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Abstract 

Gitik, M., The strength of the failure of the Singular Cardinal Hypothesis, Annals of Pure and 
Applied Logic 51 (1991) 215-240. 

We show that O(K) = K++ is necessary for 1SCH. Together with previous results it provides 
the exact strength of 1SCH. 

0. Introduction 

The singular cardinal hypothesis (SCH) is a descendant of the generalized 
continuum hypothesis. It states that ~~~ = K+ + 2”” for a singular cardinal K. In 
particular, a power of a SiUgUlar Strong hit cardinal K iS alWayS K+. We refer to 
[2, 5, 7, 8, 9, 10, 11, 14, 161 for the motivation and previous results. 

Our aim will be to show the following: 

Main Theorem. Assume that i(3a o(a) = a++). Let K > 2% be a singular 
cardinal. Then pp(~) = K+. 

The strength of -SCH can be deduced from the Main Theorem and the 
following theorem of Shelah. 

Theorem (Shelah). Suppose that K is the least singular cardinal satisfying K”~ > 

K+ + 2Cfr. Then pp(~) 3 K++; cfK=Koandforeveryp<~, puKoSp++2cb. 

The case K < N, appears in [16] and the general one in [17]. 

CoroUary (to the Shelah Theorem and Main Theorem). The strength of TSCH is 
at least “3no(a-) = a++“. 
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[5] provides the opposite direction. 
Previously, Mitchell [14] showed that strength of 1 SCH is at least 

“3K {0((Y) 1 a< } K is unbounded in K” and the strength of existence of a cardinal 
of uncountable cofinality violating SCH is at least “3cz o(a) = a++“. 

Our proof relies heavily on the Covering Lemma of Mitchell and uses some of 
the ideas of Shelah developed for studying the cardinal arithmetic. We are 
grateful to both of them for sharing with us (directly or indirectly) their deep 
insights. We would also like to thank Mitchell and the referee of the paper for 
various corrections and suggestions they made reading an earlier version of the 
paper. 

The paper is organized as follows. In Section 1 the main technical definitions 
will be given, the Mitchell Covering Lemma and some of the facts following from 
it will be stated. Section 2 is devoted to the proof of the Main Theorem. Some 
generalizations and further directions will be discussed at the end of this section. 
In Section 3 we present some forcing constructions related to cases which appear 
in Section 2 and to a question of Mitchell about existence of accumulation points. 

1. Prelimiiaries 

Let K be a Singular cardinal of cofinality w. Let K~ < K* < - - - < K,, <. - . be a 
sequence of cardinals below K and let D be a filter over o. Define an order on 
l-l n<. K,, as follows: 

g <of iff {n I s(n) <f(n)) E D. 

If D is the filter of cobounded sets, then let us denote <D by <. 
A set A G n,,,, K,, is called unbounded for D if for every g E n,,, K,, there is 

f E A, fD > g. The true cofinality tcf( (n,,, K,, cD)) is the least A such that there 
exists an unbounded linear ordered subset A of n,,, K, of cardinality rl. 

Note that, if D is an ultrafilter, then the true cofinality is always defined. The 
following notions were introduced by Shelah [18] in order to refine the usual 
power set: 

p&(K) = SUP tCf 
1 (( 

n K,,, cD 
>)I 

Ki=CfKi<K, for every /d<K 
?Z<OJ 

{i ) ~~ a p} E D and (jlm K~, -CD) has a true cofinality) 

pp(~) = sup{ppL(~) 1 D 2 cobounded subset of 0). 

The proof will heavily rely on the Covering Lemma of Mitchell for the core 
model with the maximal sequences of measures X(9;) and the properties of 
models appearing in it. Let us only state some basic definitions and the facts that 
we are going to use. We refer to the Mitchell papers’ [ll-151 for a detailed 
presentation. 
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The Mitchell Covering Lemma. Let N < Hi (for some A k K+) be such that 

(a) *N GN, 

(b) WI <K 
(c) N fl K is cofinal in K. 

Then there are a function hN E X( 9), an ordinal dN c IN]+ and a system of 
indiscernibles CN such that N n H, rl X(9), N n P(K) fl X(P) E hN”(dN, C”). 

Fact l(a). CN is a function with domain a subset of the domain of 9 f K + 1. For 
every (a, /J) E dom CN, C”( a; /3) is a subset of a so that the following holds 

Vf E~(~)36<crvYE~N((y,B)\6v~Efly ~EX-Xf-bdt(~,p). 

Further we shall confuse CN and IJ {C”(a, /3) 1 (a; /I) E dom C”}. Elements of 
CN (i.e. of @“(a; /?) for some (a; /3)) are called indiscernibles. 

Note that CN 1 K is a system of indiscernibles of the mouse related to N, but 

over K itself CN(&, /3) is connected with the measure S(K, j!?) of X(9) rather 
than those of the mouse. Thus CN r {K} is what is called in [15] the maximal 
system of indiscernibles of N. Also instead of dealing with the Skolem function of 
mice deal only with its restriction to H, x H, and replace the ordinal values of it 
above K by assignments introduced in [15]. Let us not give the definition of these 
notions but instead state the properties of such ‘combined’ functions hN that we 
are going to use further. 

Fact l(b). (i) Th e ordinal values of hN 1 K are in max(K, Of). 
(ii) Ifc ~@~(a, /3) an d x E hN”(c rl N), then c EX if c E $(a, #I). 

(iii) Zf c E @“(a, /3), then hN”(c) n (a\~) = 0. 
(iv) Zf 6EKfIN\cN, then for some &, . . . , 6, d3-7 6, 6= 

hN(6,, . . . , 6,). 

(v) For every c E CN there exists a unique pair (a, f3) E hN”c such that 
c E @“(a, /I). Actually a E hN”(c rl N) and if a C K then also /? E hN”(c n N). Note 
that in this presentation for a = K this /3 may be not in N. Let us denote CY by (u”(c) 
and f3 by /3”(c). 

(vi) Zf c E CN(a’, #?‘) f or some a’ # s(c), then a’ E C”(a?(c), /3”) for some 
/I” > /3”(c) such that /3’ = c(&‘(c), fIN(c), /?‘)(a’), where c(-, -, -) is the coherence 
function for 9, i.e., c(a, p, y) is the least function fin X(9) so that [flSCnSvj = /3. 

(vii) Zf f : K+ C?(K) belongs to N fl X(S), then there is some t < K so that 

f(E)=h”((r, E))f or every 5 < K. Let us call further such a t a support off in N. 
Notice that t need not be in N. 

This property is not stated explicitly in [14, 151 but it follows easily using the 
techniques of this paper. Proceed as follows. Let F denote the set N tl {f 1 f : K -P 
(T*(K)}. Using the Covering Lemma, find F* E X(w fl {f 1 f: K- C?(K)} 

containing F and of cardinality K. Let d : K -P F be some function in X( 9). Plug it 
into hN. 
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Fact 2. Let N, N’ be models as in the Covering Lemma (further, we shall deal 
only with such models, so N, N’, M, etc., will always denote such models). Then 

(1) {c E N n N’ 1 c E C”\@“‘} is finite. 

(2) {a ) 3c E CN r-l cN’ a = a”(c) # C?(C)} is finite. 
(3) {a ) 3c E cN n cN’ CY = g(c) = S’(c) and /3”(c) # /3”‘(c)} is finite. 
(4) If D is an unbounded subset of a, c E a=“(~ Bf) for each c E D, and D and 

(/I$ 1 c E D) are in both N and N’, then {c E D I c $ @“‘(a, &)} h bounded in a. 
(5) If (c, ( Y c S) E N i.r an increasing sequence of indiscernibles, c = UvtG c,, 

and c, E @“(a; By) f or each Y where {&, I Y c 6) E N is a nondecreasing sequence, 
then either c = a or c E @“(a; f3) for some f3 such that f3 > f3,, for all Y < 6. 

Set sN(a; /3, r) = min(C”(cu, /3) \ (y + 1)). It is called the least indiscernible 
function. An indiscernible c E N is called an accumulation point for ((u, /3) if for 
every Y E N rl c for every y E /3 n N n hN”c there are an indiscernible c’ E N and 
an ordinal /3’ such that Y < c’ cc, y” /3’ </I and c’ E C”(a; fi’). Further, by 
(a; /3)-accumulation point we shall mean an accumulation point for ((u, /3) which 
is not an accumulation point for (a, /I + 1). aN(cu, p, y) denotes the least 
((u, /3)-accumulation point above ‘y. 

Fact 3. Let N, N’ be two models as in the Covering Lemma. Then there is Zj < K 

so that for every (a, f3, y) E N fl N’ with y > Zj 

sN(a, B, Y) =sN’(a9 B, 7) and aN(o, B, Y) = aN’(a, P, Y). 

2. The proof of the Main Theorem 

We are going to prove a slightly more general statement. By the theorem of 
Shelah, stated in the beginning, it will easily imply the Main Theorem. 

Theorem A. Let K >2% be a singular cardinal of cofinality KO. Suppose that 
pp(~) > K+. Then one of the following two conditions holds. 

(1) O(K) = K++ in an inner model. 
(2) There are unboundedly many cardinals u < K so that for a regular cardinal 6 

which is a limit of measurable in X( 9) cardinals u+ < 6 < u O. 

Remark. The condition (2) seems to be much stronger than just O(K) = K++. 

With an appropriate generalization of the Mitchell Covering Lemma to models 
with extenders, (2) should imply the existence of an extender of measurable 
length in an inner model. 

Proof. Suppose otherwise. Then by [18], there are an increasing sequence of 
regular cardinals (K, 1 n < o) with limit K and an ultrafilter D containing all 
cobounded subsets of w so that tcf(n,<, K,,, CD) = K++. Let (fn I LY < K++) be a 
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sequence witnessing this. It is possible to replace D by the filter of cobounded 
sets. It follows from [20] or [l], or just force an o-sequence almost contained in 
every set in D. Since it can be done by ccc forcing, nothing above would be 
effected. 

So, let us assume that D is just the filter of cobounded subsets of w. 
In the following, by a model we shall always mean a model as in the Covering 

Lemma which contains (K,, 1 n < w ). For a model N let us denote by chN the 
characteristic function of N, i.e., 

chN(n) = sup(N n K,,) for every n < w. 

Up to Claim 22 we can restrict ourselves to models of cardinality 2%. 
Before proceeding further, let us describe the scheme of the proof. We shall 

start with any scale (& 1 cr< K++), i.e., a sequence witnessing tcf(llnco K,, <) = 

K ++, Then it will be replaced from time to time by better and better scales. That 
is, first, by sequences of characteristic functions of models like in the Covering 
Lemma. Such a function chN will consist of limit indiscernibles (chN(n) 1 n < co) 

with dY’(chN(n)) > K,, where N’ 2 N U {chN, hN}. The fact that the number of 
hN’s is small is crucial for this. 

Then the proof splits into two cases. The first deals with so-called independent 
sequences of indiscernibles. Intuitively this means that indiscernibles (or at least 
many of them) in the intervals (K,, K,+~) are not connected with indiscernibles 
below K,. A little bit more precisely, a sequence (c,, 1 n < o) of indiscernibles is 
independent if K,,_~ -C c,, < K,, and the index of the measure for which c, is 
indiscernible, i.e. /I(c,), does not depend on (c,,, . . . , c,-1). The typical example 
for this is the situation when o@(K,) Z= K, and the indiscernibles for all the 
measures appear. Thus a sequence (c, I n < o), K,_~ cc,, < K, of indiscernibles 
such that B(c,J = 0, is independent. Using Fact 4, it will be shown that the 
number of independent sequences is K+. And then the contradiction will be 
derived. Here is actually the place where we are using the fact that the number of 
functions in X(9) from K to O(K) is small. Note that the model of [5] constructed 
Using O(K) = K++, has K++ independent sequences. The same is true about the 
models of [21] and [6] with wider gaps between K and 2“. The number of 
independent sequences in this model is 2”. 

The second and actually the main case is the case when the indiscernibles in 

( K,> ‘%+I ) are connected with indiscernibles below K,. The typical situation here 
is as follows: 09(K,+1) = K, and indiscernibles for all the measures appear. The 
scale of characteristic functions here will be replaced by a better one. It will 
consist of so-called diagonal sequences. Intuitively, this means a function 

f E n,<, K,, so that for some model N with f EN, Cf(n) I n < co) is a sequence 
of indiscernibles of N so that a”(f(n)) = K,, /3”(f(n)) =f(n - 1) and f(n) = 
sN(~,, f(n - l), K,_~), i.e., f(n) is the least indiscernible above K,_~ for measure 
a(~,, f(n - 1)). Note that such functions are actually ‘the trouble makers’, since 
a disagreement between two such functions in the beginning cannot be fixed later. 
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A diagonal function f is called faithful if cf(f(n)) = cf(f(n - 1)) for all but finitely 
many n’s It will be shown that it is possible to construct a scale (fn ) (Y < K++) 

consisting of faithful diagonal functions. Then for 6’s below K++ of cofinality K+, 

a least upper bounds fg of & ) a < S) will be considered. There will be only 
three possibilities for such fg. Namely: 

(a) fg is a faithful diagonal sequence; 
(b) fz is a diagonal function but it is not faithful; 
(c) (f:(n) 1 n < w) is a sequence of accumulation points. 
Possibility (a) can be ruled out immediately, since y” < K for every y < K. The 

possibilities (b) and (c) are treated similarly in Claims 22 and 23. We consider 
(2%)+ such 6’s and produce an increasing sequence (f:(n) 1 i < wI) for infinitely 
many n’s. Then y,, = sup{fii(n) 1 i < ol} will be a regular cardinal in X(9) with 
o “(y,J < K,_~, for unboundedly many 11’s. This will lead to the contradiction. 

Claim 1. For every set A of cardinality less than K there exists a sequence of 
models (N, 1 a < K++) so that 

(1) AEN,forevery a<~++; 

(2) for every a; /3 C K++, dNa = aN@ and hNw n H, = hN@ n H,; 
(3) (chNu ( a < K++) witnesses tcf( (n,,, K,, <)) = K++. 

Proof. Let cfn 1 cY< K++ ) be any sequence witnessing that the true cofinality of 

U-J&0 K,, <) iS K++. Define by induction an increasing sequence of ordinals 
below K++, (&I a<~++ ) and a sequence of models as follows: 

(a) A EN,, 
(b) fio = min{y < K++ jf,>chNvforevery Y<(Y), 

(c) fs, E Nw 
Clearly, chN* >fs, and since cfs, I a < K++) witnesses the true cofinality of 

U-J,<, K,, <), (chNa I a< K++) will be such as well. Now, the number of aNa’s 
and hNe’s is small. So for some S E K++ of cardinality K++ they all are the same. 
Then (N, 1 LY E S) is as desired. 0 Claim 1 

Claim 2. For every g E n,,, K,, there exists N and a sequence of indiscernibles 
(c,ln<o) inNsothat 

(1) (C” In-w-L4,; 
(2) (u”(G) 2 &; 
(3) G 2 g(n) for all but finitely many n’s. 

hOOf. Let g E n,,, K,. Let (N, I (Y C K++) be as in Claim 1, with g E N, for 
every LY C K++. Let h = hNQ for every LY < K’+. Assume for simplicity that SN” = 0 
(a < K”). 

Now, define a sequence (f ] n < w) E i-L_, ic,. Let n < o. Z$ would be the 
limit of the sequence ( gi 1 i c o ) which is defined as follows: Ez =g(n), 
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pi+:’ = sup(h”(~$ n rc,) for every i C w. Since K,, is a regular cardinal and 
g(n) < K,, all pi’s and &, will be below K,,. Clearly, sup(h”(&) fl K,) = &,. 

Let n < o. Set c, = min(N,,\&), Then c, < K,,. Also c, is an indiscernible in N,, 
with fly(&) 3 K,,. Since, otherwise sup(h”(N, II c,J II K,) > c,, but NY fl c, G 
&,, &, < c, and sup(h”(&,) n K,) = 5,. So the sequence (c,, 1 n < o) satisfies the 
conclusion of the claim. 0 Claim 2 

The following is an easy consequence of Claim 2. 

Claim 3. All but finitely many of K,,'s are inaccessible in X(9). 

Proof. Suppose otherwise. Let A c o be an infinite set so that for every n E A, 
K, = (A,+)"(*). Define a function g E l-l,,, K, as follows: 

g(n) = 
il, ifnEA, 

0 otherwise. 

Let N be a model for g as in the previous claim. Then there would be 
+ indiscemibles in N between A,, and K, = (A, ) sc(9) for infinitely many n’s in A, 

which is impossible. Contradiction. Cl Claim 3 

Claim 4. There exists a function f E n,,, K,, and a sequence {a,, 1 n < o ) so that 
for every N for every sequence of indiscernibles (cn 1 n < o) E fl,,, K,, if 
c, > f (n) and #(cn) 3 K,, for all but finitely many n’s, then 

@Yc.) = ct;t for all but finitely many n’s. 

Proof. Let N be a model. Note that if c cc’ are two indiscernibles in N and 

#(c) > c’, then s(c) 3 #(c’) since o”‘(c) E hN”(c), c@‘(c’) E hN”(c’) and 
hN”(c’) n [c’, a?‘(~‘)] = 8. 

Define now f E fl,,, K,, and the sequence (cu, 1 n < o) as follows: 
Let an=O=f( ) n unless there is an indiscernible c EN, K,_~ S c < K,, with 

s(C) 2 K,. In the last case set a;, to be the minimal value 8(c) for c EN, 

G-1 4c<~,and ~(c)>K~. Letf(n)=cforc, K,,_~~c<K,, with s(c)=& 
Let us show that the sequence (a;, 1 n < o) is as desired. Suppose otherwise. 

Let N’, (c,, I n < o) be witnessing this. Denote (I”’ by o; and /3”(cn) by j3:. 
Let A be an infinite set so that n E A implies cu,, # &,. Then, by Fact 1, for every 
g E x(.9) there exists n < o so that for every m a n for every X E g”(c,), c, E X 
iff X n CU& E .F(&, f?;). 

So H,+ satisfies the following statement: 

3Acwinfinite3(c,(nCo)3(a:,InCo)3(8:,1n<o)3h’E~(~) 

Vn < o LY;, j3: E h”‘(c,Q A Vn E A (c, > f (n) A cx: 2 K~ A cu: # an) 

A(VgE5Y(9)3n<oVm 3 n VX E g”(cm)(cm E X c*X n CY; E 9( CU;, j3k)). 
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Since N is an elementary submodel of H,+ and the parameters are in N, this 
statementistrueinN. LetA*, (c,*In<o), (c~,*ln<w), (/3n*lnC0), h*EN 
be so that N satisfies the following: 

(a) for every n E A*, CT,* >f(n), CY,* 2 K,, and cu,* # w”; 
(b) for every g E x’(9) for some n < o for every m 3 n for every X E g”(cz), 

clr,EXiffXncz$E9(0$,/3~); 
(c) h * E x(9) and for every n < o, (a:, j3:) E h*“(cz). 
Then (a), (b) and (c) are true in H,+. In particular applying (b) for hN there 

exists n < o so that for every m 2 n for every X E hN”(cL), cz E X iff X rl 
(u: E 9((uL, /3;). It implies that every cz with m b n is an indiscernible in N. 
Since otherwise cz = hN(E,,,) for some I?,,, strictly below cz. Hence cz E hN”(ci) 
and so K\C~E hN”(ci). But, clearly, cwG\cz E 9((uL, /IL) which provides a 
contradiction. 

Now, let m E A\n be above a support of h*. Then e$ E h*“(cG) and hence 
&, E hN”(cz). This together with (b) implies that (~2 = #(CL). Recall now the 
definition of f(m) and am. Since fl(cz) > K,,,, f(m) is chosen to be an 
indiscernible c with 8(c) least possible a~,,, and cu,,, = g(c). So, f(m) = c < CL 

then cw, s LYE. But then, necessarily a;, = cu;, which is impossible. Contra- 
diction. Cl Claim 4 

Let us assume for simplication of notation that f(n) = 0 for all n’s, since we can 
restrict ourselves to the functions above J 

Claim 5. For every N there exists N* 2 N so that for every N’ 2 N* U {hN*, chN’}, 
chN’(n) is an indiscernible in N’ for cu,, for all but finitely many It’s. 

Proof. Suppose otherwise. Let N be a model witnessing this. Define by induction 
a sequence of models (Ni 1 i < ol) so that 

(0) No = N; 
(1) for every i <i < ~1, Nj 2 Ni U {h&, chNi}; 
(2) for every i < q, Ni+, contains a sequence of indiscernibles (CL ( n < w) so 

that @+I(&) = cr, and CL > chN’(n) for all but finitely many n’s. 
There is no problem in the induction. Use Claims 2, 4 in order to satisfy (2). 

Set N* = Ui<o, Ni. Let N’ z N* U {hN*, chN’}. By Fact 2, for every i < w1 there 
’ , i$t), ,““= that for every n 3 n(z) ci is an indiscernible in N’ and cu”‘(ct) = 

z+1 cI a”. Let S c wi, IS1 = Ki, n* < w be so that n(i) = n* for every i ES. 
Then ci”‘(n) = lJieS ck, so ( chN*(n) I n 2 n*) are indiscernibles in N’. By Claim 
4, &“‘(chN’(n)) = CV~, for every n Z= n*. Contradiction. q Claim 5 

Further let us restrict ourselves only to models N* like in Claim 5, i.e., chN’(n) 
is a limit indiscernible for a”. 



The strength of the failure of the SCH 223 

Claim 6. There exists a function f E fl,,, K,, satisfying the following: 
(*) for every N there is N* 3 N so that for every N’ IN* U {hN’, chN’}, 

@“‘(ch”*(n)) E hn”‘(f (n)) for all but finitely many n’s. 

Proof. Suppose otherwise, let us define by induction sequences (f; 1 i < oI) and 

Wit i < 0) as follows: 
(1) for every i < j, Nj 2 Nj U {h”;, chN;}; 
(2) for every i <j for every n < o, max(chN’(n), i(n)) <J(n); 
(3) for every i < ol, 5 E ll,,, K,; 

(4) for every i < ol, Ni witnesses the failure of (*) for $. 

Let N* = Ui<w, Ni and N’ 2 N* U {hn’, chN*}. Then chN’(n) = IJiCo, A(n) for 

every 12. Let i, < w1 be such that p”‘(ch”“(n)) E hN”‘(fi.(n)), where n < CO. Set 

i* = LJ,<, i,. Then for every n < o, /3(chn’(n)) E hN”‘(fi.(n)). But N* 2 Ni* and 
Ni. was picked to be a counterexample for ft.. Contradiction. 0 Claim 6 

Further let us deal only with models like N* of the claim. 

Claim 7. For every N, there exists g E n,,, K,, so that for every N’ 2 N U 
{hN, chN}, if (c,, 1 n < w ) is a sequence of indiscernibles in N’ so that for all but 

finitely many n’s 

(a) a”(~) = on, 
(b) c,, < chN(n), 
(c) P”(c,) 2 @“‘(oh”(n)), 

then g > (c,, ( n < CO). 

Proof. Let N be a model. Pick some N* 2 N U {hN, chN} containing a cofinal 
subset of N fl chN(n) for every n < w. Since chN(n) is a limit indiscernible of 
cofinality >K,, for all but finitely many n’s, by Fact 2(5), the indiscernibles c for 
CY,, with /3”*(c) 2 /3”*(ch”(n)) are bounded in chN(n). Define g(n) E N to be such 
a bound. Let us show that this g is desired. Suppose otherwise. Let A4 witness 
this. Let M’ r, M U N* U {hu, ch”, hN*, hN, chN} be so that there exists a 
sequence of indiscernibles (c, ( n < w ) in M’ and an infinite set A E w satisfying 
the following for every n E A: 

(a) a”‘(cJ = on, 
(b) c, < chN(n), 
(c) B”‘(G) 2 B”‘(chN(n)), 

(d) =n 2 g(n). 
Using Fact 2, we can assume that for every n E A, /3”‘(ch”(n)) = p”*(ch”(n)). 
Let us proceed as in Claim 5. 
The following statement is true in II,+: 

3hE~(~3(c,ln<w)3(8,ln<o)tlnEA 

((an, /&) E h”(c,) A c, < chN(n) A pn 5 @“*(ch”(n)) A c, 2 g(n)) 

A Vt E X(9) 3n0 Vn > no VX l P(c,) (c, E X-X E *(an, &)). 
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Then the same statement is true in N*. Let h, (cz ( n < o), (#I,, ) n < w) E N* 

be witnessing this. Going back to H,+ with hN’ instead of t, we obtain, as in 
Claim 4, that c,* is an indiscernible with o?‘*(c,) = cu, and /3”*(cz) = /In for every 
n E A big enough. But c,* < chN(n), /I,, 3 #IN”(chN(c)) and still c, >g(n). This 
contradicts the choice of g. 0 Claim 7 

Claim 8. There exists g E n,,, K,, so that for every N there exists N’ 1 N with 

g N’ s g, where gN is a function given N’ by Claim 7. 

Proof. Suppose otherwise. Define by induction sequences (gi 1 i < wI) and 
( Ni 1 i < ol) so that 

(1) for every i <j for every n C 0, g,(n) < gj(n); 
(2) for every i C j, Nj 2 Ni U {h”, chN’, gN}; 
(3) for every i < q, g,(n) > chNi(n), gNi(n) for every n < w; 

(4) N,+1 witnesses the failure of gi to satisfy the requirements of the claim. 

Let NW, = Ui<q Ni. Since chNWl(n) = Ui<o, g,(n) and gNUI c chNWl(n), there 
exists i* < wl, so that gNol sgi*. But N,, 2 Ni*+l. It contradicts condition 
(4). 0 Claim 8 

So we obtain a function g* E n,,, K,, so that for every N there is N’ 1 N 
satisfying the following: 

(*) For every N” z N’ U {hN’, chN’}, if (c, 1 n < W) is a sequence of indiscer- 
nibles in N” so that for all but finitely many n’s 

(4 C(G) = ak 
(b) c,, < chN’(n), 

(c) B”“(c,J 2 B”‘(ch”(n)), 
then g* > (c,, 1 n < 0). 

Assume that g* is above the function of Claim 6. Further let us consider only 
models containing g* and satisfying (*) for this g*. Then the following holds: 

Claim 9. Let N’ 2 N U {hN, chN}. Then chN(n) = sN’(crn, /3”‘(ch”(n)), g*(n)) and 
@“‘(ch”(n)) E hN”‘(g*(n)), for all but finitely many n’s, where sN is the least 
indiscernible function for N’. 

Let us split now the proof into two cases. 

Case 1. For every h E X(9) there is N containing h so that, for infinitely many 
n’s, N has an indiscernible c, such that g*(n) <c, < K,, for a;, with /IN(c,,) > 

sup(o”(%) n h”(g*(n))). 

For example, if cu, = K,, cf o %(K,) 2 K,, and indiscernibles for all measures 
appear then the above holds. 
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Definition 10. Let A c CO. A sequence (& 1 II E A) is called independent if for 
some N, (&, 1 n < o) is a sequence of indiscernibles in N satisfying the following 
conditions: 

(1) g*(n)<&<&; 
(2) (u”(EJ = &I; 
(3) 5” = sN((U,, BY‘&)> g*(n)); 
(4) for every n E A there is y,, < K,inA so that /I”(&,) is the least /3 2 

hN(y,,, a”, g*(n)) for which there are indiscernibles for a” in N above g*(n). 

Intuitively, this means that each 5” (n E A) is independent of indiscernibles 
below g*(n). 

Claim 11. For every f E n,,,, K,, there are A c CO, IAl = KO and an independent 
sequence of indiscemibles (&, 1 n E A) so that for every n E A, f(n) < &. 

Proof. Let f E l-l,,, K,,. Pick N to be a model containing f. Let N* 1 N U 
{hu, chN}. Pick N** 1 N* U {hN’} to be as in Case 1 for h = hN’. Actually, any 
N** 1 N* U {hN’} will be O.K. Let A c CO, (Al = ‘HO be the set consisting of n’s so 
that there exists an indiscernible c, for cu, in N** satisfying g*(n) < c,, < K, and 
/?““(c,,) > sup(~~(a,J n hN*“(g*(n))). 

For n E A denote sup(o”(oJ fl hN”‘(g*(n))) by fin. Then, since hN* E X(9) II 
N **, also the function t(y, 6) =sup(o$(:(y)n hN*“6) is in X(s) n N**. Then, 
by Fact l(bvii), there is f< K so that t(y, 6) = hN*(& y, 6). Hence, /In = 

:hIt*F,~n, g*(n)). R emoving a finite subset of A if necessary, we can assume 

mm A is above 5 and points of disagreement between N, N*, N**. Let n EA. 
Since #I”“(ch”(n)) = /3”*(ch”(n)) E hN”‘(g*(n)), by the choice of n and Claim 9, 
/I”“(ch”(n)) < /3,,. By the choice of g*, then for every /IA 2 /In, indiscernibles for 
(an, /3jJ which are above g*(n) are also above chN(n). Let Bz 2 /3” be the least 
ordinal so that there exists an indiscernible c,, g*(n) < c, < K,, for (cu,, /I:). Set 

5, = s~**((u,, fin*, g*(n)). Hence (En 1 n E A) is an independent sequence. 
Then for all but finitely many n’s in A, .$ > f (n). 0 Claim 11 

Claim 12. Let A, (& I n EA), N, ( yn I n E A) be as in Definition 10. Then for 

every M, s.t. (hN(y,, g*(n)) I n E A ) E M, for all but finitely many n’s in A, &,, 

B”(L) EM and En = s”(an, Bz(E,J, g*(n)). 

Proof. Define By to be the least p 2 hN(y,, g*(n)), f3 EM for which there are 
indiscernibles in M above g*(n). As in Claim 4, then /I,” = BE;‘(&) for all but 
finitely many n’s in A. Now the claim follows from Fact 3. 0 Claim 12 

Claim 13. The number of independent sequences is K+. 
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Proof. It follows from Fact 4, and Claim 12 and the cardinal arithmetic since the 
number of hN fl K X On’s is K+. Recall that hN fl K x On maps a subset of K into 
max(K, Ok). 0 Claim 13 

Now it easy to derive the contradiction in Case 1. Let (& 1 a: < K++) be a 
sequence witnessing that the true cofinality of (n K,, <) is K++. Using Claims 
11, 13 find SC K++, IsI = K++, A c w, IAl = &, and an independent sequence 
(5, ) n E A) so that for every (Y E S, n E A, fJn) < ..&. It is clearly impossible 
since there should be a: E S with &(n) > g,, for all but finitely many n’s in A. 

Case 2. For some h E X(9) for every N containing h there are only finitely many 
n’s such that N has indiscernible c,, g*(n) Cc,, < K,, for cu, with pN(c,) > 

sup(o%J n h%*(n)))- 

Let us fix some such function h. Further, we are not going to use the fact that h 
is in X(9). Even more, we shall replace h by some other functions which should 
not be in .X(.9). 

Claim 14. There exisfi a function g** E n,,, (g*(n) + 1) so that 
(a) for every N containing h and g** there are only finitely many n’s such that N 

has indiscernible c,,, g*(n)<c,<K, for cu, with /?“(c,J 3 sup(o “( LY,) fl 

h%**(n))); 
(b) for every t E n n<og**(n) there exists N which has for infinitely many n’s 

indiscernible c,, g*(n) Cc,, < K,, for a;, so that /3”(c,,) a SUP(O~(&~) fl h”(t(n)))). 

Proof. Let N be a model containing h. Define g**(n) to be the least element of 
N <g*(n) so that N has no indiscernibles c,, with BN(c,) 3 sup(oS(an) n 
h”(g**(n))). Using the argument similar to the argument of Claim 4, it is not hard 
to see that g** satisfies (a) and (b). 0 Claim 14 

Replacing g**(n) by its cofinality, we can assume that every g**(n) is a regular 
cardinal. Notice that this may replace h by a function which is not in X(S). 

Let (K:‘) 1 n < o) be the sequence obtained from (g**(n) 1 n < w) by remov- 
ing all its members which appear in {K~ I n c o}. We can use the previous 
argument and define g (I)** for (~2) I n < o) in the same fashion as g** was 
defined for (K,, I n < o). Continue, removing from (g”‘**(n) 1 n < o) all the 
members that appear in {K,, I n < co} U { ~2) 1 n < o}. Define (K:*) I n < w ), and 
so on. It is possible to show that the process terminates after countably many 
stages. Let us use a simpler argument, suggested by Mitchell which does all this at 
once. 

Let N be a model containing h. Define D G N to be the smallest set containing 
{K~ ( n < o} such that for each y > K~ in D if there is an ordinal Y E N with 
K~< Y < y such that for some f EN the set {sN(aN(y), f(E), g*(y)) I 5 EN n Y} is 
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unbounded in N fl y, where g*(y) is defined in N like g* was defined above, then 
the least such Y is in D. Denote such Y by a(y). 

Clearly, D is a countable set consisting of regular in X(9) cardinals. Since 
“N E N, D belongs to N. Fix for each y in D a function f, : a(y) + o( a?(y)) as in 
the definition of D. Combine all fu’s together and still denote the result by h. By 
Fact 3 and elementarity final segments of D do not depend on the particular N. 
Let (K~ 1 i < V) be an increasing enumeration of D. (To prevent the confusion let 
us denote the original K,‘S by K~‘s.) Then v < w1 and Kj, = U(Ki) < Ki for some 
ji < i. Let us view u as a partial function on v, i.e., o(i) = ji. 

The next observation, which shows that the order type of D, i.e. Y, should be 
III, is also due to Mitchell. 

Claim 14’. Y = w. 

Proof. First note that it is impossible to have 6 and an infinite set of K,-‘s above it 
with Ko(i) < 6, since then picking an N containing 6 we would get a contradiction 
to regularity of all but finitely many of these Ki’s. 

Suppose now that Y > o. Consider {Ki 1 i < w}. By the above there are only 
finitely many Ki’S with i > w SO that u(i) < o. Let K~, < . . - < ~~~ be all such K~‘s. 

Pick m > max{ a(&), . . . , a(&)}. Also assume that m is above the indexes of 
finitely many K,*‘s which are below K~. But then the set {K~ ( m < i < o} can be 
removed from D. Which contradicts its minimality. Contradiction. 0 Claim 14’ 

By the proof of Claim 14’, for every n < o, a-‘({n}) is finite. Hence, by 
Konig’s theorem, there is a subsequence (Kin 1 II < o) of (Ki I i < o) so that 
u(i,+J = i, for every n < w. 

Claim 15. For every ultrajilter D over w, containing all cobounded subsets of w 

Cf IT Kin, CD = K++. 
tl-=CClJ > 

Proof. Let D be an ultrafilter over o and & I a < A) be a D-increasing sequence 
unbounded in (l-l,,,, K~,, CD ). For every (Y < A pick a model N, so that 
N, 2 {fm}. Notice that if on a set in D, {n I a-‘({i,}) = 0} E D, then an infinite 
set of original K:‘S is in D. Hence A = K++. 

Set A”= {in I n < w} and by induction define A,,, = upl”(A,). Clearly, 
LJ,,, A, contains infinitely many K,*‘s. For every (Y < I. let us define simul- 
taneously (t, I n < O) SO that t, E ITie=. Ki. Set t, = fa. Suppose that t, is 
defined for every m <n. Define t, as follows. Set t,(i) (i E A,) to be the least 
indiscernible ci of N, SO that 

(i) g*(i) < ci < K~, 

(ii) pNu(Ci) 3 SUp(O”(ct’N”(Ki)) n h”(t,_l(U(i)))), 
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if such ci exists and 0 otherwise. Note that for all but finitely many i’s, ci does 
exist. 

Let (jn 1 n -C w) be the indexes of all K~‘S appearing in IJ,,, A,. For m< w 
define t&J = &,&) where n is the minimal such that jm E A,. So for every 
Ly c A, t, E l-l,,, Q. 

Let us show that (ta 1 cy < A) is unbounded in n,,, Kjm which will give the 
contradiction if A = K+, since the cofinality of every infinite subsequence of 
(K,* 1 rz < 0) is K++. 

Let f E n,<, Kjn. Pick a model N containing {f, (t_ 1 cc c A, n < o), 
(N, 1 WY< A)}. Let &=: {Kjn 1 IZ < o}. For it >O define B,,, = a”(&). Define 
functions f’“’ E il B, by induction as follows. f (‘I = f, for i E B,,, set f(““)(i) = 
the least yi < K.+) SO that for some indis~rnible cj, g*(i) < Ci < Ki 

g”(f ‘“‘(i)) < @“(Ci) < SUP@ “(fl(Ki) f-l I”), 

if such yj exists and 0 otherwise. 
Define now f E I7 A0 as follows. f(i) = f ‘“j(i), where pt is the minimal number 

such that i E B,. 
Then f E N, since “N c: N. Hence there is (Y E N, ac < jl so that t, o>f Let 

C = {i E A0 I t&i) >f(i)}. N and N, cannot disagree on an unbounded sequence 
of common indiscernibles. So, tracking back, it is not hard to see that t, will be 
bigger than f on an infinite subset of Bo. 

If k=K+, then this contradicts the fact that the cofinaiity of every infinite 
subsequence of (K: I n 4 co) is K++. In order to derive a contradiction also in 
case A->lc++ let us point out that for (Y < /3 <A, t,(n) G t&r) on a set of n’s 
having o-image in D. It follows from the definition of (&, 1 a < /1, n < co). Now 

pick f E n,,, Kj, which is bigger than il many of tats. Then for every ry< il, 
f(n) > t,(n) on a set of n’s having u-image in D. But this is impossible since there 
is a! E N fl h so that t, D>f Hence Iz should be K++. Cl Claim 15 

So for every infinite 6 c: {xi,, ( n < w} and for every ultrafilter D on {K~, I n < 

co} with b ED, tcf(n,,, Q, CD) 3 K++. Hence the ideal P<r++[{Kin I n < w}] = 

{b c {Ki_ I n < co} I there is no ultrafilter to which b belongs with tcf(i-I {K~, I II < 

0}, -CL)) 2 K’+} is the idea of bounded subsets of {Kim 1 it < co). 

By [18-201, then the true cofinality of (n,,, ‘ci,, <) is xc+. 
Let us assume that in = n for every n, a(n) = n - 1 for every n 3 1, a;, = rc, for 

every PI and h is the identity. In the general case, mainly the notation is more 
complicated. 

Definition 16. A sequence (S,, I n < w} E ll,,, K,, is called a diagonal sequence 
if for some or equivalently for every N containing (S, I n < o) there exists no < w 
so that for every n 3 no, Sri+++ = s~(K,+~, ST, g*(n f 1)) where S,* is the least j3, 
o*(K,+~) > @ 2 d,, for which there exists an indiscernible c, >g*(n + 1) with 
@v(c,J = Sz and g* is as in Claim 8. 
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Definition 17. A diagonal sequence of indiscemibles (6, 1 n < co) is called a 
faithful diagonal sequence, if there exists a model N so that for some no < w for 
every n 5 no, 6, = chN(n). 

Notice, that cf 6,~ (NI <K for such a sequence. 

Claim 18. For every f E n,,,, K, there exists a faithful diagonal sequence 

(4 In<w)>f- 

Proof. Let f E ll,,, K,. Pick N containing f. Define an increasing sequence of 

models (Ni 1 i < ml) so that 
(a) No = N; 
(b) N,+~z Ni U {Ni} for every i; 
(c) INil = (NJ for every i. 
Let N* = lJi<o, Ni and N**2N*U{(Ni(i<o,), N*}. Find SCOT, ISI=& 

and no < w so that for every i E S, n 2 no, N**, N*, Ni+l and Ni agree about 
common indiscernibles above K_ and chN(n) > f (n). Assume for simplicity that 
no=OandS=wl. 

Set 6, = chN*(0). For every n < w define then 6,+1 = s~**(K,+~, S,*, g*(n + 1)). 
Clearly, such a defined sequence ( 6, 1 n < w ) is a diagonal sequence. Let us 
show that it is above f and that it is a good sequence. 

Subclaim 18.1. (6, I n < w ) > f. 

Proof. Let us show that for every n, 6, 3 chN’(n). Which is clearly enough since 

chN*(n) = Uitot chN’(n) and chN” >f. Let us show that a1 5 chN*(l). Note that 
since fiNi”(chN(l)) E Ni+i and it is less than K~, it should be less than chN+‘(0), for 

every i < ml. But do > chNi+‘(0). Then 6 1 2 chN(l) by its definition and the choice 
of g*, since B”*(S,) = 6* o 2 a0 > j3N+1(chM(1)) = BN”(chNi(l)). So for every i < 
wl, aI 3 ch&(l). Hence 6i 2 chN*(l). Continue by induction for every n > 1. 

0 Subclaim 18.1 

Notice that for the diagonal sequence starting with Sk = ch”j<iy(0), for limit 
i < ml, the proof of Subclaim 18.1 shows that 6: 2 ch”j’ly(n) for every n. Also 
(6; ( n < o) E Ni+l, and, hence 6; < chN”(n) for every n < w. 

Subclaim 18.2. The sequence (6, I n < o) is a faithful sequence. 

Proof. It is enough to show that 6, = U {ch”(n) I i < ml, i is a limit ordinal} = 
chN’(n) for every n, since chN*(n) = lJico, ch”(n). It is clear for n = 0. Let us 
show this for n = 1. The general case is similar. Consider chN’(l). Since 
6: < ch”+l(l) C si, < chy+l( 1) for every limit ordinals i < j < wl, chN*(l) = 
lJ {Si I i < ml, limit}. 
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The sequence (Si, 1 i < wl, limit) E N**. So 

BN”(chN’(l)) 2 ig, B”**(&), 

i limit 

by Fact 2. But /I”**(&) = (6,) i * a Sk = chu”Y(O). Hence /3N”(chN’(1)) 3 6, and 
so as,*. Remember that 6i = 8’**(~i, S,*, g(1)) and 6i 3 chN*(l). It means that 
S1 = chN’(l). Cl Subclaim 18.2 

The proof of the previous claim actually gives the following. 

Claim 19. For every N’ there exists N containing N’ U {N’} so that chN i.s Q 
faithful diagonal sequence. 

Further let us restrict ourselves only to the models of Claim 19. Let 

{fn I (Y < K++) be an increasing sequence of faithful diagonal sequences so that 
for every f E n,,, K,, there is (Y < K++ with f < fa. 

LA us consider least upper bounds of {fn 1 a < 6) of S’s of cofinality K+. They 

exist by [ 161. Recall that f 6’ is called a least upper bound of cfa 1 a < 6 ) if f 6’ > fa 
for every CY < 6 and if f <f Q then there is cr < 6 so that f < fW. 

Claim 20. A faithful diagonal sequence cannot be a least upper bound of 
cfb I a< a), where 6 < K++, cf 6 = K+. 

Proof. Since otherwise, the true cofinality of n,,, S,, = K+, for such a sequence 
(S,, ( n < o). But it is impossible, since then also tcf(n,<, (cf 6,)) = K+ and 
{cf 6, I II < o} is bounded in K. 0 Claim 20 

Let lN(r, v, 5) be the least indiscernible c in N above g with s(c) = r and 
/I”(c) 2 v. The following is similar to Fact 3. 

Fact 4. Let N, N’ be two models. Then there are only boundedly many (Y’S below 
K in N rl N’ such that for some (f3, y) E N fl N’ 

WK B, Y) f lN’(cu, B, Y). 

Claim 21. Let 6 C K++ be an ordinal of cofinality K+, f be a least upper bound of 

&Io<fis>, N be a model containing { (fa I (Y < S), f, 6). Then one of the 
following two possibilities holds: 

(1) f(n) = ZN(~,,, f (n - l), g*(n)) for all but finitely many n’s; 
(2) for infinitely many n’s f (n) = aN(tc,, &, yn) for some pns,, yn. 

Proof. Suppose that (2) does not hold. Let us prove (1). 
It is not hard to see that for all but finitely many n’s, f(n) should be an 

indiscernible in N with #(f(n)) = K,. Suppose for simplicity that this holds for 
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every it < w. Also assume that f(n) is not an accumulation point for every n < o. 
Denote @“(f(n)) by /$,. Then /!& < K,-*. Since f(n) is not a (K,,, /i-i) accumulation 
point for /3 > /In there is a minimal d,, E N an indiscernible below f(n) so that for 
every c EN, s.t. d, Cc <f(n) and d”/(c) = K,, B"(c) < fins,. Then f(n) = 
?(K,, fin, d,). Since (d, 1 n < w) <f, there is cy< 6 so that (d,, ) n < w) <fm. 

Let n be big enough. Then f(n) >fa(n) > d,,. Since fa is a diagonal sequence 
f,(n) =s~(K,, p’, g*(n)), where p’ = (f=(n - l))*. Let us compare /I,, and /I’. If 

B’ 3 Bn then f(n) %( II ) since f=(n) > d, and P”&(n)) = p’ 3 $. So p’ < & 
But then f(n) = s~(K,, &, g*(n)) since sN(Kn, IL g*(n)) >sN(Kn, B’, g*(n)) = 

f&z) (by choice of g’ and since f_ is a characteristic function) and f,(n) > d,. 

Subclaim 21.1. (d, ) n < co) s g*. 

Proof. Suppose otherwise. Let A = {n < o 1 d, >g*(n)} be infinite. Find some 
(Y < 6, (Y E N, so that f(n) B&(n) > d, for all but finitely many n’s. Let n E A be 
big enough. Then, there is an indiscernible c,, for K,, in N so that g*(n) < c, < d,, 
and /IN(c,) 2 /I”(f(n)). S’ mce c, >g*(n) and fa is a characteristic function of 
some model, we can assume that n is big eoungh to satisfy /I”&(n)) > jIN(c,). 
But this contradicts the choice of d,, since f=(n) > d,, and /3”&(n)) > /3”(c,J 2 
/I”(f( a)). Contradiction. Cl Subclaim 21.1 

Further let us assume that d,, =g*(n) for all n’s 

Subclaim 21.2. For all butfinitely many n’s, fin+, of. 

Proof. Suppose otherwise. Let A = {n I /3n+I <f(n)}. Define a function g E 
t-l “<o K,, as follows 

( 
max{$+r, g* 

g(n)= () 
(n)} if n EA, 

otherwise. 

Then g <f and hence there is (Y < 6 such that g <f=. Let at E A be big enough. 
Then max(g*(n), j!&+r) = g(n) Cfa(n) <f(n) and also f,(n + 1) <f(n + 1). But 
this is impossible, since 

&(n + I) = sN(K,+r, (f&r))*, g*(n + I)) <f(n + 1) = sN(G+l, &z+r, g*(n + I)), 

B”((fn(n + I))*) afn(n) ’ @?I+, = B”(f(n + 1)) 

and f& + 1) 3 d,,,. Contradiction. Cl Subclaim 21.2 

We would like to have /3” =f(n - 1) for all but finitely many n’s. This should 
not always be true. But still the following holds: 

Subclaim 21.3. For all but finitely muny n’s, f(n) =s~(K,,, /3,,, g*(n)) = 

~N(Kn,f(n - 1)~ g"(n)). 
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Proof. For every m < o define a function t, E n,,, K,, as follows 

{ 

0 ifnsm, 

t,(n) = fN(~,, t,(n - l), g*(n)) if 12 > m + 1, 

lN(~,, f(n - l), g*(n)) if n = m + 1. 

Since “NGN, t,,,ENand,also, (t,(m<w)EN. 
Then t,,,(n) <f(n) for each n. This is immediate for IZ < m; for n = m + 1 we 

have 

f(m + 1) =s~(K,+~, B,+i, g*(m + 1)) = ZN(K,+i, &+I, g*(m + 1)) 

2 ZN(K,+it f(m), s*(m + 1)) = G&n + 1); 

andforn>m+l, 

f(n) = sN(K,, $7 g*(n)) = ZN(& /In, g*(n)) 

2 ZN(K,, f(n - l), g*(n)) 2 ZN(K,, &,,(n - 1) g*(n)) = t,(n). 

Suppose that for every m < w there is an infinite set A, G w so that for every 

n CA,, t,(n) <f(n). Define then a function tk E n,,, K,, as follows: 

cl(n) = 1 

t,,,(n) if n CA,,,, 
o otherwise. 

Then tk<F So there isfam>t& for IX,,,<& Since (fa 1 cxU<), f, (tklm<w) 
are in N we can find such a sequence (fo, 1 m < w ) inside N. Pick now cv E N rl6 
above IJ,,, am. Let m EA be big enough so that for every n am, f(n) >fa(n). 
By the definition of t,,,, 

t&r + 1) = ZN(~m+l, f(m), s*(m + 1)) 

2 ZN(K,+l, f,(m), g*(m + 1)) 

= s~(K,+~, (f,(m))*, g*(m + 1)) =f,(m + 1). 

In the same fashion for every IZ am + 1, t,(n) >fa(n). But fa > tL, so for 
infinitely many n’s, t,(n) <f,(n). Contradiction. 

So, there are mO, IZ,, < w such that for every n 2 n,,, t,,,,(n) =f(n). It means that 

for every 12 5 no + 1, 

f(n) = t,,,,(n) = ZN(K,, && - l), g*(n)) = ZN(% f(n - 1)~ g*(n)). 

0 Subclaim 21.3 0 Claim 21 

Claim 21’. Zffsatisfes (1) of Cfuim 21, then the set {n ( cf(f(n)) > cf(f(n - 1))) is 
infinite. 

Proof. Otherwise there would be a bounded in K sequence (6, I n < o) with 
tcf(n,,, a,,, <) = K+, which is impossible. Cl Claim 21’ 
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Now we would like to show that (l), (2) of Claim 21 are impossible. It is not 
quite true in general. There are forcing providing f as in (2) or f as in (1) with 
f(n)3 regular. 

The point which will lead to a contradiction is that there should be 
unboundedly many f’s in n,,, K,, satisfying (1) or (2). Actually it would be 
enough to have an increasing sequence of length (2%)+. 

Claim 22. There is no increasing sequence (&I i < (2%)+) of ordinals beZow K++ 

of cojinaliQ K+ so that for every i < (2%)+ there is a least upper bound gi of 
(& 1 a< Si) satisfying (1) Of Claim 21. 

Proof. Suppose otherwise. Let (6i 1 i < (2%)+) and (gi 1 i < (2%)+) be witnessing 
this. Let N be a model containing { (fm I (Y < K++), (6i ) i < (2&h)+), (g,(n) ) i < 
(2’9+, n < 0)). For i < (2%)+, let Ai be the set {n < o I g,(n) = P’(K,, gi(n - 

l), g*(n)) and cf g,(n) > cf gi(n - 1)). Shrinking the sequence (gi I i < (2%)+), if 
necessary, we can assume that all Ai’S are the same infinite set A. Assume for 
simplicity that A = o. Using the Erdos-Rado theorem, find S E (2%)+, IS1 = Kr 
and n0 < o so that for every i <j, i, j E S, for every n 3 no, gi(n) < gj(n). Notice 
that w.1.o.g. S E N since otherwise we can just replace N by some N’ I> N U {S}. 
Models N, N’ will agree about these common indiscernibles above some K,, and 
we can deal with N’ instead of N. Let us assume for simplification of the 
notations that S = o1 and no = 0. 

Set r, = Ui<o, g,(n). Then r,, EN, fl(r,) = K,, and K,,-l >p”(z,J 2 

LJi<o,gi(n - l), for every n < 0. For n < o big enough, pick a model M, 
containing (gi I i < Oi), (P”(gi(n)) I i < o,), fi”(t,,) of cardinality less than K,, 

and satisfying “M,, c M,. Here is the first time that we are going to use a model 
whose cardinality may be bigger than 2%. In order to satisfy “M,, c M,, and 

IMnl < K,, we use the condition (2) of Theorem A. Thus M, can be taken of 
cardinality PO, where p = /I”(r,J < K,,-~. If p w 3 K,,, then the condition (2) of the 
theorem holds, Since K, is a regular cardinal which is a limit of measurable in 
x(9) cardinals and alSO p o 2 K,, 3 K,+-~ > K,_~ > p. 

Fact 2 and B”(gi(n)) < K,-~ for every i imply that there is i, < ml so that for 
every i 2 i,, g,(n) is an indiscernible for r, with PMn(gi(n)) = /3”(gi(n)) and also 
g,(n) = IMn(r,, g,(n - l), g*(n)). For every i 2 i, and y <gi(n - 1) let d(i, y) = 
P”n(t,, y, g*(n)). Clearly the sequence (d(i, y) I y < gi(n - 1)) is nondecreasing. 

Pick now a model M,* 1 M,, IMzl = IM,,I, “M,* E M, containing 

((d(i, Y) I y<gi(n-1)) I iai,, i<wr), (fiMn(d(i, Y)) I Y <gi(n - 1)). 

Using Fact 2, find i,*, w, > i,* 3 i,, so that M,* and M,, agree about all here 
mentioned common indiscernibles. Let i 3 i,*. Consider d,(i) = LJ {d(i, y) ) y < 
gi(n - 1)). If the sequence {d(i, y) I y <gi(n - 1)) does not have a last element, 
then cf d,(i) ~g;(n - 1) and pM2(dn(i)) sgi(n - l), by Fact 2(5). Then d,(i) = 
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F’(z,, gi(n - l), g*(n)) and h ence d,(i) = g,(n). But Cf g,(n) > gi(n - 1). Contra- 
diction. 

So for every i 3 i,* there is yj,n <g&r - 1) so that for every y, yi,n G y < 

g&r - 1) 

l”‘(r~, Y, g*(n)) = l”.‘(rn, Yi,n, g*(n)) = d”(i). 

Leti*=IJ{i:In<w}. 
Pick now N* z N, “N* 2 N* so that (d(i, yin) 1 n < co, i < ol), (M,* ) n c o), 

(z, 1 n c o), (yin ( i < ol, n < w) and (pMz(d(i, yin)) 1 i < wl, n < W) are in N*. 
Suppose for simplicity that N* and N agree about all common indiscemibles. For 
every i 3 i* pick Cui < 6i SO that f&n - 1) > y+ for all but finitely many n’s. Let 
ni < w be SO that for every 12 2 Iii 

Yi,n <fcJn - l) s (fJn - l))* <gi(n - l)* 

Then 

fcJn) =sN*(Kn9 (fq(n - l))*, g*(n))cgi(n) = lN’(Kn, gi(n - 1)~ g*(n))* 

Obviously 

d,(i) = IN*(Kn, ‘/i,, g*(n)) G SN’ (KU (f&r - I))*9 g*(n)) =fc&). 

Replacing f, by for+r, if necessary, we can assume that d,(i) <f,(n). 
FindSGo,, ISI=K,,minS~i*andn*<ws~thatn~=n*foreveryi~S.Fix 

n 2 n*. Pick a model M,** which contains M,* U {(f&n) I i < co,), ((f&z))* I i < 
wl, n < w), S} and “M,** EM,**. By Facts 2, 3 and 4, M,* and M,**, M,** and 
N* will agree about all here mentioned common indiscernibles for r,, above some 
g,,(n). But it is impossible, since then for every i E S\g(i,,) the following holds: 

(a) for every Y, Yi,n s y < gi(n - 1) 

~Mz*(~n, Y, g*(n)) = 44); 

(b) pi,,, <f,,(n) <gi(n - 1) and 4(i) <f,(n) = lMc*(~,, f& - I), g*(n)). 
Contradiction. 0 Claim 22 

Finally we are going to rule out the last possibility, i.e., (2) of Claim 21. The 
proof will be similar to that of Claim 22. 

Claim 23. There is no increasing sequence (6i I i < (2%)+) of ordinals below K++ 

of cofinality K+ so that for every i < (2%)+ there is a least upper bound gi of 
cfa I (Y < Si) satisfying the condition (2) of Claim 21. 

Proof. Suppose otherwise. Let (6i I i < (2’9+) be witnessing this. Let N be a 
model containing (f_ I (Y < K++), (6i ) i < (2%)+) and (g,(n) I i < 2%, n < u). 
For i < (2’9+, let Ai = {n < o I gi( n is an accumulation point in N}. As in Claim ) 
22, using the Erdos-Rado theorem and shrinking (gi I i < 2”‘), we can assume 
that each Ai = w and for every i <j < ml, gi(n) < gj(n). 
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For every n < w, define r,,, M, as in Claim 22. Then, starting with some 
i, < q, gi(n) is an indiscernible for r,, with PM”&(n)) = B”(gi(n)) and g,(n) = 
aMn(r,, &, yin) for some /Iin, yin with /Ii,, > /IMn(gi(n)). W.1.o.g. yin ag*(n), since 
otherwise we can just replace it by g*(n). Also we can assume that there is no 
indiscernible ci in M,, for r,, such that yin < ci <g,(n) and pMn(ci) 2 Bin, since 
otherwise g,(n) would be at least a ail + l-accumulation point. Now, using the 
argument of Claim 7, it is not hard to see that for every MA 1 M,, IMAj = IMnl, 

“MA = M,, containing (g,(n) 1 i < q), (pMn(gi(n)) 1 i < q), (pin 1 i < ml) and 
(yin 1 i < wI) for all but boundedly many i’s there would be no indiscernible ci for 
r,, such that yin < ci c g,(n) and /3”“(ci) 2 fiin. 

For every i 2 i, and y < Bin let d(i, y) = ZMn(r,, y, y,J. By the definition of 
(r,,, &)-accumulation point, d(i, y) <g,(n). Define models M,* and i,*‘s as in 
Claim 22. For i 3 i,* set d,,(i) = LJ {d(i, y) I y < &}. Then d,,(i) =z g,(n). By Fact 
2(5), pMnl(dn(i)) > Bin > pMn(gi(n)) = p”‘(gi(n)). SO d,,(i) <g,(n). But, as it was 
pointed out above, it is impossible to have indiscernibles ci for r,, with 
/l”‘(ci) 3 Bin and yin < ci <g,(n) for all but boundedly many i’s. 
Contradiction. Cl Claim 23 Cl Theorem A 

The present ideas together with an appropriate generalization of the Mitchell 
Covering Lemma to hypermeasures, will imply further results. Thus.the strength 
will depend on particular K and on the gap between K and 2”. Namely, the exact 
strength of “K is a strong limit of cofinality KO and 2” = A” is “O(K) = A”, when 
), # p+ for p of cofinality K,, and “O(K) = p”, when A. = p+, cf p = HO. 

2. Some forcing constructions 

In this section we shall construct two models which are related to cases (1) and 
(2) of Claim 21. The first model would have an unfaithful diagonal sequence 
which is a least upper bound of K+ faithful diagonal sequences, and the second a 
sequence of accumulation points. The second construction answers a question of 
Mitchell [14] about the existence of accumulation points. 

Model 1 

Let K be a cardinal of cofinality o in X(S) = V so that {~~(a) I c-r < K} is 
unbounded in it. Pick a cofinal sequence (K,, ) n < w) so that o*(K,,+J = K:, for 
each II < w. 

We first force with a tree Prikry forcing and add indiscernibles y,,, K,-~ < y,, < 

K,, for $(K,, m-J for every II < w. Let VI denote such a generic extension. 
Clearly, ( yn I n < w ) forms an unfaithful diagonal sequence in VI. We shall 
define a further extension in which the sequence ( y,, I II < w ) would be also a 
limit of K+ faithful diagonal sequences. 
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Let us force over VI with the forcing used in [3] and introduce a maximal 
sequence of indiscernibles to each 6 E K\ { y,, ( n < w}. Denote by V, such 
extension of VI. Define V, to be an extension of V, by forcing of [3] which adds 
maximal sequences to each yn (n 3 1). Let 

be this forcing. Denote 9( yl, y,,) * . * * * B(Y,-~~ m-J by PC, and P(Y,, m-J * 
WY~+I, Y,,) *. . . by pan. Since the filters used in 9(y,, Y,,__~) are y,-complete, $P 
can be viewed as 9<, x Pa,. 

For n < w, let Q,, be the usual forcing over V, for shooting a club through the 
set of regular cardinals of V below yn, i.e. Q, = {c E V, 1 c s y,,, c is closed and 
Iclv’< y”}, c1 is stronger than c2 if c1 is an end extension of c2. 

Claim 2.1. For every n 2 1, Q, over V2 does not add new sequences of length 

&z-l. 

Proof. Since o*(K,,) = K:_~, w.l.0.g. assume that there are stationary many d’s, 
K,-~ < 6 < yn with o*(6) = K,,. In V,, such 6 has a cofinal closed subset of the 
type K,, consisting of regular in V cardinals. The rest is standard. 0 Claim 2.1 

Let now Q be the product of Qn’s over V,, i.e. 

Q = {p E V, 1 domp = o, p(n) E Q,, for every n}. 

Set Q<” = {P 1 n IP E Q> and Qan = {P f (win) IP E Q>. 

Claim 2.2. Let n B 1. The forcing 8,,, x 8,,, over V2 does not add new bounded 
subsekr to Y,,_~ and Y,,-~ remains regular. 

Proof. By [3], Pa,, does not add new bounded subsets to Y”__~. For each m 3 n, 
Qm has in VfTYnwYm-1) a dense y,_,-closed subset, namely {c E Q, ) max(c) is in 
the generic sequence for ym}. Now use the fact that Pa,, does not add new 
bounded subsets of K of size less than Y”__~. Cl Claim 2.2 

Let G be a &-generic subset of Q. Denote G fl Q, by G,, G fl Qcn by G,, and 
G fl Qrn by G,,. Our final model will be V, = V,[G]. 

CIaim 2.3. For every n < o, K, is a regular cardinal in V, and cfv* Y”+~ 3 K,,. 

Proof. Let n < o be fixed. Recall that K, < yn+l < K,+~ < Y”+~. View VI as 

v,[G~,+zl[G,+,l[G<,+~l. 
Then, by Claim 2.2, yn+l remains regular and no new bounded subsets are added 
to it in V2[G,,+2]. Using Claim 2.1, we obtain that K,, remains regular and 
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CfvzlG~“+zltG=+lf(yn+l) 3 Ktte Naw the last forcing which adds G<_+r cannot effect 
cardinals arc=, since it is of cardinaiity less than -rc,. q Claim 2.3 

So, (m 1 n < o} is an unfaithful diagonal sequence of indiscernibles in V,. 
Work in V,. Let us show that it is a least upper bound of K’ faithful diagonal 
sequences. First note that cf(n,,, yn, <) = EC+, since cf yn 3 K, and K,, is regular 
for every n < w. Let f E n,,, yn. In V,, cf yn = cf y. = ‘y. > & for every IZ. Also, 
by Claim 2.2, y. remains regular in VJG]. Hence there are So< y. and a faithful 
sequence of indis~emibl~s (6, 1 n -=I w > in V, so that 6, >ffn) for every n. Using 
density arguments it is not hard to find such a sequence inside V,. 

It is possible to push everything down to X, by collapsing K,‘S to be K,‘s. 

Suppose that R is a measurable cardinal in X(9) = V and {o”(p) I#? < K} is 
unbounded in K. We whall construct a generic extension of V in which K would be 
a cardinal of cofinality HO and there would be a sequence of accumulation points. 
At the first stage a Rudin-Kiesler increasing commutative sequence of ultrafilters 
over K of the length K+ will be constructed. Then the direct limit of their 
ultra~wers will be taken. We shall use the first ultrafilter to move the direct limit 
a little bit further. Next, a x+-Cohen subset will be added to K in the Backward 
Easton style. Changing one value of each such function in the ultrapower will 
make all the ultrafilters isomorphic. Finally we shall force with the Prikry forcing 
in order to change c~fiuality of K to K. This would introduce Prikry sequences 
for each ultrafilter used in the direct limit. Also there would be a sequence. of 
accumulation points. Similar ideas were used in [4, SJ and we refer to these 
papers for detailed presentation of the techniques used below. 

By [4, 4.21, there exists a generic extension VI of V having a Rudin-Kiesler 
increasing commutative sequence of ultrafilters over K of length K+. The 
~gument is as follows: 

Let LY* denote the least /I > LY with 0”(/3) = ty’ + 1, for every cu < K. Pick 
A E .F(rc, 0) so that for every LY E A, a* < min(A \(Q f 1)). Using the forcing of 
131 force in every interval (a; LY*) (as E A) a Rudin-Kiesler increasing commuta- 
tive sequence ( Ua,@ 1 j3 C: cr+> over (Y*. Denote this generic extension of V by VI. 
Let U be a normal extension of %(K, 0) after such forcing. 

Let f : XT--* K, f E V be so that f(a) < LY+ for every ac < EC. Define the ultrafilter 
U, over K as follows: _%Y E U, iff ((u EA 1 X fl LX* E Ua,fca+} E U. Then [fi]scL,Oj < 
[~&FE(~,~~ implies U, <ax U& Also the order type of {[f]scr,oj 1 f : K- K, f E V 
and for every LY < K, f(cu) < in+) is K+. Hence (U, If e V, f : IC--, K, f (m) < a+ 
for every IY< K} is a Rudin-Kiesler increasing commutative sequence of 
length K+. 

Let j: VI-, N = ViR/U be the elementary embedding of V, into the ultrapower 
of VI by U. In N, then there will be a Rudin-Kiesler sequence (U,, j&3 < XT+) of 
ultrafilters over liT*, where K* and ( U,, ] J? 4 K~) axe represented in N by 
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[( CY* ( a < K)],, and [(U,, 1 #I < a+)Iu. Note that the ultrapower of VI by U, is 
isomorphic to the ultrapower of N by UK,tflu. Also the direct limit of ultrapowers 
of VI by Uf’s, is isomorphic to the direct limit of ultrapowers of N by IY~,~‘s. 
Denote this direct limit by Nr. Let j*: VI -N* be its associated elementary 
embedding. And also consider the following commutative diagram: 

where /I <K+, js is the embedding by U, for f representing /3 in N, is is the 
embedding of N by UK,s and iz is the direct limit of embeddings of N, into 
ultrapowers of it by the ultrafilters in is( ( UK,, 1 y > /3)). 

Note that K* is the critical point of ifi’s. Denote is(K*) by K~ and i(K*) by K**. 

It is not hard to see that N* is closed under K-sequences of its elements and 
“*N* rl N c N*. 

Let us form one more ultrapower. Namely, the ultrapower of N* by i(U,,,). 

Denote this ultrapower by N** and let 

i” 

be the corresponding embeddings. 
Note that K~ (p < K+) is an ‘indiscernible’ for U,, (where [foILI = /!?) and K* * for 

Uh, i.e., 

XE ufi iff KS Ej**(X) 

and 
XE u,, iff K** Ej**(X). 

Force now over VI using Backward Easton forcing (Y+ Cohen 
into LY for every inaccessible (Y S K. Let G be a generic set 

functions from a 
for this forcing. 

Denote by G,, the part of G below K, by G, over K and by G,, the /3-th generic 
function in G over K. Using standard arguments extend j** to an embedding 

1: V,[Go (‘&J 1 B < K+)]-+N**[G<j*y,~, (Gj-cK,s 1 p <j**(K+))], 
where G,..,,, 1 K + 1 = G and Gi..(K),ior) 1 K = G,,, for every @ <K+. Now let us 
change the value of Gj**(K),j(p)(K**) to KS for every B < K+ and Gj**(K),O(KO) to 
K **. Denote such changed Gi..cK, by G,&,,. Using j**(K+)-c.c. of the forcing in 

N **, it is not hard to see that the changed G,!..,,, is still N**-generic. Then it is 
possible to define an embedding 

I’ : V,[G<,, G,]-+ N**[G<j-c+ G,&,l. 
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For every p < K+ define an ultrafilter U, over K as follows: X E 17, iff K~ E I’(X). 
Then U, 2 U, and all Us’s are isomorphic to U,, since X E U,, iff ~~ E l’(X) 

iff Gj**(K),O(KO) E G+(,,,o(l’(X)) iff K** = Gj**(K),O(KO) E l’(Gi,o(X)) iff 

Gj**(K),j(p)(K**) E GF*c,.,,jcs,(l’(G~,o(X))) iff KS E l’((G,,p” G,,o)“X)) iff (G,,p” 

G,,o)“(X) E U,. 
Finally, force over V,[G] a Prikry sequence (c, 1 n < o) for Uo. Denote 

v,[Gl[(cn ) n < dl by v,. It is not hard to see that, for every /3 < K+, 
(G,,,(G,,,(c,J) 1 rz < w) will be a Prikry sequence for U,,. Let us show that 
( G,,o(c,) 1 n < CD) is a sequence of accumulation points. Denote G,,,(c,J by 6,. 
Let r, be the minimal (Y < 6, so that (Y* > bns,. Then (r,, 1 n < o) forms a Prikry 
sequence for U. Let N be a model as in the Covering Lemma containing 

(6, +4, (rn In<w>. Then for all but finitely many rr’s, r,, ’ is an 
indiscernible for S(K, 0) and 6, is an indiscernible for 9(r,*, 0). Suppose that for 
an infinite set A c w for every II E A, 6, is not a (r,*, tr)-accumulation point in 
N. Then for every n E A there are vn < 6, and 5, < t,’ in N so that for every c, /3 

if v” < c < 6, and 5;, s #I < t,’ then c is not indiscernible for s(t,*, 16). Suppose 
for simplicity that A = CO. Returning to V,[G] pick names (v, 5, 1 n < co) for these 
two sequences. Let (0, T) force that (v, I n < w) and (5, I n < co) are such 
sequences, where T E [K]<~ is a tree in V[G] with all the splittings belonging to 
U,. Using standard arguments shrink T to some tree T* so that there are 
functions {fs, r, I s E T*} such that (s-o, Tz-,) Ikf,V(a) = v, A r:(a) = 5, where 
T,*={t~T*[t~.>~}ands~T*. Now, recall that G, adds K+ functions and the 
forcing for adding it satisfies K+-C.C. So for some (Y < K+, T* and (5, r, I s E T*) 

are in VJG,,, G, 1 a]. Since IT*1 = K, the number offs, r, is small and so there is 

P<K+, p > & so that in the ultrapower of V,[G] by U,, G,,, represents an 
ordinal above all the ordinals represented by fs’s (s E T*) and p is above all the 
ordinals represented by r,‘s (s E T*). Let t: K+ K represent p in V,[G]“/U,. Then 

(6 < K Ifs(S) < G,,(d) and r,(d) < t(a)> e UO. 

So we can shrink the condition (0, T*) level by level to a condition (0, T** ) 
forcing for every II < w 

“v,, < G,Jcn) -C 6, A 5, < t(c,J <z;“. 

Without loss of generality, assume that (0, T**) belongs ‘to the generic set. Then 
for all but finitely many rz’s, G,,,(n) is an indiscernible for s(t,*, t(c,)) but 

vn < G,,(c,J < 4, and 5, < t(cJ < 6, which is impossible. Contradiction. So for 
all but finitely many n’s, 6, is a (tz, rT)-accumulation point. 

BY [1417 {o@>l car< K} is unbounded in K, if there is an unbounded in K 

sequence of accumulation points. Such a measurable K was used in the 
construction above. We do not know if it is possible to remove the measurability 
of K. Also we do not know if it is possible to have a sequence of accumulation 
points which is a least upper bound of diagonal sequences of indiscernibles. 

Note that the model with accumulation points for measures over K can be 
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constructed starting from O(K) = 6 for any 6 of cofinality >K. Just use a simplified 
version of the above construction dealing only with measures over K itself. 
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