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Abstract

The partition algebraCAk(n) is the centralizer algebra ofSn acting on the k-fold tensor
productV⊗k of its n-dimensional permutation representationV . The partition algebraCAk+ 1

2
(n)

is the centralizer algebra of the restriction ofV⊗k to Sn−1 ⊆ Sn. We apply the theory of the
basic construction (generalized matrix algebras) to the tower of partition algebrasCA0(n) ⊆
CA1

2
(n) CA1(n) ⊆ CA11

2
(n) ⊆ · · ·. Our main results are:

(a) a presentation on generators and relations forCAk(n);
(b) a derivation of “Specht modules” from the basic construction;
(c) a proof thatCAk(n) is semisimple if and only ifk ≤ (n+ 1)/2 (except for a few special cases);
(d) Murphy elements forCAk(n); and
(e) an exposition on the theory of the basic construction and semisimple algebras.

© 2004 Elsevier Ltd. All rights reserved.

0. Introduction

A centerpiece of representation theory is the Schur–Weyl duality, which says that:

(a) the general linear groupGLn(C) and the symmetric groupSk both act on tensor space

V⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

, with dim(V) = n,
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(b) these two actions commute, and
(c) each action generates the fullcentralizer of the other, so that
(d) as a(GLn(C), Sk)-bimodule, the tensor space has amultiplicity free decomposition,

V⊗k ∼=
⊕
λ

LGLn(λ)⊗ Sλk , (0.1)

where theLGLn(λ) are irreducibleGLn(C)-modules and theSλk are irreducibleSk-
modules.

The decomposition in (0.1) essentially makes the study of the representations ofGLn(C)

and the study of representations of the symmetric groupSk two sides of the same coin.
The groupGLn(C) has interesting subgroups,

GLn(C) ⊇ On(C) ⊇ Sn ⊇ Sn−1,

and corresponding centralizer algebras,

CSk ⊆ CBk(n) ⊆ CAk(n) ⊆ CAk+ 1
2
(n),

which are combinatorially defined in terms of the “multiplication of diagrams” (see
Section 1) and which play exactly analogous “Schur–Weyl duality” roles with their
corresponding subgroup ofGLn(C). The Brauer algebrasCBk(n) were introduced in 1937
by Brauer [3]. The partition algebrasCAk(n) arose in the early 1990s in the work of
Martin [18–21] and later, independently, in the work of Jones [16]. Martin and Jones
discovered the partition algebra as a generalization of the Temperley–Lieb algebra and
the Potts model in statistical mechanics. The partition algebrasCAk+ 1

2
(n) appear in [21]

and [22], and their existence and importance were pointed out to us by Grood [14]. In this
paper we follow the method of [21] and show that if the algebrasCAk+ 1

2
(n) are given the

same stature as the algebrasAk(n), then well-known methods from the theory of the “basic
construction” (seeSection 4) allow for easy analysis of the whole tower of algebras

CA0(n) ⊆ CA1
2
(n) ⊆ CA1(n) ⊆ CA11

2
(n) ⊆ · · · ,

all at once.
Let � ∈ 1

2Z≥0. In this paper we prove:

(a) A presentation by generators and relations for the algebrasCA�(n).
(b) CA�(n) has

an ideal CI�(n), with
CA�(n)

CI�(n)
∼= CS�,

suchthat CI�(n) is isomorphic to a “basic construction” (seeSection 4). Thus the
structure of the ideal CI�(n) can be analyzed with the general theory of the basic
construction and the structure of the quotientCA�(n)/(CI�(n)) follows from the
general theory of the representations of the symmetric group.

(c) The algebrasCA�(n) are in “Schur–Weyl duality” with the symmetric groupsSn and
Sn−1 on V⊗k.

(d) The general theory of the basic construction provides a construction of “Specht
modules” for the partition algebras, i.e. integral lattices in the (generically) irreducible
CA�(n)-modules.
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(e) Except for a few special cases, the algebrasCA�(n) are semisimple if and only if
� ≤ (n+ 1)/2.

(f) There are “Murphy elements”Mi for the partition algebras that play exactly analogous
roles to the classical Murphy elements for the group algebra of the symmetric group.
In particular, theMi commute with each other inCA�(n), and whenCA�(n) is
semisimple each irreducibleCA�(n)-module has a unique, up to constants, basis of
simultaneous eigenvectors for theMi .

The primary new results in this paper are (a) and (f). There has been work towards
a presentation theorem for the partition monoid by Fitzgerald and Leech [11], and it is
possible that by now they have proved a similar presentation theorem. The statement in
(b) has appeared implicitly and explicitly throughoutthe literature on the partition algebra,
dependingonwhat one considers as the definition of a “basic construction”. The treatment
of this connection between the partition algebras and the basic construction is explained
very nicely and thoroughly in [21]. We consider this connection an important part of the
understanding of the structureof the partition algebras. The Schur–Weyl duality for the
partition algebrasCAk(n) appears in [18,21], and [22] and wasone of the motivations
for the introduction of these algebras in [16]. The Schur–Weyl duality forCAk+ 1

2
(n)

appears in [21] and [22]. Most of the previous literature (for example [20,24,25,9]) on
the partition algebras has studied the structure of the partition algebras using the “Specht”
modules of (d). Our point here is that their existence follows from the general theory of
the basic construction. This is a special case of the fact that quasi-hereditary algebras are
iterated sequencesof basic constructions, as proved by Dlab and Ringel [8]. The statements
about the semsimplicity ofCA�(n) have mostly, if not completely, appeared in the work
of Martin and Saleur [20,23]. The Murphy elements for the partition algebras are new.
Their form was conjectured by Owens [27], who proved that the sum of the firstk of them
is a central element inCAk(n). Here we prove all of Owens’ theorems and conjectures
(by a different technique than he was using). We have not taken the next natural step
and provided formulas for the action of the generators of the partition algebra in the
“seminormal” representations. We hope that someone will do this in the near future.

The “basic construction” is a fundamental tool in the study of algebras such as the
partition algebra. Of course, like any fundamental construct, it appears in the literature and
is rediscovered over and over in various forms. For example, one finds this construction
in Bourbaki [1, Chapter 2, Section 4.2, Remark 1], in [4,5], in [12, Chapter 2], and in the
wonderful paper of Dlab and Ringel [8] where it is explained that this construction is also
the algebraic construct that “controls” the theory of quasi-hereditary algebras, recollement,
and highest weight categories [6] and some aspects of the theory of perverse sheaves [26].

Though this paper contains new results in the study of partition algebras we have made
a distinct effort to present this material in a “survey” style so that it may be accessible to
non-experts and to newcomers to the field. For this reason we have included, inSections 4
and5, expositions, from scratch, of

(a) the theory ofthe basic construction (see also [12, Chapter 2]), and
(b) the theory of semisimple algebras, in particular, Maschke’s theorem, the

Artin–Wedderburn theorem, and the Tits deformation theorem (see also [7, Sections
3B and 68]).
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Here the reader will find statements of the main theorems which are in exactly the
correct form for our applications (generally difficult to find in the literature), and short
slick proofs of all the results on the basic construction and on semisimple algebras that we
need for the study of the partition algebras.

There are two sets of results on partition algebras that we have not had the space to treat
in this paper:

(a) the “Frobenius formula”,“Murnaghan–Nakayama” rule, and orthogonality rule for the
irreducible characters given by Halverson [15] and Farina–Halverson [10], and

(b) the cellularity of the partition algebras proved by Xi [29] (see also Doran and
Wales [9]).

The techniques in this paper apply, in exactly the same fashion, to the study of other
diagram algebras; in particular, the planar partition algebrasCPk(n), the Temperley–Lieb
algebrasCTk(n), and the Brauer algebrasCBk(n). It wasour originalintent to include in
this paper results (mostly known) for these algebras analogous to those which we have
proved for the algebrasCA�(n), but the restrictions of time and spacehave prevented this.
While perusing this paper, the reader should keep in mind that the techniques we have used
do apply to these other algebras.

1. The partition monoid

Fork ∈ Z>0, let

Ak = {set partitions of{1,2, . . . , k,1′,2′, . . . , k}}, and
Ak+ 1

2
= {d ∈ Ak+1 | (k+ 1) and(k+ 1)′ are in the same block}. (1.1)

Thepropagating numberof d ∈ Ak is

pn(d) =
(

thenumber of blocks ind that containboth an element
of {1,2, . . . , k} and an element of {1′,2′, . . . , k′}

)
. (1.2)

For convenience, represent a set partitiond ∈ Ak by a graph withk vertices in the top row,
labeled 1, . . . , k left to right, andk vertices in the bottom row, labeled 1′, . . . , k′ left to
right, with vertexi and vertexj connected by a path ifi and j are in the same block of the
set partitiond. For example,

represents

{{1,2,4,2′,5′}, {3}, {5,6,7,3′,4′,6′,7′}, {8,8′}, {1′}},
and has propagating number 3. The graph representingd is not unique.

Define the compositiond1 ◦ d2 of partition diagramsd1,d2 ∈ Ak to be the set partition
d1 ◦ d2 ∈ Ak obtained by placingd1 aboved2 and identifying the bottom dots ofd1 with
the topdots ofd2, removing any connected components that live entirely in the middle row.
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For example,

Diagram multiplication makesAk into an associative monoid with identity, 1= .
The propagating number satisfies

pn(d1 ◦ d2) ≤ min(pn(d1), pn(d2)). (1.3)

A set partition isplanar [16] i f i t can be represented as a graph without edge crossings
inside of the rectangle formed by its vertices. For eachk ∈ 1

2Z>0, the following are
submonoids of the partition monoidAk:

Sk = {d ∈ Ak | pn(d) = k}, Ik = {d ∈ Ak | pn(d) < k},
Pk = {d ∈ Ak | d is planar},

Bk = {d ∈ Ak | all blocks ofd have size 2}, and Tk = Pk ∩ Bk.

(1.4)

Examples are

Fork ∈ 1
2Z>0, there is an isomorphism of monoids

Pk
1−1←→ T2k, (1.5)

which is best illustrated by examples. Fork = 7 we have

and fork = 6+ 1
2 we have
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Let k ∈ Z>0. By permuting the vertices in the top row and in the bottom row each
d ∈ Ak can be written as a productd = σ1tσ2, with σ1, σ2 ∈ Sk andt ∈ Pk, and so

Ak = Sk PkSk.

For example, (1.6)

For� ∈ Z>0, define

theBell number, B(�) = (the number of set partitions of{1,2, . . . , �}),
theCatalannumber, C(�) = 1

�+ 1

(
2�

�

)
=

(
2�

�

)
−

(
2�

�+ 1

)
,

(2�)!! = (2�− 1) · (2�− 3) · · ·5 · 3 · 1, and �! = � · (�− 1) · · ·2 · 1,
(1.7)

with generating functions (see [28, 1.24f, and 6.2]),∑
�≥0

B(�)
z�

�! = exp(ez− 1),
∑
�≥0

C(�− 1)z� = 1−√1− 4z

2z
,

∑
�≥0

(2(�− 1))!!z
�

�! =
1−√1− 2z

z
,

∑
�≥0

�!z
�

�! =
1

1− z
.

(1.8)

Then

for k ∈ 1

2
Z>0, Card(Ak) = B(2k) and Card(Pk) = Card(T2k) = C(2k),

for k ∈ Z>0, Card(Bk) = (2k)!!, and Card(Sk) = k!.
(1.9)

Presentation of the partition monoid

In this section, for convenience, we will write

d1d2 = d1 ◦ d2, for d1,d2 ∈ Ak.

Let k ∈ Z>0. For 1≤ i ≤ k− 1 and 1≤ j ≤ k, define

(1.10)

Note thatei = pi+ 1
2

pi pi+1 pi+ 1
2
.
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Theorem 1.11.

(a) The monoid Tk is presented by generators e1, . . . ,ek−1 and relations

e2
i = ei , ei ei±1ei = ei , and ei ej = ej ei , for |i − j | > 1.

(b) The monoid Pk is presented by generators p1
2
, p1, p3

2
, . . . , pk and relations

p2
i = pi , pi pi± 1

2
pi = pi , and pi pj = pj pi , for |i − j | > 1/2.

(c) The group Sk is presented by generators s1, . . . , sk−1 and relations

s2
i = 1, si si+1si = si+1si si+1, and si sj = sj si , for |i − j | > 1.

(d) The monoid Ak is presented by generators s1, . . . , sk−1 and p1
2
, p1, p3

2
, . . . , pk and

relations in(b) and(c) and

si pi pi+1 = pi pi+1si = pi pi+1, si pi+ 1
2
= pi+ 1

2
si = pi+ 1

2
, si pi si = pi+1,

si si+1 pi+ 1
2
si+1si = pi+ 3

2
, and si pj = pj si ,

for j �= i − 1

2
, i , i + 1

2
, i + 1, i + 3

2
.

Proof. Parts (a)and (c) are standard. See [12, Proposition 2.8.1] and [2, Chapter IV,
Section 1.3, Example 2], respectively. Part (b) is a consequence of (a) and the monoid
isomorphism in (1.5).
(d) The right way to think of this is to realize thatAk is defined as a presentation by the
generatorsd ∈ Ak and the relations which specify the composition of diagrams. To prove
the presentation in the statement of the theorem we need to establish that the generators
and relations in each of these two presentations can be derived from each other. Thus it is
sufficient to show that

(1) The generators in (1.10) satisfy the relations inTheorem 1.11.
(2) Every set partitiond ∈ Ak can be written as a product of the generators in (1.10).
(3) Any productd1 ◦ d2 can be computed using the relations inTheorem 1.11.

(1) is established by a direct check using the definition of the multiplication of diagrams.
(2) follows from (b) and (c) and the fact (1.6) that Ak = Sk PkSk. The bulkof the work is
in proving (3).
Step1. First note that the relations in (a)–(d) imply the following relations:

(e1) pi+ 1
2
si−1 pi+ 1

2
= pi+ 1

2
si si−1 pi+ 1

2
= pi+ 1

2
si si−1 pi+ 1

2
si−1si si si−1

= pi− 1
2

pi+ 1
2
si si−1 = pi− 1

2
pi+ 1

2
si−1 = pi+ 1

2
pi− 1

2
si−1

= pi+ 1
2

pi− 1
2
.

(e2) pi si pi = si si pi si pi = si pi+1 pi = pi+1 pi .

(f1) pi pi+ 1
2

pi+1 = pi pi+ 1
2
si pi+1 = pi pi+ 1

2
pi si = pi si .

(f2) pi+1 pi+ 1
2

pi = pi+1si pi+ 1
2

pi = si pi pi+ 1
2

pi = si pi .

Step2. Analyze how elements ofPk can be efficiently expressed in terms of the generators.
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Let t ∈ Pk. Theblocks oft partition {1, . . . , k} into top blocksand partition{1′, . . . , k′}
into bottom blocks. In t , some top blocks are connected to bottom blocks by an edge, but
no top block is connected to two bottom blocks, for then by transitivity the two bottom
blocks are actually a single block. Draw the diagram oft , such that if a top block connects
to a bottom block, then it connects with a single edge joining the leftmost vertices in each
block. The elementt ∈ Pk can be decomposed inblock formas

t = (pi1+ 1
2
· · · pir+ 1

2
)(pj1 · · · pjs)τ (p�1 · · · p�m)(pr1+ 1

2
· · · prn+ 1

2
) (1.12)

with τ ∈ Sk, i1 < i2 < · · · < i r , j1 < j2 < · · · < js, �1 < �2 < · · · < �m, and
r1 < r2 < · · · < rn. The left product ofpi s corresponds to the top blocks oft , theright
product ofpi s corresponds to the bottom blocks oft , and the permutation τ corresponds to
the propagation pattern of the edges connecting top blocks oft to bottom blocks oft . For
example,

= (p21
2

p31
2

p61
2
)(p3p4p6p7)τ (p2p3p4p7)(p11

2
p21

2
),

= (p21
2

p31
2

p61
2
)(p3p4p6p7)s2s3s5s4(p2p3p4p7)(p11

2
p21

2
).

The dashed edges ofτ are “non-propagating” edges, and they may be chosen so that they
do not cross each other. The propagating edges ofτ do not cross, sincet is planar.

Using the relations (f1) and (f2), the non-propagating edges ofτ can be “removed”,
leaving a planar diagram which is written in terms of the generatorspi and pi+ 1

2
. In our

example, this process will replaceτ by p21
2

p2p31
2

p3p51
2

p5p41
2

p4, so that

(p21
2

p31
2

p61
2
)(p3p4p6p7)

· p21
2

p2p31
2

p3p51
2

p5p41
2

p4

· (p2p3p4p7)(p11
2

p21
2
).

Step3. If t ∈ Pk andσ1 ∈ Sk which permutes the top blocks of the planar diagramt , then
there is a permutationσ2 of the bottom blocks oft suchthatσ1tσ2 is planar. Furthermore,
this can be accomplished using the relations. For example, suppose



T. Halverson, A. Ram / European Journal of Combinatorics 26 (2005) 869–921 877

= (p11
2

p21
2
)(p2p3)︸ ︷︷ ︸

T1

(p61
2
)(p7)︸ ︷︷ ︸

T2

p4p5s5 (p2p3p4)(p11
2

p21
2

p31
2
)︸ ︷︷ ︸

B1

(p6p7)(p51
2

p61
2
)︸ ︷︷ ︸

B2

is a planar diagram with top blocksT1 andT2 connected respectively to bottom blocksB1
andB2 and

then transposition ofB1 andB2 can be accomplished withthe permutation

which is planar. It is possible to accomplish these products using the relations from the
statement of the theorem. In our example, withσ1 = s2s1s3s2s4s3s5s2s4s6s1s3s5s2s4s3 and
with σ2 = s4s5s6s3s4s5s2s3s4s1s2s3,

σ1T1T2p4p5 s5 B1B2σ2= (σ1T1T2p4p5σ
−1
1 )(σ1s5σ2)(σ

−1
2 B1B2σ2)

=T ′2T ′1 p3p4 s4 B′2B′1,

whereT ′2T ′1 = (p11
2

p2)(p51
2

p61
2

p6p7) andB′2B′1 = (p2p3p11
2

p21
2
)(p5p6p7p41

2
p51

2
p61

2
).

Step4. Let t , b ∈ Pk and letπ ∈ Sk. Thentπb = txσ wherex ∈ Pk andσ ∈ Sk, andthis
transformation can be accomplished usingthe relations in (b), (c), and (d).

SupposeT is a block of bottom dots oft containing more than one dot and which is
connected, by edges ofπ , to two top blocksB1 andB2 of b. Using Step 3 findpermutations
γ1, γ2 ∈ Sk andσ1, σ2 ∈ Sk suchthat

t ′ = γ1tγ2 and b′ = σ1bσ2

are planar diagrams withT as the leftmost bottom block oft ′ and B1 and B2 as the two
leftmost top blocks ofb′. Then

tπb = γ−1
1 t ′γ−1

2 πσ−1
1 b′σ−1

2 = γ−1
1 t ′(γ−1

2 πσ−1
1 )b′σ−1

2

= γ−1
1 t ′(γ−1

2 πσ−1
1 )b′′σ−1

2 = tπσ−1
1 b′′σ−1

2 ,
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whereb′′ is a planar diagram withfewer top blocks thanb has. This is best seen from the
following picture, wheretπb equals

and the last equality uses the relationspi+ 1
2
= p2

i+ 1
2

and the fourth relation in (d) (multiple

times). Thentπb = γ−1
1 t ′γ−1

2 πσ−1
1 b′′σ−1

2 = tπ ′b′′σ−1
2 , whereπ ′ = πσ−1

1 .
By iteration of this process it is sufficient to assume that in proving Step 4 we are

analyzingtπb where each bottom block oft connects to a single top block ofb. Then,
sinceπ is a permutation, the bottom blocks oft must have the same sizes as the top blocks
of b andπ is the permutation that permutes the bottom blocks oft to the topblocks ofb.
Thus, by Step 1, there isσ ∈ Sk suchthatx = πbσ−1 is planar and

tπb = t (πbσ−1)σ = txσ.

Completion of theproof. If d1, d2 ∈ Ak then use the decompositionAk = Sk PkSk (from
(1.6)) to write d1 andd2 in the form

d1 = π1tπ2 and d2 = σ1bσ2, with t,b ∈ Pk, π1, π2, σ1, σ2 ∈ Sk,

and use (b) and (c) to write these products in terms of the generators. Letπ = π2σ1. Then
Step 4 tells us that the relations giveσ ∈ Sk andx ∈ Pk suchthat

d1d2 = π1tπ2σ1bσ2 = π1tπbσ2 = π1txσσ2.

Using Step 2 and thatAk = Sk PkSk, this product can be identified with the product diagram
d1d2. Thus, the relations are sufficient to compose any two elements ofAk. �

2. Partition algebras

For k ∈ 1
2Z>0 andn ∈ C, thepartition algebraCAk(n) is the associative algebra over

C with basisAk,

CAk(n) = Cspan-{d ∈ Ak}, and multiplication defined by d1d2 = n�(d1 ◦ d2),

where, ford1, d2 ∈ Ak, d1 ◦ d2 is the product in the monoidAk and � is the number
of blocks removed from the middle row when constructing the compositiond1 ◦ d2. For
example,
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(2.1)

since twoblocks are removed from the middle row. There are inclusions of algebras given
by

(2.2)

Ford1, d2 ∈ Ak, define

d1 ≤ d2, if the set partitiond2 is coarser than the set partitiond1,

i.e., i and j in the same block ofd1 implies thati and j are in the same block ofd2. Let
{xd ∈ CAk | d ∈ Ak} be the basis ofCAk uniquely defined by the relation

d =
∑
d′≤d

xd′, for all d ∈ Ak. (2.3)

Under any linear extension of the partial order≤ the transition matrix between the basis
{d | d ∈ Ak} of CAk(n) and the basis{xd | d ∈ Ak} of CAk(n) is upper triangular with 1s
on the diagonal and so thexd are well defined.

The maps

ε 1
2
: CAk→ CAk− 1

2
, ε

1
2 : CAk− 1

2
→ CAk−1 and trk: CAk → C.

Let k ∈ Z>0. Definelinear maps

so thatε 1
2
(d) is the same asd except that the block containingk and the block containing

k′ are combined, andε
1
2 (d) has the same blocks asd except withk andk′ removed. There

is a factor of n in ε
1
2 (d) if the removal ofk andk′ reduces the number of blocks by 1. For

example,
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and

The mapε
1
2 is the compositionCAk− 1

2
↪→ CAk

ε1−→ CAk−1. Thecomposition ofε 1
2

and

ε
1
2 is the map

(2.4)

By drawing diagrams it is straightforward to check that, fork ∈ Z>0,

ε 1
2
(a1ba2) = a1ε 1

2
(b)a2, for a1,a2 ∈ Ak− 1

2
,b ∈ Ak

ε
1
2 (a1ba2) = a1ε

1
2 (b)a2 for a1,a2 ∈ Ak−1,b ∈ Ak− 1

2

ε1(a1ba2) = a1ε1(b)a2, for a1,a2 ∈ Ak−1,b ∈ Ak,

(2.5)

and

pk+ 1
2
bpk+ 1

2
= ε 1

2
(b)pk+ 1

2
= pk+ 1

2
ε 1

2
(b), for b ∈ Ak

pkbpk = ε
1
2 (b)pk = pkε

1
2 (b), for b ∈ Ak− 1

2

ekbek = ε1(b)ek = ekε1(b), for b ∈ Ak.

(2.6)

Define trk: CAk→ C and trk− 1
2
: CAk− 1

2
→ C by the equations

trk(b) = trk− 1
2
(ε 1

2
(b)), for b ∈ Ak, and

trk− 1
2
(b) = trk−1(ε

1
2 (b)), for b ∈ Ak− 1

2
, (2.7)

so that

trk(b) = εk
1(b), for b ∈ Ak, and

trk− 1
2
(b) = εk−1

1 ε
1
2 (b), for b ∈ Ak− 1

2
. (2.8)

Pictorially trk(d) = nc wherec is the number of connected components in the closure of
the diagramd,

trk(d) = , for d ∈ Ak. (2.9)
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The idealCIk(n)

Fork ∈ 1
2Z≥0 define

CIk(n) = C-span{d ∈ Ik}. (2.10)

By (1.3),

CIk(n) is an ideal ofCAk(n) and CAk(n)/CIk(n) ∼= CSk, (2.11)

since the set partitions with propagating numberk are exactly the permutations in the
symmetric groupSk (by conventionS

�+ 1
2
= S� for � ∈ Z>0; see (2.2)).

View CIk(n) as an algebra (without identity). SinceCAk(n)/CIk ∼= CSk and
CSk is semisimple, Rad(CAk(n)) ⊆ CIk(n). SinceCIk(n)/Rad(CAk(n)) is an ideal
in CAk(n)/Rad(CAk(n)) the quotientCIk(n)/Rad(CAk(n)) is semisimple. Therefore
Rad(CIk(n)) ⊆ Rad(CAk(n)). On theother hand, since Rad(CAk(n)) is an ideal of
nilpotent elements inCAk(n), it is an ideal of nilpotent elements inCIk(n) and so
Rad(CIk(n)) ⊇ Rad(CAk(n)). Thus

Rad(CAk(n)) = Rad(CIk(n)). (2.12)

Let k ∈ Z≥0. By (2.5) themaps

ε 1
2
: CAk −→ CAk− 1

2
and ε

1
2 : CAk− 1

2
−→ CAk−1

are(CAk− 1
2
,CAk− 1

2
)-bimodule and(CAk−1,CAk−1)-bimodule homomorphisms, respec-

tively. The correspondingbasic constructions(seeSection 4) are the algebras

CAk(n)⊗CA
k− 1

2
(n) CAk(n) and CAk− 1

2
(n)⊗CAk−1(n) CAk− 1

2
(n) (2.13)

with products given by

(b1⊗ b2)(b3⊗ b4) = b1⊗ ε 1
2
(b2b3)b4, and

(c1⊗ c2)(c3⊗ c4) = c1⊗ ε 1
2 (c2c3)c4, (2.14)

for b1, b2, b3, b4 ∈ CAk(n), and forc1, c2, c3, c4 ∈ CAk− 1
2
(n).

Let k ∈ 1
2Z>0. Then, by the relations in (2.6) and the fact that

everyd ∈ Ik can be written as d = d1pkd2, with d1,d2 ∈ Ak− 1
2
, (2.15)

the maps

CAk− 1
2
(n)⊗CAk−1(n) CAk− 1

2
(n) −→ CIk(n)

b1⊗ b2 �−→ b1 pkb2
(2.16)

are algebra isomorphisms. Thus the idealCIk(n) is always isomorphic to a basic
construction (in the sense ofSection 4).
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Representations of the symmetric group

A partitionλ is a collection of boxes in a corner.We shall conform to the conventions
in [17] and assume that gravity goes up and to the left, i.e.,

Numbering the rows and columns in the same way as for matrices, let

λi = thenumber of boxes in rowi of λ,

λ′j = thenumber of boxes in columnj of λ, and

|λ| = the totalnumber of boxes inλ.

(2.17)

Any partitionλ can be identified with the sequenceλ = (λ1 ≥ λ2 ≥ · · ·) and theconjugate
partition to λ is the partitionλ′ = (λ′1, λ′2, . . .). Thehook lengthof the boxb of λ is

h(b) = (λi − i )+ (λ′j − j )+ 1, if b is in position(i , j ) of λ. (2.18)

Write λ � n if λ is a partition withn boxes. In the example above,λ = (553311) and
λ � 18.

See [17, Section I.7] for details on the representation theory of the symmetric group.
The irreducibleCSk-modulesSλk are indexed by the elements of

Ŝk = {λ � n} and dim(Sλk ) =
k!∏

b∈λ
h(b)

. (2.19)

Forλ ∈ Ŝk andµ ∈ Ŝk−1,

ResSk
Sk−1

(Sλk ) ∼=
⊕
λ/ν=�

Sνk−1 and IndSk
Sk−1

(Sµk−1)
∼=

⊕
ν/µ=�

Sνk , (2.20)

where the first sum is over all partitionsν that are obtained fromλ by removing a box, and
the second sum is over all partitionsν which areobtained fromµ by adding a box (this
result follows, for example, from [17, Section I.7 Example 22(d)]).

TheYoung latticeis the grapĥSgiven by setting

vertices on levelk: Ŝk = {partitionsλ with k boxes}, and

an edgeλ→ µ, λ ∈ Ŝk, µ ∈ Ŝk+1 if µ is obtained fromλ by adding a box.
(2.21)
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It encodes the decompositions in (2.20). The first few levels of̂Sare given by

Forµ ∈ Ŝk define

Ŝµk =

T = (T(0), T(1), . . . , T(k))

T(0) = ∅, T(k) = µ, and, for each�,
T(�) ∈ Ŝ� andT(�)→ T(�+1) is an edge in̂S




so thatŜµk is the set of paths from∅ ∈ Ŝ0 to µ ∈ Ŝk in the graphŜ. In terms of the Young
lattice,

dim(Sµk ) = Card(Ŝµk ). (2.22)

This is a translation of the classical statement (see [17, Section I.7.6(ii)]) that dim(Sµk )
is the number of standard Young tableaux of shapeλ (the correspondence is obtained by
putting the entry� in the box of λ which is added at the�th stepT (�−1) → T (�) of the
path).

Structure of the algebraCAk(n)

Build a graphÂ by setting

vertices on levelk: Âk = {partitionsµ | k − |µ| ∈ Z≥0},
vertices on levelk+ 1

2
: Âk+ 1

2
= Âk = {partitionsµ | k− |µ| ∈ Z≥0},

an edgeλ→ µ, λ ∈ Âk, µ ∈ Âk+ 1
2

if λ = µ or if µ is obtained fromλ

by removing a box,

an edgeµ→ λ,µ ∈ Âk+ 1
2
, λ ∈ Âk+1, if λ = µ or if λ is obtained fromµ

by adding a box. (2.23)
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The first few levels ofÂ are given by

The following result is an immediate consequence of the Tits deformation theorem,
Theorems 5.10and5.13in this paper (see also [7, (68.17)]).

Theorem 2.24.

(a) For all but a finite number of n∈ C the algebraCAk(n) is semisimple.

(b) If CAk(n) is semisimple then the irreducibleCAk(n)-modules, Aµk are indexed by

elements of the set̂Ak = {partitionsµ | k − |µ| ∈ Z≥0}, anddim(Aµk ) = (number of

paths from∅ ∈ Â0 toµ ∈ Âk in the graphÂ).

Let

Âµk =


T = (T(0), T (

1
2 ), . . . , T (k−

1
2 ), T (k))

T (0) = ∅, T(k) = µ, and, for each�,

T (�) ∈ Â� andT (�) → T (�+
1
2 ) is an edge inÂ




so thatÂµk is the set of paths from∅ ∈ Â0 toµ ∈ Âk in the graphÂ. If µ ∈ Ŝk thenµ ∈ Âk

andµ ∈ Âk+ 1
2

and, for notational convenience in the following theorem,

identify P = (P(0), P(1), . . . , P(k)) ∈ Ŝµk with the corresponding
P = (P(0), P(0), P(1), P(1), . . . , P(k−1), P(k−1), P(k)) ∈ Âµk ,

and P = (P(0), P(0), P(1), P(1), . . . , P(k−1), P(k−1), P(k), P(k)) ∈ Âµ
k+ 1

2
.
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For � ∈ 1
2Z≥0 andn ∈ C suchthatCA�(n) is semisimple letχµA�(n), µ ∈ Â�, be the

irreducible characters ofCA�(n). Let tr�: CA�(n) → C be the traces onCA�(n) defined
in (2.8) anddefine constants trµ� (n), µ ∈ Â�, by

tr� =
∑
µ∈Â�

trµ� (n)χ
µ
A�(n)

. (2.25)

Theorem 2.26.

(a) Let n∈ C and let k∈ 1
2Z≥0. Assume that

trλ� (n) �= 0, for all λ ∈ Â�, � ∈ 1

2
Z≥0, � < k.

Then the partition algebras

CA�(n) are semisimple for all� ∈ 1

2
Z≥0, � ≤ k. (2.27)

For each� ∈ 1
2Z≥0, � ≤ k − 1

2, define

ελµ =
trλ
�− 1

2
(n)

trµ�−1(n)
for each edgeµ→ λ,µ ∈ Â�−1, λ ∈ Â

�− 1
2
, in the graphÂ.

Inductively define elements inCA�(n) by

eµPQ =
1√
ετµε

γ
µ

eτP−T p�e
γ

T Q−, for µ ∈ Â�, |µ| ≤ �− 1, P, Q ∈ Âµ� , (2.28)

whereτ = P(�− 1
2 ), γ = Q(�− 1

2 ), R− = (R(0), . . . , R(�− 1
2 )) for R = (R(0), . . . ,

R(�− 1
2 ), R(�)) ∈ Âµ� and T is an element of̂Aµ�−1 (the element eλPQ does not depend

on the choice of T ). Then define

eλPQ = (1− z)sλPQ, for λ ∈ Ŝ�, P, Q ∈ Ŝλ� , where

z=
∑
µ∈Â�|µ|≤�−1

∑
P∈Âµ�

eµP P (2.29)

and{sλPQ | λ ∈ Ŝ�, P, Q ∈ Ŝλ� } is any set of matrix units for the group algebra of the
symmetric groupCS�. Together, theelements in(2.28) and(2.29) form a set of matrix
units in CA�(n).

(b) Let n∈ Z≥0 and let k∈ 1
2Z>0 be minimal such thattrλk(n) = 0 for someλ ∈ Âk. Then

CAk+ 1
2
(n) is not semisimple.

(c) Let n ∈ Z≥0 and k ∈ 1
2Z>0. If CAk(n) is not semisimple thenCAk+ j (n) is not

semisimple for j∈ Z>0.

Proof. (a) Assume thatCA�−1(n) andCA
�− 1

2
(n) are both semisimple and that trµ

�−1(n) �=
0 for all µ ∈ Â�−1. If λ ∈ Â

�− 1
2

thenελµ �= 0 if and only if trλ
�− 1

2
(n) �= 0, and, since

the idealCI�(n) is isomorphic to the basic constructionCA
�− 1

2
(n)⊗CA�−1(n) CA

�− 1
2
(n)
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(see (2.13)), it then follows fromTheorem 4.28thatCI�(n) is semisimple if and only if
trλ
�− 1

2
(n) �= 0 for all λ ∈ Â

�− 1
2
. Thus, by (2.12), if CA�−1(n) and CA

�− 1
2
(n) are both

semisimple andtrµ�−1(n) �= 0 for all µ ∈ Â�−1 then

CA�(n) is semisimple if and only if trλ
�− 1

2
(n) �= 0 for all λ ∈ Â

�− 1
2
. (2.30)

By Theorem 4.28, when trλ
�− 1

2
(n) �= 0 for all λ ∈ Â

�− 1
2
, the algebraCI�(n) has matrix

units given by the formulas in (2.28). The elementz in (2.29) is thecentral idempotent
in CA�(n) suchthat CI�(n) = zCA�(n). Hence the complete set of elements in (2.28)
and (2.29) form a set of matrix units for CA�(n). This completes the proof of (a) and (b)
follows fromTheorem 4.28(b).

(c) Part (g) ofTheorem 4.28shows that ifCA�−1(n) is not semisimple thenCA�(n) is
not semisimple. �

Specht modules

Let A be an algebra. An idempotent is a nonzero elementp ∈ A suchthat p2 = p. A
minimal idempotentis an idempotentp which cannot be written as a sump = p1 + p2
with p1p2 = p2p1 = 0. If p is an idempotent inA and pAp= Cp then p is a minimal
idempotent ofA since, if p = p1 + p2 with p2

1 = p1, p2
2 = p2, and p1p2 = p2p1 = 0,

then pp1p = kp for some constantp and sokp1 = kpp1 = pp1pp1 = p1 giving that
either p1 = 0 ork = 1, in which casep1 = pp1p = p.

Let p be an idempotent inA. Then the map

(pAp)op ∼−→ EndA(Ap), where φpbp(ap) = (ap)(pbp) = apbp,
pbp �→ φpbp for ap∈ Ap, (2.31)

is a ring isomorphism.
If p is a minimal idempotent ofA and Ap is a semisimpleA-module thenAp must

be a simpleA-module. To see this suppose thatAp is not simple so that there areA-
submodulesV1 andV2 of Ap suchthat Ap = V1 ⊕ V2. Let φ1, φ2 ∈ EndA(Ap) be the
A-invariant projections onV1 andV2. By (2.31) φ1 andφ2 are given by right multiplication
by p1 = pp̃1p and p2 = pp̃2p, respectively, and it follows thatp = p1 + p2,
V1 = Ap1, V2 = Ap2, and Ap = Ap1 ⊕ Ap2. Then p2

1 = φ1(p1) = φ2
1(p) = p1

and p1p2 = φ2(p1) = φ2(φ1(p)) = 0. Similarly p2
2 = p2 and p2p1 = 0. Thusp is not a

minimal idempotent.
If p is an idempotent inA andAp is a simpleA-module then

pAp= EndA(Ap)op= C(p · 1 · p) = Cp,

by (2.31) and Schur’s lemma (Theorem 5.3).
The group algebra of the symmetric groupSk over thering Z is

Sk,Z = ZSk and CSk = C⊗Z Sk,Z, (2.32)



T. Halverson, A. Ram / European Journal of Combinatorics 26 (2005) 869–921 887

where the tensor product is defined via the inclusionZ ↪→ C. Letλ = (λ1, λ2, . . . , λ�) be
a partition ofk. Define subgroups ofSk by

Sλ = Sλ1 × · · · × Sλ� and Sλ′ = Sλ′1 × · · · × Sλ′r , (2.33)

whereλ′ = (λ′1, λ′2, . . . , λ′r ) is the conjugate partition toλ, and let

1λ =
∑
w∈Sλ

w and ελ′ =
∑
w∈Sλ′

(−1)�(w)w. (2.34)

Let τ be the permutation in Sk that takes the row reading tableau of shapeλ to the column
reading tableau of shapeλ. For example forλ = (553311),

τ = (2,7,8,12,9,16,14,4,15,10,18,6)(3,11)(5,17), since

TheSpecht modulefor Sk is theZSk-module

Sλk,Z = imΨSk = (ZSk)pλ, wherepλ = 1λτελ′τ
−1,and (2.35)

whereΨSk is theZSk-module homomorphism given by

ΨSk : (ZSk)1λ
ι−→ ZSk

π−→ (ZSk)τελ′τ
−1

b1λ �−→ b1λ �−→ b1λτελ′τ
−1 (2.36)

By induction and restriction rules for the representations of the symmetric groups, theCSk-
modules(CSk)1λ and(CSk)τελ′τ−1 have only one irreducible component in common and
it follows (see [17, Section I.7, Example 15]) that

Sλk = C⊗Z Sλk,Z is the irreducibleCSk-module indexed byλ, (2.37)

once one shows thatΨSk is not the zero map.
Let k ∈ 1

2Z>0. For an indeterminatex, define theZ[x]-algebra by

Ak,Z = Z[x]-span{d ∈ Ak} (2.38)

with multiplication given by replacingn with x in (2.1). For eachn ∈ C,

CAk(n) = C⊗Z[x] Ak,Z,

where theZ-module homomorphism
evn : Z[x] → C,

x �→ n
(2.39)
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is used to define the tensor product. Letλ bea partition with≤ k boxes. Letb⊗ p⊗(k−|λ|)k
denote the image ofb ∈ A|λ|,Z under the map given by

Fork ∈ 1
2Z>0, define anAk,Z-module homomorphism

ΨAk : Ak,Ztλ
ψ1−→ Ak,Zsλ′

ψ2−→ Ak,Z/I|λ|,Z
btλ �−→ btλsλ′ �−→ btλsλ′,

(2.40)

whereI|λ|,Z is the ideal

I|λ|,Z = Z[x]-span{d ∈ Ak | d has propagating number< |λ|}
andtλ, sλ′ ∈ Ak,Z are defined by

tλ = 1λ ⊗ p⊗(k−|λ|)k and sλ′ = τελ′τ−1⊗ p⊗(k−|λ|)k . (2.41)

TheSpecht modulefor CAk(n) is theAk,Z-module

Aλk,Z = im ΨAk = (image ofAk,Zeλ in Ak,Z/I|λ|,Z),

where eλ = pλ ⊗ p⊗(k−|λ|)k . (2.42)

Proposition 2.43. Let k ∈ 1
2Z>0, and letλ be a partition with ≤ k boxes. If n∈ C such

thatCAk(n) is semisimple, then

Aλk(n) = C⊗Z[x] Aλk,Z is the irreducibleCAk(n)-module indexed byλ,

where the tensor product is defined via theZ-module homomorphism in(2.39).

Proof. Let r = |λ|. Since

CAr (n)/CIr (n) ∼= CSr

and pλ is a minimal idempotent ofCSr , it follows from (4.20) thateλ, the image ofeλ in
(CAk(n))/(CIr (n)), is a minimal idempotent in(CAk(n))/(CIr (n)). Thus(

CAk(n)

CIr (n)

)
ēλ is a simple(CAk(n))/(CIr (n))-module.

Since the projectionCAk(n) → (CAk(n))/(CIr (n)) is surjective, any simple(CAk(n))/
(CIr (n))-module is a simpleCAk(n)-module. �
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3. Schur–Weyl duality for partition algebras

Let n ∈ Z>0 and letV be a vector space with basisv1, . . . , vn. Then the tensor product

V⊗k = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

has basis {vi1 ⊗ · · · ⊗ vik | 1 ≤ i1, . . . , i k ≤ n}.

Ford ∈ Ak and valuesi1, . . . , i k, i1′, . . . , i k′ ∈ {1, . . . ,n} define

(d)i1,...,iki1′ ,...,ik′ =
{

1, if i r = i s whenr ands are in the same block ofd,
0, otherwise.

(3.1)

For example, viewing (d)i1,...,iki1′ ,...,ik′ , as thediagramd with vertices labeled by the values
i1, . . . , i k andi1′, . . . , i k′ , we have

= δi1i2δi1i4δi1i2′ δi1i5′ δi5i6δi5i7δi5i3′ δi5i4′ δi5i6′ δi5i7′ δi8i8′ .

With this notation, the formula

d(vi1 ⊗ · · · ⊗ vik ) =
∑

1≤i1′ ,...,ik′ ≤n

(d)i1,...,iki1′ ,...,ik′ vi1′ ⊗ · · · ⊗ vik′ (3.2)

defines actions

Φk : CAk −→ End(V⊗k) and Φk+ 1
2
: CAk+ 1

2
−→ End(V⊗k) (3.3)

of CAk andCAk+ 1
2

on V⊗k, where the second mapΦk+ 1
2

comes from the fact that if

d ∈ Ak+ 1
2
, thend acts on the subspace

V⊗k ∼= V⊗k ⊗ vn = C-span{vi1 ⊗ · · · ⊗ vik ⊗ vn | 1 ≤ i1, . . . , i k ≤ n}
⊆ V⊗(k+1). (3.4)

In other words, the mapΦk+ 1
2

is obtained fromΦk+1 by restricting to the subspace

V⊗k ⊗ vn and identifyingV⊗k with V⊗k ⊗ vn.
The groupGLn(C) acts on the vector spacesV andV⊗k by

gvi =
n∑

j=1

gj i v j , and g(vi1 ⊗ vi2 ⊗ · · · ⊗ vik )

= gvi1 ⊗ gvi2 ⊗ · · · ⊗ gvik , (3.5)

for g = (gi j ) ∈ GLn(C). View Sn ⊆ GLn(C) as the subgroup of permutation matrices and
let

EndSn(V
⊗k) = {b ∈ End(V⊗k) | bσv = σbv for all σ ∈ Sn and v ∈ V⊗k}.
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Theorem 3.6. Let n∈ Z>0 and let{xd | d ∈ Ak} be the basis ofCAk(n) defined in (2.3).
Then

(a) Φk : CAk(n)→ End(V⊗k) has

im Φk = EndSn(V
⊗k) and

kerΦk = C-span{xd | d has more than n blocks}, and

(b) Φk+ 1
2
: CAk+ 1

2
(n)→ End(V⊗k) has

im Φk+ 1
2
= EndSn−1(V

⊗k) and

kerΦk+ 1
2
= C-span{xd | d has more than n blocks}.

Proof. (a) As a subgroup ofGLn(C), Sn acts onV via its permutation representation and
Sn acts onV⊗k by

σ(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ) = vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ik). (3.7)

Thenb ∈ EndSn(V
⊗k) if and only if σ−1bσ = b (as endomorphisms onV⊗k) for all

σ ∈ Sn. Thus, using the notation of (3.1), b ∈ EndSn(V
⊗k) if andonly if

bi1,...,ik
i1′ ,...,ik′ = (σ

−1bσ)i1,...,iki1′ ,...,ik′ = bσ(i1),...,σ (ik)σ (i1′ ),...,σ (ik′ ), for all σ ∈ Sn.

It follows that the matrix entries ofb are constant on theSn-orbits ofits matrix coordinates.
These orbits decompose{1, . . . , k,1′, . . . , k′} into subsets and thus correspond to set
partitionsd ∈ Ak. It follows from (2.3) and (3.1) that for all d ∈ Ak,

(Φk(xd))
i1,...,ik
i1′ ,...,ik′ =

{
1, if i r = i s if and only if r ands are in the same block ofd,
0, otherwise.

(3.8)

Thus Φk(xd) has 1s in the matrix positions corresponding tod and 0s elsewhere, and
so b is a linear combination ofΦk(xd),d ∈ Ak. Sincexd,d ∈ Ak, form a basis of
CAk, im Φk = EndSn(V

⊗k).
If d has more thann blocks, then by (3.8) the matrix entry (Φk(xd))

i1,...,ik
i1′ ,...,ik′ = 0

for all indicesi1, . . . , i k, i1′, . . . , i k′ , since we need a distincti j ∈ {1, . . . ,n} for each
block of d. Thus, xd ∈ ker Φk. If d has≤ n blocks, then we can find an index set
i1, . . . , i k, i1′, . . . , i k′ with (Φk(xd))

i1,...,ik
i1′ ,...,ik′ = 1 simply by choosing a distinct index from

{1, . . . ,n} for each block ofd. Thus, if d has≤ n blocks thenxd �∈ ker Φk, and so
ker Φk = C-span{xd | d has more thann blocks}.

(b) The vector spaceV⊗k ⊗ vn ⊆ V⊗(k+1) is a submodule both forCAk+ 1
2
⊆ CAk+1

andCSn−1 ⊆ CSn. If σ ∈ Sn−1, thenσ(vi1 ⊗ · · · ⊗ vik ⊗ vn) = vσ(i1)⊗ · · · ⊗ vσ(ik)⊗ vn.
Then as aboveb ∈ EndSn−1(V

⊗k) if andonly if

bi1,...,ik,n
i1′ ,...,ik′ ,n = bσ(i1),...,σ (ik),nσ(i1′ ),...,σ (ik′ ),n, for all σ ∈ Sn−1.

TheSn−1 orbits of the matrix coordinates ofb correspond to set partitionsd ∈ Ak+ 1
2
; that

is, verticesi k+1 andi (k+1)′ must be inthe same block ofd. The sameargument as in part
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(a) can be used to show that kerΦk+ 1
2

is the span ofxd with d ∈ Ak+ 1
2

having more than

n blocks. We always choose the indexn for the block containingk+ 1 and(k + 1)′. �

The mapsε 1
2
: End(V⊗k)→ End(V⊗k) and ε

1
2 : End(V⊗k)→ End(V⊗(k−1))

If b ∈ End(V⊗k) let bi1,...,ik
i1′ ,...,ik′ ∈ C be the coefficientsin the expansion

b(vi1 ⊗ · · · ⊗ vik ) =
∑

1≤i1′ ,...,ik′ ≤n

bi1,...,ik
i1′ ,...,ik′ vi1′ ⊗ · · · ⊗ vik′ . (3.9)

Define linear maps

ε 1
2
: End(V⊗k)→ End(V⊗k) and ε

1
2 : End(V⊗k)→ End(V⊗(k−1)) by

ε 1
2
(b)i1,...,iki1′ ,...,ik′ = bi1,...,ik

i1′ ,...,ik′ δik ik′ andε
1
2 (b)i1,...,ik−1

i1′ ,...,i(k−1)′ =
n∑

j ,�=1

bi1,...,ik−1, j
i1′ ,...,i(k−1)′ ,� . (3.10)

The composition ofε 1
2

andε
1
2 is the map

ε1 : End(V⊗k)→ End(V⊗(k−1)) given byε1(b)
i1,...,ik−1
i1′ ,...,i(k−1)′

=
n∑

j=1

bi1,...,ik−1, j
i1′ ,...,i(k−1)′ , j , (3.11)

and

Tr(b) = εk
1(b), for b ∈ End(V⊗k). (3.12)

The relation between the mapsε
1
2 , ε 1

2
in (3.10) and the mapsε

1
2 , ε 1

2
, in Section 2is

given by

Φk− 1
2
(ε 1

2
(b)) = ε 1

2
(Φk(b))|V⊗(k−1)⊗vn

, for b ∈ CAk(n),

Φk−1(ε
1
2 (b)) = 1

n
ε

1
2 (Φk(b)), for b ∈ CAk− 1

2
(n), and

Φk−1(ε1(b)) = ε1(Φk(b)), for b ∈ CAk(n),

(3.13)

where, on the right hand side of the middle equalityb is viewed as an element ofCAk via
the natural inclusionCAk− 1

2
(n) ⊆ CAk(n). Then

Tr(Φk(b)) = εk
1(Φk(b)) = Φ0(ε

k
1(b)) = εk

1(b) = trk(b), (3.14)

and, by (3.4), if b ∈ CAk− 1
2
(n) then

Tr(Φk− 1
2
(b))=Tr(Φk(b)|V⊗(k−1)⊗vn

) = 1

n
Tr(Φk(b))

= 1

n
trk(b) = 1

n
trk− 1

2
(b). (3.15)
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The representations(IndSn
Sn−1

ResSn
Sn−1

)k(1n) andResSn
Sn−1

(IndSn
Sn−1

ResSn
Sn−1

)k(1n)

Let 1n = S(n)n be the trivial representation of Sn and letV = C-span{v1, . . . , vn} be the
permutation representation ofSn given in (3.5). Then

V ∼= IndSn
Sn−1

ResSn
Sn−1

(1n). (3.16)

More generally, for anySn-moduleM,

IndSn
Sn−1

ResSn
Sn−1

(M) ∼= IndSn
Sn−1

(ResSn
Sn−1

(M) ⊗ 1n−1)

∼= IndSn
Sn−1

(ResSn
Sn−1

(M) ⊗ResSn
Sn−1

(1n))

∼= M ⊗ IndSn
Sn−1

ResSn
Sn−1

(1n) ∼= M ⊗ V, (3.17)

where the third isomorphism comes from the “tensor identity”,

IndSn
Sn−1

(ResSn
Sn−1

(M)⊗ N)
∼−→ M ⊗ IndSn

Sn−1
N

g⊗ (m⊗ n) �→ gm⊗ (g⊗ n),
(3.18)

for g ∈ Sn,m ∈ M,n ∈ N, and the fact that IndSn
Sn−1

(W) = CSn⊗Sn−1 W. By
iterating (3.17) it follows that

(IndSn
Sn−1

ResSn
Sn−1

)k(1) ∼= V⊗k and ResSn
Sn−1

(IndSn
Sn−1

ResSn
Sn−1

)k(1) ∼= V⊗k (3.19)

asSn-modules andSn−1-modules, respectively.
If

λ = (λ1, λ2, . . . , λ�), define λ>1 = (λ2, . . . , λ�) (3.20)

to be the same partition asλ except with the first row removed. Build a grapĥA(n) which
encodes the decomposition ofV⊗k, k ∈ Z≥0, by letting

vertices on levelk: Âk(n) = {λ � n | k− |λ>1| ∈ Z≥0},
vertices on levelk + 1

2
: Âk+ 1

2
(n) = {λ � n− 1 | k − |λ>1| ∈ Z≥0}, and

an edgeλ→ µ, if µ ∈ Âk+ 1
2
(n) is obtained fromλ ∈ Âk(n)

by removing a box,

an edgeµ→ λ, if λ ∈ Âk+1(n) is obtained fromµ ∈ Âk+ 1
2
(n)

by adding a box.

(3.21)
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For example, ifn = 5 then the first few levels of̂A(n) are

The following theorem is a consequence ofTheorem 3.6and the Centralizer Theorem,
Theorem 5.4(see also [13, Theorem 3.3.7]).

Theorem 3.22. Let n, k ∈ Z≥0. Let Sλn denote the irreducible Sn-module indexed byλ.

(a) As(CSn,CAk(n))-bimodules,

V⊗k ∼=
⊕

λ∈Âk(n)

Sλn ⊗ Aλk(n),

where the vector spaces Aλk(n) are irreducibleCAk(n)-modules and

dim(Aλk(n)) = (number of paths from(n) ∈ Â0(n) to λ ∈ Âk(n)

in the graphÂ(n)).

(b) As(CSn−1,CAk+ 1
2
(n))-bimodules,

V⊗k ∼=
⊕

µ∈Â
k+ 1

2
(n)

Sµn−1⊗ Aµ
k+ 1

2
(n),
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where the vector spaces Aµ
k+ 1

2
(n) are irreducibleCAk+ 1

2
(n)-modules and

dim

(
Aµ

k+ 1
2
(n)

)
= (number of paths from(n) ∈ Â0(n) to µ ∈ Âk+ 1

2
(n)

in the graphÂ(n)).

Determination of thepolynomialstrµ(n)

Let n ∈ Z>0. For a partitionλ, let

λ>1 = (λ2, . . . , λ�), if λ = (λ1, λ2, . . . , λ�),

i.e., remove the first row ofλ to getλ>1. Then, for n ≥ 2k, themaps

Âk(n) ←→ Âk

λ �−→ λ>1
are bijections (3.23)

which provide an isomorphism between levels 0 ton of the graphsÂ(n) and Â.

Proposition 3.24. For k ∈ 1
2Z≥0 and n ∈ C such that CAk(n) is semisimple, let

χ
µ

Ak(n)
, µ ∈ Âk, be the irreducible characters ofCA�(n) and let trk: CAk(n) → C be

the trace onCAk(n) defined in(2.25). Use the notation for partitions in(2.17). For k > 0
the coefficients in the expansion

trk =
∑
µ∈Âk

trµ(n)χµAk(n)
, are trµ(n) =

(∏
b∈µ

1

h(b)

) |µ|∏
j=1

(n− |µ| − (µ j − j )).

If n ∈ C is such thatCAk+ 1
2
(n) is semisimple then for k> 0 the coefficients in the

expansion

trk+ 1
2
=

∑
µ∈Â

k+ 1
2

trµ1
2
(n)χµA

k+ 1
2
(n), are

trµ1
2
(n) =

(∏
b∈µ

1

h(b)

)
· n ·

|µ|∏
j=1

(n− 1− |µ| − (u j − j )).

Proof. Let λ be a partition withn boxes. Beginning with the vertical edge at the end of the
first row, label the boundary edges ofλ sequentially with 0,1,2, . . . ,n. Then the

vertical edge label for rowi = (number of horizontal steps)
+ (number of vertical steps)
= (λ1− λi )+ (i − 1)
= (λ1− 1)− (λi − i ), and the

horizontal edge label for columnj = (number of horizontal steps)
+ (number of vertical steps)
= (λ1− j + 1)+ (λ′j − 1)
= (λ1− 1)+ (λ′j − j )+ 1.
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Hence

{1,2, . . . ,n}= {(λ1− 1)− (λ′j − j )+ 1 | 1 ≤ j ≤ λ1}
� {(λ1− 1)− (λi − i ) | 2 ≤ i ≤ n− λ1+ 1}
= {h(b) | b is in row 1 ofλ}
� {(λ1− 1)− (λi − i ) | 2 ≤ i ≤ n− λ1+ 1}.

For example, ifλ = (10,7,3,3,1) � 24, then the boundary labels ofλ and the hook
numbers in the first row ofλ are

Thus, sinceλ1 = n− |λ>1|,

dim(Sλn ) =
n!∏

b∈λ
h(b)

=
( ∏

b∈λ>1

1

h(b)

) |λ>1|+1∏
i=2

(n− |λ>1| − (λi − (i − 1))). (3.25)

Let n ∈ Z>0 and letχλSn
denote the irreducible characters of the symmetric groupSn.

By taking the trace on both sides of the equality inTheorem 3.22,

Tr(b,V⊗k) =
∑

λ∈ Âk(n)

χλSn
(1)χAk(n)(b) =

∑
λ∈Âk(n)

dim(Sλn)χAk(n)(b),

for b ∈ CAk(n).

Thus the equality in (3.25) and the bijection in (3.23) provide the expansion of trk for all
n ∈ Z≥0 suchthatn ≥ 2k. The statement for alln ∈ C suchthatCAk(n) is semisimple is
then a consequence of the fact that any polynomial is determined by its evaluations at an
infinite number of values of the parameter. The proof of the expansion of trk+ 1

2
is exactly

analogous. �
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Note that the polynomials trµ(n) and trµ1
2
(n) (of degrees|µ| and|µ| + 1, respectively)

do not depend onk. By Proposition 3.24,

{roots of trµ1
2
(n) | µ ∈ Â1

2
} = {0},

{roots of trµ1 (n) | µ ∈ Â1} = {1},
{roots of trµ

11
2
(n) | µ ∈ Â11

2
} = {0,2}, and

{roots of trµk (n) | µ ∈ Âk} = {0,1, . . . ,2k − 1}, for k ∈ 1

2
Z≥0, k ≥ 2.

(3.26)

For example, the first few values of trµ and trµ1
2

are

tr∅(n) = 1, tr∅1
2
(n) = n

tr (n) = n− 1, tr 1
2
(n) = n(n− 2),

tr (n) = 1

2
n(n− 3), tr 1

2
(n) = 1

2
n(n− 1)(n− 4),

tr (n) = 1

2
(n− 1)(n− 2), tr 1

2
(n) = 1

2
n(n− 2)(n− 3),

tr (n) = 1

6
n(n− 1)(n− 5), tr 1

2
(n) = 1

6
n(n− 1)(n− 2)(n− 6),

tr (n) = 1

6
n(n− 2)(n− 4), tr 1

2
(n) = 1

6
n(n− 1)(n− 3)(n− 5),

tr (n) = 1

6
(n− 1)(n− 2)(n− 3), tr 1

2
(n) = 1

6
n(n− 2)(n− 3)(n− 4),

Theorem 3.27. Let n∈ Z≥2 and k∈ 1
2Z≥0. Then

CAk(n) is semisimple if and only if k≤ n+ 1

2
.

Proof. By Theorem 2.26(a) and the observation (3.26) it follows that CAk(n) is
semisimple ifn ≥ 2k− 1.

Supposen is even. Then Theorems2.26(a) and2.26(b) imply that

CAn
2+ 1

2
(n) is semisimple and CAn

2+1(n) is not semisimple,

since(n/2) ∈ Ân
2+ 1

2
and tr(n/2)1

2
(n) = 0. Since(n/2) ∈ Ân

2+1(n), the An
2+1(n)-module

A(n/2)n
2+1 (n) �= 0. Since the path(∅, . . . , (n/2), (n/2), (n/2)) ∈ Â(n/2)n

2+1 does not correspond

to an element of̂A(n/2)n
2+1 (n),

Card
(

Â(n/2)n
2+1

)
�= Card

(
Â(n/2)n

2+1 (n)
)
.

Thus, Tits deformation theorem (Theorem 5.13) implies that CAn
2+1(n) cannot be

semisimple. Now it follows fromTheorem 2.26(c) that CAk(n) is not semisimple for
k ≥ n

2 + 1
2.
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If n is odd then Theorems2.26(a) and2.26(b) imply that

CAn
2+ 1

2
(n) is semisimple and CAn

2+1(n) is not semisimple,

since(n/2) ∈ Ân
2 + 1

2 and tr(n/2)(n) = 0. Since(n
2 − 1

2) ∈ Ân
2+1(n), theAn

2+1(n)-module

A
( n

2− 1
2 )

n
2+1 (n) �= 0. Since the path

(
∅, . . . , (n

2 − 1
2), (

n
2 + 1

2), (
n
2 − 1

2)
)
∈ Â

( n
2− 1

2 )
n
2+1 does not

correspond to an element ofÂ
( n

2− 1
2 )

n
2+1 (n), and since

Card

(
Â
( n

2− 1
2 )

n
2+1

)
�= Card

(
Â
( n

2− 1
2 )

n
2+1 (n)

)
,

the Tits deformation theorem implies thatCAn
2+1(n) is not semisimple. Now it follows

from Theorem 2.26(c) thatCAk(n) is not semisimple fork ≥ n
2 + 1

2. �

Murphy elements forCAk(n)

Let κn be the element ofCSn given by

κn =
∑

1≤�<m≤n

s�m, (3.28)

wheres�m is the transposition inSn which switches� andm. Let S⊆ {1,2, . . . , k} and let
I ⊆ S∪ S′. DefinebS,dI ∈ Ak by

bS = {S∪ S′, {�, �′}� �∈S} and dI⊆S = {I , I c, {�, �′}� �∈S}. (3.29)

For example, inA9, if S= {2,4,5,8} andI = {2,4,4′,5,8} then

For S⊆ {1,2, . . . , k} define

ps =
∑

I

1

2
(−1)#({�,�′}⊆I )+#({�,�′}⊆I c)dI , (3.30)

where the sum isover I ⊆ S∪S′ suchthat I �= ∅, I �= S∪S′, I �= {�, �′}, andI �= {�, �′}c.
For S⊆ {1, . . . , k+ 1} suchthatk+ 1 ∈ S, define

p̃S=
∑

I

1

2
(−1)#({�,�′}⊆I )+#({�,�′}⊆I c)dI , (3.31)

where the sum isover all I ⊆ S∪S′ suchthat{k+1, (k+1)′} ⊆ I or {k+1, (k+1)′} ⊆ I c,
I �= S∪ S′, I �= {k+ 1, (k+ 1)′}, andI �= {k+ 1, (k+ 1)′}c.

Let Z1 = 1 and, fork ∈ Z>1, let

Zk =
(

k

2

)
+

∑
S⊆{1,...,k}
|S|≥1

pS+
∑

S⊆{1,...,k}
|S|≥2

(n− k + |S|)(−1)|S|bS. (3.32)
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View Zk ∈ CAk ⊆ CAk+ 1
2

using the embedding in (2.2), and defineZ 1
2
= 1 and

Zk+ 1
2
= k+ Zk +

∑
|S|≥2

k+1∈S

p̃S+ (n− (k+ 1)+ |S|)(−1)|S|bS, (3.33)

where the sum is overS⊆ {1, . . . , k + 1} suchthatk + 1 ∈ Sand|S| ≥ 2. Define

M 1
2
= 1, and Mk = Zk − Zk− 1

2
, for k ∈ 1

2
Z>0. (3.34)

For example, the first fewZk are

Z0 = 1, Z 1
2
= 1, Z1 = ,

Z11
2
= , and

Z2 = ,

and the first fewMk are

M0 =1, M 1
2
= 1, M1 = , M11

2
= ,

M2 = , and

M21
2
=

Part(a) of the following theorem is well known.

Theorem 3.35.

(a) For n ∈ Z≥0, κn is a central element ofCSn. If λ is a partition with n boxes and Sλn is
the irreducible Sn-module indexed bythe partitionλ,

κn =
∑
b∈λ

c(b), as operators on Sλn .

(b) Let n, k ∈ Z≥0. Then, as operators on V⊗k, wheredim(V) = n,

Zk = κn −
(n

2

)
+ kn, and Zk+ 1

2
= κn−1−

(n

2

)
+ (k+ 1)n− 1.

(c) Let n ∈ C, k ∈ Z≥0. Then Zk is a central element ofCAk(n), and, if n ∈ C is such
thatCAk(n) is semisimple andλ � n with |λ>1| ≤ k boxes, then

Zk = kn−
(n

2

)
+

∑
b∈λ

c(b), as operators on Aλk,
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where Aλk is the irreducibleCAk(n)-module indexed bythe partitionλ. Furthermore,
Zk+ 1

2
is a central element ofCAk+ 1

2
(n), and, if n is such thatCAk+ 1

2
(n) is semisimple

andλ � n is apartition with |λ>1| ≤ k boxes, then

Zk+ 1
2
= kn+ n− 1−

(n

2

)
+

∑
b∈λ

c(b), as operators on Aλ
k+ 1

2
,

where Aλ
k+ 1

2
is the irreducibleCAk+ 1

2
(n)-module indexed bythe partitionλ.

Proof. (a) The elementκn is the class sum corresponding to the conjugacy class of
transpositions and thusκn is a central element ofCSn. The constant by whichκn acts
on Sλn is computed in [17, Chapter 1, Section 7, Example 7].
(c) The first statement follows from parts (a) and (b) andTheorems 3.6and3.22as follows.
By Theorem 3.6, CAk(n) ∼= EndSn(V

⊗k) if n ≥ 2k. Thus, byTheorem 3.22, if n ≥ 2k then
Zk acts on the irreducibleCAk(n)-moduleAλk(n) by the constant given in the statement.
This means thatZk is a central element ofCAk(n) for all n ≥ k. Thus, forn ≥ 2k,
d Zk = Zkd for all diagramsd ∈ Ak. Sincethe coefficients ind Zk (in terms of the basis of
diagrams) are polynomials inn, it follows thatd Zk = Zkd for all n ∈ C.

If n ∈ C is such thatCAk(n) is semisimple letχλ
CAk(n)

be the irreducible characters.

Then Zk acts onAλk(n) by the constantχλ
CAk(n)

(Zk)/ dim(Aλk(n)). If n ≥ k this is the
constant in the statement, and therefore it is a polynomial inn, determined by its values for
n ≥ 2k.

The proof of the second statement is completely analogous usingCAk+ 1
2
, Sn−1, and the

second statement in part (b).
(b) Letsii = 1 so that

2κn + n=n+ 2
∑

1≤i< j≤n

si j =
n∑

i=1

sii +
∑

1≤i< j≤n

(si j + sj i )

=
∑
i= j

si j +
∑
i �= j

si j =
n∑

i, j=1

si j .

Then

(2κn + n)(vi1 ⊗ · · · ⊗ vik )=
(

n∑
i, j=1

si j

)
(vi1 ⊗ · · · ⊗ vik )

=
n∑

i, j=1

si j vi1 ⊗ · · · ⊗ si j vik

=
n∑

i, j=1

(1− Eii − Ej j + Ei j + Ej i )vi1

⊗ · · · ⊗ (1− Eii − Ej j + Ei j + Ej i )vik
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and expanding this sum gives that(2κn + n) (vi1 ⊗ · · · ⊗ vik ) is equal to

∑
S⊆{1,...,k}

∑
i1′ ,...,ik′

n∑
i, j=1

(∏
�∈Sc

δi� i�′

)

×
∑

I⊆S∪S′
(−1)#({�,�′}⊆I )+#({�,�′}⊆I c)

(∏
�∈I

δi� i

)

×
(∏
�∈I c

δi� j

)
(vi1′ ⊗ · · · ⊗ vik′ )

(3.36)

whereSc ⊆ {1, . . . , k} corresponds to the tensor positions where 1 is acting, and where
I ⊆ S∪ S′ corresponds to the tensor positions that must equali and I c corresponds to the
tensor positions that must equalj .

When|S| = 0 the setI is empty and the term corresponding toS in (3.36) is

n∑
i, j=1

∑
i1′ ,...,ik′

( ∏
�∈{1,...,k}

δi� i�′

)
(vi1′ ⊗ · · · ⊗ vik′ ) = n2(vi1 ⊗ · · · ⊗ vik ).

Assume|S| ≥ 1 andseparate the sum according to the cardinality ofI . Note that the sum
for I is equal to the sum forI c, sincethe whole sum is symmetric ini and j . The sum of
the terms in (3.36) whichcome fromI = S∪ S′ is equal to

∑
i1′ ,...,ik′

n
n∑

i=1

(∏
�∈Sc

δi� i�′

)
(−1)|S|

( ∏
�∈S∪S′

δi� i

)
(vi1′ ⊗ · · · ⊗ vik′ )

= n(−1)|S|bS(vi1 ⊗ · · · ⊗ vik ).

We get a similar contribution from the sum of the terms withI = ∅.
If |S| > 1 then the sum of the terms in (3.36) whichcome fromI = {�, �′} is equal to

∑
i1′ ,...,ik′

n∑
i, j=1

(∏
r∈Sc

δir ir ′

)
(−1)|S|δi� i δi�′ i

(∏
r �=�

δir j δir ′ j

)
(vi1′ ⊗ · · · ⊗ vik′ )

= (−1)|S|bS−{�}(vi1 ⊗ · · · ⊗ vik ).

and there is a corresponding contribution fromI = {�, �′}c. The remaining terms can be
written as

∑
i1′ ,...,ik′

n∑
i, j=1

(∏
�∈Sc

δi� i�′

) ∑
I⊆S∪S′

(−1)#({�,�′}⊆I )+#({�,�′}⊆I c)

×
(∏
�∈I

δi� i

)(∏
�∈I c

δi� j

)
(vi1′ ⊗ vik′ ) = 2pS(vi1 ⊗ · · · ⊗ vik ).
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Putting these cases together gives that 2κn + n acts onvi1 ⊗ · · · ⊗ vik the same way
that

∑
|S|=0

n2+
∑
|S|=1

(2n(−1)1bS+ 2pS)+
∑
|S|=2

(
2n(−1)2bS+ 2pS+

∑
�∈S

(−1)22bS−{�}

)

+
∑
|S|>2

(
2n(−1)|S|bS+ 2pS+

∑
�∈S

(−1)|S|2bS−{�}

)

acts onvi1 ⊗ · · · ⊗ vik . Note thatbS= 1 if |S| = 1. Hence 2κn + n acts onvi1 ⊗ · · · ⊗ vik
the same way that

n2 +
∑
|S|=1

(−2n+ 2pS)+
∑
|S|=2

(2nbS+ 2+ 2pS)

+
∑
|S|>2

(
(−1)|S|2nbS+ 2pS+

∑
�∈S

(−1)|S|2bS−{�}

)

= n2 − 2nk+ 2

(
k

2

)
+

∑
|S|≥1

2pS+
∑
|S|≥2

2(n− k+ |S|)(−1)|S|bS

acts onvi1 ⊗ · · · ⊗ vik , and soZk = κn + (n − n2 + 2nk)/2 asoperators onV⊗k. This
proves the first statement.

For the second statement, since(1− δin)(1− δ j n) =
{

0, if i = n or j = n,
1, otherwise,

(2κn−1+ (n− 1))(vi1 ⊗ · · · ⊗ vik ⊗ vn)

=
(

n−1∑
i, j=1

si j

)
(vi1 ⊗ · · · ⊗ vik ⊗ vn)

=
(

n∑
i, j=1

si j (1− δin)(1− δ j n)

)
(vi1 ⊗ · · · ⊗ vik ⊗ vn)

=
n∑

i, j=1

si j vi1 ⊗ · · · ⊗ si j vik ⊗ (1− δin)(1− δ j n)vn,

=
n∑

i, j=1

(1− Eii − Ej j + Ei j + Ej i )vi1 ⊗ · · · ⊗ (1− Eii − Ej j + Ei j + Ej i )vik

⊗(1− Eii − Ej j + Eii E j j )vn

=
(∑

i, j

si j

)
(vi1 ⊗ · · · ⊗ vik )⊗ vn +

n∑
i, j=1

(1− Eii − Ej j + Ei j + Ej i )vi1

⊗ · · · ⊗ (1− Eii − Ej j + Ei j + Ej i )vik ⊗ (−Eii − Ej j )vn
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+
n∑

i, j=1

(1− Eii − Ej j + Ei j + Ej i )vi1 ⊗ · · · ⊗ (1− Eii − Ej j + Ei j

+ Ej i )vik ⊗ Eii E j j vn.

The first sum is known to equal(2κn + n) (vi1 ⊗ · · · ⊗ vik ) by the computation proving
the first statement, and the last sum has only one nonzero term, the term corresponding to
i = j = n. Expanding the middle sum gives

∑
S⊆{1,...,k+1}

k+1∈S

∑
i1′ ,...,ik′

n∑
i, j=1

(∏
�∈S

δi�,i�′

)

×
∑

I

(−1)#({�,�′}⊆I )+#({�,�′}⊆I c)

(∏
�∈I

δi� i

)(∏
�∈I c

δi� j

)
(vi1′ ⊗ · · · ⊗ vik′ )

where the inner sum is over allI ⊆ {1, . . . , k + 1} suchthat {k + 1, (k + 1)′} ⊆ I or
{k + 1, (k + 1)′} ⊆ I c. As in part (a) this sum is treated in four cases: (1) when|S| = 0,
(2) whenI = S∪ S′ or I = ∅, (3) whenI = {�, �′} or I = {�, �′}c, and (4) the remaining
cases. Sincek + 1 ∈ S, the firstcase does not occur, and cases (2)–(4) are as in part (a)
giving∑

|S|=1
k+1∈S

−2n+
∑
|S|=2

k+1∈S

(2nbS+ 2pS+ 2)

+
∑
|S|>2

k+1∈S

(
2n(−1)|S|bS+ 2pS+ 2

∑
�∈S

(−1)|S|bS−{�}

)
.

Combining this with the terms(2κn+n)(vi1⊗· · ·⊗vik )⊗vn and 1⊗ (vi1⊗· · ·⊗vik ⊗vn)

gives that 2κn−1 + (n− 1) acts onvi1 ⊗ · · · ⊗ vik as

(2κn + n)+ 1− 2n+ 2k+
∑
|S|≥2

k+1∈S

2p̃S+ 2(n− (k+ 1)+ |S|)(−1)|S|bS.

Thusκn−1 − κn acts onvi1 ⊗ · · · ⊗ vik as

1

2


n− (n− 1)+ 1− 2n+ 2k+

∑
|S|≥2

k+1∈S

2p̃S+ 2(n− (k+ 1)+ |S|)(−1)|S|bS


 ,

so, asoperators onV⊗k, we haveZk+ 1
2
= k + Zk + (κn−1 − κn) − 1 + n − k =

Zk + (κn−1 − κn) + n − 1. By the first statement in part (c) of this theorem we get
Zk+ 1

2
= (κn −

(n
2

)+ kn)+ (κn−1− κn)+ n− 1= κn−1−
( n

2

)+ kn+ n− 1. �

Theorem 3.37. Let k∈ 1
2Z≥0 and let n∈ C.

(a) The elements M1
2
, M1, . . . ,Mk− 1

2
, Mk, all commute with each other inCAk(n).
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(b) Assume thatCAk(n) is semisimple. Letµ ∈ Âk so that µ is a partition with≤ k
boxes, and let Aµk (n) be the irreducibleCAk(n)-module indexed byµ. Then there is a

unique, up to multiplication by constants, basis{vT | T ∈ Âµk } of Aµk (n) such that, for

all T = (T (0), T ( 1
2 ), . . . , T (k)) ∈ Âµk , and� ∈ Z≥0 suchthat� ≤ k,

M�vT =
{

c(T (�)/T (�−
1
2))vT , if T (�)/T (�−

1
2 ) = �,

(n− |T (�)|)vT , if T (�) = T (�−
1
2 ),

and

M
�+ 1

2
vT =

{
(n− c(T (�)/T (�+

1
2 )))vT , if T (�)/T (�+

1
2) = �,

|T (�)|vT , if T (�) = T (�+
1
2),

whereλ/µ denotes the box whereλ andµ differ.

Proof. (a) View Z0, Z 1
2
, . . . , Zk ∈ CAk. ThenZk ∈ Z(CAk), so Zk Z� = Z�Zk for all

0 ≤ � ≤ k. SinceM� = Z� − Z
�− 1

2
, we see that theM� commute with each other in

CAk.
(b) The basis is defined inductively. Ifk = 0, 1

2 or 1, then dim(Aλk(n)) = 1, so up to a
constant there is a unique choice for the basis. Fork > 1, we consider the restriction
ResCAk(n)
CA

k− 1
2
(n)(A

λ
k(n)). The branching rules for this restriction are multiplicity free,

meaning that eachCAk− 1
2
(n)-irreducible that shows up inAλk(n) does so exactly once.

By induction, we can choose a basis for eachCAk− 1
2
(n)-irreducible, and the union of

these bases forms a basis forAλk(n). For � < k, M� ∈ CAk− 1
2
(n), so M� acts on

this basis as in the statement of the theorem. It remains only to check the statement
for Mk. Let k be an integer, and letλ � n andγ � (n − 1) suchthat λ>1 = T (k)

andγ>1 = T (k− 1
2 ). Then byTheorem 3.35(c), Mk = Zk − Zk− 1

2
acts onvT by the

constant(∑
b∈λ

c(b)−
(n

2

)
+ kn

)
−

(∑
b∈γ

c(b)−
(n

2

)
+ kn− 1

)
= c(λ/γ )+ 1,

andMk+ 1
2
= Zk+ 1

2
− Zk acts onvT ∈ Aλ

k+ 1
2
(n) by the constant

(∑
b∈γ

c(b)−
(n

2

)
+ kn+ n− 1

)
−

(∑
b∈λ

c(b)−
(n

2

)
+ kn

)

= −c(λ/γ )+ n− 1.

The result now follows from (3.23) and theobservation that

c(λ/γ ) =
{

c(T (k)/T (k−
1
2 ))− 1, if T (k) = T (k+

1
2 ) +�,

n− |T (k)| − 1, if T (k) = T (k+
1
2 ).

�
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4. The basic construction

In this section we shall assume that all algebras are finite dimensional algebras over an
algebraically closed fieldF. The fact thatF is algebraically closed is only for convenience,
to avoid the division rings that could arise in the decomposition ofĀ just before (4.8)
below.

Let A ⊆ B be an inclusion of algebras. ThenB⊗F B is an (A, A)-bimodule where
A acts on the left by left multiplication and on the right by right multiplication. Fix an
(A, A)-bimodule homomorphism

ε : B⊗F B −→ A. (4.1)

Thebasic constructionis the algebraB⊗A B with product given by

(b1⊗ b2)(b3⊗ b4) = b1⊗ ε(b2⊗ b3)b4, for b1,b2,b3,b4 ∈ B. (4.2)

More generally, letA be an algebra and letL be a leftA-module andR a right A-module.
Let

ε : L⊗F R−→ A, (4.3)

be an(A, A)-bimodule homomorphism. Thebasic constructionis the algebraR⊗A L with
product given by

(r1⊗ �1)(r2⊗ �2) = r1⊗ ε(�1⊗ r2)�2, for r1, r2 ∈ R and�1, �2 ∈ L . (4.4)

Theorem 4.18below determines, explicitly, the structure of the algebraR⊗A L.
Let N = Rad(A) and let

Ā = A/N, L̄ = L/N L, and R̄= R/RN. (4.5)

Define an(Ā, Ā)-bimodule homomorphism

ε̄ : L̄⊗F R̄ −→ Ā
�̄⊗ r̄ �→ ε(�⊗ r )

(4.6)

where�̄ = � + N L, r̄ = r + RN, andā = a + N, for � ∈ L, r ∈ R, anda ∈ A. Then
by basic tensor product relations [1, Chapter II, Section 3.3 corresponding to Proposition
2 and Section 3.6 corresponding to Proposition 6], the surjective algebra homomorphism

π : R⊗A L −→ R̄⊗Ā L̄

r ⊗ � �→ r̄ ⊗ �̄ has ker(π) = R⊗A N L. (4.7)

The algebraĀ is a split semisimple algebra (an algebra isomorphic to a direct sum of
matrix algebras). Fix an algebra isomorphism

Ā
∼−→

⊕
µ∈Â

Mdµ(F)

aµPQ ← EµPQ
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where Â is an index set for the components andEµPQ is the matrix with 1 in the(P, Q)
entry of theµth block and 0 in all other entries. Also, fix isomorphisms

L̄ ∼=
⊕
µ∈ Â

−→
A
µ ⊗ Lµ and R̄∼=

⊕
µ∈Â

Rµ ⊗←−Aµ
(4.8)

where
−→
A
µ

, µ ∈ Â, are the simple left Ā-modules,
←−
A
µ

, µ ∈ Â, are the simple right
Ā-modules, andLµ, Rµ, µ ∈ Â, are vector spaces. The practical effect of this set-up is
that if R̂µ is an index setfor a basis{r µY | Y ∈ R̂µ} of Rµ, L̂µ is an index setfor a basis
{�µX | X ∈ L̂µ} of Lµ, andÂµ is an index set for bases

{−→a µ
Q | Q ∈ Âµ} of

−→
A
µ

and {←−a µ
P | P ∈ Âµ} of

←−
A
µ

(4.9)

suchthat

aλST
−→a µ

Q = δλµδT Q
−→a µ

S and ←−a µ
PaλST = δλµδPS

←−a µ
T , (4.10)

then

L̄ has basis{−→a µ
P ⊗ �µX | µ ∈ Â, P ∈ Âµ, X ∈ L̂µ} and

R̄ has basis{r µY ⊗←−a µ
Q | µ ∈ Â, Q ∈ Âµ,Y ∈ R̂µ}. (4.11)

With notation as in (4.9) and (4.11) the mapε̄ : L̄⊗F R̄ → Ā is determined by the
constantsεµXY ∈ F given by

ε(−→a µ
Q ⊗ �µX ⊗ r µY ⊗←−a µ

P) = εµXYaµQ P (4.12)

andεµXY does not depend onQ andP since

ε(−→a λ
S⊗ �λX ⊗ r µY ⊗←−a µ

T ) = ε(aλSQ
−→a λ

Q ⊗ �λX ⊗ r µY ⊗←−a µ
PaµPT)

= aλSQε(
−→a λ

Q ⊗ �λX ⊗ r µY ⊗←−a µ
P)a

µ
PT

= δλµaµSQε
µ
XYaµQ PaµPT = εµXYaµST.

(4.13)

For eachµ ∈ Â construct a matrix

Eµ = (εµXY) (4.14)

and letDµ = (Dµ
ST) andCµ = (Cµ

Z W) be invertible matrices such thatDµEµCµ is a
diagonal matrix with diagonal entries denoted asε

µ
X,

DµEµCµ = diag(εµX). (4.15)

In pactice Dµ andCµ are found by row reducingEµ to its Smith normal form. TheεµP are
the invariant factorsof Eµ.

Forµ ∈ Â, X ∈ R̂µ, Y ∈ L̂µ, define the following elements ofR̄⊗ Ā L̄:

m̄µ
XY = r µX ⊗−→a µ

P ⊗←−a µ
P ⊗ �µY, and n̄µXY =

∑
Q1,Q2

Cµ
Q1X Dµ

Y Q2
m̄µ

Q1Q2
. (4.16)
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Since

(r λS⊗−→a λ
W ⊗←−a µ

Z ⊗ �µT ) = (r λS⊗−→a λ
PaλPW⊗←−a µ

Z ⊗ �µT )
= (r λS⊗−→a λ

P ⊗ aλPW
←−a µ

Z ⊗ �µT )
= δλµδW Z(r

λ
S⊗−→a λ

P ⊗←−a λ
P ⊗ �λT ),

(4.17)

the elementm̄µ
XY does not depend onP and{m̄µ

XY | µ ∈ Â, X ∈ R̂µ,Y ∈ L̂µ} is a basis
of R̄⊗Ā L̄.

The following theorem determines the structure of the algebrasR⊗A L and R̄⊗Ā L̄.
This theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit
in [4, Section 2.2] andpart (b) is proved in [5].

Theorem 4.18. Let π : R⊗A L → R̄⊗Ā L̄ be as in (4.7) and let {ki } be a basis of
ker(π) = R⊗A N L. Let

nµY T ∈ R⊗A L be such that π(nµY T) = n̄µY T,

where theelements̄nµY T ∈ R̄⊗Ā L̄ are asdefined in (4.16).

(a) The sets{m̄µ
XY | µ ∈ Â, X ∈ R̂µ,Y ∈ L̂µ} and {n̄µXY | µ ∈ Â, X ∈ R̂µ,Y ∈ L̂µ}

(see (4.16)) are bases ofR̄⊗Ā L̄, which satisfy

m̄λ
STm̄µ

Q P = δλµεµT Qm̄µ
S P and n̄λSTn̄µQ P = δλµδT Qε

µ
T n̄µS P,

whereεµT Q andεµT are as defined in(4.12) and(4.15).
(b) The radical of the algebra R⊗A L is

Rad(R⊗A L) = F-span{ki ,n
µ
Y T | εµY = 0 or εµT = 0}

and the images of the elements

eµY T =
1

ε
µ
T

nµY T, for εµY �= 0 andεµT �= 0,

are a set of matrix units in(R⊗A L)/Rad(R⊗A L).

Proof. The first statement in (a) follows from the equations in (4.17). If (C−1)µ and
(D−1)µ are inverses of the matricesCµ andDµ then∑

X,Y

(C−1)
µ
X S(D

−1)
µ
T Yn̄XY=

∑
X,Y,Q1,Q2

(C−1)
µ
X SCµ

Q1Xm̄Q1Q2 Dµ
Y Q2

(D−1)
µ
T Y

=
∑

Q1,Q2

δSQ1δQ2T m̄µ
Q1Q2

= m̄µ
ST,

and so the elements̄mµ
ST can be written as linear combinations of then̄µXY. This establishes

the second statement in (a). By direct computation, using (4.10) and (4.12),

m̄λ
STm̄µ

Q P= (r λS⊗−→a λ
W ⊗←−a λ

W ⊗ �λT )(r µQ ⊗−→a µ
Z ⊗←−a µ

Z ⊗ �µP)
= r λS⊗−→a λ

W ⊗ ε(←−a λ
W ⊗ �λT ⊗ r µQ ⊗−→a µ

Z)
←−a µ

Z ⊗ �µP
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= δλµ(r λS⊗−→a λ
W ⊗ ελT QāλW Z

←−a λ
Z ⊗ �λP)

= δλµελT Q(r
λ
S⊗−→a λ

W ⊗←−a λ
W ⊗ �λP) = δλµελT Qm̄λ

S P,

and

n̄λSTn̄µU V =
∑

Q1,Q2,Q3,Q4

Cλ
Q1SDλ

T Q2
m̄λ

Q1Q2
Cµ

Q3U Dµ
V Q4

m̄µ
Q3Q4

=
∑

Q1,Q2,Q3,Q4

δλµCλ
Q1SDλ

T Q2
ε
µ
Q2Q3

Cµ
Q3U Dµ

V Q4
m̄µ

Q1Q4

= δλµ
∑

Q1,Q4

δT Uε
µ
T Cµ

Q1SDµ
V Q4

m̄µ
Q1Q4

= δλµδT Uε
µ
T n̄µSV.

(b) Let N = Rad(A) as in (4.5). If r1 ⊗ n1�1, r2 ⊗ n2�2 ∈ R⊗A N L with n1 ∈ Ni for
somei ∈ Z>0 then

(r1⊗ n1�1)(r2⊗ n2�2)= r1⊗ ε(n1�1⊗ r2)n2�2

= r1⊗ n1ε(�1⊗ r2)n2�2 ∈ R⊗A Ni+1L .

SinceN is a nilpotent ideal of A it follows that ker(π) = R⊗A N L is a nilpotent ideal of
R⊗A L. So ker(π) ⊆ Rad(R⊗A L).

Let

I = F-span{ki ,n
µ
Y T | εµY = 0 orεµT = 0}.

The multiplication rule for thēnY T implies thatπ(I ) is an ideal ofR̄⊗Ā L̄ and thus, by
the correspondence between ideals ofR̄⊗Ā L̄ and ideals ofR⊗A L which contain ker(π),
I is an ideal ofR⊗A L.

If n̄µY1T1
, n̄µY2T2

, n̄µY3T3
∈ {n̄µY T | εµY = 0 orεµT = 0} then

n̄µY1T1
n̄µY2T2

n̄µY3T3
= δT1Y2ε

µ
Y2

n̄µY1T2
n̄µY3T3

= δT1Y2δT2Y3ε
µ
Y2
ε
µ
T2

n̄µY1T3
= 0,

sinceεµY2
= 0 or εµT2

= 0. Thus any productnµY1T1
nµY2T2

nµY3T3
of three basis elements of

I is in ker(π). Since ker(π) is a nilpotent ideal of R⊗A L it follows that I is an ideal of
R⊗A L consisting of nilpotent elements. SoI ⊆ Rad(R⊗A L).

Since

eλY TeµU V =
1

ελT

1

ε
µ
V

nλY TnµU V = δλµδT U
1

ελTε
λ
V

ελT nλY V = δλµδTUeλY V mod I ,

the images of the elementseλY T in (4.7) form a set of matrixunits in the algebra
(R⊗A L)/I . Thus(R⊗A L)/I is a split semisimple algebra and soI ⊇ Rad(R⊗A L).

�

Basic constructions for A⊆ B

Let A ⊆ B be an inclusion of algebras. Letε1 : B → A be an(A, A) bimodule
homomorphism and use the(A, A)-bimodule homomorphism

ε : B⊗F B −→ A
b1⊗ b2 �−→ ε1(b1b2)

(4.19)
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and (4.2) to define the basicconstructionB⊗A B. Theorem 4.28below provides the str-
ucture ofB⊗A B in the case where bothA andB are split semisimple.

Let us record the following facts:

(4.20a) If p ∈ A and pAp= Fp then(p⊗ 1)(B⊗A B)(p⊗ 1) = F · (p⊗ 1).
(4.20b) If p is an idempotent ofA and pAp= Fp thenε1(1) ∈ F.
(4.20c) If p ∈ A, pAp= Fp and if ε1(1) �= 0, then 1

ε(1) (p⊗ 1) is a minimal idempotent
in B⊗A B.

These are justfied as follows. Ifp ∈ A and pAp = Fp and b1,b2 ∈ B then
(p⊗1)(b1⊗b2)(p⊗1) = (p⊗ε1(b1)b2)(p⊗1) = p⊗ε1(b1)ε1(b2p) = pε1(b1)ε1(b2)p⊗
1 = ξp⊗ 1, for some constantξ ∈ F. This establishes (a). Ifp is an indempotent ofA
and pAp= Fp then pε1(1)p = ε1(p2) = ε1(1 · p) = ε1(1)p and so (b) holds. Ifp ∈ A
and pAp= Fp then(p⊗ 1)2 = ε1(1)(p⊗ 1) and so, ifε1(1) �= 0, then 1

ε(1)(p⊗ 1) is a
minimal idempotent inB⊗A B.

AssumeA andB are split semisimple. Let

Â be an index set for the irreducibleA-modulesAµ,

B̂ be an index set for the irreducibleB-modulesBλ, and let

Âµ = {P→ µ} be an index set for a basis of the simpleA-moduleAµ,

for eachµ ∈ Â (the compositeP → µ is viewed as a single symbol). We think ofÂµ as
the set of “paths toµ” in the two-level graph

Γ with vertices on level A: Â, vertices on level B: B̂, and
mλ
µ edgesµ→ λ if Aµ appears with multiplicitymλ

µ in ResBa (B
λ).

(4.21)

For example, thegraphΓ for the symmetric group algebrasA = CS3 andB = CS4 is

If λ ∈ B̂ then

B̂λ = {P→ µ→ λ | µ ∈ Â, P→ µ ∈ Âµ andµ→ λ is an edge inΓ } (4.22)

is an index setfor a basis of the irreducibleB-moduleBλ. We think of B̂λ as the set of
paths toλ in the graphΓ . Let

{a P Q
µ
| µ ∈ Â, P→ µ, Q→ µ ∈ Âµ} and

{b P Q
µν
λ

| λ ∈ B̂, P→ µ→ λ, Q→ ν → λ ∈ B̂λ}, (4.23)

be sets of matrix units in the algebrasA andB, respectively, so that

a P Q
µ

aST
ν
= δµνδQSa PT

µ
and b P Q

µγ
λ

b ST
τν
σ

= δλσ δQSδγ τb PT
µν
λ

, (4.24)
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and such that,for all µ ∈ Â, P, Q ∈ Âµ,

aµP Q
µ

=
∑
µ→λ

bλP Q
µµ
λ

(4.25)

where the sum isover all edgesµ→ λ in the graphΓ .
Though is not necessary for the followingit is conceptually helpful to letC = B⊗A B,

let Ĉ = Â, and extend the graphΓ to a graphΓ̂ with three levels, so that the edges between
level B and level C are the reflections of the edges between level A and level B. In other
words,

Γ̂ has vertices on levelC: Ĉ, and
an edgeλ→ µ, λ ∈ B̂, µ ∈ Ĉ, for each edgeµ→ λ,µ ∈ Â, λ ∈ B̂.

(4.26)

For eachν ∈ Ĉ define

Ĉν =

P→ µ→ λ→ ν

µ ∈ Â, λ ∈ B̂, ν ∈ Ĉ, P→ µ ∈ Âµ and
µ→ λ andλ→ ν are edges in̂Γ


 , (4.27)

so thatĈν is the set of “paths toν” in the graphΓ̂ . Continuing with our previous example,
Γ̂ is

Theorem 4.28. Assume A and B are split semisimple, and let the notation and assumption
be as in (4.21)–(4.25).

(a) The elements of B⊗A B given by

bPT
µγ
λ

⊗ bT Q
γ ν
σ

do not depend on the choice of T→ γ ∈ Âγ and form a basis of B⊗A B.

(b) For each edgeµ→ λ in Γ define a constantελµ ∈ F by

ε1

(
bP P
µµ
λ

)
= ελµaP P

µ
. (4.29)
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Thenελµ is independent of the choice of P→ µ ∈ Âµ and(
bPT
µγ
λ

⊗ bT Q
γ ν
σ

)(
bRX
τπ
ρ

⊗ bX S
πξ
η

)
= δγπδQ Rδντ δσρε

σ
γ

(
bPT
πµ
γ

⊗ bT S
γ ξ
η

)
.

Rad(B⊗A B) has basis

{
bPT
µγ
λ

⊗ bT Q
γ ν
σ

∣∣∣∣∣ ελµ = 0 or εσν = 0

}
,

and the images of the elements

eP Q
µν
λσ
γ

=
(

1

εσγ

)(
bPT
µγ
λ

⊗ bT Q
γ ν
σ

)
, suchthat ελµ �= 0 andεσν �= 0,

form a set of matrix units in(B⊗A B)/Rad(B⊗A B).

(c) Let trB : B→ F andtrA : A→ F be traces on B and A, respectively, such that

trA(ε1(b)) = trB(b), for all b ∈ B. (4.30)

LetχµA, µ ∈ Â, andχλB, λ ∈ B̂, be the irreducible characters of the algebras A and B,

respectively. Define constantstrµA, µ ∈ Â, andtrλB, λ ∈ B̂, by the equations

trA =
∑
µ∈Â

trµAχ
µ
A and trB =

∑
λ∈B̂

trλBχ
λ
B, (4.31)

respectively. Then the constantsελµ defined in (4.29) satisfy

trλB = ελµ trµA.

(d) In the algebra B⊗A B,

1⊗ 1= bP P
µµ
λ

⊗ bP P
µµ
γ

(e) By left multiplication, the algebra B⊗A B is a left B-module. If Rad(B⊗A B) is a
B-submodule of B⊗A B and ι: B → (B⊗A B)/Rad(B⊗A B) is a left B-module
homomorphism then

ι

(
bRS
τβ
π

)
=

∑
π→γ

eRS
τβ
ππ
γ

.

Proof. By (4.11) and (4.25),

B
∼−→

⊕
µ∈Â

−→
A
µ ⊗ Lµ

b P Q
µν
λ

�−→ −→a P
µ
⊗ �µQ

µν
λ

and

B
∼−→

⊕
ν∈Â

Rν ⊗←−A ν

b P Q
µν
λ

�−→ r νP
µν
λ

⊗←−a Q
ν

(4.32)
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as left A-modules and as rightA-modules, respectively. Identify the left and right hand
sides of these isomorphisms. Then, by (4.17), the elements ofC = B⊗A B given by

m̃P Q
µν
λσ
γ

= r γP
µγ
λ

⊗←−a T
γ
⊗−→a T

γ
⊗ �γQ

γ ν
σ

= bPT
µγ
λ

⊗ bT Q
γ ν
σ

(4.33)

do not depend onT → γ ∈ Âγ and form a basis ofB⊗A B.
(b) By (4.12), the mapε: B⊗F B→ A is determined by the values

ε
µ
T Q
γ τ
λσ
µ

∈ F given by ε
µ
T Q
γ τ
λσ
µ

a P P
µ
= ε

(
−→a P

µ
⊗ �µT

µγ
λ

⊗ r µQ
τµ
σ

⊗←−a P
µ

)
, (4.34)

since

ε
µ
T Q
γ τ
λσ
µ

aP P
µ
= ε

(
bPT
µγ
λ

⊗ bQP
τµ
σ

)
= ε1

(
b PT
µγ
λ

⊗ bQP
τµ
σ

)

= δT Q
γ τ
λσ

ε1

(
bP P
µµ
λ

)
= δT Q

γ τ
λσ

ε1

(
b P P
µµ
λ

bP P
µµ
λ

)
= δT Q

γ τ
λσ

ε
µ
P P
µµµ
λλ

aP P
µ
.

The matrixEµ given by (4.14) is diagonal with entriesελµ given by (4.29) and, by (4.17),

ελµ is independent ofP→ µ ∈ Âµ. By Theorem 4.18(a),

m̄P Q
µν
λσ
γ

m̄RS
τ ξ
ρη
π

= δγπεQR
ντ
σρ
γ

m̄PS
µξ
λη
γ

= δγπδQR
ντ
σρ

εσγ m̄PS
µξ
λη
γ

in the algebraC. The restof the statements in part (b) follow fromTheorem 4.18(b).
(c) Evaluating theequations in (4.31) andusing (4.29) gives

trλB = trB

(
bP P
µµ
λ

)
= trA

(
ε1

(
bP P
µµ
λ

))
= ελµtrA

(
aP P
µ

)
= ελµtrµA. (4.35)

(d) Since

1=
∑

P→µ→λ
b P P
µµ
λ

in the algebraB,

it follows from part (b) and (4.16) that

1⊗ 1=
( ∑

P→µ→λ
b P P
µµ
λ

)
⊗

( ∑
Q→ν→γ

b QQ
νν
γ

)

=
∑

P→µ→λ
Q→ν→γ

δPQδµν

(
b P P
µµ
λ

⊗ b QQ
νν
γ

)
= m̄ P P

µµ
λγ
µ

,

giving part (d).
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(e) By left multiplication, the algebraB⊗A B is a leftB-module. Ifελγ �= 0 andεσγ �= 0
then

b RS
τβ
π

e P Q
µν
λσ
γ

=
(

1

εσγ

)
b RS
τβ
π

(
b PT
µγ
λ

⊗ bT Q
γ ν
σ

)
=

(
1

εσγ

)
δ S P
βµ
πλ

(
b RT
τγ
λ

⊗ bT Q
γ ν
σ

)
= δ S P

βµ
πλ

e RQ
τν
πσ
γ

.

Thus, if ι: B→ (B⊗A B)/Rad(B⊗A B) is a left B-module homomorphism then

ι

(
bRS
τβ
π

)
= ι

(
bRS
τβ
π

)
· 1=b RS

τβ
π

∑
P→µ→λ→γ

e P P
µµ
λλ
γ

=
∑

P→µ→λ→γ
δ S P
βµ
πλ

e RP
τµ
πλ
γ

=
∑
π→γ

e RS
τβ
ππ
γ

. �

5. Semisimple algebras

Let R be a integral domain and letAR be an algebra overR, so thatAR has anR-basis
{b1, . . . ,bd},

AR = R-span{b1, . . . ,bd} and bi bj =
d∑

k=1

r k
i j bk, with r k

i j ∈ R,

makingAR a ring with identity. LetF be the field of fractions ofR, let F̄ be the algebraic
closure ofF, and set

A = F̄⊗R AR = F̄-span{b1, . . . ,bd},
with multiplication determined by the multiplication inAR. ThenA is an algebra over̄F.

A traceon A is a linear map�t : A→ F̄ suchthat

�t(a1a2) = �t(a2a1), for all a1,a2 ∈ A.

A trace�t on A is nondegenerateif for eachb ∈ A there is ana ∈ A suchthat�t(ba) �= 0.

Lemma 5.1. Let A be a finite dimensional algebra over a fieldF; let �t be a trace on A.
Define a symmetric bilinear form〈, 〉: A × A → F on A by〈a1,a2〉 = �t(a1a2), for all
a1,a2 ∈ A. Let B bea basis of A. Let G= (〈b,b′〉)b,b′∈B be the matrix of the form〈, 〉
with respect to B. The following are equivalent:

(1) The trace�t isnondegenerate.
(2) detG �= 0.
(3) The dual basis B∗ to the basis B with respect to the form〈, 〉 exists.

Proof. (2)⇔ (1): Thetrace�t is degenerate if there is an elementa ∈ A,a �= 0, such that
�t(ac) = 0 for all c ∈ B. If ab ∈ F̄ are such that

a =
∑
b∈B

abb, then 0= 〈a, c〉 =
∑
b∈B

ab〈b, c〉

for all c ∈ B. Soa exists if and only if the columns ofG are linearly dependent, i.e. if and
only if G is not invertible.
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(3) ⇔ (2): Let B∗ = {b∗} be the dual basis to {b} with respect to〈, 〉 and letP be the
change of basis matrix fromB to B∗. Then

d∗ =
∑
b∈B

Pdbb, and δbc = 〈b,d∗〉 =
∑
d∈B

Pdc〈b, c〉 = (G Pt )b,c.

So Pt , the transpose ofP, is the inverse of thematrix G. So thedual basis to B exists if
and only ifG is invertible, i.e. if and only if detG �= 0. �

Proposition 5.2. Let A bean algebra and let�t be anondegenerate trace on A. Define a
symmetric bilinear form〈, 〉: A× A→ F̄ on A by〈a1,a2〉 = �t(a1,a2), for all a1,a2 ∈ A.
Let B be abasis of A and let B∗ be the dual basis to B with respect to〈, 〉.
(a) Let a∈ A. Then

[a] =
∑
b∈B

bab∗ is an element of the center Z(A) of A

and[a] does not depend on the choice of the basis B.

(b) Let M and N be A-modules and letφ ∈ Hom
F̄
(M, N) and define

[φ] =
∑
b∈B

bφb∗.

Then[φ] ∈ HomA(M, N) and[φ] does not depend on the choice of the basis B.

Proof. (a) Letc ∈ A. Then

c[a]=
∑
b∈B

cbab∗ =
∑
b∈B

∑
d∈B

〈cb,d∗〉dab∗

=
∑
d∈B

da
∑
b∈B

〈d∗c,b〉b∗ =
∑
d∈B

dad∗c = [a]c,

since〈cb,d∗〉 = �t(cbd∗) = �t(d∗cb) = 〈d∗c,b〉. So[a] ∈ Z(A).
Let D be another basis ofA and letD∗ be the dual basis to D with respect to〈, 〉. Let

P = (Pdb) bethe transition matrix fromD to B and letP−1 be the inverse ofP. Then

d =
∑
b∈B

Pdbb and d∗ =
∑
b̃∈B

(P−1)b̃db̃∗,

since

〈d, d̃∗〉 =
〈∑

b∈B

Pdbb,
∑
b̃∈B

(P−1)b̃d̃b̃∗
〉
=

∑
b,b̃∈B

Pdb(P
−1)b̃d̃δbb̃ = δdd̃.

So ∑
d∈D

dad∗ =
∑
d∈D

∑
b∈B

Pdbba
∑
b̃∈B

(P−1)b̃db̃∗ =
∑

b,b̃∈B

bab̃∗δbb̃ =
∑
b∈B

bab∗.

So[a] does not depend on the choice of the basisB.
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The proof of part (b) is the same as the proof of part (a) except witha replaced byφ.
�

Let A be an algebra and letM be anA-module. Define

EndA(M) = {T ∈ End(M) | T a= aT for all a ∈ A}.

Theorem 5.3 (Schur’s lemma). Let A be a finite dimensional algebra over an
algebraically closed field̄F.

(1) Let Aλ be a simple A-module. ThenEndA(Aλ) = F̄ · IdAλ .
(2) If Aλ and Aµ are nonisomorphic simple A-modules thenHomA(Aλ, Aµ) = 0.

Proof. Let T : Aλ → Aµ be a nonzeroA-module homomorphism. SinceAλ is simple,
kerT = 0 and soT is injective. SinceAµ is simple, imT = Aµ and soT is surjective. So
T is an isomorphism. Thus we may assume thatT : Aλ → Aλ.

SinceF̄ is algebraically closedT has an eigenvector and a corresponding eigenvalue
α ∈ F̄. ThenT −α · Id ∈ HomA(Aλ, Aλ) and soT −α · Id is either 0 or an isomorphism.
However, since det(T − α · Id) = 0, T − α · Id is not invertible. SoT − α · Id = 0. So
T = α · Id. So EndA(Aλ) = F̄ · Id. �

Theorem 5.4 (The Centralizer Theorem). Let A be a finite dimensional algebra over an
algebraically closed field̄F. Let M be a semisimple A-module and set Z= EndA(M).
Suppose that

M ∼=
⊕
λ∈M̂

(Aλ)⊕mλ ,

whereM̂ is an index set for the irreducible A-modules Aλ which appear in M and the mλ
are positive integers.

(a) Z ∼=⊕
λ∈M̂ Mmλ (F̄).

(b) As an(A, Z)-bimodule,

M ∼=
⊕
λ∈M̂

Aλ ⊗ Zλ,

where the Zλ, λ ∈ M̂, are the simple Z-modules.

Proof. Index the components in the decomposition ofM by dummy variablesελi so that
we may write

M ∼=
⊕
λ∈M̂

mλ⊕
i=1

Aλ ⊗ ελi .

For eachλ ∈ M̂ , 1 ≤ i , j ≤ mλ, let φλi j : Aλ ⊗ ε j → Aλ ⊗ εi be theA-module iso-
morphism given by

φλi j (m⊗ ελj ) = m⊗ ελi , for m ∈ Aλ.
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By Schur’s lemma,

EndA(M)=HomA(M,M) ∼= HomA

(⊕
λ

⊕
j

Aλ ⊗ ελj ,
⊕
µ

⊕
i

Aµ ⊗ εµi
)

∼=
⊕
λ,µ

⊕
i, j

δλµHomA(A
λ ⊗ ελj , Aµ ⊗ εµi ) ∼=

⊕
λ

mλ⊕
i, j=1

F̄φλi j .

Thus each elementz ∈ EndA(M) can be written as

z=
∑
λ∈M̂

mλ∑
i, j=1

zλi j φ
λ
i j , for somezλi j ∈ F̄,

and identified with an element of
⊕

λ Mmλ(F̄). Sinceφλi j φ
µ
kl = δλµδ j kφ

λ
il it follows that

EndA(M) ∼=
⊕
λ∈M̂

Mmλ (F̄).

(b) As a vector space,Zµ = span{εµi | 1 ≤ i ≤ mµ} is isomorphic to the simple⊕
λ Mmλ (F̄) module of column vectors of lengthmµ. Thedecomposition ofM as A⊗ Z

modules follows since

(a⊗ φλi j )(m⊗ εµk ) = δλµδ j k(a⊗ εµi ), for all m ∈ Aµ,a ∈ A. �

If A is an algebra thenAop is the algebraA except with the opposite multiplication, i.e.

Aop= {aop | a ∈ A} with aop
1 aop

2 = (a2a1)
op, for all a1,a2 ∈ A.

The left regular representationof A is the vector spaceA with A action given by left
multiplication. HereA is serving both as an algebra and as anA-module. It is often useful
to distinguish the two roles ofA and use the notation�A for the A-module, i.e. �A is the
vector space

�A = {�b | b ∈ A} with A-action a�b= −→ab, for all a ∈ A, �b ∈ �A.
Proposition 5.5. Let A bean algebra and let�A be the regular representation of A. Then
EndA( �A) ∼= Aop. More precisely,

EndA( �A) = {φb | b ∈ A}, whereφb is given by

φb(�a) = a�b, for all �a ∈ �A.
Proof. Let φ ∈ EndA( �A) and letb ∈ A be such thatφ(�1) = �b. For all �a ∈ �A,

φ(�a) = φ(a · �1) = aφ(�1) = a�b= a�b,
and soφ = φb. Then EndA( �A) ∼= Aop since

(φb1 ◦ φb2)(�a) = �ab2b1 = φb2b1(�a),
for all b1,b2 ∈ A and�a ∈ �A. �
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Theorem 5.6. Suppose that A is a finite dimensional algebra over an algebraically closed
fieldF such that the regular representation�A of A is completely decomposable. Then A is
isomorphic to a direct sum of matrix algebras, i.e.

A ∼=
⊕
λ∈ Â

Mdλ (F̄),

for some setÂ andsome positive integers dλ, indexed by the elements ofÂ.

Proof. If �A is completely decomposable then, byTheorem 5.4, EndA( �A) is isomorphic to
a direct sum of matrix algebras. ByProposition 5.5,

Aop∼=
⊕
λ∈ Â

Mdλ (F̄),

for some setÂ and some positive integersdλ, indexed by the elements of̂A. The map
⊕
λ∈ Â

Mdλ (F̄)


op

−→
⊕
λ∈ Â

Mdλ (F̄)

a �−→ at ,

whereat is the transpose of the matrixa, is an algebra isomorphism. SoA is isomorphic
to a direct sum of matrix algebras. �

If A is an algebra then the trace tr of the regular representation is the trace onA given
by

tr(a) = Tr( �A(a)), for a ∈ A,

where �A(a) is the linear transformation ofA induced by the action ofa on A by left
multiplication.

Proposition 5.7. Let A = ⊕
λ∈ Â Mdλ (F̄). The trace of the regular representation is

nondegenerate if and only if the integers dλ are all nonzero inF̄. In characteristic p they
could be 0.

Proof. As A-modules, the regular representation

�A ∼=
⊕
λ∈ Â

(Aλ)⊕dλ,

whereAλ is the irreducibleA-module consisting of column vectors of lengthdλ. Fora ∈ A
let Aλ(a) be thelinear transformation ofAλ induced by the action ofa. Then the trace tr
of the regular representation is given by

tr =
∑
λ∈Â

dλχ
λ, where

χλA: A → F̄

a �−→ Tr(Aλ(a)),

whereχλA are the irreducible characters ofA. Sincethe dλ are all nonzero the trace tr is
nondegenerate. �
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Theorem 5.8 (Maschke’s Theorem). Let A be a finite dimensional algebra over a field
F such that the tracetr of the regular representation of A is nondegenerate. Then every
representation of A is completely decomposable.

Proof. Let B be a basis ofA and letB∗ be the dual basis ofA with respect to the form
〈, 〉: A× A→ F̄ defined by

〈a1,a2〉 = tr(a1a2), for all a1,a2 ∈ A.

The dual basisB∗ exists because the trace tr is nondegenerate.
Let M be anA-module. If M is irreducible then the result is vacuously true, so we

may assume thatM has a proper submoduleN. Let p ∈ End(M) be a projection ontoN,
i.e. pM = N and p2 = p. Let

[p] =
∑
b∈B

bpb∗, and e=
∑
b∈B

bb∗.

For all a ∈ A,

tr(ea) =
∑
b∈B

tr(bb∗a) =
∑
b∈B

〈ab,b∗〉 =
∑
b∈B

ab|b = tr(a).

So tr((e− 1)a) = 0, for all a ∈ A. Thus, since tr is nondegenerate,e= 1.
Let m ∈ M. Then pb∗m ∈ N for all b ∈ B, and so[p]m ∈ N. So [p]M ⊆ N. Let

n ∈ N. Thenpb∗n = b∗n for all b ∈ B, and so[p]n = en= 1 · n = n. So[p]M = N and
[p]2 = [p], as elements of End(M).

Note that[1− p] = [1] − [p] = e− [p] = 1− [p]. So

M = [p]M ⊕ (1− [p])M = N ⊕ [1− p]M,
and, byProposition 5.2(b), [1− p]M is anA-module. So[1− p]M is anA-submodule of
M which is complementary toM. By induction on the dimension ofM, N and[1− p]M
are completely decomposable, and thereforeM is completely decomposable. �

Together,Theorem 5.6, 5.8andProposition 5.7yield the following theorem.

Theorem 5.9 (Artin–Wedderburn Theorem). Let A be a finite dimensional algebra over
an algebraically closed field̄F. Let {b1, . . . ,bd} be a basis of A and lettr be the trace of
the regular representation of A. The following are equivalent:

(1) Every representation of A is completely decomposable.
(2) The regular representation of A is completely decomposable.
(3) A ∼=⊕

λ∈ Â Mdλ (F̄) for somefinite index setÂ, and some dλ ∈ Z>0.
(4) The trace of the regular representation of A is nondegenerate.
(5) det(tr(bi bj )) �= 0.

Remark. Let R be an integral domain, and letAR be an algebra overR with basis
{b1, . . . ,bd}. Then det(tr(bi bj )) is an element ofR and det(tr(bi bj )) �= 0 in F̄ if andonly
if det(tr(bi bj )) �= 0 in R. In particular, if R = C[x], then det(tr(bi bj )) is a polynomial.
Since a polynomial has only a finite number of roots, det(tr(bi bj ))(n) = 0 for only a finite
number of valuesn ∈ C.
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Theorem 5.10 (The Tits Deformation Theorem). Let R bean integral domain,F, thefield
of fractions of R,F̄ the algebraic closure ofF, and R̄, the integral closure of R inF̄.
Let AR be an R-algebra and let{b1, . . . ,bd} be a basis of AR. For a ∈ AR let �A(a)
denote the linear transformation of AR induced by left multiplication by a. Let t1, . . . , td
be indeterminates and let

�p(t1, . . . , td; x) = det(x · Id− (t1 �A(b1)+ · · · td �A(bd))) ∈ R[t1, . . . , td][x],
so that �p is the characteristic polynomial of a “generic” element of AR.

(a) Let A
F̄
= F̄⊗R AR. If

A
F̄
∼=

⊕
λ∈ Â

Mdλ (F̄),

then the factorization of�p(t1, . . . , td, x) into irreducibles inF̄[t1, . . . , td, x] has the
form

�p =
∏
λ∈Â

( �pλ)dλ, with �pλ ∈ R̄[t1, . . . , td, x] and dλ = deg( �pλ).

If χλ(t1, . . . , td) ∈ R̄[t1, . . . , td] is given by

�pλ(t1, . . . , td, x) = xdλ − χλ(t1, . . . , td)xdλ−1+ · · · ,
then

χλA
F̄

: A
F̄

�−→ F̄

α1b1+ · · · + αdbd �−→ χλ(α1, . . . , αd),
λ ∈ Â,

are the irreducible characters of Ā
F
.

(b) Let K be a field and letK̄ be the algebraic closure ofK. Let γ : R → K be a
ring homomorphism and let̄γ : R̄→ K̄ be the extension ofγ . Letχλ(t1, . . . , td) ∈
R̄[t1, . . . , td] be as in (a). If Ā

K
= K̄⊗R AR is semisimple then

A
K̄
∼=

⊕
λ∈ Â

Mdλ (K̄), and

χλA
K̄

: A
K̄

�−→ K̄

α1b1+ · · · + αdbd �−→ (γ̄ χλ)(α1, . . . , αd),

for λ ∈ Â, are the irreducible characters of Ā
K

.

Proof. Firstnote that if{b′1, . . . ,b′d} is another basis ofAR and the change of basis matrix
P = (Pi j ) is given by

b′i =
∑

j

Pi j bj then the transformation t ′i =
∑

j

Pi j t j ,

defines an isomorphism of polynomial ringsR[t1, . . . , td] ∼= R[t ′1, . . . , t ′d]. Thus it follows
that if the statements are true for one basis ofAR (or A

F̄
) then they are true for every basis

of AR (resp.A
F̄
).
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(a) Using the decomposition ofA
F̄

let {eµi j , µ ∈ Â,1 ≤ i , j ≤ dλ} be a basis ofmatrix

units in A
F̄

and lettµi j be corresponding variables. Then the decomposition ofA
F̄

induces
a factorization

�p(tµi j , x) =
∏
λ∈ Â

( �pλ)dλ, where �pλ(tµi j ; x) = det

(
x −

∑
µ,i, j

tµi j Aλ(ei j )

)
. (5.11)

The polynomial�pλ(tµi j ; x) is irreducible since specializing the variables gives

�pλ(tλj+1, j = 1, tλ1,n = t, tµi, j = 0 otherwise;x) = xdλ − t, (5.12)

which is irreducible inR̄[t; x]. This provides the factorization of�p and establishes that
deg( �pλ) = dλ. By (5.11)

�pλ(tµi j ; x) = xdλ − Tr

(
Aλ

(∑
µ,i, j

tµi j eµi j

))
xdλ−1 + · · · ,

which establishes the last statement.
Any root of �p(t1, . . . , td, x) is an element ofR[t1, . . . , td] = R̄[t1, . . . , td]. So any

root of �pλ(t1, . . . , td, x) is an element ofR̄[t1, . . . , td] and therefore the coefficients of
�pλ(t1, . . . , td, x) (symmetric functions in the roots of�pλ) are elements ofR̄[t1, . . . , td].

(b) Taking the image of the Eq. (5.11), give a factorization ofγ ( �p),
γ ( �p) =

∏
λ∈ Â

γ ( �pλ)dλ, in K̄[t1, . . . , td, x].

For the same reason as in (5.12) the factors γ ( �pλ) are irreducible polynomials in
K̄[t1, . . . , td, x].

On the other hand, as in the proof of (a), the decomposition ofA
K̄

induces a
factorization ofγ ( �p) into irreducibles inK̄[t1, . . . , td, x]. These two factorizations must
coincide, whence the result. �

Applying the Tits deformation theorem to the case whereR= C[x] (so thatF = C(x))
gives the following theorem. The statement in (a) is a consequence ofTheorem 5.6and the
remark which follows Theorem 5.9.

Theorem 5.13. Let CA(n) be a family of algebras defined by generators and relations
such that the coefficients of the relations are polynomials in n. Assume that there is an
α ∈ C suchthat CA(α) is semisimple. Let̂A be an index set for the irreducibleCA(α)-
modules Aλ(α). Then

(a) CA(n) is semisimple for all but a finite number of n∈ C.

(b) If n ∈ C is such thatCA(n) is semisimple then̂A is an index set for the simpleCA(n)-
modules Aλ(n) anddim(Aλ(n)) = dim(Aλ(α)) for eachλ ∈ Â.

(c) Let x bean indeterminate and let{b1, . . . ,bd} be a basis ofC[x]A(x). Then there are
polynomialsχλ(t1, . . . , td) ∈ C[t1, . . . , td, x], λ ∈ Â, suchthat for every n∈ C such
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thatCA(n) is semisimple,

χλA(n): CA(n) −→ C

α1b1+ · · · + αdbd �−→ χλ(α1, . . . , αd,n),
λ ∈ Â,

are the irreducible characters ofCA(n).

Acknowledgements

This research was supported in part by National Science Foundation Grant DMS-
0100975. This research was also supported in part by the National Science Foundation
(DMS-0097977) and the National Security Agency (MDA904-01-1-0032).

References

[1] N. Bourbaki, Algebra, Elements of Mathematics, Springer-Verlag, Berlin, 1990 (Chapters 1–3).
[2] N. Bourbaki, Groupes et Algèbres de Lie, Eléments de Mathématique, Hermann, Paris, 1968 (Chapitre IV,

V, VI).
[3] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. 38 (1937)

854–872.
[4] W.P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955) 1–22.
[5] W.P. Brown, Generalized matrix algebras, Canad. J. Math. 7 (1955) 188–190.
[6] E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew.

Math. 391 (1988) 85–99.
[7] C. Curtis, I. Reiner, Methods of representation theory—with applications to finite groups and orders, Pure

and Applied Mathematics, vols. I and II, Wiley & Sons, Inc., New York, 1987.
[8] V. Dlab, C. Ringel, A construction for quasi-hereditary algebras, Compositio Math. 70 (1989) 155–175.
[9] W. Doran, D. Wales, David, The partition algebra revisited, J. Algebra 231 (2000) 265–330.

[10] J. Farina, T. Halverson, Character orthogonality for the partition algebra and fixed points of permutations,
Adv. Applied Math. 31 (2003) 113–131.

[11] D. Fitzgerald, J. Leech, Dual symmetric inverse monoids and representation theory, J. Aust. Math. Soc. Ser.
A 64 (1998) 345–367.

[12] F. Goodman, P. de la Harpe, V. Jones, Coxeter Graphs and Towers of Algebras, Mathematical Sciences
Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989.

[13] R. Goodman, N. Wallach, Representations and invariants of the classical groups, Encyclopedia of
Mathematics and its Applications, vol. 68,Cambridge University Press, Cambridge, 1998.

[14] C. Grood, The rook partition algebra (in preparation).
[15] T. Halverson, Characters of the partition algebras, J. Algebra 238 (2001) 502–533.
[16] V.F.R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi

Symposium on Operator Algebras (Kyuzeso, 1993), River Edge, NJ, World Sci. Publishing, 1994,
pp. 259–267.

[17] I. Macdonald, Symmetric Functions and Hall Polynomials, Second ed., Oxford University Press, New York,
1995.

[18] P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical
Mechanics, vol. 5, World Scientific Publishing Co. Inc., Teaneck NJ, 1991.

[19] P. Martin, Temperley–Lieb algebras for nonplanar statistical mechanics—the partition algebra construction,
J.Knot Theory Ramifications 3 (1994) 51–82.

[20] P. Martin, The structure of the partition algebras, J. Algebra 183 (1996) 319–358.
[21] P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys.

A 33 (2000) 3669–3695.



T. Halverson, A. Ram / European Journal of Combinatorics 26 (2005) 869–921 921

[22] P. Martin, G. Rollet, The Potts model representation and a Robinson–Schensted correspondence for the
partition algebra, Compositio Math. 112 (1998) 237–254.

[23] P. Martin, H. Saleur, Algebras in higher-dimensional statistical mechanics—the exceptional partition (mean
field) algebras, Lett. Math. Phys. 30 (1994) 179–185.

[24] P. Martin, D. Woodcock, On central idempotentsin the partition algebra, J. Algebra 217 (1) (1999) 156–169.
[25] P. Martin, D. Woodcock, The partition algebras anda new deformation of the Schur algebras, J. Algebra

203 (1998) 91–124.
[26] R. Mirollo, K. Vilonen, Berstein–Gelfand–Gelfand reciprocity on perverse sheaves, Ann. Scient. École

Norm. Sup 20 (1987) 311–324.
[27] W. Owens, The Partition Algebra, Honors Thesis, Macalester College, 2002 (May).
[28] R. Stanley, Enumerative Combinatorics, Cambridge Studies in Adv. Math. 49, vol. 1, 1997.
[29] C. Xi, Partition algebras are cellular, Compositio Math. 119 (1) (1999) 99–109.


	Partition algebras
	Introduction
	The partition monoid
	Partition algebras
	Schur--Weyl duality for partition algebras
	The basic construction
	Semisimple algebras
	Acknowledgements
	References


