple and $\mathbb{C} A_{\frac{n}{2}+1}(n)$ is not semisimple,
since $(n / 2) \in \hat{A}_{\frac{n}{2}+\frac{1}{2}}$ and $\operatorname{tr}_{\frac{1}{2}}^{(n / 2)}(n)=0$. Since $(n / 2) \in \hat{A}_{\frac{n}{2}+1}(n)$, the $A_{\frac{n}{2}+1}(n)$-module $A_{\frac{n}{2}+1}^{(n / 2)}(n) \neq 0$. Since the path $(\emptyset, \ldots,(n / 2),(n / 2),(n / 2)) \in \hat{A}_{\frac{n}{2}+1}^{(n / 2)}$ does not correspond to an element of $\hat{A}_{\frac{n}{2}+1}^{(n / 2)}(n)$,

$$
\operatorname{Card}\left(\hat{A}_{\frac{n}{2}+1}^{(n / 2)}\right) \neq \operatorname{Card}\left(\hat{A}_{\frac{n}{2}+1}^{(n / 2)}(n)\right)
$$

Thus, Tits deformation theorem (Theorem 5.13) implies that $\mathbb{C} A_{\frac{n}{2}+1}(n)$ cannot be semisimple. Now it follows from Theorem 2.26(c) that $\mathbb{C} A_{k}(n)$ is not semisimple for $k \geq \frac{n}{2}+\frac{1}{2}$.

If n is odd then Theorems 2.26(a) and 2.26(b) imply that

$$
\mathbb{C} A_{\frac{n}{2}+\frac{1}{2}}(n) \text { is semisimple } \quad \text { and } \quad \mathbb{C} A_{\frac{n}{2}+1}(n) \text { is not semisimple }
$$

since $(n / 2) \in \hat{A} \frac{n}{2}+\frac{1}{2}$ and $\operatorname{tr}^{(n / 2)}(n)=0$. Since $\left(\frac{n}{2}-\frac{1}{2}\right) \in \hat{A}_{\frac{n}{2}+1}(n)$, the $A_{\frac{n}{2}+1}(n)$-module $A_{\frac{n}{2}+1}^{\left(\frac{n}{2}-\frac{1}{2}\right)}(n) \neq 0$. Since the path $\left(\emptyset, \ldots,\left(\frac{n}{2}-\frac{1}{2}\right),\left(\frac{n}{2}+\frac{1}{2}\right),\left(\frac{n}{2}-\frac{1}{2}\right)\right) \in \hat{A}_{\frac{n}{2}+1}^{\left(\frac{n}{2}-\frac{1}{2}\right)}$ does not correspond to an element of $\hat{A}_{\frac{n}{2}+1}^{\left(\frac{n}{2}-\frac{1}{2}\right)}(n)$, and since

$$
\operatorname{Card}\left(\hat{A}_{\frac{n}{2}+1}^{\left(\frac{n}{2}-\frac{1}{2}\right)}\right) \neq \operatorname{Card}\left(\hat{A}_{\frac{n}{2}+1}^{\left(\frac{n}{2}-\frac{1}{2}\right)}(n)\right),
$$

the Tits deformation theorem implies that $\mathbb{C} A_{\frac{n}{2}+1}(n)$ is not semisimple. Now it follows from Theorem 2.26(c) that $\mathbb{C} A_{k}(n)$ is not semisimple for $k \geq \frac{n}{2}+\frac{1}{2}$.

Murphy elements for $\mathbb{C} A_{k}(n)$
Let κ_{n} be the element of $\mathbb{C} S_{n}$ given by

$$
\begin{equation*}
\kappa_{n}=\sum_{1 \leq \ell<m \leq n} s_{\ell m}, \tag{3.28}
\end{equation*}
$$

where $s_{\ell m}$ is the transposition in S_{n} which switches ℓ and m. Let $S \subseteq\{1,2, \ldots, k\}$ and let $I \subseteq S \cup S^{\prime}$. Define $b_{S}, d_{I} \in A_{k}$ by

$$
\begin{equation*}
b_{S}=\left\{S \cup S^{\prime},\left\{\ell, \ell^{\prime}\right\}_{\ell \notin S}\right\} \quad \text { and } \quad d_{I \subseteq S}=\left\{I, I^{c},\left\{\ell, \ell^{\prime}\right\}_{\ell \notin S}\right\} . \tag{3.29}
\end{equation*}
$$

For example, in A_{9}, if $S=\{2,4,5,8\}$ and $I=\left\{2,4,4^{\prime}, 5,8\right\}$ then

For $S \subseteq\{1,2, \ldots, k\}$ define

$$
\begin{equation*}
p_{s}=\sum_{I} \frac{1}{2}(-1)^{\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I\right)+\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I^{c}\right)} d_{I}, \tag{3.30}
\end{equation*}
$$

where the sum is over $I \subseteq S \cup S^{\prime}$ such that $I \neq \emptyset, I \neq S \cup S^{\prime}, I \neq\left\{\ell, \ell^{\prime}\right\}$, and $I \neq\left\{\ell, \ell^{\prime}\right\}^{c}$. For $S \subseteq\{1, \ldots, k+1\}$ such that $k+1 \in S$, define

$$
\begin{equation*}
\tilde{p}_{S}=\sum_{I} \frac{1}{2}(-1)^{\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I\right)+\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I^{c}\right)} d_{I}, \tag{3.31}
\end{equation*}
$$

where the sum is over all $I \subseteq S \cup S^{\prime}$ such that $\left\{k+1,(k+1)^{\prime}\right\} \subseteq I$ or $\left\{k+1,(k+1)^{\prime}\right\} \subseteq I^{c}$, $I \neq S \cup S^{\prime}, I \neq\left\{k+1,(k+1)^{\prime}\right\}$, and $I \neq\left\{k+1,(k+1)^{\prime}\right\}^{c}$.

Let $Z_{1}=1$ and, for $k \in \mathbb{Z}_{>1}$, let

$$
\begin{equation*}
Z_{k}=\binom{k}{2}+\sum_{\substack{S \subseteq\{1, \ldots, k\} \\|S| \geq 1}} p_{S}+\sum_{\substack{S \subseteq\{1, \ldots k\} \\|S| \geq 2}}(n-k+|S|)(-1)^{|S|} b_{S} . \tag{3.32}
\end{equation*}
$$

View $Z_{k} \in \mathbb{C} A_{k} \subseteq \mathbb{C} A_{k+\frac{1}{2}}$ using the embedding in (2.2), and define $Z_{\frac{1}{2}}=1$ and

$$
\begin{equation*}
Z_{k+\frac{1}{2}}=k+Z_{k}+\sum_{\substack{|S| \geq 2 \\ k+1 \in S}} \tilde{p}_{S}+(n-(k+1)+|S|)(-1)^{|S|} b_{S}, \tag{3.33}
\end{equation*}
$$

where the sum is over $S \subseteq\{1, \ldots, k+1\}$ such that $k+1 \in S$ and $|S| \geq 2$. Define

$$
\begin{equation*}
M_{\frac{1}{2}}=1, \quad \text { and } \quad M_{k}=Z_{k}-Z_{k-\frac{1}{2}}, \quad \text { for } k \in \frac{1}{2} \mathbb{Z}_{>0} \tag{3.34}
\end{equation*}
$$

For example, the first few Z_{k} are

$$
\begin{aligned}
& Z_{0}=1, \quad Z_{\frac{1}{2}}=1, \quad Z_{1}=\underbrace{\stackrel{\bullet}{\bullet}}_{p_{\{1\}}}, \\
& Z_{1 \frac{1}{2}}=\boldsymbol{0} \cdot+\underbrace{\bullet i}_{Z_{1}}-\underbrace{\bullet \bullet \bullet}_{\tilde{p}_{121} \bullet \bullet-\bullet \bullet}+n \underbrace{\bullet \bullet 0}, \quad \text { and }
\end{aligned}
$$

and the first few M_{k} are

Part (a) of the following theorem is well known.

Theorem 3.35.

(a) For $n \in \mathbb{Z}_{\geq 0}, \kappa_{n}$ is a central element of $\mathbb{C} S_{n}$. If λ is a partition with n boxes and S_{n}^{λ} is the irreducible S_{n}-module indexed by the partition λ,

$$
\kappa_{n}=\sum_{b \in \lambda} c(b), \quad \text { as operators on } S_{n}^{\lambda}
$$

(b) Let $n, k \in \mathbb{Z}_{\geq 0}$. Then, as operators on $V^{\otimes k}$, where $\operatorname{dim}(V)=n$,

$$
Z_{k}=\kappa_{n}-\binom{n}{2}+k n, \quad \text { and } \quad Z_{k+\frac{1}{2}}=\kappa_{n-1}-\binom{n}{2}+(k+1) n-1
$$

(c) Let $n \in \mathbb{C}, k \in \mathbb{Z}_{\geq 0}$. Then Z_{k} is a central element of $\mathbb{C} A_{k}(n)$, and, if $n \in \mathbb{C}$ is such that $\mathbb{C} A_{k}(n)$ is semisimple and $\lambda \vdash n$ with $\left|\lambda_{>1}\right| \leq k$ boxes, then

$$
Z_{k}=k n-\binom{n}{2}+\sum_{b \in \lambda} c(b), \quad \text { as operators on } A_{k}^{\lambda}
$$

where A_{k}^{λ} is the irreducible $\mathbb{C} A_{k}(n)$-module indexed by the partition λ. Furthermore, $Z_{k+\frac{1}{2}}$ is a central element of $\mathbb{C} A_{k+\frac{1}{2}}(n)$, and, if n is such that $\mathbb{C} A_{k+\frac{1}{2}}(n)$ is semisimple and $\lambda \vdash n$ is a partition with $\left|\lambda_{>1}\right| \leq k$ boxes, then

$$
Z_{k+\frac{1}{2}}=k n+n-1-\binom{n}{2}+\sum_{b \in \lambda} c(b), \quad \text { as operators on } A_{k+\frac{1}{2}}^{\lambda}
$$

where $A_{k+\frac{1}{2}}^{\lambda}$ is the irreducible $\mathbb{C} A_{k+\frac{1}{2}}(n)$-module indexed by the partition λ.
Proof. (a) The element κ_{n} is the class sum corresponding to the conjugacy class of transpositions and thus κ_{n} is a central element of $\mathbb{C} S_{n}$. The constant by which κ_{n} acts on S_{n}^{λ} is computed in [17, Chapter 1, Section 7, Example 7].
(c) The first statement follows from parts (a) and (b) and Theorems 3.6 and 3.22 as follows. By Theorem 3.6, $\mathbb{C} A_{k}(n) \cong \operatorname{End}_{S_{n}}\left(V^{\otimes k}\right)$ if $n \geq 2 k$. Thus, by Theorem 3.22, if $n \geq 2 k$ then Z_{k} acts on the irreducible $\mathbb{C} A_{k}(n)$-module $A_{k}^{\lambda}(n)$ by the constant given in the statement. This means that Z_{k} is a central element of $\mathbb{C} A_{k}(n)$ for all $n \geq k$. Thus, for $n \geq 2 k$, $d Z_{k}=Z_{k} d$ for all diagrams $d \in A_{k}$. Since the coefficients in $d Z_{k}$ (in terms of the basis of diagrams) are polynomials in n, it follows that $d Z_{k}=Z_{k} d$ for all $n \in \mathbb{C}$.

If $n \in \mathbb{C}$ is such that $\mathbb{C} A_{k}(n)$ is semisimple let $\chi_{\mathbb{C} A_{k}(n)}^{\lambda}$ be the irreducible characters. Then Z_{k} acts on $A_{k}^{\lambda}(n)$ by the constant $\chi_{\mathbb{C} A_{k}(n)}^{\lambda}\left(Z_{k}\right) / \operatorname{dim}\left(A_{k}^{\lambda}(n)\right)$. If $n \geq k$ this is the constant in the statement, and therefore it is a polynomial in n, determined by its values for $n \geq 2 k$.

The proof of the second statement is completely analogous using $\mathbb{C} A_{k+\frac{1}{2}}, S_{n-1}$, and the second statement in part (b).
(b) Let $s_{i i}=1$ so that

$$
\begin{aligned}
2 \kappa_{n}+n & =n+2 \sum_{1 \leq i<j \leq n} s_{i j}=\sum_{i=1}^{n} s_{i i}+\sum_{1 \leq i<j \leq n}\left(s_{i j}+s_{j i}\right) \\
& =\sum_{i=j} s_{i j}+\sum_{i \neq j} s_{i j}=\sum_{i, j=1}^{n} s_{i j}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(2 \kappa_{n}+n\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)= & \left(\sum_{i, j=1}^{n} s_{i j}\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right) \\
= & \sum_{i, j=1}^{n} s_{i j} v_{i_{1}} \otimes \cdots \otimes s_{i j} v_{i_{k}} \\
= & \sum_{i, j=1}^{n}\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{1}} \\
& \otimes \cdots \otimes\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{k}}
\end{aligned}
$$

and expanding this sum gives that $\left(2 \kappa_{n}+n\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)$ is equal to

$$
\begin{align*}
& \sum_{S \subseteq\{1, \ldots, k\}} \sum_{i_{1^{\prime}}, \ldots, i_{k^{\prime}} i} \sum_{i, j=1}^{n}\left(\prod_{\ell \in S^{c}} \delta_{i \ell_{\ell} i^{\prime}}\right) \\
& \quad \times \sum_{I \subseteq S \cup S^{\prime}}(-1)^{\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I\right)+\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I^{c}\right)}\left(\prod_{\ell \in I} \delta_{i_{\ell} i}\right) \tag{3.36}\\
& \quad \times\left(\prod_{\ell \in I^{c}} \delta_{i_{\ell} j}\right)\left(v_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}}\right)
\end{align*}
$$

where $S^{c} \subseteq\{1, \ldots, k\}$ corresponds to the tensor positions where 1 is acting, and where $I \subseteq S \cup S^{\prime}$ corresponds to the tensor positions that must equal i and I^{c} corresponds to the tensor positions that must equal j.

When $|S|=0$ the set I is empty and the term corresponding to S in (3.36) is

$$
\sum_{i, j=1}^{n} \sum_{i_{1_{1}^{\prime}}, \ldots, i_{k^{\prime}}}\left(\prod_{\ell \in\{1, \ldots, k\}} \delta_{i_{\ell} i_{\ell^{\prime}}}\right)\left(v_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}}\right)=n^{2}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)
$$

Assume $|S| \geq 1$ and separate the sum according to the cardinality of I. Note that the sum for I is equal to the sum for I^{c}, since the whole sum is symmetric in i and j. The sum of the terms in (3.36) which come from $I=S \cup S^{\prime}$ is equal to

$$
\begin{aligned}
& \sum_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}} n \sum_{i=1}^{n}\left(\prod_{\ell \in S^{c}} \delta_{i i_{\ell} i_{\ell^{\prime}}}\right)(-1)^{|S|}\left(\prod_{\ell \in S \cup S^{\prime}} \delta_{i_{\ell} i}\right)\left(v_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}}\right) \\
& \quad=n(-1)^{|S|} b_{S}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right) .
\end{aligned}
$$

We get a similar contribution from the sum of the terms with $I=\emptyset$.
If $|S|>1$ then the sum of the terms in (3.36) which come from $I=\left\{\ell, \ell^{\prime}\right\}$ is equal to

$$
\begin{aligned}
& \sum_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}} \sum_{i, j=1}^{n}\left(\prod_{r \in S^{c}} \delta_{i_{r} i_{r^{\prime}}}\right)(-1)^{|S|} \delta_{i_{\ell}} \delta_{i_{\ell^{\prime}} i}\left(\prod_{r \neq \ell} \delta_{i_{r} j} \delta_{i_{r^{\prime}} j}\right)\left(v_{i_{1^{\prime}}} \otimes \cdots \otimes v_{i_{k^{\prime}}}\right) \\
& \quad=(-1)^{|S|} b_{S-\{\ell\}}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)
\end{aligned}
$$

and there is a corresponding contribution from $I=\left\{\ell, \ell^{\prime}\right\}^{c}$. The remaining terms can be written as

$$
\begin{aligned}
& \sum_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}} \sum_{i, j=1}^{n}\left(\prod_{\ell \in S^{c}} \delta_{i_{\ell} i_{\ell^{\prime}}}\right) \sum_{I \subseteq S \cup S^{\prime}}(-1)^{\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I\right)+\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I^{c}\right)} \\
& \quad \times\left(\prod_{\ell \in I} \delta_{i_{\ell} i}\right)\left(\prod_{\ell \in I^{c}} \delta_{i_{\ell} j}\right)\left(v_{i_{1^{\prime}}} \otimes v_{i_{k^{\prime}}}\right)=2 p_{S}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right) .
\end{aligned}
$$

Putting these cases together gives that $2 \kappa_{n}+n$ acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ the same way that

$$
\begin{aligned}
& \sum_{|S|=0} n^{2}+\sum_{|S|=1}\left(2 n(-1)^{1} b_{S}+2 p_{S}\right)+\sum_{|S|=2}\left(2 n(-1)^{2} b_{S}+2 p_{S}+\sum_{\ell \in S}(-1)^{2} 2 b_{S-\{\ell\}}\right) \\
& \quad+\sum_{|S|>2}\left(2 n(-1)^{|S|} b_{S}+2 p_{S}+\sum_{\ell \in S}(-1)^{|S|} 2 b_{S-\{\ell\}}\right)
\end{aligned}
$$

acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$. Note that $b_{S}=1$ if $|S|=1$. Hence $2 \kappa_{n}+n$ acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ the same way that

$$
\begin{aligned}
n^{2} & +\sum_{|S|=1}\left(-2 n+2 p_{S}\right)+\sum_{|S|=2}\left(2 n b_{S}+2+2 p_{S}\right) \\
& +\sum_{|S|>2}\left((-1)^{|S|} 2 n b_{S}+2 p_{S}+\sum_{\ell \in S}(-1)^{|S|} 2 b_{S-\{\ell\}}\right) \\
& =n^{2}-2 n k+2\binom{k}{2}+\sum_{|S| \geq 1} 2 p_{S}+\sum_{|S| \geq 2} 2(n-k+|S|)(-1)^{|S|} b_{S}
\end{aligned}
$$

acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$, and so $Z_{k}=\kappa_{n}+\left(n-n^{2}+2 n k\right) / 2$ as operators on $V^{\otimes k}$. This proves the first statement.

For the second statement, since $\left(1-\delta_{i n}\right)\left(1-\delta_{j n}\right)= \begin{cases}0, & \text { if } i=n \text { or } j=n, \\ 1, & \text { otherwise, }\end{cases}$

$$
\begin{aligned}
&\left(2 \kappa_{n-1}+(n-1)\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n}\right) \\
&=\left(\sum_{i, j=1}^{n-1} s_{i j}\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n}\right) \\
&=\left(\sum_{i, j=1}^{n} s_{i j}\left(1-\delta_{i n}\right)\left(1-\delta_{j n}\right)\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n}\right) \\
&= \sum_{i, j=1}^{n} s_{i j} v_{i_{1}} \otimes \cdots \otimes s_{i j} v_{i_{k}} \otimes\left(1-\delta_{i n}\right)\left(1-\delta_{j n}\right) v_{n}, \\
&= \sum_{i, j=1}^{n}\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{1}} \otimes \cdots \otimes\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{k}} \\
& \otimes\left(1-E_{i i}-E_{j j}+E_{i i} E_{j j}\right) v_{n} \\
&=\left(\sum_{i, j} s_{i j}\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right) \otimes v_{n}+\sum_{i, j=1}^{n}\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{1}} \\
& \otimes \cdots \otimes\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{k}} \otimes\left(-E_{i i}-E_{j j}\right) v_{n}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i, j=1}^{n}\left(1-E_{i i}-E_{j j}+E_{i j}+E_{j i}\right) v_{i_{1}} \otimes \cdots \otimes\left(1-E_{i i}-E_{j j}+E_{i j}\right. \\
& \left.+E_{j i}\right) v_{i_{k}} \otimes E_{i i} E_{j j} v_{n}
\end{aligned}
$$

The first sum is known to equal $\left(2 \kappa_{n}+n\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)$ by the computation proving the first statement, and the last sum has only one nonzero term, the term corresponding to $i=j=n$. Expanding the middle sum gives

$$
\begin{aligned}
& \sum_{\substack{S \subseteq\{1, \ldots, k+1\} \\
k+1 \in S}} \sum_{i_{1^{\prime}}, \ldots, i_{k^{\prime}}} \sum_{i, j=1}^{n}\left(\prod_{\ell \in S} \delta_{i \ell, i_{\ell^{\prime}}}\right) \\
& \quad \times \sum_{I}(-1)^{\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I\right)+\#\left(\left\{\ell, \ell^{\prime}\right\} \subseteq I^{c}\right)}\left(\prod_{\ell \in I} \delta_{i_{\ell} i}\right)\left(\prod_{\ell \in I^{c}} \delta_{i_{\ell} j}\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k^{\prime}}}\right)
\end{aligned}
$$

where the inner sum is over all $I \subseteq\{1, \ldots, k+1\}$ such that $\left\{k+1,(k+1)^{\prime}\right\} \subseteq I$ or $\left\{k+1,(k+1)^{\prime}\right\} \subseteq I^{c}$. As in part (a) this sum is treated in four cases: (1) when $|S|=0$, (2) when $I=S \cup S^{\prime}$ or $I=\emptyset$, (3) when $I=\left\{\ell, \ell^{\prime}\right\}$ or $I=\left\{\ell, \ell^{\prime}\right\}^{c}$, and (4) the remaining cases. Since $k+1 \in S$, the first case does not occur, and cases (2)-(4) are as in part (a) giving

$$
\begin{aligned}
& \sum_{\substack{|S|=1 \\
k+1 \in S}}-2 n+\sum_{\substack{|S|=2 \\
k+1 \in S}}\left(2 n b_{S}+2 p_{S}+2\right) \\
& \quad+\sum_{\substack{|S|>2 \\
k+1 \in S}}\left(2 n(-1)^{|S|} b_{S}+2 p_{S}+2 \sum_{\ell \in S}(-1)^{|S|} b_{S-\{\ell\}}\right)
\end{aligned}
$$

Combining this with the terms $\left(2 \kappa_{n}+n\right)\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right) \otimes v_{n}$ and $1 \otimes\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{n}\right)$ gives that $2 \kappa_{n-1}+(n-1)$ acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ as

$$
\left(2 \kappa_{n}+n\right)+1-2 n+2 k+\sum_{\substack{|S| \geq 2 \\ k+1 \in S}} 2 \tilde{p}_{S}+2(n-(k+1)+|S|)(-1)^{|S|} b_{S} .
$$

Thus $\kappa_{n-1}-\kappa_{n}$ acts on $v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}$ as

$$
\frac{1}{2}\left(n-(n-1)+1-2 n+2 k+\sum_{\substack{|S| \geq 2 \\ k+1 \in S}} 2 \tilde{p}_{S}+2(n-(k+1)+|S|)(-1)^{|S|} b_{S}\right)
$$

so, as operators on $V^{\otimes k}$, we have $Z_{k+\frac{1}{2}}=k+Z_{k}+\left(\kappa_{n-1}-\kappa_{n}\right)-1+n-k=$ $Z_{k}+\left(\kappa_{n-1}-\kappa_{n}\right)+n-1$. By the first statement in part (c) of this theorem we get $Z_{k+\frac{1}{2}}=\left(\kappa_{n}-\binom{n}{2}+k n\right)+\left(\kappa_{n-1}-\kappa_{n}\right)+n-1=\kappa_{n-1}-\binom{n}{2}+k n+n-1$.

Theorem 3.37. Let $k \in \frac{1}{2} \mathbb{Z}_{\geq 0}$ and let $n \in \mathbb{C}$.
(a) The elements $M_{\frac{1}{2}}, M_{1}, \ldots, M_{k-\frac{1}{2}}, M_{k}$, all commute with each other in $\mathbb{C} A_{k}(n)$.
(b) Assume that $\mathbb{C} A_{k}(n)$ is semisimple. Let $\mu \in \hat{A}_{k}$ so that μ is a partition with $\leq k$ boxes, and let $A_{k}^{\mu}(n)$ be the irreducible $\mathbb{C} A_{k}(n)$-module indexed by μ. Then there is a unique, up to multiplication by constants, basis $\left\{v_{T} \mid T \in \hat{A}_{k}^{\mu}\right\}$ of $A_{k}^{\mu}(n)$ such that, for all $T=\left(T^{(0)}, T^{\left(\frac{1}{2}\right)}, \ldots, T^{(k)}\right) \in \hat{A}_{k}^{\mu}$, and $\ell \in \mathbb{Z}_{\geq 0}$ such that $\ell \leq k$,

$$
M_{\ell} v_{T}= \begin{cases}c\left(T^{(\ell)} / T^{\left(\ell-\frac{1}{2}\right)}\right) v_{T}, & \text { if } T^{(\ell)} / T^{\left(\ell-\frac{1}{2}\right)}=\square, \\ \left(n-\left|T^{(\ell)}\right|\right) v_{T}, & \text { if } T^{(\ell)}=T^{\left(\ell-\frac{1}{2}\right)},\end{cases}
$$

and

$$
M_{\ell+\frac{1}{2}} v_{T}= \begin{cases}\left(n-c\left(T^{(\ell)} / T^{\left(\ell+\frac{1}{2}\right)}\right)\right) v_{T}, & \text { if } T^{(\ell)} / T^{\left(\ell+\frac{1}{2}\right)}=\square \\ \left|T^{(\ell)}\right| v_{T}, & \text { if } T^{(\ell)}=T^{\left(\ell+\frac{1}{2}\right)}\end{cases}
$$

where λ / μ denotes the box where λ and μ differ.
Proof. (a) View $Z_{0}, Z_{\frac{1}{2}}, \ldots, Z_{k} \in \mathbb{C} A_{k}$. Then $Z_{k} \in Z\left(\mathbb{C} A_{k}\right)$, so $Z_{k} Z_{\ell}=Z_{\ell} Z_{k}$ for all $0 \leq \ell \leq k$. Since $\dot{M}_{\ell}=Z_{\ell}-Z_{\ell-\frac{1}{2}}$, we see that the M_{ℓ} commute with each other in $\mathbb{C} A_{k}$.
(b) The basis is defined inductively. If $k=0, \frac{1}{2}$ or 1 , then $\operatorname{dim}\left(A_{k}^{\lambda}(n)\right)=1$, so up to a constant there is a unique choice for the basis. For $k>1$, we consider the restriction $\operatorname{Res}_{\mathbb{C} A_{k-\frac{1}{2}}(n)}^{\mathbb{C} A_{k}(n)}\left(A_{k}^{\lambda}(n)\right)$. The branching rules for this restriction are multiplicity free, meaning that each $\mathbb{C} A_{k-\frac{1}{2}}(n)$-irreducible that shows up in $A_{k}^{\lambda}(n)$ does so exactly once. By induction, we can choose a basis for each $\mathbb{C} A_{k-\frac{1}{2}}(n)$-irreducible, and the union of these bases forms a basis for $A_{k}^{\lambda}(n)$. For $\ell<k, M_{\ell} \in \mathbb{C} A_{k-\frac{1}{2}}(n)$, so M_{ℓ} acts on this basis as in the statement of the theorem. It remains only to check the statement for M_{k}. Let k be an integer, and let $\lambda \vdash n$ and $\gamma \vdash(n-1)$ such that $\lambda_{>1}=T^{(k)}$ and $\gamma>1=T^{\left(k-\frac{1}{2}\right)}$. Then by Theorem 3.35(c), $M_{k}=Z_{k}-Z_{k-\frac{1}{2}}$ acts on v_{T} by the constant

$$
\left(\sum_{b \in \lambda} c(b)-\binom{n}{2}+k n\right)-\left(\sum_{b \in \gamma} c(b)-\binom{n}{2}+k n-1\right)=c(\lambda / \gamma)+1
$$

and $M_{k+\frac{1}{2}}=Z_{k+\frac{1}{2}}-Z_{k}$ acts on $v_{T} \in A_{k+\frac{1}{2}}^{\lambda}(n)$ by the constant

$$
\begin{aligned}
& \left(\sum_{b \in \gamma} c(b)-\binom{n}{2}+k n+n-1\right)-\left(\sum_{b \in \lambda} c(b)-\binom{n}{2}+k n\right) \\
& \quad=-c(\lambda / \gamma)+n-1
\end{aligned}
$$

The result now follows from (3.23) and the observation that

$$
c(\lambda / \gamma)= \begin{cases}c\left(T^{(k)} / T^{\left(k-\frac{1}{2}\right)}\right)-1, & \text { if } T^{(k)}=T^{\left(k+\frac{1}{2}\right)}+\square \\ n-\left|T^{(k)}\right|-1, & \text { if } T^{(k)}=T^{\left(k+\frac{1}{2}\right)}\end{cases}
$$

4. The basic construction

In this section we shall assume that all algebras are finite dimensional algebras over an algebraically closed field \mathbb{F}. The fact that \mathbb{F} is algebraically closed is only for convenience, to avoid the division rings that could arise in the decomposition of \bar{A} just before (4.8) below.

Let $A \subseteq B$ be an inclusion of algebras. Then $B \otimes_{\mathbb{F}} B$ is an (A, A)-bimodule where A acts on the left by left multiplication and on the right by right multiplication. Fix an (A, A)-bimodule homomorphism

$$
\begin{equation*}
\varepsilon: B \otimes_{\mathbb{F}} B \longrightarrow A \tag{4.1}
\end{equation*}
$$

The basic construction is the algebra $B \otimes_{A} B$ with product given by

$$
\begin{equation*}
\left(b_{1} \otimes b_{2}\right)\left(b_{3} \otimes b_{4}\right)=b_{1} \otimes \varepsilon\left(b_{2} \otimes b_{3}\right) b_{4}, \quad \text { for } b_{1}, b_{2}, b_{3}, b_{4} \in B \tag{4.2}
\end{equation*}
$$

More generally, let A be an algebra and let L be a left A-module and R a right A-module. Let

$$
\begin{equation*}
\varepsilon: L \otimes_{\mathbb{F}} R \longrightarrow A \tag{4.3}
\end{equation*}
$$

be an (A, A)-bimodule homomorphism. The basic construction is the algebra $R \otimes_{A} L$ with product given by

$$
\begin{equation*}
\left(r_{1} \otimes \ell_{1}\right)\left(r_{2} \otimes \ell_{2}\right)=r_{1} \otimes \varepsilon\left(\ell_{1} \otimes r_{2}\right) \ell_{2}, \quad \text { for } r_{1}, r_{2} \in R \text { and } \ell_{1}, \ell_{2} \in L \tag{4.4}
\end{equation*}
$$

Theorem 4.18 below determines, explicitly, the structure of the algebra $R \otimes_{A} L$.
Let $N=\operatorname{Rad}(A)$ and let

$$
\begin{equation*}
\bar{A}=A / N, \quad \bar{L}=L / N L, \quad \text { and } \quad \bar{R}=R / R N \tag{4.5}
\end{equation*}
$$

Define an (\bar{A}, \bar{A})-bimodule homomorphism

$$
\begin{align*}
\bar{\varepsilon}: \bar{L} \otimes_{\mathbb{F}} \bar{R} & \longrightarrow \bar{A} \\
\bar{\ell} \otimes \bar{r} & \mapsto \overline{\varepsilon(\ell \otimes r)} \tag{4.6}
\end{align*}
$$

where $\bar{\ell}=\ell+N L, \bar{r}=r+R N$, and $\bar{a}=a+N$, for $\ell \in L, r \in R$, and $a \in A$. Then by basic tensor product relations [1, Chapter II, Section 3.3 corresponding to Proposition 2 and Section 3.6 corresponding to Proposition 6], the surjective algebra homomorphism

$$
\begin{align*}
\pi: R \otimes_{A} L & \longrightarrow \bar{R} \otimes_{\bar{A}} \bar{L} \\
r \otimes \ell & \mapsto \bar{r} \otimes \bar{\ell}
\end{align*} \quad \text { has } \quad \operatorname{ker}(\pi)=R \otimes_{A} N L .
$$

The algebra \bar{A} is a split semisimple algebra (an algebra isomorphic to a direct sum of matrix algebras). Fix an algebra isomorphism

$$
\begin{aligned}
\bar{A} & \xrightarrow{\sim} \bigoplus_{\mu \in \hat{A}} M_{d_{\mu}}(\mathbb{F}) \\
a_{P Q}^{\mu} & \leftarrow E_{P Q}^{\mu}
\end{aligned}
$$

where \hat{A} is an index set for the components and $E_{P Q}^{\mu}$ is the matrix with 1 in the (P, Q) entry of the μ th block and 0 in all other entries. Also, fix isomorphisms

$$
\begin{equation*}
\bar{L} \cong \bigoplus_{\mu \in \hat{A}} \vec{A}^{\mu} \otimes L^{\mu} \quad \text { and } \quad \bar{R} \cong \bigoplus_{\mu \in \hat{A}} R^{\mu} \otimes \overleftarrow{A}^{\mu} \tag{4.8}
\end{equation*}
$$

where $\vec{A}^{\mu}, \mu \in \hat{A}$, are the simple left \bar{A}-modules, $\overleftarrow{A}^{\mu}, \mu \in \hat{A}$, are the simple right \bar{A}-modules, and $L^{\mu}, R^{\mu}, \mu \in \hat{A}$, are vector spaces. The practical effect of this set-up is that if \hat{R}^{μ} is an index set for a basis $\left\{r_{Y}^{\mu} \mid Y \in \hat{R}^{\mu}\right\}$ of R^{μ}, \hat{L}^{μ} is an index set for a basis $\left\{\ell_{X}^{\mu} \mid X \in \hat{L}^{\mu}\right\}$ of L^{μ}, and \hat{A}^{μ} is an index set for bases

$$
\begin{equation*}
\left\{\vec{a}_{Q}^{\mu} \mid Q \in \hat{A}^{\mu}\right\} \text { of } \vec{A}^{\mu} \quad \text { and } \quad\left\{\overleftarrow{a}_{P}^{\mu} \mid P \in \hat{A}^{\mu}\right\} \text { of } \overleftarrow{A}^{\mu} \tag{4.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
a_{S T}^{\lambda} \vec{a}_{Q}^{\mu}=\delta_{\lambda \mu} \delta_{T Q} \vec{a}_{S}^{\mu} \quad \text { and } \quad \overleftarrow{a}_{P}^{\mu} a_{S T}^{\lambda}=\delta_{\lambda \mu} \delta_{P S} \overleftarrow{a}_{T}^{\mu} \tag{4.10}
\end{equation*}
$$

then

$$
\begin{align*}
& \bar{L} \text { has basis }\left\{\vec{a}_{P}^{\mu} \otimes \ell_{X}^{\mu} \mid \mu \in \hat{A}, P \in \hat{A}^{\mu}, X \in \hat{L}^{\mu}\right\} \quad \text { and } \\
& \bar{R} \text { has basis }\left\{r_{Y}^{\mu} \otimes \overleftarrow{a}_{Q}^{\mu} \mid \mu \in \hat{A}, Q \in \hat{A}^{\mu}, Y \in \hat{R}^{\mu}\right\} \text {. } \tag{4.11}
\end{align*}
$$

With notation as in (4.9) and (4.11) the map $\bar{\varepsilon}: \bar{L} \otimes_{\mathbb{F}} \bar{R} \rightarrow \bar{A}$ is determined by the constants $\varepsilon_{X Y}^{\mu} \in \mathbb{F}$ given by

$$
\begin{equation*}
\varepsilon\left(\vec{a}_{Q}^{\mu} \otimes \ell_{X}^{\mu} \otimes r_{Y}^{\mu} \otimes \overleftarrow{a}_{P}^{\mu}\right)=\varepsilon_{X Y}^{\mu} a_{Q P}^{\mu} \tag{4.12}
\end{equation*}
$$

and $\varepsilon_{X Y}^{\mu}$ does not depend on Q and P since

$$
\begin{align*}
\varepsilon\left(\vec{a}_{S}^{\lambda} \otimes \ell_{X}^{\lambda} \otimes r_{Y}^{\mu} \otimes \overleftarrow{a}_{T}^{\mu}\right) & =\varepsilon\left(a_{S Q}^{\lambda} \vec{a}_{Q}^{\lambda} \otimes \ell_{X}^{\lambda} \otimes r_{Y}^{\mu} \otimes \overleftarrow{a}_{P}^{\mu} a_{P T}^{\mu}\right) \\
& =a_{S Q}^{\lambda} \varepsilon\left(\vec{a}_{Q}^{\lambda} \otimes \ell_{X}^{\lambda} \otimes r_{Y}^{\mu} \otimes \overleftarrow{a}_{P}^{\mu}\right) a_{P T}^{\mu} \tag{4.13}\\
& =\delta_{\lambda \mu} a_{S Q}^{\mu} \varepsilon_{X Y}^{\mu} a_{Q P}^{\mu} a_{P T}^{\mu}=\varepsilon_{X Y}^{\mu} a_{S T}^{\mu} .
\end{align*}
$$

For each $\mu \in \hat{A}$ construct a matrix

$$
\begin{equation*}
\mathcal{E}^{\mu}=\left(\varepsilon_{X Y}^{\mu}\right) \tag{4.14}
\end{equation*}
$$

and let $D^{\mu}=\left(D_{S T}^{\mu}\right)$ and $C^{\mu}=\left(C_{Z W}^{\mu}\right)$ be invertible matrices such that $D^{\mu} \mathcal{E}^{\mu} C^{\mu}$ is a diagonal matrix with diagonal entries denoted as ε_{X}^{μ},

$$
\begin{equation*}
D^{\mu} \mathcal{E}^{\mu} C^{\mu}=\operatorname{diag}\left(\varepsilon_{X}^{\mu}\right) \tag{4.15}
\end{equation*}
$$

In pactice D^{μ} and C^{μ} are found by row reducing \mathcal{E}^{μ} to its Smith normal form. The ε_{P}^{μ} are the invariant factors of \mathcal{E}^{μ}.

For $\mu \in \hat{A}, X \in \hat{R}^{\mu}, Y \in \hat{L}^{\mu}$, define the following elements of $\bar{R} \otimes_{\bar{A}} \bar{L}$:

$$
\begin{equation*}
\bar{m}_{X Y}^{\mu}=r_{X}^{\mu} \otimes \vec{a}_{P}^{\mu} \otimes \overleftarrow{a}_{P}^{\mu} \otimes \ell_{Y}^{\mu}, \quad \text { and } \quad \bar{n}_{X Y}^{\mu}=\sum_{Q_{1}, Q_{2}} C_{Q_{1} X}^{\mu} D_{Y Q_{2}}^{\mu} \bar{m}_{Q_{1} Q_{2}}^{\mu} \tag{4.16}
\end{equation*}
$$

Since

$$
\begin{align*}
\left(r_{S}^{\lambda} \otimes \vec{a}_{W}^{\lambda} \otimes \overleftarrow{a}_{Z}^{\mu} \otimes \ell_{T}^{\mu}\right) & =\left(r_{S}^{\lambda} \otimes \vec{a}_{P}^{\lambda} a_{P W}^{\lambda} \otimes \overleftarrow{a}_{Z}^{\mu} \otimes \ell_{T}^{\mu}\right) \\
& =\left(r_{S}^{\lambda} \otimes \vec{a}_{P}^{\lambda} \otimes a_{P W}^{\lambda} \overleftarrow{a}_{Z}^{\mu} \otimes \ell_{T}^{\mu}\right) \tag{4.17}\\
& =\delta_{\lambda \mu} \delta_{W Z}\left(r_{S}^{\lambda} \otimes \vec{a}_{P}^{\lambda} \otimes \overleftarrow{a}_{P}^{\lambda} \otimes \ell_{T}^{\lambda}\right)
\end{align*}
$$

the element $\bar{m}_{X Y}^{\mu}$ does not depend on P and $\left\{\bar{m}_{X Y}^{\mu} \mid \mu \in \hat{A}, X \in \hat{R}^{\mu}, Y \in \hat{L}^{\mu}\right\}$ is a basis of $\bar{R} \otimes_{\bar{A}} \bar{L}$.

The following theorem determines the structure of the algebras $R \otimes_{A} L$ and $\bar{R} \otimes_{\bar{A}} \bar{L}$. This theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit in [4, Section 2.2] and part (b) is proved in [5].

Theorem 4.18. Let $\pi: R \otimes_{A} L \rightarrow \bar{R} \otimes_{\bar{A}} \bar{L}$ be as in (4.7) and let $\left\{k_{i}\right\}$ be a basis of $\operatorname{ker}(\pi)=R \otimes_{A} N L$. Let

$$
n_{Y T}^{\mu} \in R \otimes_{A} L \quad \text { be such that } \quad \pi\left(n_{Y T}^{\mu}\right)=\bar{n}_{Y T}^{\mu},
$$

where the elements $\bar{n}_{Y T}^{\mu} \in \bar{R} \otimes_{\bar{A}} \bar{L}$ are as defined in (4.16).
(a) The sets $\left\{\bar{m}_{X Y}^{\mu} \mid \mu \in \hat{A}, X \in \hat{R}^{\mu}, Y \in \hat{L}^{\mu}\right\}$ and $\left\{\bar{n}_{X Y}^{\mu} \mid \mu \in \hat{A}, X \in \hat{R}^{\mu}, Y \in \hat{L}^{\mu}\right\}$ (see (4.16)) are bases of $\bar{R} \otimes_{\bar{A}} \bar{L}$, which satisfy

$$
\bar{m}_{S T}^{\lambda} \bar{m}_{Q P}^{\mu}=\delta_{\lambda \mu} \varepsilon_{T Q}^{\mu} \bar{m}_{S P}^{\mu} \quad \text { and } \quad \bar{n}_{S T}^{\lambda} \bar{n}_{Q P}^{\mu}=\delta_{\lambda \mu} \delta_{T Q} \varepsilon_{T}^{\mu} \bar{n}_{S P}^{\mu},
$$

where $\varepsilon_{T Q}^{\mu}$ and ε_{T}^{μ} are as defined in (4.12) and (4.15).
(b) The radical of the algebra $R \otimes_{A} L$ is

$$
\operatorname{Rad}\left(R \otimes_{A} L\right)=\mathbb{F}-\operatorname{span}\left\{k_{i}, n_{Y T}^{\mu} \mid \varepsilon_{Y}^{\mu}=0 \text { or } \varepsilon_{T}^{\mu}=0\right\}
$$

and the images of the elements

$$
e_{Y T}^{\mu}=\frac{1}{\varepsilon_{T}^{\mu}} n_{Y T}^{\mu}, \quad \text { for } \varepsilon_{Y}^{\mu} \neq 0 \text { and } \varepsilon_{T}^{\mu} \neq 0
$$

are a set of matrix units in $\left(R \otimes_{A} L\right) / \operatorname{Rad}\left(R \otimes_{A} L\right)$.
Proof. The first statement in (a) follows from the equations in (4.17). If ($\left.C^{-1}\right)^{\mu}$ and $\left(D^{-1}\right)^{\mu}$ are inverses of the matrices C^{μ} and D^{μ} then

$$
\begin{aligned}
\sum_{X, Y}\left(C^{-1}\right)_{X S}^{\mu}\left(D^{-1}\right)_{T Y}^{\mu} \bar{n}_{X Y} & =\sum_{X, Y, Q_{1}, Q_{2}}\left(C^{-1}\right)_{X S}^{\mu} C_{Q_{1} X}^{\mu} \bar{m}_{Q_{1} Q_{2}} D_{Y Q_{2}}^{\mu}\left(D^{-1}\right)_{T Y}^{\mu} \\
& =\sum_{Q_{1}, Q_{2}} \delta_{S Q_{1}} \delta_{Q_{2} T} \bar{m}_{Q_{1} Q_{2}}^{\mu}=\bar{m}_{S T}^{\mu}
\end{aligned}
$$

and so the elements $\bar{m}_{S T}^{\mu}$ can be written as linear combinations of the $\bar{n}_{X Y}^{\mu}$. This establishes the second statement in (a). By direct computation, using (4.10) and (4.12),

$$
\begin{aligned}
\bar{m}_{S T}^{\lambda} \bar{m}_{Q P}^{\mu} & =\left(r_{S}^{\lambda} \otimes \vec{a}_{W}^{\lambda} \otimes \overleftarrow{a}_{W}^{\lambda} \otimes \ell_{T}^{\lambda}\right)\left(r_{Q}^{\mu} \otimes \vec{a}_{Z}^{\mu} \otimes \overleftarrow{a}_{Z}^{\mu} \otimes \ell_{P}^{\mu}\right) \\
& =r_{S}^{\lambda} \otimes \vec{a}_{W}^{\lambda} \otimes \varepsilon\left(\overleftarrow{a}_{W}^{\lambda} \otimes \ell_{T}^{\lambda} \otimes r_{Q}^{\mu} \otimes \vec{a}_{Z}^{\mu}\right) \overleftarrow{a}_{Z}^{\mu} \otimes \ell_{P}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& =\delta_{\lambda \mu}\left(r_{S}^{\lambda} \otimes \vec{a}_{W}^{\lambda} \otimes \varepsilon_{T Q}^{\lambda} \bar{a}_{W Z}^{\lambda} \overleftarrow{a}_{Z}^{\lambda} \otimes \ell_{P}^{\lambda}\right) \\
& =\delta_{\lambda \mu} \varepsilon_{T Q}^{\lambda}\left(r_{S}^{\lambda} \otimes \vec{a}_{W}^{\lambda} \otimes \overleftarrow{a}_{W}^{\lambda} \otimes \ell_{P}^{\lambda}\right)=\delta_{\lambda \mu} \varepsilon_{T Q}^{\lambda} \bar{m}_{S P}^{\lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{n}_{S T}^{\lambda} \bar{n}_{U V}^{\mu} & =\sum_{Q_{1}, Q_{2}, Q_{3}, Q_{4}} C_{Q_{1} S}^{\lambda} D_{T Q_{2}}^{\lambda} \bar{m}_{Q_{1} Q_{2}}^{\lambda} C_{Q_{3} U}^{\mu} D_{V Q_{4}}^{\mu} \bar{m}_{Q_{3} Q_{4}}^{\mu} \\
& =\sum_{Q_{1}, Q_{2}, Q_{3}, Q_{4}} \delta_{\lambda \mu} C_{Q_{1} S}^{\lambda} D_{T}^{\lambda}{Q_{2}} \varepsilon_{Q_{2} Q_{3}}^{\mu} C_{Q_{3} U}^{\mu} D_{V Q_{4}}^{\mu} \bar{m}_{Q_{1} Q_{4}}^{\mu} \\
& =\delta_{\lambda \mu} \sum_{Q_{1}, Q_{4}} \delta_{T U} \varepsilon_{T}^{\mu} C_{Q_{1} S}^{\mu} D_{V Q_{4}}^{\mu} \bar{m}_{Q_{1} Q_{4}}^{\mu}=\delta_{\lambda \mu} \delta_{T U} \varepsilon_{T}^{\mu} \bar{n}_{S V}^{\mu} .
\end{aligned}
$$

(b) Let $N=\operatorname{Rad}(A)$ as in (4.5). If $r_{1} \otimes n_{1} \ell_{1}, r_{2} \otimes n_{2} \ell_{2} \in R \otimes_{A} N L$ with $n_{1} \in N^{i}$ for some $i \in \mathbb{Z}_{>0}$ then

$$
\begin{aligned}
\left(r_{1} \otimes n_{1} \ell_{1}\right)\left(r_{2} \otimes n_{2} \ell_{2}\right) & =r_{1} \otimes \varepsilon\left(n_{1} \ell_{1} \otimes r_{2}\right) n_{2} \ell_{2} \\
& =r_{1} \otimes n_{1} \varepsilon\left(\ell_{1} \otimes r_{2}\right) n_{2} \ell_{2} \in R \otimes_{A} N^{i+1} L .
\end{aligned}
$$

Since N is a nilpotent ideal of A it follows that $\operatorname{ker}(\pi)=R \otimes_{A} N L$ is a nilpotent ideal of $R \otimes_{A} L$. So $\operatorname{ker}(\pi) \subseteq \operatorname{Rad}\left(R \otimes_{A} L\right)$.

Let

$$
I=\mathbb{F}-\operatorname{span}\left\{k_{i}, n_{Y T}^{\mu} \mid \varepsilon_{Y}^{\mu}=0 \text { or } \varepsilon_{T}^{\mu}=0\right\}
$$

The multiplication rule for the $\bar{n}_{Y T}$ implies that $\pi(I)$ is an ideal of $\bar{R} \otimes_{\bar{A}} \bar{L}$ and thus, by the correspondence between ideals of $\bar{R} \otimes_{\bar{A}} \bar{L}$ and ideals of $R \otimes_{A} L$ which contain $\operatorname{ker}(\pi)$, I is an ideal of $R \otimes_{A} L$.

$$
\begin{aligned}
& \text { If } \bar{n}_{Y_{1} T_{1}}^{\mu}, \bar{n}_{Y_{2} T_{2}}^{\mu}, \bar{n}_{Y_{3} T_{3}}^{\mu} \in\left\{\bar{n}_{Y T}^{\mu} \mid \varepsilon_{Y}^{\mu}=0 \text { or } \varepsilon_{T}^{\mu}=0\right\} \text { then } \\
& \qquad \bar{n}_{Y_{1} T_{1}}^{\mu} \bar{n}_{Y_{2} T_{2}}^{\mu} \bar{n}_{Y_{3} T_{3}}^{\mu}=\delta_{T_{1} Y_{2}} \varepsilon_{Y_{2}}^{\mu} \bar{n}_{Y_{1} T_{2}}^{\mu} \bar{n}_{Y_{3} T_{3}}^{\mu}=\delta_{T_{1} Y_{2}} \delta_{T_{2} Y_{3}} \varepsilon_{Y_{2}}^{\mu} \varepsilon_{T_{2}}^{\mu} \bar{n}_{Y_{1} T_{3}}^{\mu}=0,
\end{aligned}
$$

since $\varepsilon_{Y_{2}}^{\mu}=0$ or $\varepsilon_{T_{2}}^{\mu}=0$. Thus any product $n_{Y_{1} T_{1}}^{\mu} n_{Y_{2} T_{2}}^{\mu} n_{Y_{3} T_{3}}^{\mu}$ of three basis elements of I is in $\operatorname{ker}(\pi)$. Since $\operatorname{ker}(\pi)$ is a nilpotent ideal of $R \otimes_{A} L$ it follows that I is an ideal of $R \otimes_{A} L$ consisting of nilpotent elements. So $I \subseteq \operatorname{Rad}\left(R \otimes_{A} L\right)$.

Since

$$
e_{Y T}^{\lambda} e_{U V}^{\mu}=\frac{1}{\varepsilon_{T}^{\lambda}} \frac{1}{\varepsilon_{V}^{\mu}} n_{Y T}^{\lambda} n_{U V}^{\mu}=\delta_{\lambda \mu} \delta_{T U} \frac{1}{\varepsilon_{T}^{\lambda} \varepsilon_{V}^{\lambda}} \varepsilon_{T}^{\lambda} n_{Y V}^{\lambda}=\delta_{\lambda \mu} \delta_{T U} e_{Y V}^{\lambda} \quad \bmod I
$$

the images of the elements $e_{Y T}^{\lambda}$ in (4.7) form a set of matrix units in the algebra $\left(R \otimes_{A} L\right) / I$. Thus $\left(R \otimes_{A} L\right) / I$ is a split semisimple algebra and so $I \supseteq \operatorname{Rad}\left(R \otimes_{A} L\right)$.

Basic constructions for $A \subseteq B$
Let $A \subseteq B$ be an inclusion of algebras. Let $\varepsilon_{1}: B \rightarrow A$ be an (A, A) bimodule homomorphism and use the (A, A)-bimodule homomorphism

$$
\begin{align*}
\varepsilon: B \otimes_{\mathbb{F}} B & \longrightarrow
\end{align*} \begin{gathered}
A \tag{4.19}\\
b_{1} \otimes b_{2}
\end{gathered} \longmapsto \varepsilon_{1}\left(b_{1} b_{2}\right)
$$

and (4.2) to define the basic construction $B \otimes_{A} B$. Theorem 4.28 below provides the structure of $B \otimes_{A} B$ in the case where both A and B are split semisimple.

Let us record the following facts:
(4.20a) If $p \in A$ and $p A p=\mathbb{F} p$ then $(p \otimes 1)\left(B \otimes_{A} B\right)(p \otimes 1)=\mathbb{F} \cdot(p \otimes 1)$.
(4.20b) If p is an idempotent of A and $p A p=\mathbb{F} p$ then $\varepsilon_{1}(1) \in \mathbb{F}$.
(4.20c) If $p \in A, p A p=\mathbb{F} p$ and if $\varepsilon_{1}(1) \neq 0$, then $\frac{1}{\varepsilon(1)}(p \otimes 1)$ is a minimal idempotent in $B \otimes_{A} B$.
These are justfied as follows. If $p \in A$ and $p A p=\mathbb{F} p$ and $b_{1}, b_{2} \in B$ then $(p \otimes 1)\left(b_{1} \otimes b_{2}\right)(p \otimes 1)=\left(p \otimes \varepsilon_{1}\left(b_{1}\right) b_{2}\right)(p \otimes 1)=p \otimes \varepsilon_{1}\left(b_{1}\right) \varepsilon_{1}\left(b_{2} p\right)=p \varepsilon_{1}\left(b_{1}\right) \varepsilon_{1}\left(b_{2}\right) p \otimes$ $1=\xi p \otimes 1$, for some constant $\xi \in \mathbb{F}$. This establishes (a). If p is an indempotent of A and $p A p=\mathbb{F} p$ then $p \varepsilon_{1}(1) p=\varepsilon_{1}\left(p^{2}\right)=\varepsilon_{1}(1 \cdot p)=\varepsilon_{1}(1) p$ and so (b) holds. If $p \in A$ and $p A p=\mathbb{F} p$ then $(p \otimes 1)^{2}=\varepsilon_{1}(1)(p \otimes 1)$ and so, if $\varepsilon_{1}(1) \neq 0$, then $\frac{1}{\varepsilon(1)}(p \otimes 1)$ is a minimal idempotent in $B \otimes_{A} B$.

Assume A and B are split semisimple. Let
\hat{A} be an index set for the irreducible A-modules A^{μ},
\hat{B} be an index set for the irreducible B-modules B^{λ}, and let
$\hat{A}^{\mu}=\{P \rightarrow \mu\}$ be an index set for a basis of the simple A-module A^{μ},
for each $\mu \in \hat{A}$ (the composite $P \rightarrow \mu$ is viewed as a single symbol). We think of \hat{A}^{μ} as the set of "paths to μ " in the two-level graph
Γ with vertices on level A: \hat{A}, vertices on level B: \hat{B}, and m_{μ}^{λ} edges $\mu \rightarrow \lambda$ if A^{μ} appears with multiplicity m_{μ}^{λ} in $\operatorname{Res}_{a}^{B}\left(B^{\lambda}\right)$.
For example, the graph Γ for the symmetric group algebras $A=\mathbb{C} S_{3}$ and $B=\mathbb{C} S_{4}$ is

If $\lambda \in \hat{B}$ then

$$
\begin{equation*}
\hat{B}^{\lambda}=\left\{P \rightarrow \mu \rightarrow \lambda \mid \mu \in \hat{A}, P \rightarrow \mu \in \hat{A}^{\mu} \text { and } \mu \rightarrow \lambda \text { is an edge in } \Gamma\right\} \tag{4.22}
\end{equation*}
$$

is an index set for a basis of the irreducible B-module B^{λ}. We think of \hat{B}^{λ} as the set of paths to λ in the graph Γ. Let

$$
\begin{align*}
& \left\{a_{\mu Q} \mid \mu \in \hat{A}, P \rightarrow \mu, Q \rightarrow \mu \in \hat{A}^{\mu}\right\} \quad \text { and } \\
& \quad\left\{\left.\begin{array}{c}
\substack{P Q \\
\mu \nu} \\
\lambda
\end{array} \right\rvert\, \lambda \in \hat{B}, P \rightarrow \mu \rightarrow \lambda, Q \rightarrow v \rightarrow \lambda \in \hat{B}^{\lambda}\right\}, \tag{4.23}
\end{align*}
$$

be sets of matrix units in the algebras A and B, respectively, so that
and such that, for all $\mu \in \hat{A}, P, Q \in \hat{A}^{\mu}$,

$$
\begin{equation*}
a_{\substack{P Q \\ \mu}}^{\mu}=\sum_{\mu \rightarrow \lambda} b_{\substack{P_{Q} \\ \lambda}}^{\lambda} \tag{4.25}
\end{equation*}
$$

where the sum is over all edges $\mu \rightarrow \lambda$ in the graph Γ.
Though is not necessary for the following it is conceptually helpful to let $C=B \otimes_{A} B$, let $\hat{C}=\hat{A}$, and extend the graph Γ to a graph $\hat{\Gamma}$ with three levels, so that the edges between level B and level C are the reflections of the edges between level A and level B. In other words,

$$
\begin{align*}
& \hat{\Gamma} \text { has vertices on level } C: \hat{C}, \quad \text { and } \\
& \quad \text { an edge } \lambda \rightarrow \mu, \lambda \in \hat{B}, \mu \in \hat{C} \text {, for each edge } \mu \rightarrow \lambda, \mu \in \hat{A}, \lambda \in \hat{B} . \tag{4.26}
\end{align*}
$$

For each $v \in \hat{C}$ define

$$
\hat{C}^{v}=\left\{\begin{array}{l|l}
P \rightarrow \mu \rightarrow \lambda \rightarrow v & \begin{array}{c}
\mu \in \hat{A}, \lambda \in \hat{B}, v \in \hat{C}, P \rightarrow \mu \in \hat{A}^{\mu} \text { and } \\
\mu \rightarrow \lambda \text { and } \lambda \rightarrow v \text { are edges in } \hat{\Gamma}
\end{array} \tag{4.27}
\end{array}\right\}
$$

so that \hat{C}^{ν} is the set of "paths to v " in the graph $\hat{\Gamma}$. Continuing with our previous example, $\hat{\Gamma}$ is

Theorem 4.28. Assume A and B are split semisimple, and let the notation and assumption be as in (4.21)-(4.25).
(a) The elements of $B \otimes_{A} B$ given by

$$
\underset{\substack{P_{\gamma} \\ \lambda}}{\mu_{\lambda}} \otimes \underset{\substack{\gamma_{V} \\ \sigma}}{b_{T_{0}}}
$$

do not depend on the choice of $T \rightarrow \gamma \in \hat{A}^{\gamma}$ and form a basis of $B \otimes_{A} B$.
(b) For each edge $\mu \rightarrow \lambda$ in Γ define a constant $\varepsilon_{\mu}^{\lambda} \in \mathbb{F}$ by

$$
\varepsilon_{1}\left(\begin{array}{c}
b_{P P} \tag{4.29}\\
b_{\mu} \\
\lambda
\end{array}\right)=\varepsilon_{\mu}^{\lambda} a_{\mu P} .
$$

Then $\varepsilon_{\mu}^{\lambda}$ is independent of the choice of $P \rightarrow \mu \in \hat{A}^{\mu}$ and

$$
\begin{aligned}
& \operatorname{Rad}\left(B \otimes_{A} B\right) \quad \text { has basis } \quad\left\{\left.\begin{array}{c}
b_{P T} \\
\substack{\mu_{\gamma} \\
\lambda}
\end{array} b_{\substack{\gamma_{\sigma} \\
\sigma}} \right\rvert\, \varepsilon_{\mu}^{\lambda}=0 \text { or } \varepsilon_{v}^{\sigma}=0\right\},
\end{aligned}
$$

and the images of the elements

$$
\underset{\substack{\mu \nu \\
\lambda_{\gamma} \\
\gamma}}{e_{P Q}}=\left(\frac{1}{\varepsilon_{\gamma}^{\sigma}}\right)\left(\begin{array}{c}
\substack{b_{P T} \\
\mu \nu \\
\lambda}
\end{array} \otimes b_{\substack{\gamma_{V} Q \\
\sigma}}\right), \quad \text { such that } \quad \varepsilon_{\mu}^{\lambda} \neq 0 \text { and } \varepsilon_{\nu}^{\sigma} \neq 0,
$$

form a set of matrix units in $\left(B \otimes_{A} B\right) / \operatorname{Rad}\left(B \otimes_{A} B\right)$.
(c) Let $\operatorname{tr}_{B}: B \rightarrow \mathbb{F}$ and $\operatorname{tr}_{A}: A \rightarrow \mathbb{F}$ be traces on B and A, respectively, such that

$$
\begin{equation*}
\operatorname{tr}_{A}\left(\varepsilon_{1}(b)\right)=\operatorname{tr}_{B}(b), \quad \text { for all } b \in B \tag{4.30}
\end{equation*}
$$

Let $\chi_{A}^{\mu}, \mu \in \hat{A}$, and $\chi_{B}^{\lambda}, \lambda \in \hat{B}$, be the irreducible characters of the algebras A and B, respectively. Define constants $\operatorname{tr}_{A}^{\mu}, \mu \in \hat{A}$, and $\operatorname{tr}_{B}^{\lambda}, \lambda \in \hat{B}$, by the equations

$$
\begin{equation*}
\operatorname{tr}_{A}=\sum_{\mu \in \hat{A}} \operatorname{tr}_{A}^{\mu} \chi_{A}^{\mu} \quad \text { and } \quad \operatorname{tr}_{B}=\sum_{\lambda \in \hat{B}} \operatorname{tr}_{B}^{\lambda} \chi_{B}^{\lambda} \tag{4.31}
\end{equation*}
$$

respectively. Then the constants $\varepsilon_{\mu}^{\lambda}$ defined in (4.29) satisfy

$$
\operatorname{tr}_{B}^{\lambda}=\varepsilon_{\mu}^{\lambda} \operatorname{tr}_{A}^{\mu}
$$

(d) In the algebra $B \otimes_{A} B$,

$$
\begin{aligned}
& 1 \otimes 1= \sum_{\substack{P \\
\perp \\
\lambda^{\mu}}} b_{\substack{P_{\mu} P \\
\lambda}} \otimes b_{\substack{P_{\mu} P \\
\gamma}} \\
& \lambda^{L^{\mu}} \searrow_{\gamma}
\end{aligned}
$$

(e) By left multiplication, the algebra $B \otimes_{A} B$ is a left B-module. If $\operatorname{Rad}\left(B \otimes_{A} B\right)$ is a B-submodule of $B \otimes_{A} B$ and $\iota: \quad B \rightarrow\left(B \otimes_{A} B\right) / \operatorname{Rad}\left(B \otimes_{A} B\right)$ is a left B-module homomorphism then

$$
\iota\left(b_{\substack{R S \\ \tau \beta \\ \pi}}\right)=\sum_{\pi \rightarrow \gamma} e_{\substack{R B \\ \pi \beta \\ \gamma}}
$$

Proof. By (4.11) and (4.25),
as left A-modules and as right A-modules, respectively. Identify the left and right hand sides of these isomorphisms. Then, by (4.17), the elements of $C=B \otimes_{A} B$ given by
do not depend on $T \rightarrow \gamma \in \hat{A}^{\gamma}$ and form a basis of $B \otimes_{A} B$.
(b) By (4.12), the map $\varepsilon: B \otimes_{\mathbb{F}} B \rightarrow A$ is determined by the values
since

The matrix \mathcal{E}^{μ} given by (4.14) is diagonal with entries $\varepsilon_{\mu}^{\lambda}$ given by (4.29) and, by (4.17), $\varepsilon_{\mu}^{\lambda}$ is independent of $P \rightarrow \mu \in \hat{A}^{\mu}$. By Theorem 4.18(a),
in the algebra C. The rest of the statements in part (b) follow from Theorem 4.18(b).
(c) Evaluating the equations in (4.31) and using (4.29) gives

$$
\operatorname{tr}_{B}^{\lambda}=\operatorname{tr}_{B}\left(\begin{array}{c}
b_{\substack{\mu P \\
\lambda}}
\end{array}\right)=\operatorname{tr}_{A}\left(\varepsilon_{1}\left(\begin{array}{c}
b_{\substack{P P \\
\lambda}} \tag{4.35}
\end{array}\right)\right)=\varepsilon_{\mu}^{\lambda} \operatorname{tr}_{A}\left({\underset{\mu P P}{ }}_{a_{\mu}}\right)=\varepsilon_{\mu}^{\lambda} \operatorname{tr}_{A}^{\mu}
$$

(d) Since

$$
1=\sum_{P \rightarrow \mu \rightarrow \lambda} b_{\substack{P P \\ \mu \mu \\ \lambda}} \quad \text { in the algebra } B,
$$

it follows from part (b) and (4.16) that

$$
\begin{aligned}
& 1 \otimes 1=\left(\sum_{P \rightarrow \mu \rightarrow \lambda} b_{\substack{P P \\
\mu_{\mu} \\
\lambda}}\right) \otimes\left(\sum_{Q \rightarrow v \rightarrow \gamma} b_{\substack{Q Q \\
\nu}}\right)
\end{aligned}
$$

giving part (d).
(e) By left multiplication, the algebra $B \otimes_{A} B$ is a left B-module. If $\varepsilon_{\gamma}^{\lambda} \neq 0$ and $\varepsilon_{\gamma}^{\sigma} \neq 0$ then

Thus, if $\iota: B \rightarrow\left(B \otimes_{A} B\right) / \operatorname{Rad}\left(B \otimes_{A} B\right)$ is a left B-module homomorphism then

$$
\begin{aligned}
& \iota\left(\begin{array}{c}
b_{R S} \\
\tau \beta \\
\tau
\end{array}\right)=\iota\left(\begin{array}{c}
b_{R S} \\
\tau \beta \\
\tau
\end{array}\right) \cdot 1=b_{\substack{R S \\
\tau \beta \\
\pi}} \sum_{P \rightarrow \mu \rightarrow \lambda \rightarrow \gamma} e_{\substack{P P \\
\mu \mu \\
\lambda}} \\
& =\sum_{P \rightarrow \mu \rightarrow \lambda \rightarrow \gamma} \delta_{\substack{S \mu \\
\beta \mu \\
\pi \lambda}} e_{\substack{R P \\
\tau \mu \\
\pi \lambda}}=\sum_{\pi \rightarrow \gamma} e_{\substack{R S \\
\tau \beta \\
\tau \beta \\
\gamma}} .
\end{aligned}
$$

5. Semisimple algebras

Let R be a integral domain and let A_{R} be an algebra over R, so that A_{R} has an R-basis $\left\{b_{1}, \ldots, b_{d}\right\}$,

$$
A_{R}=R \text {-span }\left\{b_{1}, \ldots, b_{d}\right\} \quad \text { and } \quad b_{i} b_{j}=\sum_{k=1}^{d} r_{i j}^{k} b_{k}, \quad \text { with } r_{i j}^{k} \in R \text {, }
$$

making A_{R} a ring with identity. Let \mathbb{F} be the field of fractions of R, let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F}, and set

$$
A=\overline{\mathbb{F}} \otimes_{R} A_{R}=\overline{\mathbb{F}}-\operatorname{span}\left\{b_{1}, \ldots, b_{d}\right\}
$$

with multiplication determined by the multiplication in A_{R}. Then A is an algebra over $\overline{\mathbb{F}}$.
A trace on A is a linear map $\vec{t}: A \rightarrow \overline{\mathbb{F}}$ such that

$$
\vec{t}\left(a_{1} a_{2}\right)=\vec{t}\left(a_{2} a_{1}\right), \quad \text { for all } a_{1}, a_{2} \in A
$$

A trace \vec{t} on A is nondegenerate if for each $b \in A$ there is an $a \in A$ such that $\vec{t}(b a) \neq 0$.
Lemma 5.1. Let A be a finite dimensional algebra over a field \mathbb{F}; let \vec{t} be a trace on A. Define a symmetric bilinear form $\langle\rangle:, A \times A \rightarrow \mathbb{F}$ on A by $\left\langle a_{1}, a_{2}\right\rangle=\vec{t}\left(a_{1} a_{2}\right)$, for all $a_{1}, a_{2} \in A$. Let B be a basis of A. Let $G=\left(\left\langle b, b^{\prime}\right\rangle\right)_{b, b^{\prime} \in B}$ be the matrix of the form \langle, with respect to B. The following are equivalent:
(1) The trace \vec{t} is nondegenerate.
(2) $\operatorname{det} G \neq 0$.
(3) The dual basis B^{*} to the basis B with respect to the form \langle,$\rangle exists.$

Proof. (2) \Leftrightarrow (1): The trace \vec{t} is degenerate if there is an element $a \in A, a \neq 0$, such that $\vec{t}(a c)=0$ for all $c \in B$. If $a_{b} \in \overline{\mathbb{F}}$ are such that

$$
a=\sum_{b \in B} a_{b} b, \quad \text { then } \quad 0=\langle a, c\rangle=\sum_{b \in B} a_{b}\langle b, c\rangle
$$

for all $c \in B$. So a exists if and only if the columns of G are linearly dependent, i.e. if and only if G is not invertible.
(3) $\Leftrightarrow(2)$: Let $B^{*}=\left\{b^{*}\right\}$ be the dual basis to $\{b\}$ with respect to \langle,$\rangle and let P$ be the change of basis matrix from B to B^{*}. Then

$$
d^{*}=\sum_{b \in B} P_{d b} b, \quad \text { and } \quad \delta_{b c}=\left\langle b, d^{*}\right\rangle=\sum_{d \in B} P_{d c}\langle b, c\rangle=\left(G P^{t}\right)_{b, c} .
$$

So P^{t}, the transpose of P, is the inverse of the matrix G. So the dual basis to B exists if and only if G is invertible, i.e. if and only if $\operatorname{det} G \neq 0$.

Proposition 5.2. Let A be an algebra and let \vec{t} be a nondegenerate trace on A. Define a symmetric bilinear form $\langle\rangle:, A \times A \rightarrow \overline{\mathbb{F}}$ on A by $\left\langle a_{1}, a_{2}\right\rangle=\vec{t}\left(a_{1}, a_{2}\right)$, for all $a_{1}, a_{2} \in A$. Let B be a basis of A and let B^{*} be the dual basis to B with respect to \langle,$\rangle .$
(a) Let $a \in$ A. Then

$$
[a]=\sum_{b \in B} b a b^{*} \text { is an element of the center } Z(A) \text { of } A
$$

and $[a]$ does not depend on the choice of the basis B.
(b) Let M and N be A-modules and let $\phi \in \operatorname{Hom}_{\overline{\mathbb{F}}}(M, N)$ and define

$$
[\phi]=\sum_{b \in B} b \phi b^{*} .
$$

Then $[\phi] \in \operatorname{Hom}_{A}(M, N)$ and $[\phi]$ does not depend on the choice of the basis B.
Proof. (a) Let $c \in A$. Then

$$
\begin{aligned}
c[a] & =\sum_{b \in B} c b a b^{*}=\sum_{b \in B} \sum_{d \in B}\left\langle c b, d^{*}\right\rangle d a b^{*} \\
& =\sum_{d \in B} d a \sum_{b \in B}\left\langle d^{*} c, b\right\rangle b^{*}=\sum_{d \in B} d a d^{*} c=[a] c,
\end{aligned}
$$

since $\left\langle c b, d^{*}\right\rangle=\vec{t}\left(c b d^{*}\right)=\vec{t}\left(d^{*} c b\right)=\left\langle d^{*} c, b\right\rangle$. So $[a] \in Z(A)$.
Let D be another basis of A and let D^{*} be the dual basis to D with respect to \langle,$\rangle . Let$ $P=\left(P_{d b}\right)$ be the transition matrix from D to B and let P^{-1} be the inverse of P. Then

$$
d=\sum_{b \in B} P_{d b} b \quad \text { and } \quad d^{*}=\sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} d} \tilde{b}^{*},
$$

since

$$
\left\langle d, \tilde{d}^{*}\right\rangle=\left\langle\sum_{b \in B} P_{d b} b, \sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} \tilde{d}} \tilde{b}^{*}\right\rangle=\sum_{b, \tilde{b} \in B} P_{d b}\left(P^{-1}\right)_{\tilde{b} \tilde{d}} \delta_{b \tilde{b}}=\delta_{d \tilde{d}}
$$

So

$$
\sum_{d \in D} d a d^{*}=\sum_{d \in D} \sum_{b \in B} P_{d b} b a \sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} d} \tilde{b}^{*}=\sum_{b, \tilde{b} \in B} b a \tilde{b}^{*} \delta_{b \tilde{b}}=\sum_{b \in B} b a b^{*} .
$$

So $[a]$ does not depend on the choice of the basis B.

The proof of part (b) is the same as the proof of part (a) except with a replaced by ϕ.

Let A be an algebra and let M be an A-module. Define

$$
\operatorname{End}_{A}(M)=\{T \in \operatorname{End}(M) \mid T a=a T \text { for all } a \in A\}
$$

Theorem 5.3 (Schur's lemma). Let A be a finite dimensional algebra over an algebraically closed field $\overline{\mathbb{F}}$.
(1) Let A^{λ} be a simple A-module. Then $\operatorname{End}_{A}\left(A^{\lambda}\right)=\overline{\mathbb{F}} \cdot \operatorname{Id}_{A^{\lambda}}$.
(2) If A^{λ} and A^{μ} are nonisomorphic simple A-modules then $\operatorname{Hom}_{A}\left(A^{\lambda}, A^{\mu}\right)=0$.

Proof. Let $T: A^{\lambda} \rightarrow A^{\mu}$ be a nonzero A-module homomorphism. Since A^{λ} is simple, $\operatorname{ker} T=0$ and so T is injective. Since A^{μ} is simple, $\operatorname{im} T=A^{\mu}$ and so T is surjective. So T is an isomorphism. Thus we may assume that $T: A^{\lambda} \rightarrow A^{\lambda}$.

Since $\overline{\mathbb{F}}$ is algebraically closed T has an eigenvector and a corresponding eigenvalue $\alpha \in \overline{\mathbb{F}}$. Then $T-\alpha \cdot I d \in \operatorname{Hom}_{A}\left(A^{\lambda}, A^{\lambda}\right)$ and so $T-\alpha \cdot I d$ is either 0 or an isomorphism. However, since $\operatorname{det}(T-\alpha \cdot I d)=0, T-\alpha \cdot I d$ is not invertible. So $T-\alpha \cdot I d=0$. So $T=\alpha \cdot I d$. So $\operatorname{End}_{A}\left(A^{\lambda}\right)=\overline{\mathbb{F}} \cdot I d$.

Theorem 5.4 (The Centralizer Theorem). Let A be a finite dimensional algebra over an algebraically closed field $\overline{\mathbb{F}}$. Let M be a semisimple A-module and set $Z=\operatorname{End}_{A}(M)$. Suppose that

$$
M \cong \bigoplus_{\lambda \in \hat{M}}\left(A^{\lambda}\right)^{\oplus m_{\lambda}}
$$

where \hat{M} is an index set for the irreducible A-modules A^{λ} which appear in M and the m_{λ} are positive integers.
(a) $Z \cong \bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\overline{\mathbb{F}})$.
(b) As an (A, Z)-bimodule,

$$
M \cong \bigoplus_{\lambda \in \hat{M}} A^{\lambda} \otimes Z^{\lambda}
$$

where the $Z^{\lambda}, \lambda \in \hat{M}$, are the simple Z-modules.
Proof. Index the components in the decomposition of M by dummy variables ϵ_{i}^{λ} so that we may write

$$
M \cong \bigoplus_{\lambda \in \hat{M}} \bigoplus_{i=1}^{m_{\lambda}} A^{\lambda} \otimes \epsilon_{i}^{\lambda}
$$

For each $\lambda \in \hat{M}, 1 \leq i, j \leq m_{\lambda}$, let $\phi_{i j}^{\lambda}: A^{\lambda} \otimes \epsilon_{j} \rightarrow A^{\lambda} \otimes \epsilon_{i}$ be the A-module isomorphism given by

$$
\phi_{i j}^{\lambda}\left(m \otimes \epsilon_{j}^{\lambda}\right)=m \otimes \epsilon_{i}^{\lambda}, \quad \text { for } m \in A^{\lambda} .
$$

By Schur's lemma,

$$
\begin{aligned}
\operatorname{End}_{A}(M) & =\operatorname{Hom}_{A}(M, M) \cong \operatorname{Hom}_{A}\left(\bigoplus_{\lambda} \bigoplus_{j} A^{\lambda} \otimes \epsilon_{j}^{\lambda}, \bigoplus_{\mu} \bigoplus_{i} A^{\mu} \otimes \epsilon_{i}^{\mu}\right) \\
& \cong \bigoplus_{\lambda, \mu} \bigoplus_{i, j} \delta_{\lambda \mu} \operatorname{Hom}_{A}\left(A^{\lambda} \otimes \epsilon_{j}^{\lambda}, A^{\mu} \otimes \epsilon_{i}^{\mu}\right) \cong \bigoplus_{\lambda} \bigoplus_{i, j=1}^{m_{\lambda}} \overline{\mathbb{F}} \phi_{i j}^{\lambda}
\end{aligned}
$$

Thus each element $z \in \operatorname{End}_{A}(M)$ can be written as

$$
z=\sum_{\lambda \in \hat{M}} \sum_{i, j=1}^{m_{\lambda}} z_{i j}^{\lambda} \phi_{i j}^{\lambda}, \quad \text { for some } z_{i j}^{\lambda} \in \overline{\mathbb{F}},
$$

and identified with an element of $\bigoplus_{\lambda} M_{m \lambda}(\overline{\mathbb{F}})$. Since $\phi_{i j}^{\lambda} \phi_{k l}^{\mu}=\delta_{\lambda \mu} \delta_{j k} \phi_{i l}^{\lambda}$ it follows that

$$
\operatorname{End}_{A}(M) \cong \bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\overline{\mathbb{F}})
$$

(b) As a vector space, $Z^{\mu}=\operatorname{span}\left\{\epsilon_{i}^{\mu} \mid 1 \leq i \leq m_{\mu}\right\}$ is isomorphic to the simple $\bigoplus_{\lambda} M_{m_{\lambda}}(\overline{\mathbb{F}})$ module of column vectors of length m_{μ}. The decomposition of M as $A \otimes Z$ modules follows since

$$
\left(a \otimes \phi_{i j}^{\lambda}\right)\left(m \otimes \epsilon_{k}^{\mu}\right)=\delta_{\lambda \mu} \delta_{j k}\left(a \otimes \epsilon_{i}^{\mu}\right), \quad \text { for all } m \in A^{\mu}, a \in A
$$

If A is an algebra then A^{op} is the algebra A except with the opposite multiplication, i.e.

$$
A^{\mathrm{op}}=\left\{a^{\mathrm{op}} \mid a \in A\right\} \quad \text { with } \quad a_{1}^{\mathrm{op}} a_{2}^{\mathrm{op}}=\left(a_{2} a_{1}\right)^{\mathrm{op}}, \quad \text { for all } a_{1}, a_{2} \in A
$$

The left regular representation of A is the vector space A with A action given by left multiplication. Here A is serving both as an algebra and as an A-module. It is often useful to distinguish the two roles of A and use the notation \vec{A} for the A-module, i.e. \vec{A} is the vector space

$$
\vec{A}=\{\vec{b} \mid b \in A\} \quad \text { with } A \text {-action } \quad a \vec{b}=\overrightarrow{a b}, \quad \text { for all } a \in A, \vec{b} \in \vec{A}
$$

Proposition 5.5. Let A be an algebra and let \vec{A} be the regular representation of A. Then $\operatorname{End}_{A}(\vec{A}) \cong A^{\mathrm{op}}$. More precisely,

$$
\begin{gathered}
\operatorname{End}_{A}(\vec{A})=\left\{\phi_{b} \mid b \in A\right\}, \quad \text { where } \phi_{b} \text { is given by } \\
\qquad \phi_{b}(\vec{a})=a \vec{b}, \quad \text { for all } \vec{a} \in \vec{A} .
\end{gathered}
$$

Proof. Let $\phi \in \operatorname{End}_{A}(\vec{A})$ and let $b \in A$ be such that $\phi(\overrightarrow{1})=\vec{b}$. For all $\vec{a} \in \vec{A}$,

$$
\phi(\vec{a})=\phi(a \cdot \overrightarrow{1})=a \phi(\overrightarrow{1})=a \vec{b}=a \vec{b},
$$

and so $\phi=\phi_{b}$. Then $\operatorname{End}_{A}(\vec{A}) \cong A^{\text {op }}$ since

$$
\left(\phi_{b_{1}} \circ \phi_{b_{2}}\right)(\vec{a})=a \overrightarrow{b_{2} b_{1}}=\phi_{b_{2} b_{1}}(\vec{a}),
$$

for all $b_{1}, b_{2} \in A$ and $\vec{a} \in \vec{A}$.

Theorem 5.6. Suppose that A is a finite dimensional algebra over an algebraically closed field \mathbb{F} such that the regular representation \vec{A} of A is completely decomposable. Then A is isomorphic to a direct sum of matrix algebras, i.e.

$$
A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}})
$$

for some set \hat{A} and some positive integers d_{λ}, indexed by the elements of \hat{A}.
Proof. If \vec{A} is completely decomposable then, by Theorem $5.4, \operatorname{End}_{A}(\vec{A})$ is isomorphic to a direct sum of matrix algebras. By Proposition 5.5,

$$
A^{\mathrm{op}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}})
$$

for some set \hat{A} and some positive integers d_{λ}, indexed by the elements of \hat{A}. The map

$$
\begin{aligned}
\left(\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}})\right)^{\mathrm{op}} & \longrightarrow \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}}) \\
a & \longmapsto a^{t},
\end{aligned}
$$

where a^{t} is the transpose of the matrix a, is an algebra isomorphism. So A is isomorphic to a direct sum of matrix algebras.

If A is an algebra then the trace tr of the regular representation is the trace on A given by

$$
\operatorname{tr}(a)=\operatorname{Tr}(\vec{A}(a)), \quad \text { for } a \in A
$$

where $\vec{A}(a)$ is the linear transformation of A induced by the action of a on A by left multiplication.

Proposition 5.7. Let $A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}})$. The trace of the regular representation is nondegenerate if and only if the integers d_{λ} are all nonzero in $\overline{\mathbb{F}}$. In characteristic p they could be 0 .

Proof. As A-modules, the regular representation

$$
\vec{A} \cong \bigoplus_{\lambda \in \hat{A}}\left(A^{\lambda}\right)^{\oplus d_{\lambda}}
$$

where A^{λ} is the irreducible A-module consisting of column vectors of length d_{λ}. For $a \in A$ let $A^{\lambda}(a)$ be the linear transformation of A^{λ} induced by the action of a. Then the trace tr of the regular representation is given by

$$
\operatorname{tr}=\sum_{\lambda \in \hat{A}} d_{\lambda} \chi^{\lambda}, \quad \text { where } \quad \chi_{A}^{\lambda}: A>c c \left\lvert\, \begin{array}{ll}
\overline{\mathbb{F}} \\
& \\
& \\
&
\end{array}\right.
$$

where χ_{A}^{λ} are the irreducible characters of A. Since the d_{λ} are all nonzero the trace tr is nondegenerate.

Theorem 5.8 (Maschke's Theorem). Let A be a finite dimensional algebra over a field \mathbb{F} such that the trace tr of the regular representation of A is nondegenerate. Then every representation of A is completely decomposable.

Proof. Let B be a basis of A and let B^{*} be the dual basis of A with respect to the form $\langle\rangle:, A \times A \rightarrow \overline{\mathbb{F}}$ defined by

$$
\left\langle a_{1}, a_{2}\right\rangle=\operatorname{tr}\left(a_{1} a_{2}\right), \quad \text { for all } a_{1}, a_{2} \in A
$$

The dual basis B^{*} exists because the trace tr is nondegenerate.
Let M be an A-module. If M is irreducible then the result is vacuously true, so we may assume that M has a proper submodule N. Let $p \in \operatorname{End}(M)$ be a projection onto N, i.e. $p M=N$ and $p^{2}=p$. Let

$$
[p]=\sum_{b \in B} b p b^{*}, \quad \text { and } \quad e=\sum_{b \in B} b b^{*} .
$$

For all $a \in A$,

$$
\operatorname{tr}(e a)=\sum_{b \in B} \operatorname{tr}\left(b b^{*} a\right)=\sum_{b \in B}\left\langle a b, b^{*}\right\rangle=\left.\sum_{b \in B} a b\right|_{b}=\operatorname{tr}(a) .
$$

So $\operatorname{tr}((e-1) a)=0$, for all $a \in A$. Thus, since tr is nondegenerate, $e=1$.
Let $m \in M$. Then $p b^{*} m \in N$ for all $b \in B$, and so $[p] m \in N$. So $[p] M \subseteq N$. Let $n \in N$. Then $p b^{*} n=b^{*} n$ for all $b \in B$, and so $[p] n=e n=1 \cdot n=n$. So $[p] M=N$ and $[p]^{2}=[p]$, as elements of $\operatorname{End}(M)$.

Note that $[1-p]=[1]-[p]=e-[p]=1-[p]$. So

$$
M=[p] M \oplus(1-[p]) M=N \oplus[1-p] M
$$

and, by Proposition 5.2(b), $[1-p] M$ is an A-module. So $[1-p] M$ is an A-submodule of M which is complementary to M. By induction on the dimension of M, N and $[1-p] M$ are completely decomposable, and therefore M is completely decomposable.

Together, Theorem 5.6, 5.8 and Proposition 5.7 yield the following theorem.
Theorem 5.9 (Artin-Wedderburn Theorem). Let A be a finite dimensional algebra over an algebraically closed field $\overline{\mathbb{F}}$. Let $\left\{b_{1}, \ldots, b_{d}\right\}$ be a basis of A and let tr be the trace of the regular representation of A. The following are equivalent:
(1) Every representation of A is completely decomposable.
(2) The regular representation of A is completely decomposable.
(3) $A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}})$ for some finite index set \hat{A}, and some $d_{\lambda} \in \mathbb{Z}_{>0}$.
(4) The trace of the regular representation of A is nondegenerate.
(5) $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right) \neq 0$.

Remark. Let R be an integral domain, and let A_{R} be an algebra over R with basis $\left\{b_{1}, \ldots, b_{d}\right\}$. Then $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right)$ is an element of R and $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right) \neq 0$ in $\overline{\mathbb{F}}$ if and only if $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right) \neq 0$ in R. In particular, if $R=\mathbb{C}[x]$, then $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right)$ is a polynomial. Since a polynomial has only a finite number of roots, $\operatorname{det}\left(\operatorname{tr}\left(b_{i} b_{j}\right)\right)(n)=0$ for only a finite number of values $n \in \mathbb{C}$.

Theorem 5.10 (The Tits Deformation Theorem). Let R be an integral domain, \mathbb{F}, the field of fractions of $R, \overline{\mathbb{F}}$ the algebraic closure of \mathbb{F}, and \bar{R}, the integral closure of R in $\overline{\mathbb{F}}$. Let A_{R} be an R-algebra and let $\left\{b_{1}, \ldots, b_{d}\right\}$ be a basis of A_{R}. For a $\in A_{R}$ let $\vec{A}(a)$ denote the linear transformation of A_{R} induced by left multiplication by a. Let t_{1}, \ldots, t_{d} be indeterminates and let

$$
\vec{p}\left(t_{1}, \ldots, t_{d} ; x\right)=\operatorname{det}\left(x \cdot \operatorname{Id}-\left(t_{1} \vec{A}\left(b_{1}\right)+\cdots t_{d} \vec{A}\left(b_{d}\right)\right)\right) \in R\left[t_{1}, \ldots, t_{d}\right][x]
$$

so that \vec{p} is the characteristic polynomial of a "generic" element of A_{R}.
(a) Let $A_{\overline{\mathbb{F}}}=\overline{\mathbb{F}} \otimes_{R} A_{R}$. If

$$
A_{\overline{\mathbb{F}}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{F}}),
$$

then the factorization of $\vec{p}\left(t_{1}, \ldots, t_{d}, x\right)$ into irreducibles in $\overline{\mathbb{F}}\left[t_{1}, \ldots, t_{d}, x\right]$ has the form

$$
\begin{aligned}
& \qquad \vec{p}=\prod_{\lambda \in \hat{A}}\left(\vec{p}^{\lambda}\right)^{d_{\lambda}}, \quad \text { with } \quad \vec{p}^{\lambda} \in \bar{R}\left[t_{1}, \ldots, t_{d}, x\right] \quad \text { and } \quad d_{\lambda}=\operatorname{deg}\left(\vec{p}^{\lambda}\right) . \\
& \text { If } \chi^{\lambda}\left(t_{1}, \ldots, t_{d}\right) \in \bar{R}\left[t_{1}, \ldots, t_{d}\right] \text { is given by } \\
& \vec{p}^{\lambda}\left(t_{1}, \ldots, t_{d}, x\right)=x^{d_{\lambda}}-\chi^{\lambda}\left(t_{1}, \ldots, t_{d}\right) x^{d_{\lambda}-1}+\cdots,
\end{aligned}
$$

then

$$
\begin{array}{cccc}
\chi_{A_{\overline{\mathbb{F}}}}^{\lambda}: & A_{\overline{\mathbb{F}}} & \longmapsto & \overline{\mathbb{F}} \\
\alpha_{1} b_{1}+\cdots+\alpha_{d} b_{d} & \longmapsto & \chi^{\lambda}\left(\alpha_{1}, \ldots, \alpha_{d}\right),
\end{array} \quad \lambda \in \hat{A},
$$

are the irreducible characters of $A_{\overline{\mathbb{F}}}$.
(b) Let \mathbb{K} be a field and let $\overline{\mathbb{K}}$ be the algebraic closure of \mathbb{K}. Let $\gamma: \quad R \rightarrow \mathbb{K}$ be a ring homomorphism and let $\bar{\gamma}: \bar{R} \rightarrow \overline{\mathbb{K}}$ be the extension of γ. Let $\chi^{\lambda}\left(t_{1}, \ldots, t_{d}\right) \in$ $\bar{R}\left[t_{1}, \ldots, t_{d}\right]$ be as in (a). If $A_{\overline{\mathbb{K}}}=\overline{\mathbb{K}} \otimes_{R} A_{R}$ is semisimple then

$$
\begin{aligned}
A_{\overline{\mathbb{K}}} \cong & \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\overline{\mathbb{K}}), & & \\
& \chi_{A_{\bar{K}}}^{\lambda}: & A_{\overline{\mathbb{K}}} & \longmapsto
\end{aligned}
$$

for $\lambda \in \hat{A}$, are the irreducible characters of $A_{\overline{\mathbb{K}}}$.
Proof. First note that if $\left\{b_{1}^{\prime}, \ldots, b_{d}^{\prime}\right\}$ is another basis of A_{R} and the change of basis matrix $P=\left(P_{i j}\right)$ is given by

$$
b_{i}^{\prime}=\sum_{j} P_{i j} b_{j} \quad \text { then the transformation } \quad t_{i}^{\prime}=\sum_{j} P_{i j} t_{j}
$$

defines an isomorphism of polynomial rings $R\left[t_{1}, \ldots, t_{d}\right] \cong R\left[t_{1}^{\prime}, \ldots, t_{d}^{\prime}\right]$. Thus it follows that if the statements are true for one basis of A_{R} (or $A_{\overline{\mathbb{F}}}$) then they are true for every basis of A_{R} (resp. $A_{\overline{\mathbb{F}}}$).
(a) Using the decomposition of $A_{\overline{\mathbb{F}}}$ let $\left\{e_{i j}^{\mu}, \mu \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\right\}$ be a basis of matrix units in $A_{\overline{\mathbb{F}}}$ and let $t_{i j}^{\mu}$ be corresponding variables. Then the decomposition of $A_{\overline{\mathbb{F}}}$ induces a factorization

$$
\begin{equation*}
\vec{p}\left(t_{i j}^{\mu}, x\right)=\prod_{\lambda \in \hat{A}}\left(\vec{p}^{\lambda}\right)^{d_{\lambda}}, \quad \text { where } \quad \vec{p}^{\lambda}\left(t_{i j}^{\mu} ; x\right)=\operatorname{det}\left(x-\sum_{\mu, i, j} t_{i j}^{\mu} A^{\lambda}\left(e_{i j}\right)\right) . \tag{5.11}
\end{equation*}
$$

The polynomial $\vec{p}^{\lambda}\left(t_{i j}^{\mu} ; x\right)$ is irreducible since specializing the variables gives

$$
\begin{equation*}
\vec{p}^{\lambda}\left(t_{j+1, j}^{\lambda}=1, t_{1, n}^{\lambda}=t, t_{i, j}^{\mu}=0 \text { otherwise } ; x\right)=x^{d_{\lambda}}-t, \tag{5.12}
\end{equation*}
$$

which is irreducible in $\bar{R}[t ; x]$. This provides the factorization of \vec{p} and establishes that $\operatorname{deg}\left(\vec{p}^{\lambda}\right)=d_{\lambda}$. By (5.11)

$$
\vec{p}^{\lambda}\left(t_{i j}^{\mu} ; x\right)=x^{d_{\lambda}}-\operatorname{Tr}\left(A^{\lambda}\left(\sum_{\mu, i, j} t_{i j}^{\mu} e_{i j}^{\mu}\right)\right) x^{d_{\lambda}-1}+\cdots,
$$

which establishes the last statement.
Any root of $\vec{p}\left(t_{1}, \ldots, t_{d}, x\right)$ is an element of $\overline{R\left[t_{1}, \ldots, t_{d}\right]}=\bar{R}\left[t_{1}, \ldots, t_{d}\right]$. So any root of $\vec{p}^{\lambda}\left(t_{1}, \ldots, t_{d}, x\right)$ is an element of $\bar{R}\left[t_{1}, \ldots, t_{d}\right]$ and therefore the coefficients of $\vec{p}^{\lambda}\left(t_{1}, \ldots, t_{d}, x\right)$ (symmetric functions in the roots of \vec{p}^{λ}) are elements of $\bar{R}\left[t_{1}, \ldots, t_{d}\right]$.
(b) Taking the image of the Eq. (5.11), give a factorization of $\gamma(\vec{p})$,

$$
\gamma(\vec{p})=\prod_{\lambda \in \hat{A}} \gamma\left(\vec{p}^{\lambda}\right)^{d_{\lambda}}, \quad \text { in } \overline{\mathbb{K}}\left[t_{1}, \ldots, t_{d}, x\right] .
$$

For the same reason as in (5.12) the factors $\gamma\left(\vec{p}^{\lambda}\right)$ are irreducible polynomials in $\overline{\mathbb{K}}\left[t_{1}, \ldots, t_{d}, x\right]$.

On the other hand, as in the proof of (a), the decomposition of $A_{\overline{\mathbb{K}}}$ induces a factorization of $\gamma(\vec{p})$ into irreducibles in $\overline{\mathbb{K}}\left[t_{1}, \ldots, t_{d}, x\right]$. These two factorizations must coincide, whence the result.

Applying the Tits deformation theorem to the case where $R=\mathbb{C}[x]$ (so that $\mathbb{F}=\mathbb{C}(x)$) gives the following theorem. The statement in (a) is a consequence of Theorem 5.6 and the remark which follows Theorem 5.9.

Theorem 5.13. Let $\mathbb{C} A(n)$ be a family of algebras defined by generators and relations such that the coefficients of the relations are polynomials in n. Assume that there is an $\alpha \in \mathbb{C}$ such that $\mathbb{C} A(\alpha)$ is semisimple. Let \hat{A} be an index set for the irreducible $\mathbb{C} A(\alpha)$ modules $A^{\lambda}(\alpha)$. Then
(a) $\mathbb{C} A(n)$ is semisimple for all but a finite number of $n \in \mathbb{C}$.
(b) If $n \in \mathbb{C}$ is such that $\mathbb{C} A(n)$ is semisimple then \hat{A} is an index set for the simple $\mathbb{C} A(n)$ modules $A^{\lambda}(n)$ and $\operatorname{dim}\left(A^{\lambda}(n)\right)=\operatorname{dim}\left(A^{\lambda}(\alpha)\right)$ for each $\lambda \in \hat{A}$.
(c) Let x be an indeterminate and let $\left\{b_{1}, \ldots, b_{d}\right\}$ be a basis of $\mathbb{C}[x] A(x)$. Then there are polynomials $\chi^{\lambda}\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{C}\left[t_{1}, \ldots, t_{d}, x\right], \lambda \in \hat{A}$, such that for every $n \in \mathbb{C}$ such
that $\mathbb{C} A(n)$ is semisimple,

$$
\begin{array}{cccc}
\chi_{A(n)}^{\lambda}: & \mathbb{C} A(n) & \longrightarrow & \mathbb{C} \\
\alpha_{1} b_{1}+\cdots+\alpha_{d} b_{d} & \longmapsto & \chi^{\lambda}\left(\alpha_{1}, \ldots, \alpha_{d}, n\right), & \lambda \in \hat{A},
\end{array}
$$

are the irreducible characters of $\mathbb{C} A(n)$.

Acknowledgements

This research was supported in part by National Science Foundation Grant DMS0100975. This research was also supported in part by the National Science Foundation (DMS-0097977) and the National Security Agency (MDA904-01-1-0032).

References

[1] N. Bourbaki, Algebra, Elements of Mathematics, Springer-Verlag, Berlin, 1990 (Chapters 1-3).
[2] N. Bourbaki, Groupes et Algèbres de Lie, Eléments de Mathématique, Hermann, Paris, 1968 (Chapitre IV, $\mathrm{V}, \mathrm{VI})$.
[3] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. 38 (1937) 854-872.
[4] W.P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955) 1-22.
[5] W.P. Brown, Generalized matrix algebras, Canad. J. Math. 7 (1955) 188-190.
[6] E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988) 85-99.
[7] C. Curtis, I. Reiner, Methods of representation theory-with applications to finite groups and orders, Pure and Applied Mathematics, vols. I and II, Wiley \& Sons, Inc., New York, 1987.
[8] V. Dlab, C. Ringel, A construction for quasi-hereditary algebras, Compositio Math. 70 (1989) 155-175.
[9] W. Doran, D. Wales, David, The partition algebra revisited, J. Algebra 231 (2000) 265-330.
[10] J. Farina, T. Halverson, Character orthogonality for the partition algebra and fixed points of permutations, Adv. Applied Math. 31 (2003) 113-131.
[11] D. Fitzgerald, J. Leech, Dual symmetric inverse monoids and representation theory, J. Aust. Math. Soc. Ser. A 64 (1998) 345-367.
[12] F. Goodman, P. de la Harpe, V. Jones, Coxeter Graphs and Towers of Algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989.
[13] R. Goodman, N. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998.
[14] C. Grood, The rook partition algebra (in preparation).
[15] T. Halverson, Characters of the partition algebras, J. Algebra 238 (2001) 502-533.
[16] V.F.R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), River Edge, NJ, World Sci. Publishing, 1994, pp. 259-267.
[17] I. Macdonald, Symmetric Functions and Hall Polynomials, Second ed., Oxford University Press, New York, 1995.
[18] P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co. Inc., Teaneck NJ, 1991.
[19] P. Martin, Temperley-Lieb algebras for nonplanar statistical mechanics-the partition algebra construction, J. Knot Theory Ramifications 3 (1994) 51-82.
[20] P. Martin, The structure of the partition algebras, J. Algebra 183 (1996) 319-358.
[21] P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A 33 (2000) 3669-3695.
[22] P. Martin, G. Rollet, The Potts model representation and a Robinson-Schensted correspondence for the partition algebra, Compositio Math. 112 (1998) 237-254.
[23] P. Martin, H. Saleur, Algebras in higher-dimensional statistical mechanics-the exceptional partition (mean field) algebras, Lett. Math. Phys. 30 (1994) 179-185.
[24] P. Martin, D. Woodcock, On central idempotents in the partition algebra, J. Algebra 217 (1) (1999) 156-169.
[25] P. Martin, D. Woodcock, The partition algebras and a new deformation of the Schur algebras, J. Algebra 203 (1998) 91-124.
[26] R. Mirollo, K. Vilonen, Berstein-Gelfand-Gelfand reciprocity on perverse sheaves, Ann. Scient. École Norm. Sup 20 (1987) 311-324.
[27] W. Owens, The Partition Algebra, Honors Thesis, Macalester College, 2002 (May).
[28] R. Stanley, Enumerative Combinatorics, Cambridge Studies in Adv. Math. 49, vol. 1, 1997.
[29] C. Xi, Partition algebras are cellular, Compositio Math. 119 (1) (1999) 99-109.

[^0]: E-mail addresses: halverson@macalester.edu (T. Halverson), ram@math.wisc.edu (A. Ram).

