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Abstract

The partition algebraCAg(n) is the centralier algebra ofS, ading on the k-fold tensor
productv®k of its n-dimensional permutation representatidn The partition aIgebra(CAkJr;(n)
2

is the centralizer algebra of the restriction WX to Si—1 € S We aply the theory of the
basic construction (generalized matrix algebras) to the tower of partition algébfggn) <
CA1(n) CA (n) € CA;1(n) € ---. Our main reults are:

2 2

(a) a presentation on generators and relation&€#g (n);

(b) aderivation of “Specht modules” from the basic construction;

(c) a poof thatCAg(n) is semisimple if and only ik < (n 4+ 1)/2 (except for a few special cases);
(d) Murphy elements fo€ Ak(n); and

(e) an exposition on the theory of the basimstruction and semisimple algebras.

© 2004 Elsevier Ltd. All rights reserved.

0. Introduction
A centerpiece of representation theory is the Schur—Weyl duality, which says that:

(a) the general linear groupL,(C) and the symmetric groufi both act on tensor space

V=V ®...QV, with  dim(V) = n,
——— ———
k factors
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(b) these two actions commute, and
(c) each action generates the fodintralizer of the other, so that
(d) as a(GLn(C), S)-bimodule, the tensor spaceshamultiplicity free decomposition,

vek=Ple,M® S, (0.1)
A

where theLgL, (1) are irreducibleGL,(C)-modules and théﬁﬁ are irreducibleS,-
modules.

The decomposition inQ( 1) essentially makeshe study of the representations®E,(C)
and the study of representations of the symmetric gifuvo sides of the same coin.
The groupGL,(C) has interesting subgroups,

GLa(C) 2 On(C) 2 & 2 Si-1,
and corresponding centralizer algebras
CS < CBk(n) € CAk(n) < CAH%(”),

which are combinatorially defined in terms of the “multiplication of diagrams” (see
Section ) and which play exactly analogous “Schur—Weyl duality” roles with their
corresponding subgroup &L, (C). The Brauer algebra€ By (n) were introduced in 1937

by Brauer B]. The partition algebra& Ax(n) arose in the early 1990s in the work of
Martin [18-2] and lder, indgendently, in the work of Joned §]. Martin and Jones
discovered the partition algebra as a generalization of the Temperley—Lieb algebra and
the Potts model in statistical mechanics. The partition alge@ma% (n) appear in 21]

and R2], and their existence and importance were pointed out to us by Giagbdi this
paper we follow the method o2[l] and show tlat if the aIgebra@AkJr% (n) are given the
same staturessthe afjebrasAx(n), then well-known methods from the theory of the “basic
construction” (se&ection 4 allow for easy analgis of the vihole tower of algebras

CAo(n) < CA% (n) € CAaw(n) < (CAl%(n) SEREE

all at once.
Lett e %Zzo. In this pagr we pove:

(a) A presentation by generators and relations for the algébfagn).

(b) CA¢(n) has

CAc(n) _

Cle(n) —
suchthat Cl,(n) is isomophic to a “basic construction” (segection 4. Thus the
structure 6 the ideal Cl,(n) can be analyzed with the geral theory of the basic
construction and the structure of the quotiéid,(n)/(Cl¢(n)) follows from the
general theory of the representations of the symmetric group.

(c) The algebra& A, (n) are in “Schur—Weyl duality” with the symmetric grouf§s and
S onV ek,

(d) The general theory of the basic comstion provides a construction of “Specht
modules” for the partition algehbs, i.e. integral lattices in the (generically) irreducible
CA¢(n)-modules.

an ideal Clg(n), with

Cs,
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(e) Except for a few special cases, the algelit#@g (n) are semisimple if and only if
< (n+1)/2.

() There are “Murphy elementd¥l; for the partition algebras that play exactly analogous
roles to the classical Murphy elements for the group algebra of the symmetric group.
In particular, theM; commute with each other i€ A,;(n), and whenCA;(n) is
semisimple each irreducibl€ A, (n)-module has a unique, up to constants, basis of
simultan®us eigenvectors for thig; .

The primary new results in this paper are (a) and (f). There has been work towards
a presentation theorem for the partition monoid by Fitzgerald and Legth énd it is
possible that by now they have proved a similar presentation theorem. The statement in
(b) has appeared implicitly arexplicitly throughoutthe literature on té partition algebra,
dependingonwhat one considers as the definition of a “basic construction”. The treatment
of this connection between the partition algebras and the basic construction is explained
very nicely and thoroughly inZ1]. We consider this connection an important part of the
understanding of the structuod the partition algebras. The Schur—Weyl duality for the
patition algebrasCAg(n) appears in18,21], and [22] and wasone of the motivations
for the introduction of these algebras ih6]. The Schur—Weyl duality fOEAk+%(n)

appears in41] and [22]. Most of the previous literature (for exampl2Q24,25,9]) on
the partition algebras has studied the structure of the partition algebras using the “Specht”
modules of (d). Our point here is that their existence follows from the general theory of
the basic construction. This is a special cakthe fact that quasi-hereditary algebras are
iterated sequencesbasic constructions, as proved by Dlab and Rin8lhe stdaements
about the semsimplicity of A¢(n) have mostly, if not comptely, appeared in the work
of Martin and Saleur20,23]. The Murphy elements for the partition algebras are new.
Their form was conjectured by Oweria7], who proved that the sum of the fitstof them
is a central element i€ Ax(n). Here we pove all of Owenstheorems and conjectures
(by a different technique than he was using). We have not taken the next natural step
and provided formulas for the action of the generators of the partition algebra in the
“seminormal” representations. We hope that someone will do this in the near future.
The “basic construction” is a fundamental tool in the study of algebras such as the
partition algebra. Of course, like any fundamamonstruct, it appears in the literature and
is redisovered over and over in variis forms. For example, one finds this construction
in Bourbaki [L, Chater 2, Section 4.2, Remark 1], i4,p], in [12, Chater 2], and in the
wonderful paper of Dlab and Ringe8][where itis explained that this construction is also
the algebraic construct thatdaotrols” the theory of quasi-hereditary algebras, recollement,
and highest weight categoried] hBnd some gzects of the theory of perverse sheazg.|
Though this paper contains new results ia gudy of partition algbras we have made
a dstinct effort to present this material in a “survey” style so that it may be accessible to
non-experts and to newcomers to the field. For this reason we have inclu&sditons 4
and5, expositions, from scratch, of

(a) the theory ofhe basic construction (see ald®] Chapter 2]), and

(b) the theory of semisimple algebrasn ipaticular, Maschke’s theorem, the
Artin—Wedderhirn theorem, and the Tits deformation theorem (see &ls84¢d¢ions
3B and 68]).
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Here the reader will find statements of the main theorems which are in exactly the
correct form for our applications (generally difficult to find in the literature), and short
slick proofs of all the results on the basic construction and on semisimple algebras that we
need for the study of the partition algebras.

There are two sets of results on partition algebras that we have not had the space to treat
in this paper:

(a) the “Frobenius formula®Murnaghan—Nakayama” ra| and orthogonality rule for the
irreducible characters given by Halversdi] and Farha—Halerson [L(], and

(b) the cellularity of the partition algebras proved by X29] (see also Bran and
Wales P)).

The techniques in this paper apply, in exactly the same fashion, to the study of other
diagram algebras; in particular, the planar partition algeiidgn), the Tempdey-Lieb
algebrasCTk(n), and the Bauer algebra€By(n). It wasour originalintent to include in
this paper results (mostly known) for these algebras analogous to those which we have
proved for the algebraSA,(n), but the resictions of time and spadeave prevented this.

While perusing this paper, the reader should keep in mind that the techniques we have used
do apply to these other algebras.

1. Thepartition monoid

Fork € Z-, let
Ay = {setpartitionsofl,2,...,k, 1',2,...,k}}, and

Ak+% = {d e Axr1 | (k+ 1) and(k + 1)’ are in the same blogk (1.1)
Thepropagating numbeof d € Ay is
n(d) = thenumber of blocks ird that contairboth an element (1.2)
P - of {1,2,...,k} and an elemetof {1/, 2, ..., K’} '

For corvenience, represent a set partitidre Ax by a graph wittk vertices in the top row,
labeled 1...,k left to right, andk vertices in the bottom row, labeled,1.., k' left to
right, with vertexi and vertexj connected by a pathifandj are in the same block of the
set partitiond. For example,

1 23 456 78

[ ]
w I represents
L ]

23 45678
{{1’ 27 4’ 2/’ 5/}7 {3}’ {5’ 67 7’ 3/7 4/7 6/7 7/}’ {8’ 8/}’ {1/}}’

and has propagating number 3. The graph represedtisigot unique.
Define the compositiod; o dy of partition diagramsdi, do € Ag to be the set partition
d1 o do € A obtained by placingl; aboved; and identifying the bottom dots af with
the topdots ofdy, removing any connected components that live entirely in the middle row.
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For example,

if dlzw\vv"and dzz'%men
e & N « o e . *
gg/'\:\)\)-

Diagram multiplication makesy into an associative monoid with identity,:lI I e I
The propagating number satisfies

pn(dz o d2) < min(pn(dy), pn(dy)). (1.3)

diody=

A set partition isplanar[16] if it can be represented as a graph without edge crossings
inside of the rectangle formed by its vertices. For elck %Z>o, the fdlowing are
submonoids of the g@rtition monoidAy:

S ={d € Ac| pnd) = Kk}, Ik ={d € Ac| pn(d) < k},
P« = {d € A | d is planat, (1.4)
Bk = {d € Ak | all blocks ofd have size 2, and Tk = P« N Bxk.
Examples are

RN e DR e

KX X e

Fork e %Z>o, there is an isomorphism of monoids

1-1
P« <= Ty, (1.5)

which is best illustrated by examples. Hoe= 7 we have

< E IR R e R
b . \ . - i@"'m @' ooo ol Jo} - Iwﬂ

and fork = 6 + % we have
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Let k € Z-o. By permuting the vertices in thep row and in the bottom row each
d € Ax can be written as a produgdt= o1to», with o1, o2 € S andt € P, and so

= SP&

For¢ € Z-q, define

theBell number B(¢) = (the number of set partitions ¢, 2, . . ., ¢}),
1 20 2¢ 20
the Catalannumber Cl)=—— = - , @a.7)
+1\ 7 £ {41

O =@2¢—-1)-(2¢—3)---5-3-1, and l=¢-(¢—-1)---2-1
with generating dinctions (seed8, 1.24f, and 6.2]),

3 B(Z)— =expe? -1, Y Cl-DZ= 7142,
£>0 >0 2z

) _ — )
S - 1))!!% _l-vi-2zz z !

= —.
=0 ! z =0 1l 1-z

Then

(1.8)

1
fork e §Z>o, Card Ax) = B(2k) and CardPyx) = CardTok) = C(2Kk),
fork € Z-o9, CardByx) = (2k)!!, and CardSc) = k!.

(1.9)

Presentation of the partition monoid
In this section, for convenience, we will write
didy = d; o dp, for di, d2 € Ax.
Letk € Z.g. Forl<i <k—1and 1< j <k, define

i i+l J

AR IY B[N

i i+l i i+l

L O el ) AT, S " Y |

Note thatg; = PiiiPiPi+1Pi -

(1.10)



T. Halverson, A. Ram / European Journal of Combinatorics 26 (2005) 869-921 875

Theorem 1.11.

(a) The nonoid Tk is presented by generators,e. ., &1 and relations

&=e, eeue6=6, and ge =e@g, forli—j|>1
(b) The nonoid R is presented by generators% PPL, P3, .-+, Pk and relations
pP=p. Ppapi=p. and pp =pjp. forfi —j|>1/2

(c) The goup % is presented by generatorg,s. ., sk—1 and relations
$=1 s§5418 =S418S41. and  §sj=sjs, for|i—j[>1

(d) The nonoid A is presented by generators,s. ., sk—1 and Py PL P, -y PR and
relations in(b) and(c) and

SPiPi+1= PiPi+1S = PiPi+1, SP1 = PSS = Pyl SPS = Pt
SS+1P,1S+18 = Pig. and $pj = pjs,

for i =i 1. 1. 1i 3

orj #i 2,|,| +2,| +1,i +2.
Proof. Parts (a)and (c) are standard. Se&2[ Proposition 2.8.1] andd, Chater 1V,
Section 1.3, Example 2], respectively. Part (b) is a consequence of (a) and the monoid
isomorphismin (.5).
(d) The right way to think of this is to realize tha is defined as a peentatio by the
generatorsl € A¢ and the relations which specify the composition of diagrams. To prove
the presentation in the statement of the theorem we need to establish that the generators
and relations in each of these two presentations can be derived from each other. Thus it is
sufficient to show that

(1) The generators irL(10 sdisfy the relations inTheorem 1.11
(2) Every set partitiond € Ax can be written as a product of the generator4ia@.
(3) Any productd; o dz can be computed using the relationgimeorem 1.11

(1) is established by a direct check using the definition of the multiplication of diagrams.
(2) follows from (b) and (c) and the fact ) that Ax = S(PxS. The bulkof the work is

in proving (3).

Stepl. First note that the relations in (a)—(d) imply the following relations:

(1) piy1S-1P 1 = P, 1SS-1P 1 = P 1SS-1P 15-1S8S-1
= pi,% pi+%33—1 = Di,%pi+%s—1 = pi+% pi,%S—l
= PipiP_g-

(€2) piS Pi =SS PSP =S Pi+1Pi = Pi+1Pi-

(f1) PP 1Pi+1=PiP 1S Pi+1= PP 1PiS = PiS.

(f2) Pi+1Py 1P = PiaS P 1P =S PP 1P =SPi

Step2. Analyze how elements @% can be efficiently expressed in terms of the generators.
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Lett € P. Theblocks oft partition {1, ..., k} into top blocksand partition{1’, .. ., k'}
into bottom blocksIn t, some bp blocks are connected to bottom blocks by an edge, but
no top Bock is connected to two bottom blocks, for then by transitivity the two bottom
blocks are actually a single block. Draw the diagran,@luch hat if a top block connects
to a bottom block, then it connects with a siegtige joining the leftmost vertices in each
block. The elemerit € Px can be decomposed lock formas

t= Py Py ) Pis - PiT(Pey - Pe) (Pt -~ Py 1 1) (1.12)

witht € &, i1 <i2 < -+ <if,ji1<jo< - < s l1 <l < -+ < ¥y and
ri <rp < --- < rp. The left product ofp;s arresponds to the top blocks gftheright
product of p;s crresponds to the bottom blockstofand the penutaion ¢ corresponds to
the propagation pattern oféhedges connecting top blocks bfo bottom blocks of. For
exanple,

= (pz% P32 DB%)(D3IO4D6D7)f(IO2 |03|04|07)(|01% Dz%),
= (pz% P32 IOB%)( P3 P4 Pe P7)S$2S38554( P2 P3 P4 |07)(|01% Dz%).

The dashed edges ofare “non-propagating” edges, and they may be chosen so that they
do not cross each other. The propagating edgesduf not cross, sinceis planar.

Using the relations (f1) and (f2), the non-propagating edges ofin be “removed”,
leaving a planar diagram which is written in terms of the genergtpend Pil In our

exampe, this process will replaceby P21 P2P31 P3Ps1 PsP,1 P4, SO that

*—e
I I—:_: I o I (pz% Pa1 pe%)(p3p4p6p7)

SRTTSTVORS bos 004 SEERCIICRNINN
T $ 5044 I e
ool

Step3. If t € Pc ando1 € S which permutes the top bbis of the planar diagramm then
there is a permutatios, of the bdtom blocks oft suchthatoitos is planar. Furthermore,
this can be accomplished using the relations. For example, suppose
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T T,
A~ ~ =
B,

[ S NN ]
=
ID—O—O—.z::
R

S, e’
B,

= (Dl% pzzl)(pz p3) (pﬁ%)( P7) PapsSs (P2Ps3 p4)(p1% P21 pg%) (Ps p7)(p5% DG%)
—_———
T T2 B1 B2

is a planar diagram with top blockg andT, connected respectively to bottom blodRs
andB; and

2 1
~= =
% (X
o= % so that Ol —geeee = 5 =t
[ ] y Y
B B,

which is planar. It is possible to accomplish these products using the relations from the
staement of the theorem. In our example, With= $$1 S35 S35552545651S3S5S24S3 and
With 02 = S4S556S345592533481 23,

o1 TiT2paps S5 B1Booz = (01 Ti T2 papsoy 1) (018502) (0, *B1Booy)
=T,T/p3ps 4 B,B;.

whereT, T, = (P11 P2)(Ps3 Pg3 PeP7) and B5B; = (p2ps3 P11 P21)(PsP6P7P,1 P51 Ps1)-

Stepd. Lett, b € B and letr € S. Thentrb = txo wherex € Px ando € &, andthis
transformation can be accomplished uding relations in (b), (c), and (d).

SupposeT is a block of bottom dots of containing more than one dot and which is
connected, by edges af to two top blocksB; andB; of b. Using St@ 3 findpermutations
y1, y2 € & andoi, o2 € § suchthat

t' = yityn and b = o1bos

are planar diagrams with as the leftmost bottom block af and B; and B, as the two
leftmost top blocks ob’. Then

trb = yl_lt’yz_lnal_lb’oz_l = yl_lt’(yz_lnal_l)b’az_l

— yl_lt/()/z_ln’o’l_l)b//o’z_l=t7'[01_1b”02_1,
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whereb” is a planar diagram witFewer top blocks thab has. This is best seen from the
following picture, wherdxb equals

and the last equality uses the relati(pi\% = pi2+1 and the fourth relation in (d) (multiple
2

times). Thertrb = yl_lt/yz_lnol_lb”(rz_l = tn’b”(rz_l, wheren’ = 7101_1.

By iteration of this process it is sufficient to assume that in proving Step 4 we are
analyzingtb where each bottom block afconnects to a single top block bf Then,
sincer is a permutation, the bottom blockstafust have the same sizes as the top blocks
of b andr is the permutation that permutes the bottom blocksstofthe topblocks ofb.
Thus, by Step 1, there is € S suchthatx = 7bo ! is planar and

trb = t(mbo 1o = txo.

Completion 6the proof. If di, do € Ax then use the decompositioh = ScP«S¢ (from
(1.6)) to write d; andd; in the form

di = mitmo and do = o1boo, with t, b € P, w1, 72, 01,02 € &,

and use (b) and (c) to write these products in terms of the generators.+et>o1. Then
Step 4 tells us that the relations gives S andx € Py suchthat

d1dy = mtmoo1bor = witmwboy = mitxooo.

Using Step 2 and thafy = S Pk, this product can be identified with the product diagram
d1dz. Thus, he relations are sufficient to compose any two elemengof O

2. Partition algebras

Fork e %Z>o andn e C, thepartition algebraC A (n) is the associative algebra over
C with basisAg,

CAk(n) = Cspan{d € A¢}, and multiplication defined by didy = n(dy o db),

where, fordy, d2 € Ay, di1 o dy is the product in the monoidAx and ¢ is the number
of blocks removed from the middle row when constructing the compositiah o do. For
exanple,
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it g, u/n\k,nv- *and 4 ° % then
o« & « o e . .
LN
dldz_:\”i:\'m =2 A

s ey ) | 2.1)

since twoblocks are removed from the middle row. There are inclusions of algebras given
by

(CAk,Lz > CA; CAr_ — (CAk—lz
] k 1 k and k-1 k
ssssess sessees sesseee |
i o i d d = d I
[ WA | besseeé bosseb dossede . (2.2)

Fordy, d» € Ay, define
di < dy, if the set partitiord, is coarser than the set partitidg,

i.e.,i andj in the same block odl; implies thati andj are in the same block af,. Let
{xq € CAx | d € A} be the lasis ofC A uniquely defined by the relation

d=) xg. forallde A (2.3)
d’<d

Under any linear extension of the partial ordethe transition matrix between the basis
{d | d € A} of CAk(n) and the basi$xy | d € Ak} of CAk(n) is upper triangular with 1s
on the diagonal and so thxg are well defined.

The maps

€1 CAx — (CAk_%, s%: (CAk_% — CAx_1 and tg: CAx — C.

Letk € Z-¢. Definelinear maps

1
&1 CA;, — CAk-1 £2: (C/’-\_,‘(_Lj — CAL_
| k and k-1
ssse00 08 oo e0 0048 oa-o-o .-0- o;oc -0-
; e 1 d ) ) o )
[ B BN ) boee-0-0 t-coa o-9- to;a e-0-

o) thats% (d) is the same ad except that the block containirigand the block containing

k’ are combined, and% (d) has the same blocks dsexcept withk andk’ removed. There

is a facor of nin s%(d) if the removal otk andk’ reduces the number of blocks by 1. For
exanple,

A==l I, b -0 G0 Koo
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and

) [ ] [ 1 ® [
F% (o . c) e . I’ &2 (o Sg . I) = S& o
The magx% is the compositiorcCAk_% < CAx -3 CAx_1. Thecomposition o%% and

1.
£2 isthe map

£l CAk — CAy
| k 1 k-1
o 00000 *o00-00-
i d N d >
¢oo-0-00¢ o00-0-0- (2.4)
By drawing diagrams it is strghtforward to check that, fdt € Z-.o,
e%(albaz) = ale%(b)az, forag, ap € Ak_%, b e A
e3(asbap) = ase? (b)ay forag.a; € A b e Ay (2.5)
e1(atbap) = ae1(b)ay, foraj, az € Ak-1,b € Ax,
and
pk+%bpk+% = 8%(b)pk+%: piH%e%(b), forb e Ax
pkbpe = £2(b)px = preZ(b), forbe A1 (2.6)
exbe = e1(b)ex = exea(b), forb e Ax.
Define ti: CAx — C and t&_%: (CAk_% — C by the equations
tre(b) = trkfé(s%(b)), for b € Ay, and
th_3(b) =t 1(e2(b),  forbe A3, 2.7)
so that
trk(b) = s'{(b), forb e Ay, and
tr_3(b) = e le2(b), forbe Ay (2.8)

Pictorially trc(d) = n® wherec is the number of connected components in the closure of
the diagrand,

tre(d) = , ford e Ax. (2.9)
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The dealClg(n)

Fork € 37 define

Clk(n) = C-sparid € Ix}. (2.10)
By (1.3),
Clk(n) is an ideal ofC Ak(n) and CAk(n)/Clg(n) = CK;, (2.12)

since the set partitions with propagating numkeare exactly the permutations in the
symmetric groupS (by conventiorS,, 1 = & for ¢ € Z-o; see R.2)).

View Clg(n) as an algebra (witﬁout identity). Sincd8Ax(n)/Cly = C& and
C% is semisimple, Ra@Ax(n)) < Clk(n). SinceClk(n)/RadCAk(n)) is an ideal
in CAx(n)/RadCAk(n)) the quotientClk(n)/RadCAk(n)) is semisimple Therdore
RadClk(n)) € RadCAk(n)). On theother hand, since R&8Ax(n)) is an ideal of
nilpotent elements iCAx(n), it is an ideal of nilpotent elements i€lx(n) and so
RadClk(n)) 2 RadCAk(n)). Thus

RadCAk(n)) = RadClk(n)). (2.12)
Letk € Z>o. By (2.5 themaps
e1: CAx — CA, _1 and s%: CA 1 — CA1
2 2 2

are((CAkié, (CAkié)-bimodule andCAx_1, CAx_1)-bimodule homomorphisms, respec-
tively. The correspondingasic constructionéseeSection 4 are the &ebras

CAk(n) ®CAk—%(n) CAk(Nn) and (CAki% (N) ®c A1) (CAkf% (n) (2.13)

with products given by
(b1 ®by)(bz®bs) =b1 ® 8% (bob3) by, and
(c1 ® C2)(C3 ® Ca) = C1 ® £2 (CoCa)Ca, (2.14)

for by, by, bz, by € CAk(n), and forcy, ¢y, C3,C4 € (CAk_%(n).
Letk € %Z>0. Then, by the relations inZ.6) and the &ct that

everyd € Iy canbewrittenas d = dypxdz, withdi, dp € Ak,%, (2.15)

the maps

(CAK_%(I’]) ®CAk_1(n)(CAk_%(n) —> Clk(n)

2.16
b1 ®by — blpkbz ( )

are algebra isomorphisms. Thus the idéadik(n) is always i®morphic to a basic
construction (in the sense 8&ction 4.
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Representations of the symmetric group

A partition A is a collection of boxes in a cornaffe shall ©onform to the conventions
in [17] and assume that gravity goes up and to the left, i.e.,

Numbering the rows ahcolumns in the same way as for matrices, let

Ai = thenumber of boxes in row of A,

)JJ- = thenumber of boxes in colump of A, and (2.17)

|A] = the totalnumber of boxes in..

Any partitioni can be identified with the sequence- (A1 > A2 > ---) and theconjugate
partition to A is the partitiom.” = (17, A5, .. .). Thehook lengthof the boxb of 1 is

hb) =i =)+ 0] — ) +1, if b is in position(i, j) of A. (2.18)

Write A F nif A is a partition withn boxes. In the example above,= (553311 and
A+ 18.

See [L7, Section 1.7] for details on the representation theory of the symmetric group.
The irreducibIeCS(—modulesﬁﬁ are indexed by the elements of

A

S={(+Fn and dmS) = (2.19)

k!
[T ho)’

bex

Forx € & andu € S_1,

Ref (H= P s, ad nd o= P s (2.20)

A/v=0 v/p=0

where the first sum is over all partitionghat are obtained frorh by removing a box, and
the second sum is over all partitionswvhich areobtained fromu by adding a box (this
result follows, for example, froml7, Section |.7 Example 22(d)]).

The Young latticeis the graph given by setting

vertices on levek: § = {partitions 1 with k boxes, and (2.21)
anedge. — u, A € &, € Syt if 1 is obtained from. by adding a box '
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It encodes the decompositions B120). The first few levels oS are given by

k=0: 1]

k=1: O

\
\\\

N

k=4: o1 B.__D E E] E

Foru € & define

TO g, 70 =, and for each,
TO ¢ § andT® - TED js an edge irb

SO that$ is the set of paths froi Stou e &inthe grap}“S. In terms of the Young
lattice,

dim(§) = Card §). (2.22)

This is a translation of the classical statement (s&& $edion 1.7.6(ii)]) that dim§,)

is the number of standard Young tableaux of shapghe correspondence is obtained by
putting the entry? in the box of A which is alded at the/th stepT“¢—D — T© of the
path).

Structure of the algebr& Ay (n)
Build a graphA by setting
vertices on levek: Ay = {partitionsu | K — |u| € Z>o},

Ak = {partitions 11 | k — || € Z=o},

. 1 .
vertices on levek + E: A, %

anedge. — u, A € A, i e Kt l if A = u orif u isobtained from\

by removing a box
anedger — A, p € Ak+%, A € Akqa, if A = porif A is obtained fromu
by adding a box (2.23)
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The first few levels ofA are given by

k=0: 1]
k=0+} 0
k=1: @]\D
k=1+} @/D
ey AT

The following result is an immediate consequence of the Tits deformation theorem,
Theorems 5.1@nd5.13in this paper (see als@[(68.17)]).

Theorem 2.24.

(a) For all but a finte nunber of ne C the algebraC Ax(n) is semisimple.

(b) If CA(n) is semisimple then the irreducibl@Ay(n)-modules, £ are indexed by
elements of the sey = {partitions u | kK — |u| € Z>o}, anddim(A‘k‘) = (number of
paths from € Agto 1 € Ay in the graphA).

Let

TO =g 70 = 4, and for eache,

AT = (O 7D TkeD TR ; A
Al ( )70 ¢ A andT® — T+ is an edge ink

A

so thatAl! is the set of paths fromi € Agto . € Ay inthe graphA. If i e S thenu € Ay
andu € Ak+% and, for notational convenience in the following theorem,

identify P = (P©, PD ... P¥) e § with the orresponding
P — (p(o)’ pO p® p® p(kfl)’ p(kfl)’ p(k)) c Alkl,
and P = (p(O) pO p® p® pk-D pk-1) pK p(k)) c A® L
9 bl bl 9 9 9 bl k+§‘
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Fore e %Zzo andn € C suchthatCA,(n) is semisimple Ieb(ﬁe(n), u € A, be the
irreducible characters @€ A;(n). Let tr;: CA¢(n) — C be the traces o€ A;(n) defined
in (2.8) anddefine constantsg((n), w € Ag, by

tre =Yt} (Mxh - (2.25)
N«EA{
Theorem 2.26.

(@) Letne C and letke 1Z-g. Assume that
2=

" 1
tr}(n) # 0, forall » e Aj, € € EZZO’ ¢ <k
Then the partition algebras
. 1
CA¢(n) are semisimple for alt € EZZO’ L <k (2.27)

For eacht € 3Z-o, ¢ < k — 3, ddine
tr?_;(n)

€= —r for each edgen — A, € Ai_1,1 € A,_1, inthe graphA.
tr,_4(n) 2

Inductively define elements @A, (n) by

1 ~ ~
eléQ = —ef;,f-r p(e%/—Q—s for n e A(, |M| = £ — 17 P, Q € AM? (228)
sﬁsz
wherer = P¢-% , — Q-2 R = (RO, ..., R¢2)for R = (RO, ...,

RE-2), R®W) e Al and T is an element o, (the element g, does not depend
on the choice of T). Then define

&ho=(1—-2Spo. for 1e&,P,Qe§, where

z= Y Y €hp (2.29)

nehy  pehl
|nl=€-1

and{s,*DQ |2 & P,Qe é}} is any set of matrix units for the group algebra of the
symmetic groupCS . Together, theelements i2.28 and(2.29 form a set of matrix
units in CA¢(n).

(b) Letne Z-o and letke 1Z. o be minimal such that}(n) = 0for somex € Ay. Then
CAK+%(n) is not semisimple.

(c)Letn e Zsp and k € %Z>0. If CAk(n) is not semisimple the@@ Ak j(n) is not
semisimple for je Z-.o.

Proof. (a) Assume thaC A;_1(n) and(CAzf% (n) are both semisimple and thag_tli(n) #+
Oforallp € A1 If A € Ae_% thene/; # 0 if andonly if tr’ ,(n) # 0, and, since
the idealCl,(n) is isomophic to the basic constructid@A(f%(n)2®CAlfl(n) (CAzf%(n)
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(see R.13), it then follows fromTheorem 4.28hat Cl,(n) is semisimple if and only if
tr2 ,(n) £ O0forall A € A@,%- Thus, by .12, if CA,_1(n) and (CAei%(n) are both
-2

semisimple and@‘il(n) # Oforall u e Ag,l then

CA¢(n) is semisimple if and only if @r 1(n) #O0forallAx e A@,%- (2.30)
-2

By Theorem 4.28when trz_l(n) # O0forallx e A@,%, the afebraCl,(n) has matrix

units given by the formulas in2(28. The element in (2.29 is thecentral idempotent
in CA¢(n) suchthatCl,(n) = zCA;(n). Herce the complete set of elements 418
and @.29 form a set of matx units for CA,(n). This mmpletes the proof of (a) and (b)
follows from Theorem 4.2@).

(c) Part (g) ofTheorem 4.2&hows that ifC A,_1(n) is not semisimple the@@ A, (n) is
not semsimple. [

Specht modules

Let A be an algebra. An idempotent is a nonzero elengeat A suchthat p? = p. A
minimal idempotentis an idempotenp which cannot be written as a sum= p1 + p2
with p1p2 = p2p1 = 0. If pis an idempotent irA andpAp = Cp thenp is a minimal
idempotent ofA since, if p = py + p2 with p? = py, p3 = p2, andpipz = p2p1 = O,
then pprp = kp for some constanp and sokp; = kppr = pprppL = p1 giving that
eitherp; = 0 ork = 1, in which casep; = pp.p = p-

Let p be an idempotent ik\. Then he map

(PAP®® —> Enda(Ap), where ¢ppp(@p) = (ap)(pbp) = apbp
pbp —  ¢pbp forape Ap, (2.31)

is a ring isomorphism.

If pis a minimal idempotent oA and Ap is a semisimpleA-module thenAp must
be a simpleA-module. To see this suppose thap is not simple so that there ar-
submodulesv; andV; of Ap suchthat Ap = V1 @ Vo. Let ¢1, ¢2 € Enda(Ap) be the
A-invariant projections oW, andVs. By (2.31) ¢1 and¢2 are given by right multiplication
by p1 = ppip and p2 = pp2p, resgectively, and it follows thatp = p1 + p2,
Vi = Apy, V2 = App, andAp = Apt & Ap. Thenp? = ¢1(p1) = ¢2(p) = p1
andp1pz2 = ¢2(p1) = $2(¢1(p)) = 0. Similarly p3 = pz andp2py = 0. Thuspisnota
minimal idempotent.

If pisanidempotentirA andApis a simpleA-module then

pAp=Enda(Ap°® =C(p-1- p)=Cp,

by (2.31) and Stwr’s lemma Theorem 5.3
The group algebra of the symmetric gro8pover thering Z is

Sz=%2S&% and CS=C®z Sz, (2.32)
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where the tensor product is defined via the inclusfor> C. Letd = (A1, A2, ..., A¢) be
a partition ofk. Define subgroups o by

S =S,x xS, and S/=8;x xS, (2.33)
wherer” = (1], 15, ..., A;) is the conjugate partition to, and let
Li=Y w and & =) -D™uw (2.34)
weS, weSy,

Let 7 be the permtation in & that takes the row reading tableau of shapge the column
reading tableau of shape For exanple forx = (553311,

T =(2,7,8,12 9,16 14,4, 15,10,18,6)(3, 11)(5,17),  since

11213|4]|5 17111517

61781910 2|8112|16/18
r-111]12]13 — (31913

14{15(16 4110(14

17 5]

18 6]

The Specht moduléor & is theZS-module
S, =im¥s = (ZSop. wherep;, = 1,tet 2, and (2.35)
where Vg is theZS-module homomorphism given by

Us: (ZSOl, — ZS - (ZSoreyt !

2.36
bl, +~~ bl +— blATSA/T_l ( )

By induction and restriction rules for the representations of the symmetric groufis§the
modules(CS)1;, and(CS)te, 1 have only one irreducible componentin common and
it follows (see L7, Sedion 1.7, Exampe 15]) that

S =C®zS, istheirreducibleCS-module indexed by, (2.37)

once one shows thaks, is not the zero map.
Letk %Z>0. For an ndeterninatex, define theZ[x]-algebra by

Ax z = Z[x]-sparid € Ak} (2.38)
with multiplication given by replacing with x in (2.1). For eacm € C,

CAk(n) = C®zix Az,

eV, : Z[x] — C,

where theZ-module homomorphism
X —n

(2.39)
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is used to define the tensor product. kdtea partition with < k boxes. Leb ® pl‘f’(k_‘“)

denote the image df € Aj,| 7z under the map given by

Ape  — Az
P Y e e e if k is an integer, and
st + RSP PN ) '
k=M
Apelz  — Az

| S bJ 2 *bI:: e if k—1 is an integer.
[ RO @ialitiicina co—e—w

e ———

k—|A-4

Fork e %Z>o, define anAy z-module homomorphism
Un: Azt 5 Agsy Pz V2 (2.40)
bt, +~— btsy — btsy,
wherel, 7 is the ideal
I5,z = Z[X]-sparid € A | d has propagating numbe |A[}
andty, s,y € Ay 7 are defined by
t=Lepl® ™ and s =rer e pP* (2.41)
The Specht moduleor CAx(n) is the A, z-module
Az =Im W = (image of A, z&, in Acz/113.2),
where & = p, ® pP* . (2.42)

Proposition 2.43. Let k %Z>o, and letx be a patition with < k boxes. If ne C such
that C Ax(n) is semisimple, then

Aﬁ(n) = C®zx Aﬁ,z is the irreducibleC Ax(n)-module indexed by,
where the tensor product is defined via thenodule homomorphism i2.39).
Proof. Letr = |A|. Since

CA (n)/Clr (n) = CS

and p, is a minimal idempotent of S, it follows from (@.20) that€;, the image ok, in
(CAk(n))/(Cly (n)), is a minmal idempotent ifC Ax(n))/(Cl; (n)). Thus

CAk(n) _ .
( Cly(n) ) &  isasimple(CAk(n)/(Clr (n))-module

Since he projectionCAx(n) — (CAk(n))/(Cl; (n)) is surjective, any simpléCAx(n))/
(Cly (n))-module is a simpl€ Ag(n)-module. O
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3. Schur—-Weyl duality for partition algebras

Letn € Z-o and letV be a vector space with basis, . . ., v,. Then the tensor product

Ve =V @V®--®V hasbasis {vi, ®---®vj, | 1<i1,....ik <n}.
B e
k factors
Ford € Ax and valuess, ..., ik, iv,...,ik € {1,...,n} define
PO 1 if i; =iswhenr ands are in the same block af
1,00l s r S s
(d)iy ----- i {O, otherwise (3.1)

For example viewing (d):i""’i-k , as thediagramd with vertices labeled by the values

Vaeenslyr

i1,...,ikandiy, ..., ik, we have
i] 1'2 i3 f4 i5 '!'6 i’; fg
W I = 8i1i50i1i40i1iy Sisig Sisig Sisiz Sisig isiy isig Sisiy Sigig -
[ ]
f]’ fz’ f3' f4’ 1'5’ 1'6’ I",l’ ig’
With this notation, the formula

do, ® - ®u) = > @y, e ®u, (3.2)

i1/ ..... %
1<iy/ i =n
defines actions

P : CAc — EndV®) and & :CAG 1 — End(Vv ®K) (3.3)

1
k+3

of CA¢ and (CAkJr% on V& where the scond map@kJr% comes from the fact that if
de Ak+%, thend acts on the subspace

V@K = v @y = C-sparvi, @ - @ v, @ vn | L <i1,....ik <N}
c VoKD, (3.4)

In other words, the ma@kJr% is obtained from®y1 by restricting to the subspace

V&K @ v, and identifyingV ®K with V&K @ vy,.
The groupGL,(C) acts on the vector spac¥sandV @K by

n
gvi ZZgjiUJs and  g(vi; ® vi, @ ® viy)
j=1
- gvil ® gUi2 ® e ® gvik, (35)

for g = (gij) € GLa(C). View §, € GLn(C) as the subgroup of permutation matrices and
let

Endsn(V®k) ={be End(V®k) | bov=cbvforalloc € S and v e V®k}.
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Theorem 3.6. Let ne Z.o and let{xq | d € Ax} be the basis of Ax(n) defined in(2.3).
Then
(@) Pk : CAk(n) — End(V®K) has

im & = Ends, (V®) and

ker &y = C-span{xq | d has more than n blocks and

. k

(b) ;likJr% : (CAkJr%(n) — EndV®X) has

im &, 1 = Endg,_, (V) and
ker ¢k+1 = C-span{xq | d has more than n blocks
Proof. (a) As a subgroup oBL,(C), S, acts onV via its permutation representation and
S acts onV €k by
o (Viy ® Vi, ® -+ ® Vi) = Vo(ip) ® Vo(ip) ® -+ ® Vo(iy)- (3.7)

Thenb € Ends, (V®K) if and only if c~lbo = b (as endomorphisms ow®K) for all
o €S, Thus, usig the notation of3.1), b € Ends, (V&) if and only if

-1 (i),...,o (ik)
ill 'k’ =(c ba) 'k’ = bg(iir),...Z(rk/)’ forall o € S,.
It follows that the matrix entries df are constant on th&,-orbits ofits matrix coordinates.
These orbits decompogd, ..., k,1,...,k’} into subsets and thus correspond to set

patitionsd € Ay. It follows from (2.3) and @.1) that for alld € Ay,

1 if i =igifand onlyifr ands are in the same block af
(B (X)) _{, ifi, =igi yi i ,

iy iy 0, otherwise.

(3.8)

Thus & (xq) has 1s in the matrix positions correspondingdt@nd Os elsewhere, and
so b is a linear combination ofbk(Xq),d € Ax. Sincexq,d € Ay, form abasis of
CA, im & = Ends, (V®K).

If d has more tham blocks, then by §.8) the matix entry (@k(xd)) Ik, =0
for all indicesiy, ..., ik, i1, ..., ik, Since we eed a distincij e {1,. } for each
block of d. Thus, xd e ker @k If d has< n blocks, then we can find an index set
i1, ...,0Kk, 07, ..., Ik with (;lik(xd)) B = = 1 dmply by choosing a distinct index from
{1,...,n} for each block ofd. Thus ifd has < n blocks thenxy ¢ ker &, and so
ker @k C-sparixq | d has more than blockg.

(b) The vector spac¥ ® @ v, € V&&+D js a ssbmodule both foCA 3 S CAky
andCS,_1 C CS,. If o € Si—1, theno (vi; ® - - - ® Vi, @ Un) = Vg(iy) @ - - - ® Vo (iy) & Vn.
Then as abovb € Ends, , (V®K) if and only if

bil,...,ik,n ba(ll) ..... o(ix),n

ilf,...,ik/,n U(Ill ..... U(ik/),n’ for a'" o€ S"*l'

The S,_1 orbits of the matrix coordinates bfcorrespond to set partitiomse Ak+%; that
is, verticed k1 andi 1y must be inthe same block ofi. The samergument as in part
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(a) can be used to show that kéh% is the span okq with d € Ak+% having more than
n blocks. We always choose the indexor the block containingt + 1 and(k +1)’. O

The napse : End(V®) — EndVek) ande? : EndV®) - EndVek-1)
If b € End(V®K) let biii,""’ikk, € C be the coefficients the expansion

b(vi, ® - - ® vj,) = Z bllillkk Vi, ® - @iy, (3.9

1§i1/,...,ik/§n

Define linear maps

e1:EndV®) > EndV®) and ¢2:EndV®) - EndV®*-D) py

N

el(b) ’’’’’ K =bb s andeZ(b) s 3 peetend (3.10)

1”""'(k—l)’,[

The composition of-:; ande? is the map

e1: ENdV®) — EndV®k-D) given byey(b)'t k-1

Il’ (k 1)
|k 1]
—Z e (3.11)

and
Tr(b) = e¥(b),  for b e EndVEX). (3.12)
The relation between the mapé, €1 in (3.10 and the maps%, €1, in Section 2is
given by
P _1(e1(0)) = €1(Pk(b))|yek-1g,,, for b e CAn),
2 2 2

B 1(e2 (b)) = %8%(¢k(b)), for be CA_3(m), and (3.13)
Pr-1(e1(D)) = e1(P(b)), for b e CAc(n),

where, on the right hand side of the middle equaliig viewed as an element &fAx via
the natural inclusiomJAk_%(n) C CAk(n). Then

Tr( k(b)) = eX( Bk (b)) = Po(eX (b)) = eX(b) = tr(b), (3.14)
and, by 8.4),if b (CAki%(n) then

1
Tr(P_1 (0) =Tr( (D) lvek-1gy,) = HTY(QBk(b))

1 1
= —tre(b) = ~tr_3(b). (3.15)
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The represatations(lndgilReéil)k(ln) and Reéil(lndgilReéil)k(ln)

Letl, = Sﬁ") be the trivial r@resenttion of S, and letV = C-spanuy, ..., vy} be the
permutation representation §f given in (3.5). Then

V =indd Re (1n). (3.16)
More generally, for anys,-moduleM,

Ind? Reg’ (M) =Indd  (Re (M) ® 15-1)
= Ind? (Reg' (M) @ Reg’ (1n)
=M@Indd Re (1IN=M®V, (3.17)

where the third isomorphism comes from the “tensor identity”,

Indd (Re” (M)®@N) — M®Indd N

(3.18)
g®(M®n) — gme(@®n),

forg € §,m € M,n € N, and tle fact that In@il(W) = C§®s, , W. By
iterating 3.17) it follows that

(IndQ Re! 1) =V® and Re§ (ndd Res! )=V (3.19)

as §,-modules ands,_1-modules, respectively.
If

A= (A1, 2,...,Ap), define A1 = (A2, ..., p) (3.20)

to be the same partition asexcept with the first row removed. Build a gragtin) which
encodes the decomposition\6F¥, k € Z-o, by letting

vertices on levek: Ax(n) = {A - n |k — |Ao1] € Z=0),
. 1 .
vertices on levek + 5: Ak+%(n) ={AFn—-1|k—|rs1] € Zso}, and
anedger — u,if u e Ak+%(n) is obtained fromi € Ax(n) (3.21)
by removing a box

anedgeu — A, if L € Ak+1(n) is obtained fromu € Ak+%(n)

by adding a box
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For example, ifh = 5 then the first few levels oh(n) are

k=0: 01T

k=0+

]
\E/

1.
k=1+3: oo g

o

kzZ:DICDEFEDEEPgD

A

k=2+3: OO OO [ H

g
=3 TR gm PO OB

The following theorem is a consequenceltieorem 3.6nd the Centralizer Theorem,
Theorem 5.4see also13, Theorem 3.3.7]).

N 2

/

Theorem 3.22. Let n k € Zo. Let $ denote the irreducibleSmodule indexed by.

(a8) As(CS,, CAk(n))-bimodules,

vek= B g ® AN,
reAcn

where the vector space%én) are irreducibleC Ax(n)-modules and

dim(A%(n)) = (number of paths fronin) € Ag(n) to 1 € Ax(n)
in the graphA(n)).

(b) As(CS—1, <CAk+%(n))—bimodules,

vek= P sﬁ‘_l®Af(‘+%(n),

neh 1
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where the vector spaces’;ﬁl (n) are irreducible(CAkJr% (n)-modules and
2

dim <A’k‘+1(n)) = (number of paths fronin) € Ao(n) tou e Ak+%(n)
2
in the graphA(n)).

Determination éthepolynomialgr*(n)
Letn € Z. . For a partition A, let
As1= (A2, ..., Ag), if A= (A1, 22, ..., Ap),
i.e., remove the first row of to geti. 1. Then, forn > 2k, themaps

Ak(n) <~ Ak

e Ay are bijections (3.23)

which provide an isomorphism between levels 0ntof the graphsA(n) and A.

Proposition 3.24. For k € %Zzo and n € C suchthat CAk(n) is semisimple, let

xﬁk(n), uw € Ay, be the irrelucible characters of® A,(n) and lettry: CAk(n) — C be
the trace onC A¢(n) defined in(2.25. Use the notation for partitions i2.17). Fork > 0
the mefficients in the expansion

1 g )
trg = Z trﬂ(n)xﬁk(n), are tr*(n) = (]_[ W) (M —lpl = (j = 1))
=1

e Ay beu j

i
If n € Cis such that(CAkJr%(n) is semisimple then for k= O the coefficients in the
expansion

ey = Z tr’%‘(n)xﬁk+l(n), are
neh g ’
" (1_[ 1 ) ]
try(n) = —-n- | [(n=1—]ul = (uj—j)).
2 bep h(b) i=1

Proof. Let A be a martition with n boxes. Beginning with the vertical edge at the end of the
firstrow, label the boundary edgesiotequentially with 01, 2, ..., n. Then the

vertical edge label for row = (number of horizontal steps
+ (number of vertical steps
=@R1—A)+(@( -1
=X1—=1 — (A —1), and the
horizontal edge label for colunjn= (number of horizontal steps
+ (number of vertical steps
=M—-j+DH+0;-1
=M-D+ G -DH+1
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Hence
{1,2,-~-,ﬂ}={(k1—1)—()»’j - PDH+1]1<j <A}
L{A =D -G - |2<i<n—-x+1)
={h(b) | bisinrow 1 of A}
U{(Aa—D - —i)2<i<n—-x+1}.

For example, ifx. = (10,7, 3,3,1) - 24, then the boundary labels afand the hook
numbers in the first row of are

14[12[11[8]7]6|5[3[2]1]o
32

4

Thus, sinceh; =n — |A-1],

d N n! 1 [As1]4+1
i = = —— —|As1l— (i =G =1)). (3.25
im(S;) Th) (th(b)) ]1 (N— =1l — i — (i — 1)), (3.25)

bex

Letn € Z-o and letyZ denote the irreducible characters of the symmetric gigup
By taking the trace on both sides of the equalityimeorem 3.22

Tro, V) = > x& Wxam® = Y dimS)xamb),
reA(n) reA(m)
for b € CAk(n).

Thus the equality in3.25 and the bijedion in (3.23 provide the expansion ofrfor all

n € Zsg suchthatn > 2k. The sta¢ment for alln € C suchthatCAx(n) is semisimple is

then a consequence of the fact that any polynomial is determined by its evaluations at an
infinite number of vales of the parameter. The proof of the expansionkgf%tﬂs exactly

analogous. [
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Note that the polynomials tr(n) and tr‘;‘(n) (of degreegu| and|u| + 1, respectively)
do not depend ok. By Proposition 3.24 :
{roots of tf (n) | u € A%} = {0},
2
{roots of t§' (n) | 1 € Aq} = {1},

{roots of tfy (n) | 1 € Al%} ={0,2}, and (3.26)
2

A 1
{rootsof t{' (n) | w € A} =1{0,1,...,2k — 1}, fork e EZzO, k> 2.

For example,le first few values of tf and tf, are
2

tr(n) = 1, tr (n) =n

trD(n) =n-1, trﬁ% (n) =n(n — 2),

tr(n) = %n(n -3), trD;(n) = %n(n —1(n—4),

tr(n) = %(n— 1)(n—2), tr?(n) = %n(n—Z)(n—S),
tr'(n) = (—13n(n —1)(n-5), trm%ﬂ(n) = én(n —1H(n—2)(n—6),
trB](n) = én(n —2)(n—4), trHj(n) = én(n —1D(n—-3)(n-5),

tra(n) = é(n —1(n—2)(n—3), trz(n) = (—13n(n —2)(n—3)(n—4),
2

Theorem 3.27. Letne Z- and ke 3Z-o. Then

1
CAk(n) is semisimple if and only if k %

Proof. By Theorem 2.2@) and the observation3@26) it follows that CAx(n) is
semisimple ifn > 2k — 1.
Supposen is even. Tha Theorems2.26a) and2.26b) imply that

CA (n) is semisimple and (CA%H(n) is not semisimple

5+3
since(n/2) € Ag 1 and tl(ln/z)(n) = 0. Since(n/2) € Ag+1(n), the An 1 (n)-module
(n/z)(n) # 0. Since the patl(](?) .,(n/2), (n/2), (n/2)) € A(ﬂnfl) does not correspond
2

to an element oA(”/Z)(n)

Card(A(n/2)> # Card(A(n/z)(n)>

Thus, Tits deformation theorenillfeorem 5.1B implies that(CAgH(n) cannot be
semisimple Now it follows fromTheorem 2.2@) that CAx(n) is not semisimple for
k>5+1.
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If nis odd then Theorenta26a) and2.26b) imply that

CA (n) is semisimple and (CAgH(n) is not semisimple,

5+3
since(n/2) € A + 3 and (/2 (n) = 0. Since(} — 3) e A%H(n), the Ay ;1 (n)-module

o 3-b

H 1 1 1 A
i) (n) # 0. Since the patt(@, ceey (% -3 (% +3), (% — z)) € Ag+1 does not

N1 ,
correspond to an element Afﬂilz)(n), and shce
2

card( A% 2 # Card A(%f%)(n)
o+1 o+1 ’
the Tits deformation theorem implies th@®Ag ,;(n) is not semisimple. Now it follows
from Theorem 2.2@) thatC Ax(n) is not semisimple fok > g + % O

Murphy elements fo€ Ax(n)
Let xn be the element of S, given by
kn= Y Sm (3.28)
1<f<m=n
wheresym is the transposition i%, which switcheg andm. LetSC {1, 2, ..., k} and let

| € SU S. Definebs, d| € Ax by
bs={SUS,{¢,¢}igst and  dics={l,1°{¢ €'}egs}. (3.29)
For example, iMA, if S={2,4,5,8} andl = {2,4,4,5, 8} then

o] B ] w0 o] SHIHE |

ForSC {1,2,...,k}define

1 ! ’ (o}
ps=Y E(_l)#(w == (3.30)
|

where the smisoverl € SUS suchthatl # @, 1 # SUS, | # {¢,¢'}, andl # {¢, ¢}°.
ForSC{1,...,k+ 1} suchthatk + 1 € S, define

) 1 : :
Ps = Z E(_]_)#({5,@ 1SH+#({¢, )<l C)dI , (3.31)
|

where the smisoveralll € SUS suchthat{k+1, (k+21)'} € | or{k+1, (k+1)} C I€,
| #SUS, | #{k+1 (k+1)},andl # {k+ 1, (k+ 1)'}°.
LetZ; = 1 and, fork € Z- 1, let

k
Zy = <2> + Y ps+ Y. (n—k+[S)(~1)Sbs. (3.32)
Scil,....k} Scil,...k}
ISi=1 S22
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View Z € CAc € CA, 1 using the embedding ir2(2), and defineZ; = 1 and
2 2

Zyy3 =K+ Zi+ Y s+ (= (k+1 +[SH(=1)Fbs, (3.33)
KIes

where the smisoverSC {1, ...,k + 1} suchthatk + 1 € Sand|S| > 2. Define

1
M% =1, and Mk = Zk — Zk_%, fork e §Z>O' (3.34)
For example he first fewZy are
Zo=1, Z1 =1, Z1= *® ,
2 [ ]
——"

Py

zl%=1:+:zf;zf:1+ng an

i

and the first fewM are

Mo =1 Mg=L Mi=3-1 My =lp-il-ftet]

Theorem 3.35.

(@) For n € Z=o, kn is a central element of S,. If A is a partition with n boxes and/Ss
the irreducible §-module indexed bthe partitiona,

Kn = Z c(b), as operators on §
be
(b) Letn k € Z>o. Then, as operators on V%, wheredim(V) = n,
n n
Zi=wn— () +kn and  Zy =i (L) +k+Dn-1

(c) Letne C,k € Zso. Then % is a central element o Ax(n), and, if n € C is such
that C Ax(n) is semisimple and - n with |A- 1| < k boxes, then

n
Zx = kn— (2> + % c(b), as operators on f(ﬁs
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where A& is the irreducibleC Ax(n)-module indexed bthe partitioni. Furthermore,
Zk+% is a central element d’CAk+% (n), and, if n is such thaEAkJr% (n) is semisimple

and - n is apartition with [A-1] < k boxes, then

n
Zy,y=kntn—1- (2)+§c(b), as operators on ﬁ%’

where Atk+1 is the irreducible(CAkJr% (n)-module indexed bthe partitionA.
2

Proof. (a) The elementk is the dass sun corresponding to the conjugacy class of
transpositbns and thus, is a central element dfS,. The onstant by whiche, acts
on §: is computed in 17, Chepter 1, Section 7, Example 7].

(c) The first statement follows from parts (a) and (b) @héorems 3.&nd3.22as follows.
By Theorem 3.6C Ax(n) = Endsn(V@’k) if n > 2k. Thus, byTheorem 3.22f n > 2k then
Zx acts on the irreducibl@Ak(n)—moduleAﬁ(n) by the constant given in the statement.
This means tha¥Zy is a central element o€ Ax(n) for all n > k. Thus, forn > 2k,

d Zx = Zd for all diagramad € Ay. Sincethe coefficients ird Zy (in terms of the basis of
diagrams) are polynomials im it follows thatd Zy = Zxd for all n € C.

If n € C is such thatC Ax(n) is semisimple Ieb(éA ™ be the irreducible characters.
Then Zg acts onA (n) by the constanyCAk (Zk)/d|m(A (n)). If n > k this is the
constantin the statement and therefore it is a polynomialdeermined by its values for
n > 2k.

The proof of the second statement is completely analogous (kagg%, Si—1, and the
second statement in part (b).

(b) Letsj = 1 so that

2kp+n=n+2 Z s]—Zs. Z (Sj + Sji)

1<i<j=<n 1<i<j=<n

=) S+ sj= Z Sj -

i=j i#£] i,j=1
Then
n
(2kn + n) (viy ®"'®Uik)=(z Sj) (vi;, ® -+ @ viy)
ij=1

n
ZSjUi1®"'®SjUik
i,j=1

I
.Mj

(1-Ei — Ejj + Eij + Eji)vy,
i,j=1
®---® (1— Eii — Ejj + Ejj + Eji)vi
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and expanding this sum gives th@kn + n) (vi; ® - - - @ vj, ) is equal to

£ (1)

SC{T, ..k} iy iy ih) =1 \£eS°

x Y (~pHELIShHLLIST (]‘[sm) (3.36)

Icsus tel
X (l—[ 5igj> (viy, ® -+ ®vi,)
Lelc
whereS® C {1, ..., k} corresponds to the tensor positions where 1 is acting, and where

| € SU S corresponds to the tensor positions that must eiqaatl | © corresponds to the
ten®r positions that must equal
When|S| = 0 the setl is empty and the term corresponding3an (3.36) is

n

i,j:lil/,...,ik/ Ee{l ..... k}

Assume|S| > 1 and separate the sum according to the cardinality.dflote hat the sum
for | is equal to the sum fot ¢, sincethe whole sum is symmetric inand j. The sum of
the terms in 8.36) whichcome froml = SU S’ is equal to

3 ni(l—[ 5”%,)(—1)'5( [ 5igi)(ui1,®---®vik,)

ill ..... ik’ i=1 \leS* LesSuUs

=n(—=1)¥bs(vi, ® --- @ vi,).

We get a sirlar contribution from the sum of the terms with= ¢.
If |S| > 1 then the sumfahe terms in 8.36) whichcome froml = {¢, ¢’} is equal to

n
A > (l_[ 5iri,,) (—1)'¥83,i81, (1_[ 5irj5i,,j) (Viy ® -+ Qi)

1975000y ik/i,j:]. reSe I’;ﬁ@
= (=1)'¥bs_)(vi; ® - -- @ vi,).

and there is a corresponding contribution frére= {¢, £'}°. The reméning terms can be
written as

Z Xn: (]_[ Siziy) Z (—)HELIEDFHALEISI)

Ill,...,ik/ i,j=l LeSe |CSuUs

X (H(Sigi) (l—[ Suj) (viy ® viy) =2ps(vi; @ - - - @ vjy).

Lel telc
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Putting these cases together gives thaf 2 n acts onvi, ® --- ® vj, the same way
that

Do+ @n(—D'bs+2ps) + Y (Zn(—1)2b5+ 2ps + Z(—l)ZZbS{e}>

IS=0 IS=1 |S|=2 (eS

+y (2n(—1)3|bs+ 2ps + Z(—l)s|2bs_{g}>

|S|>2 teS

acts omj, ® - - - ® vj,. Note hatbs = 1if |S| = 1. Hence 2, + n acts orwj; ® - - - ® vj,
the same way that

n? + Z (=2n+2ps) + Z (2nbs + 2 + 2ps)

1S=1 IS=2
+ > ((—1)|52nbs+ 2ps+ Z(—DSleS{e})
[SI>2 LeS

K
=n? — 2nk 2() 2 2(n — k+ 9 (—1)!5p
n®—2nk+2( +‘s,|221 |os+|s‘222 (n—k+19)(~1)!Sbs

acts omvj, ® - - - ® vj,, and s0Zx = kn + (N — n? + 2nk)/2 asoperators otV &, This
proves the first statement.

For the seond statement, sindd — 8in)(1 — §jn) = {(1’: oo b=

(2kn—1+ (N = 1) (vi; @ -+ @ Vi, @ vn)

n—-1
(Z 3j>(Ui1®"'®Uik®Un)
i

=1

n
(Z Sj (1 —&in)(1— 5jn)> (vi; ® -+ @ Vi, ® vn)

hj=1

n
= Z Sjvi; ® -+ ® §j Vi, ® (1 — 6in)(A — Sjn)vn,
ij=1

n
> (1-Ei — Ejj + Eij + Eji)vi, ® - ® (1— Eii — Ejj + Ejj + Eji)vi,
i,j=1

®(1 — Ejj — Ejj + Eii Ejj)vn
n
= (ZS;’) (vi; ® -+ Q@ viy) @ vn + Z(l— Eii — Ejj + Eij + Eju,
i ij=1

®---® (- Eii — Ejj + Eij + Eji)vi, ® (—Eii — Ejj)vn
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n
+ Z(l— Eii — Ejj + Eij + Eji)vi, ® --- ® (1 — Ejj — Ejj + E;jj
i,j=1
+ Eji)vi, ® Eii Ejjvn.

The first sum is known to equa@2«, + n) (vi; ® - - - ® vj,) by the computation proving
the first statement, and the last sum has only one nonzero term, the term corresponding to
i = ] = n. Expanding the middle sum gives

Sg{(];i.ié‘(s+l) Il/ Ik/ i,j=1 LeS
x Z( HFULAISHHAALAST (]‘[5. .) (]_[ sm> (Wi, ® - @ viy)
Lel Lelc
where themner sum is over all € {1,...,k + 1} suchthat{k + 1, (k + 1)} < | or

{(k+1,(k+1)} € I Asin part @) this sum is treated in four cases: (1) wh&h= 0,
(2) whenl = SUS orl =@, (3)whenl = {¢,¢'} or | = {¢, ¢}, and (4) he reméining
cases. Sinck + 1 € S, the firstcase does not occur, and cases (2)—(4) are as in part (a)
giving

Z -2n+ Z (2nbs + 2ps + 2)

|S|=1 |S|=2
k+1eS k+1eS
+ Y (2n(—1)5|b5+2ps+22(—1)S'bs_{g}).
|S)>2 LeS

k+1eS

Combining this with the term&«in +n) (vi; ® - - - ® vj,) @ vn and IR (vi, - - - @ viy, @ vn)
gives that 2,_1 + (n — 1) acts ornvj, @ - - - @ vj, as

en+m+1-2n4+2k+ Y 2ps+2(n — K+ 1) +[S)(—1)/Sbs.

[S[>2
k+1eS

Thuskn_1 — kn acts o, ® - - - ® vj, as

n—(M-1)+1—2n+2k+ Z 2ps+2(n— (k+ 1) +|9)(=1)'Sbs
|S|=2
k+1eS

2

S0, asoperators onVe®, we haveZk+1 =K+ Zk+ (kn-1 —kn) —1+n—-k =
Zk + (kn—1 — kn) + n — 1. By the flrst statement in part (c) of this theorem we get
Zk_,_%—(’(n ()+kn)+(Kn—1—Kn)+n—1—Kn—1—()+kn+n—1- U

Theorem 3.37. Letk e 3Z-¢ and let ne C.

(a) The elements I&i/l, My, ..., Mk,%. Mg, all commute with each other i@ Ac(n).
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(b) Assume thaC Ax(n) is semisimple. Let: € Ay so hat u is a partition with < k
boxes, and let é(n) be the ireducibleC Ax(n)-module indexed by. Then here is a
unique up to multiplication by constants, basieT | T € A‘k‘} of A{f(n) such hat, for

al T=(TO T3, . TO)c A ande e 7o suchthat¢ < k,

CTO/ Ty, if TOTE-2 =0,
Mevr = ) (0 _ -1
(n— T Por, if TV =TY"2),
and
" O T DY, i TOTED o,
3T T 1Oy if TO = T+D),

where)/u denotes the box whekeand i differ.

Proof. (a) View Zo, Z%, ..., Zk € CAx. ThenZy € Z(CAx), SO ZxZy = Zy Zk for all
0<¢ <k.SinceMy = Z; — ZE_%, we see tht theM, commute with each other in
CAx

(b) The basis is defined inductively. kf = O, % or 1, then dintA%(n)) = 1, so up to a
constant there is a unique choice for the basis.k-sr 1, we consider th restiction
Re%ﬁ';(”l)(n)(Aﬁ(n)). The branching rules for this restriction are multiplicity free,

2

meaning that eadﬁAk_% (n)-irreducilde that shows up imﬁ(n) does so exactly once.
By induction, we can choose a basis for eébhk% (n)-irreducible, and the union of
these bases forms a basis fht(n). For¢ < k, Mg € CA,_1(n), so Mg acts on

2
this basis as in the statement of the theorem. It remains only to check the statement
for Mk. Letk be an integer, and lét - nandy + (n — 1) suchthati.; = T®

andy-1 = T&=2). Then byTheorem 3.3&), Mx = Zx — Zkf% acts onvt by the

constant
n n
c(b) — +kn) — c(b) — +kn—1)=cir/y)+1,
(; (2) ) (; (2) ) Y

_ A
and Mk+% = Zk+% — Zk acts onwt € Ak+%(n) by the constant

(Zc(b)— (5)+kn+n- 1) - (Zc(b)— (3) +kn)

bey bex
=—C(A/y)+n—1
The result now follows from3.23 and theobservation that
® Tk=3)y _ if TO = Tk+3)
C(h/y) = c(T /:’ 2y -1, if TV =T i+D’
n—|T®] -1, if TW = Tkt2),
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4. Thebasic construction

In this section we shall assume that all algebras are finite dimensional algebras over an
algebraically closed fiel#l. The fact thatF is algebraically closed is only for convenience,
to avoid the division rings that could arise in the decompositiogiist bdore (4.8)
below.

Let A € B be an inclusion of algebras. Th&wy B is an (A, A)-bimodule where
A acts on the left by left multiplication and on the right by right multiplication. Fix an
(A, A)-bimodule homomorphism

e:B®rB — A (4.2)
Thebasic constructiolis the algebrd ® 4 B with product given by
(b1 ® br) (b3 ® bg) = by ® e(by ® b3)bg, for by, by, bz, bs € B. (4.2)

More generally, letA be an algebra and lét be a left A-module andR a right A-module.
Let

e:Lr R— A, (4.3)

be an(A, A)-bimodule homomorphism. THeasic constructiotis the algebr&R ® o L with
product given by

(r1®£1)2® L) =r1®e(l1®r2)lz, forri,ro e Randéy, o e L. (4.4)

Theorem 4.1&dow determines, explicitly, the structure of the algeR@®a L.
Let N = Rad A) and let

A=A/N, L=L/NL, and R=R/RN (4.5)
Define an(A, A)-bimodule homomorphism

g:LepR — A

LRF > e(l{®r) (4.6)

where? = ¢ + NL,F =r + RN,anda =a+ N,for¢ € L,r € R, anda € A. Then
by basic tensor product relationk [Chapter Il, Section 3.3 corresponding to Proposition
2 and Section 3.6 corresponding to PropositigntBe surjective algebra homomorphism

7:R®aL — §®A|:

a has ke =R NL. 4.7
@0 > T®7 () = R®a (4.7)

The algebraA is a split semisimple algebra (argabra isomorphic to a direct sum of
matrix algebras). Fix an algebra isomorphism

A =P My, @
peh
a’;Q «~ E’If>Q
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whereA is an index set for the components aEQQ is the matrix with 1 in the P, Q)
entry of theuth block and O in all other entries. Also, fix isomorphisms

L=@PR"®L* and R=PR'e®A" (4.8)
neA neh

vyhereﬁw, n € A are the simple left A-modules, A", € A are the simpk right
A-modules, and-*, R*, u € A, are vector spaces. The practical effect of this set-up is
that if R* is an index sefor a basis{r¢ | Y € R*} of R#, L* is an index sefor a basis

{th | X € L#} of L#, andA* is an index set for bases

(@5 1QeAof K" and (&h|PeAtof A" (4.9)
suchthat
agT_a”é = 8udT Q_a”é and ‘E’;aéT = S)LM(Spsﬁ#, (4.10)

then
L hasbasiga@p ® ¢4 |ne A Pec A", Xel#} and

_ . ) ) ) (4.11)
R has basigry ® & | e A, Qe ALY e RY).

With notation as in4.9) and @.11) the maps : L @ R — A is determined by the
constants’ ., € FF given by

e(AQ @ ®ry ® Tp) = eyyagp (4.12)
andel ., does not depend o@ andP since
(AR5 @1y ® Tf) = e(alod o ® % @1y ® Thahy)
=alr(BGH® Iy ®ry ® ap)ahr (4.13)
= $1u85 FxyAgpapT = ExXYAST-
For eachu € A construct a matrix
EM = (%) (4.14)

and letD* = (Dgy) andC* = (Cb,,) be invetible matrices such thab*£“CH is a
diagonal matrix with diagonal entries denoted:4s

DtENCH = diaglel). (4.15)

In padice D* andC* are found by row reducing* to its Smith normal form. Thef; are
theinvariant factorsof £#. . .
Foru e A, X e R*, Y e L#, define the bllowing elements oR® 5 L:

rﬁl)L(Y = r; ® ﬁ)’é ® ﬁllé ® ¢, and r_]I;(Y = Z CngDﬁszngz. (4.16)
Q1,Q2
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Since
r§@ AW Ty ) =05 Thapy® Ty 0 )
=i Ap@apyTh ) (4.17)
=5,0wze @ B ® Th @ £4),
the eIementn’;(Y does not depend oR and{m"Y | we A X e REY e LH) is a basis
of R®z L. -
The following theorem determines the structure of the algeR@s L andR®4 L.

This theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit
in [4, Sedion 2.2] andpart (b) is proved in4].

Theorem 4.18. Let : R®aL — R®4L be as in (4.7) and let{ki} be a basis of
ker(m) = R®a NL. Let
nft € R®aL  besutithat 7(n{p) =n{,
where theelementsiy, € R®j L are asdefined in(4.16).
() The setqmy | 1 € A X e R, Y e L*yand{dl, | 1w e A X e R4Y € L#)
(see (4.16) arebases 0R® ; L, which stisfy
MgMgp = SiuefoMep  and  AgGp = 8,01 Qe Ngp,
whereet  ande’ are as defined in(4.12 and(4.19.
(b) The radical of the algebra A L is
RadR®a L) = F-spanki, n{ 1 | &f = 0or &f =0}
and the images of the elements
1

s = 8_Mn¢T’ for e, # 0 andef # 0,
K

are a set of matrix units iINR®a L)/Rad R®a L).

Proof. The first statement in (a) follows from the equations 4n1(). If (C~1H)* and
(DL are inverses of the matric€s* and D then

D_C O Dryixy=" > (C7H3eCoxMue:DY (P DTy
X.Y X.Y,Q1,Q2

= D 3sQdQ;1Mg,q, = M.
Q1.Q2

and so the elementsg ; can be written as linear combinations of fifg, . This esablishes
the second statement in (a). By direct computation, usiii and @.12),

My MGp= (s ® AY ® Ty @ 5 1h® dy ® T4 @ th)
=r{eaAWR:(TY G erfeaNT, @ ()
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=5, (1§ ® Ay ® e} odly ;a5 ® £h)
:Skug'}Q(ré ® ? ® ﬁw ®£P) = SXHETQmSP’

and
A Al A A = w [
Aty = D  Co,sDT0,M0,0,C6:u DY o,Mos0,
Q1,Q2,Q3,Q4
— A Ph oM w [
= D 5.uC8,sDF 0,60,0,C0. PV oMo,
Q1,Q2,Q3,Q4
=& Y 51U CH 5DV 0,Mb 0, = SrudTUET gy,
Q1.Q4

(b) LetN = RadA) asin @.5.1f ri ® n11,r2 @ nals € R®a NL with ng € N for
somei € Z-o then

(r1 ®nly)(r2 @ N2l2) =r1 ® (N1l ® ra)nzlz
=r1®me(l1 ®r2)nplz € ReaANTIL.

SinceN is a nilpotenideal of A it follows that kekm) = R®a NL is a nilpotenideal of
R®aL.Sokefr) C RadR®aL).
Let

| = F-spank;, n{; | &§ =0oref =0}.

The multiplication rule for théy 1 implies thatz (1) is an ideal ofR®z L and thus, by
the correspondence between idealsRo® ; L and ideals oR®a L which contain kegr),
| isanideal ofR®a L.

If Ay 7., A7, Ay, € (Y | & = 0 oref = 0} then

Y A YV N Ly

nYlTlnYzTgan,Tg - 6T1Y28Y2nY1T2nY3T3 - 6T1Y28T2Y38Y28T2nY1T3 - 0’
smceeY =0or sT = 0. Thus any producmY T nY T nY3T3 of three basis elements of
| isin ker(n) Slnce ke¢r) is a nilpoten ideal ofR®A L it follows that| is an ideal of

R®a L consisting of nilpotent elements. $o- Rad R®a L).
Since

1
rehy = nYTnUV = 8udTU— 1Yy = Sudtueyy  modl,
ey ee
the images of the elemenQT in (4.7) form a set of matrixunits in the algebra
(R®aL)/1. Thus(R®aL)/I is a split semisimple algebra and s RadR®a L).
O

Basic constructions for A B
Let A € B be an inclusion balgebras. Let; : B — A be an(A, A) bimodule
homomorphism and use thié, A)-bimodule homomorphism

e: BB — A

b1 ®by +—— e1(b1by) (4.19)
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and @.2) to define tke basicconstructionB ® o B. Theorem 4.2&elow provides the str-
ucture ofB ® o B in the case Wwere bothA andB are split semisimple.
Let us record the following facts:

(4.20a) Ifpe AandpAp=Fpthen(p® 1)(B®AB)(p®1) =F-(p®1).

(4.20b) If pis an idempotent oA andpAp= Fpthene1(1) € F.

(4.20c) Ifp € A, pAp=Fpandife1(1) # 0, thenfll)(p ® 1) is a minimal idempotent
in B®a B.

These are justfied as follows. Ip € A and pAp = Fp andbi;,bp € B then
(PO1) (b1®b) (p®1) = (p@e1(b)bp)(P®1) = pRe1(by)er(brp) = per(br)e(br) p®
1 =£&p® 1, for some constarit € F. This esablishes (a). Ifp is an indenpotent of A
andpAp= Fpthenpei(1)p = e1(p?) = e1(1- p) = e1(1)p and so (b) holds. Ip € A
andpAp=Fpthen(p® 1)? = e1(1)(p® 1) and so, ife1(1) # 0, thenTﬁ)(p ®1isa
minimal idempotent irB ® o B.
AssumeA andB are split semisimple. Let

A be an index set for the irreducibfemodulesA*,

B be an index set for the irreducibB-modulesB*, and let

A* = {P — 1} be an index set for a basis of the simplenodule A,

for each € A (the compositd® — 1 is viewed as aisgle symbol). We think oA* as
the set of “paths te.” in the two-level graph

I' with vertices on IeveIAA, vertices on level Bé, and

m’, edgesu — A if A* appears with multiplicityn’; in Reg; (B*). (4.21)

For examplethegraphI” for the symmetric group algebr#s= CS andB = CS;is

A: oD@ og

NS

biommogn @ P

If » € B then
B ={(P>pu—>airlpnecAP—>puecA*andy — risanedgein’}  (4.22)

is an index sefor a basis of the irreduciblB-moduleB*. We think of B* as the set of
paths tox in the graphl”. Let

{aro [ peAP—>pu, Q- e Al and
m

{bro [AeB,P>pu—1,Q—>v— Ae B, (4.23)
M:U

A

be sets of maix units in the algebra# andB, respectively, so that

apqast = §ydgsart and brobst =85808,bpr, (4.24)
1 v 1 wy Tv nv

Py o Py
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and sub thatforall u € A, P, Q € A*,

ahg =) bki,‘Q (4.25)
" TS

where the sum isver all edgeg. — X in the graphl”.

Though is not necessary for the followiitgs conceptually helpful to le€ = B ®a B,
letC = A, and etend the grapti'toa graphf with three levels, so that the edges between
level B and level C are the reflections of the edges between level A and level B. In other
words,

I has vertices on leved: C, and
anedge. — u, A € B, u € C, foreachedge. — 4, € A 1 € B.
(4.26)
For eachv € C define
& p MeA,Aeé,veé,PaueA"and (4.27)
- H w — »andi — v are edges il ’ '

SO thatC" is the set of “paths to” in the graphf. Contnuing with our previous example,

NS

B: == BR @ P

/N oz

(@}

Theorem 4.28. Assume A and B are split semisimple, and let the notation and assumption
be asin (4.21)-(4.25.

(a) The elements of B B given by

brr ® brg
ny ¥y
)“ o

do not depend on the choice of % y € A” and form a basis of B B.
(b) For each edgeu — A in I" define a constamﬁ e F by

&1 (bPP ) = eﬁapp. (4.29)
ni

7
I /
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Thensﬁ is independent of the choice of P> 1. € A* and

(bE; ® b%)) (br;e;( ® b7>1<55> = (SynSQRSW(S(fﬂS (b;; ® st)
A o 4 n
8 =00 O}

1
epg = <_) (pr ® bTQ) , suchthat eﬁ #0ande) #0,
oy gg M}JL/ vy

o

yv
A

RadB®a B) has basis {pr ® bro

and the images of the elements

Lo
Y
form a set of matrix units ilB ® o B)/Rad B ® a B).
(c) Lettrg : B — Fandtra : A— F betraces on B and A, respectively, such that

tra(e1(b)) =trg(b), forallb € B. (4.30)

Letxﬁ, we A, andxg, A € B, be the irrelucible characters of the algebras A and B,
respectvely. Define constants,, u € A, andtr’y, A € B, by the guations

tra= Y taxa and  trg =) trgxa, (4.31)
ueA reB

respectvely. Then the constam‘g defined in(4.29 satisfy
trg = &, trls.
(d) In the dgebra Bea B,
1®1= Z bF;LF ®biyﬁ

(e) By left multiplication, the algebra B B is aleft B-module. IfRadB ®4 B) is a
B-submodule of BRap B andi: B — (B®a B)/RadB ®a B) is a left B-module
homomorphism then

<bRS> > ers.

Ty :m

Proof. By (4.11) and @.25),

B — PR eL B — (PrRoA
neh and veA 4.32
brog +— ?P@@M beo +— 1'% ®§Q ( )

LV ) LV uv
Py MA A Py
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as left A-modules and as righA-modules, respectively. Identify the left and right hand
sides of hese isomorphisms. Then, b4.17), the dements oiC = B ® o B given by

ny
Lo A
Y

Meo =1, ® 1 @ A ®€yQ =berr ® bro (4.33)
my y y {7\, MAV er

do notdependoit — y € A and form a basis oB ®a B.
(b) By (4.12, the mape: B®p B — Ais determined by the values

efo €F givenby e are =¢ (Ta’ PR Q' ® ?p) , (4.34)
YT yT I I ny TiL I
Lo Ao A 4
M "

since

I _ _

811—/? aPuP =¢ (b% ® b%F:) =eé <b5; & bQﬂﬁ’)
o A o A o

n

=d1qQéer (bpp ) =d1Q¢€1 (b pp bpp ) =dtqehp app.
YT K YT MK K YT JLILL m
ro A ro A A o

The matrix&* given by @.14) is dagonal with entrie:zﬁ given by @.29 and, by @.17),
¢} is independent o — 1 € A%, By Theorem 4.1@),

Mpq M

Po MRs = 8, 7EQrR Mps Z(Syn(SQRSGmPS
v ¢ VT I3 ve Vg
Lo PN ap in ap An
y ™ 4 Y Y

in the algebraC. The resbf the datements in part (b) follow frofftheorem 4.1@).
(c) Evaluding theequations in4.31) andusing @.29 gives

tr)l‘3 =1trg <b5’”F; > =1tra <81 (bF;“F; )) = Eﬁtl’A <api) = eﬁtr’;\. (4.35)
A A

(d) Since

1= ) bee in the algebraB,
P—ou—ir

it follows from part (b) and4.16) that

1®1=( bfz;f>®( 2 b%s)
P—ou—ir 2 Q—ov—>y v

giving part (d).
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(e) By left multiplication, the algebr8 @ a B is a leftB-module. Ifs)); # 0ande) #0
then

1 1
brsepro = (—) brs (bPT ® bTQ) = (—) 8 sp (bRT ®bTQ) =8spPERQ.
B oW &g 173 4 yv g9 Bu Bu TV
T Ao 14 T X 4 14 A T 0
Y

Thus, if: B — (B®a B)/RadB ®a B) is a left B-module homomorphism then

L<bRS)=L(bRS)'1=bRS E epp
B B B jan
T T T Pou—>i—>y

y

= E S§sPERp = E ers. [
Bu T B
P—>u—i—y w1 =i Ty ﬂyﬂ
Y

5. Semisimple algebras

Let R be a integral domain and |&tr be an algebra oveR, so thatAr has anR-basis
{b1, ..., bg},

d
Ar = Rspan(by,....bg} and bibj =) rfb.,  withrf e R,
k=1

making Ar a fing with identity. LetF be the field of fractions oR, letF be the égebraic
closure off, and set

A=TF®RAr = F-spariby, ..., by},
with multiplication determined by the multiplication ihg. ThenA is an algebra OVeF.
A traceon Aiis a linear mag: A — T suchthat
f(a1a) = t(azay), forall ag, ap € A.
A tracet on A is nondegenerati for eachb € Athere is ara € A suchthati(ba) # 0.
Lemmab5.1. Let A be a finite dimensional algebra over a fidfgl let t be a trae on A.
Define a symmetric bilinear forrh): A x A — F on A by(ay, a) = t(ajay), for all

a;, a2 € A. Let B bea basis of A. Let G= ((b, b'))p g be the matrix of the forng, )
with respect to B. The following are equivalent:

(1) The tracel isnondegenerate.
(2) detG #0.
(3) Thedual basis B to the basis B with respect to the fofy) exids.

Proof. (2) < (L): Thetracefis_degenerate if there is an elemant A, a # 0, such that
f(ac) = Oforallc € B. If a, € F are such that

a:Zabb, then =(a,c) = Zabbc
beB beB

for all c € B. Soa exids if and only if the columns o6 are linearly dependent, i.e. if and
only if G is not invertible.



T. Halverson, A. Ram / European Journal of Combinatorics 26 (2005) 869-921 913

3) & (2): Let B* = {b*} be the dubbagds to {b} with respect tq, ) and letP be the
change of basis matrix frof to B*. Then

d*=) Pab, and  Spc=(b,d*) =) Pyc(b,¢) = (GP')p.
beB deB

So Pt, the trarspose ofP, is the invers of thematix G. So thedual bass to B exids if
and only ifG is invertible, i.e. ifand only if deG £ 0. [

Proposition 5.2. Let A bean algebra and let be anondegenerate trace on A. Define a
symmetric bilinear forni, ): Ax A — Fon A by(ar, ap) = t(a1, ap), forallag, ap € A.
Let B be abasis of A and let Bbe the dual basis to B with respect{d.

(@) Letae A. Then

[a] = Z bab* is an element of the center(&) of A
beB

and[a] does not depend on the choice of the basis B.
(b) Let M and N be A-modules and lgte Homz(M, N) and define

[¢] =) bgb*.

beB

Then[¢] € Homa(M, N) and[¢] does not depend on the choice of the basis B.

Proof. (a) Letc € A. Then

cla]= Z chali = Z Z(cb, d*ydab*

beB beB deB
- Z daZ(d*c, b)b* = Z dad*c = [a]c,
deB beB deB

since(ch, d*) = f(cbd*) = f(d*ch) = (d*c, b). So[a] € Z(A).
Let D be another basis oA and letD* be the dubbasgs to D with respect tq, ). Let
P = (Pgp) bethe transition matrix fronD to B and letP~1 be the inverse oP. Then

d=) Pgpb and d* =) (P h;.b*,
beB beB

since
(d, d*) = <Z Pabb, Z(Pl)555*> = Y Pan(P Hpa8u5 = S4g-
beB beB b,beB
So

Y dad* =) Paba) (P Hzb* = > bab*s ;=" bal".

deD deDbeB beB b,beB beB

So[a] does not depend on the choice of the b#sis
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The proof of part (b) is the same as the proof of part (a) exceptaitiplaced byp.
O

Let A be an algebra and I& be anA-module. Define

Enda(M) = {T € EndM) | Ta=aT foralla € A}.

Theorem 5.3 (Schur'slemmp Let A be a finite dimensional algebra over an
algebraically closed field .

(1) Let A be a simple A-module. Th&Mda(A*) =T - Id ;..
(2) If A* and A* are nonisomorphic simple A-modules théoma(A*, A#) = 0.

Proof. Let T: A* — A" be a nonzerdA-module homomorphism. Sinc&* is simple,
kerT = 0 and soT is injective. SinceA* is simple, inT = A* and soT is surjective. So
T is an isonorphism. Thus we may assume tiat A* — A*.

SinceF is algebraically closed has an eigenvector and a corresponding eigenvalue
« € F. ThenT —« - Id € Homa(A*, A*) and soT —« - Id is either O or an isomorphism.
However, since d€T —«a - 1d) =0, T — « - Id is not invertible. SOT — « - Id = 0. So
T=wo-1d. SOENA(AY) =F-1d. O

Theorem 5.4 (The Centralier Theorem Let A be a finite dimensional algebra over an
algebraically closed field. Let M be a semisimple A-module and set=2Enda(M).
Suppose that

M = P (AHE™.,

reM

whereM is an index set for the irreducible A-module$ which appear in M and the m
are postive integers.

@) Z =@, Mm, ().
(b) As an(A, Z)-bimodule,
M= A ez
reM

where the Z, 1 € M, are the simple Z-modules.

Proof. Index the componentsiithe decomposition ok by dummy variablessiA so that
we may write

M ;@ém;A*@eﬁ.
reM i=1

ForeachA € M, 1 <i,j <m;, Ietq’;{\j: A ®ej - A*® ¢ betheA-module iso-
morphism given by

¢ikj(m®ej*)=m®ei*, form e A,
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By Schur’s lemma,

Enda(M) =Homa(M, M) = Homa (@@ N e . P a ®ei")
A 7
m,
%@@SMHomA(A’\ e A€l = EB @ Fef;.
* i, j=1

A iy
Thus each elemete Enda(M) can be written as
mj, _
z=Y "> Z¢. for somez}; € IF,
remij=1
and identified with an element 6B, M (F). Sinceqsﬁj Bl = 8.8k} it follows that
Enda(M) = @ M, (B).
reM

(b) As a vector spaceZ/ = sparfe/’ | 1 < i < m,} is isomophic to the simple
@, Mm, (F) module of column vectors of length,,. Thedecomposition oM asA ® Z
modules follows since

@® ¢ M €) =8.0k@®€), forallme A*,aec A. O
If Alis an algéra thenACP is the algebraA except with the opposite multiplication, i.e.
A% ={a% |aec A}  with aPa® = (@ay)P,  forallag, ap € A

The left regular representatiorof A is the vector spacé with A action given by left
multiplication. HereA is serving both as an algebra and asfamodule. It is often useful
to distinguish the two roles oA and use the notatioA for the A-module, i.e.A is the

vector space

A={b|be A} with A-adion ab=ab, forallac A beA

Proposition 5.5. Let A bean algebra and letA be the rgular representation of A. Then
Enda(A) = A°P. More precisely,

Enda(A) = {¢p | be A},  wheregy is given by
¢p(@) =ab, foralldae A

Proof. Let¢ € Enda(A) and letb € A be such thap (1) = b. Foralld € A,
$@ =¢@ 1) =ap(l) = ab = ab,

and sop = ¢p. Then Enda(A) = A°P since
(¢y 0 Bb,) (B) = ababr = iy, (B),

forallby, by € Aanda e A. [
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Theorem 5.6. Suppose that A is a finite dimensional algebra over an algebraically closed
fieldF such hat the regular representatioA of A is comfetely decompable. Then A is
isormorphic to a direct sum of matrix algebras, i.e.

A= Mg, (F).

reA
for some sefA andsome positive integers, dindexed by the elements Af

Proof. If Ais completely decomposable then, Dyeorem 5.4EndA(A) is isomophic to
a direct sum of matrix algebras. B3roposition 5.5

A% = (B Mg, (F).
reA
for some se#A and some positive integeds, indexed by the elements & The map
op
PMe® | — P My @

reA reA
a —> a,

wherea' is the transpose of the matré is an algeba isomorphism. S@\ is isonorphic
to a direct sum of matrix algebras. O

If Ais an algebrahen the trace tr of the regular representation is the track given
by
tr(a) = Tr(,&(a)), forae A,

where A(a) is the linear transformation oA induced by the action o& on A by left
multiplication.

Proposition 5.7. Let A = (P, _z Mq, (F). The tace of the regular representation is

nondegenerate if and only if the integersate all nonzero inF. In characteristic p they
could be 0.

Proof. As A-modules, the regular representation
A= P,

reA

whereA is the irreducibleA-module consisting of column vectors of length Fora € A
let A*(a) be thelinear transformation ofA* induced by the action ai. Then he trace tr
of the regular representation is given by

Xk A — F

_ A
tr = dex , where 2 > THAME).

reA

Wherexﬁ are the irreducible characters &f Sincethed, are all nonzero the trace tr is
nondegenerate. [
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Theorem 5.8 (Maschke$ Therem). Let A be a finite dimensional algebra over a field
F such hat the tracetr of the regular representation of A is nondegenerate. Then every
repreentation of A is completely decomposable.

Proof. Let B be a basis ofA and letB* be the dual basis oA with respect to the form
(,): Ax A— F defined by

(a1, ap) = tr(aiap), forall az, ap € A.

The dual basiB* exists because the trace tr is nondegenerate.

Let M be anA-module. If M is irreducible then the result is vacuously true, so we
may assume tha¥l has a proper submodulé. Let p € End(M) be a projetion ontoN,
i.e.pM = N andp? = p. Let

[p] = Z bpb*, and e= Z bb*.

beB beB
Foralla € A,

tr(ea) = Ztr(bb*a) = Z(ab, b*) = Zab|b =tr(a).
beB beB beB
Sot(e — 1)a) = 0, foralla € A. Thus, since tr is nondegenerater 1.
Letm € M. Thenpb*m € N forallb € B, and so[p]m € N. So[p]M C N. Let
n € N. Thenpb*n = b*nforallb e B,andsdpjn=en=1-n=n. So[p]M = N and
[p]? = [p], as elemets of EndM).
Note tha{l — p] = [1] — [p] =e—[p] = 1—[p]. So

M=[pIM&1A—-[pDM =N & [1- p]M,

and, byProposition 5.&),[1 — p]M is an A-module. Sd1 — p]M is an A-submodule of
M which is complementary tM. By induction on the dimension &fl, N and[1 — p]M
are completely decomposable, and therefdries completely decomposable. (I

Together,Theorem 5.65.8andProposition 5.%ield the following theorem.

Theorem 5.9 (Artin-Wedderburn TheoremLet A be a finite dimensional algebra over
an algebraically closed field. Let{bs, ..., bq} be a basis of A and ldt be the trace of
the regular representation of A. The following are equivalent:

(1) Every representation of A is completely decomposable.

(2) The rgular representation of A is completely decomposable.
(3) A= @AGA M, (F) for somefinite index sefh, and some de€ Z-o.
(4) The trace of the regular representation of A is nondegenerate.
(5) dettr(bibj)) # 0.

Remark. Let R be an integral domain, and l&igr be an algebra oveR with basis
{b1, ..., bg}. Then dettr(bib;)) is an element oR and detr(bjbj)) # 0in [ if and only
if det(tr(bjbj)) # 0 in R. In paticular, if R = C[x], then dettr(bjbj)) is a polynomial.
Since a polynomial has only a finite number of roots(ttébi b;))(n) = 0 for only a finite
number of values € C.
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Theorem 5.10 (The Tits Deformation TheorémlLet R bean integral domainF, thefield
of fractions of RF the algebraic closure oF, and R, the integral tosure of R in]l_?.
Let Ar be an R-algebra and lefh;, ..., by} be a basis of A. For a € Agr let A(a)
denote the linear transformation ofgAinduced by left multiplication by a. Let.t.. ., tg
be indeterminates and let

Pt, ..., ta; X) = detx - I1d — (1 A(by) + - - - taA(bg))) € Rlta, .. ., tallx],
so hat jp is the haracteristic polynomial of a “generic” element of A
(a) Let Ay = FQR AR. If
A = D Mg, (B,
reA

then the factorization of(t, .. ., tg, X) into irreducibles iNF[ty, ..., tq, X] has the
form

p=[]@E"". with p*eRlti,....ta.x] and  d =degp").
reA

If x*(t1,...,tq) € RIty, ..., tq] is given by

Pt -t X) = X P — A, X ST
then
N -
: Az —> F ~
XA F 2 reA,
aby + -+ aghyg — x* (o, ..., aq),

are the irreducible characters of A

(b) Let K be a field and lefk be the dgebraic closure ofK. Lety: R — K be a
ri_ng homomorphism and lgt: R — K be the extension of. Let x*(ty, ..., tq) €
R[t1,....tqg] be asin (a). If x = K®R Ar is semisimple then

Ag = @ Mg, (K), and
reA
XXK: Ag —> K
for » € A, are he irreducible characters of A

Proof. Firstnote thatif{b], ..., b} is another basis oAr and the change of basis matrix
P = (Rj) is given by

bi = PRjbj  thenthe transformation t = Pjt;,
] ]
defines an isomorphism of polynomial rinB$ty, . .., t4] = R[t;, ..., t;]. Thus it fdlows

that if the statements are true for one basiggf(or Az) then hey are true for every basis
of Ar (resp.Ap).
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(@) Using the decomposition o4& let {eﬁ, we A1<i,j < d) beabasis omatix

units in Az and Ietti‘j‘ be corresponding variables. Then the decompositioAzoinduces
a factorization

. ) =[[(%. where **(t{f,x)—det( Zt“AA(ei,-)). (5.11)

reA wl,]

The polynomialp” (t/'; x) is irreducible since specializing the variables gives

Ij’

Bt 1 = Lt, =t.t, = 0otherwisex) = x* —t, (5.12)

which is irreducible inR[t; x]. This provides the factorization op and establishes that
deg p*) = d;. By (5.1))

fﬂ(t{f,x)—x Tr(A*(Zt{feﬁ)) 1y,
ol
which establishes the last statement.

Any root of p(ty, ..., tg, X) is an element ofR[ty, ..., tq] = Rity,...,tq]. So any
root of p*(t1, ..., tq, X) is an element oR|ty, . .., ty] and therefore the coefficients of
Bt (t1, ..., tg, X) (Symmetic functions in the roots of*) are eements ofR([ty, .. ., tq].

(b) Taking he image of the Eq5(11), give a factorization of (),

y@®=[]r@*%.  inKlt.....ta.x].
reA

For the same @ason as in5.12 the factors y(p*) are irreducible polynomials in
Kty ..., tg, X].

On the other hand, as in the proof of (a), the decompositionAgfinduces a
factorization ofy (p) into irreducibles iNK[ty, . .., tq, X]. These two dctorizations must
coincide, whence the result. [

Applying the Tits deformation theorem to the case wHere C[x] (so thatF' = C(x))
gives the following theorem. The statementin (a) is a consequerideafem 5.@nd the
remark whit follows Theorem 5.9

Theorem 5.13. Let CA(n) be a family of algebras defined by generators and relations
such hat the coefficients of the relations are polynomials in n. Assume that there is an
a € C suchthat CA(w) is semisimple. LeA be an ndex set for the irreducibl€ A(«)-
modules A («). Then

(&) CA(n) is semisimple for all but a finite number ofenC.

(b) If n e C is such thatC A(n) is semisimple theA is an ndex set for the simpl€ A(n)-
modules A (n) anddim(A*(n)) = dim(A*(«)) for eacha € A.

(c) Let x bean indeterminate and lgby, ..., by} be a pasis ofC[x]A(x). Then here are
polynomialsy*(ty, ..., tg) € C[ts, ..., tq, X], A € A, suchthat for every ne C such
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that CA(n) is semisimple,

XAm): CA(M) — C A
albl + ce + adbd > X)\(alv ..., 0d, n)s

are the irreducible characters of A(n).
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