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A B S T R A C T

The DNA transformation is vital to the horizontal gene transfer (HGT). The low-efficiency transformation
of bare plasmid exposed to hydrophobic polycyclic aromatic hydrocarbons (PAHs) decreases the gene
transfer level, and is possibly related to the loss of bacterial diversity at present. PAHs have great affinity
for bare DNA through dispersion force and p–p overlap between PAHs and bases. These noncovalent
interactions between PAHs and bases reduced the transformational efficiency of plasmid into bacterial
recipients. Meanwhile these low-efficiency transformations for plasmid are controlled by the ions like
Ca2+ in environment, in turn, presence of 0.5mmol L�1 Ca2+ recovered the efficiency from 3.2
(phenanthrene), 3.5 (pyrene) to about 4.45 and 4.75, respectively. The combination of Ca2+ with the
—POO�— groups in DNA forms strong electrovalent bonds, weakening the molecular effect of DNA on
PAHs and in turn promoting the gene transfer exposed to PAHs.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA

license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Until now, researchers, including ecologists and environ-
mentalists, have generally attributed the losses in bacterial
diversity caused by anthropological contaminants to merely the
direct intracellular damages. Public document has proposed
that the interaction of intracellular DNA with contaminants
induces changes in genetic information via the effects of
mutation, teratogenesis, and carcinogenesis [1–3], and hold that
these effects result in the death of organisms. Such viewpoints

are acted as the main theoretical basis for the bacterial diversity
losses caused by hydrophobic organic contaminants. Although
researchers recognize that these lateral transfers effectively
change the ecological and pathogenic characteristics of bacterial
species [4], few doubt that the diversity loss caused by
anthropogenic contaminants is also dominated by the effects
of contaminants on DNA transfer. The DNA transformation,
which means transformation of competent cells through uptake
of extracellular DNA, is vital to the horizontal gene transfer
(HGT). The low-efficiency transformation of bare plasmid
exposed to hydrophobic polycyclic aromatic hydrocarbons
(PAHs) decreases the gene transfer level. Primary case study
implies that the gene transfer of bare DNA affected by the
interaction of DNA with polycyclic aromatic hydrocarbon (PAH)
contaminants may be related to the loss of bacterial diversity
[4,5].
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1. Role of bare DNA in bacterial diversity and evolution

Horizontal gene transfer (HGT) is an important process by
which a bacterium takes up exogenous free DNA and incorporates
it into its own chromosome via homologous recombination or
converts it into an autonomous extrachromosomal replicon [6,7].
This plays an important role in genetic variation and heredity,
ecological and genetic diversity, and evolution [4,8]. On the death
of an organism, the intracellular germplasm and extracellular
materials are released into the soil and water, where they can be
transferred to other living cells and expressed in the new host [9].
Many such gene transfers between different organisms have been

reported [10]. For example, up to between 10% and 16% of
Escherichia coliDNA has originated due to HGT [4,11]. In addition, E.
coli isolated from the intestines of Japanese individuals was found
to contain gene segments that originated from the ocean
environment via edible seafood, which indicates that gene transfer
between microorganisms and animals is ubiquitous in natural
environments [12,13].

2. Interaction between bare DNA and hydrophobic PAHs

Compared to DNA in the intracellular environment, “bare” DNA
is quite sensitive and vulnerable to direct damage on exposure to

[(Fig._1)TD$FIG]

Fig. 1. The reported main pathway by which PAHs affect interacellular DNA [15].

[(Fig._2)TD$FIG]

Fig. 2. Interaction sites between PAHs and DNA. Fig. 2A and B shows that phenanthrene and pyrene inserted into grooves in DNA; and Fig. 2C and D indicates that
phenanthrene and pyrene inserted between bases through dispersion force andp–p overlap of PAHs-bases. The interaction between PAHs and DNA are calculated using the
Autodock 4.2 [18], and are optimized using the Orca 1.8.1 (BLYP D3 GCP(DFT/SVP) def2-SVP def2-SVP/J) [19]. Solvent (water) effects were taken into consideration implicitly.
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hydrophobic PAHs. These persistent lipophilic organic contami-
nants with high biological affinity are ubiquitous in the environ-
ment [14]. Owing to their strong hydrophobic properties, PAHs
have greater affinity for such organic substances as compared to
other organic contaminants or heavy metals. Therefore, the PAHs
in the same environmental background may be capable of
partitioning organic substances. Any “bare” germplasm released
into the soil or water is directly exposed to these hazardous
materials.

The extracellular interaction of DNA with PAHs is completely
different from that in an intracellular environment. Fig. 1 shows
themain pathway bywhich PAHs affect intracellular DNA. In it, the
PAH molecules are first catalyzed into “OH–PAH” by a series of
enzymes, and the active “—OH” functional groups in the PAH
molecules combine with the bases of DNA by forming chemical
“DNA adducts” based on chemical bonds [15].

In contrast, the interaction of PAHs with free DNA in the
extracellular environment is based on weak molecular forces.
Although changes in the structure, backbone composition, and
guanine constituents of DNA induced by PAHs which can be
inserted into double strands have been observed, and imidazole-
like derivatives are produced from the combination of imidazole
rings with pyrene [5,17], PAHs lack active functional groups related
to the functional sites of DNA, and no enzyme catalysis occurs in
the extracellular environment. Therefore, the changes in DNA seen
in the extracellular environment cannot be attributed to the
formation of chemical bonds between DNA and PAHs, but are
linked to the weak molecular forces between DNA molecules and
PAHs. In other words, polar DNA molecules can induce relative
displacement between the electron cloud and atomic nucleus of
non-polar PAHs, causing the appearance of dipoles with excellent
induction forces in PAH molecules. These induction forces of the
PAHmolecules then attract polar DNAmolecules with their innate
dipoles [15]. PAHs are inserted into grooves in DNA (Fig. 2A and B)
or between bases (Fig. 2C and D) through dispersion force andp–p
overlap between PAHs and bases.

3. Ca2+-controlled transfer of DNA exposed to PAHs

Free calcium ions enhance the efficiency of DNA transformation
into bacterial recipients by forming hydroxyl–calcium phosphate
complexes in DNA [6]. The interaction between “bare” DNA and
PAH molecules is based on a weak molecular force, which implies
that such weak molecular forces are more strongly affected by the
chemical bonds of Ca-DNA. Fig. 3 supports this viewpoint. The
transformational efficiency of DNA plasmids (pUC19) with no PAHs
and Ca2+ is 4.7 (PAHs are exposed to plasmid DNA and did not
directly contact with host cell (E. coli DH5a)). Isolated phenanther-
ene and pyrene clearly resulted in low-efficiency transformation;
the efficiency decreased to about 3.2 and 3.5 with increasing PAH
concentrations up to 0.25mmol L�1, respectively. The presence of
Ca2+ significantly promoted the low-efficiency transformation of
plasmid exposure to PAHs, and the presence of 0.5 mmol L�1 Ca2+

recovered the efficiency from 3.2, 3.5 to about 4.45 and 4.75,
respectively [15].

Compared to the enhanced transformational efficiency
caused by higher concentrations of Ca2+ (>80 mmol L�1) (results
found in Refs. [6,16]), these results explain how a very tiny
amount of Ca2+ can enhance gene transfer involving isolated
DNA via PAHs. Although previous reports postulated that a Ca2+

concentration >80mmol L�1 significantly enhanced the DNA
transformation via the formation of hydroxyl–calcium phos-
phate complexes in DNA [6,16],Fig. 3 indicates that the

[(Fig._3)TD$FIG]

Fig. 3. The Ca2+-influenced transformational efficiency of plasmids exposed to
phenanthrene (&), pyrene (*), 0.5mmol L�1 Ca2+ plus phenanthrene (&), and
0.5mmol L�1 Ca2+ plus pyrene (�). The transformational index was calculated as
follows: transformational efficiency = log10[the ratio of the number of transfor-
mants (unit number) versus the mass of the added plasmid DNA (mg)]. Error bars
represent one standard deviation (n =3). The method for DNA transformation was
referenced according to the reference [14] and [19]. In brief, two kinds of
pUC19 plasmid DNA solutions were prepared: one only contains PAHs in designed
concentration gradients and another one contains 0.5mmol L�1 Ca2+ besides PAHs.
After incubation for 2 h, 5mL of the plasmid DNA solution without PAHs (using
ultrafiltration centrifuge tube) was transferred into the competent cells of E. coli
DH5a. Themixtureswereheat-shocked at 42 �C for 90 s, thenplaced into a ice-water
bath for 3min. With an addition of SOC liquid culture media, the solutions were
incubated for 45min at 37 �E, and then spread on Luria-Bertani solid culture media
containing 100mgL�1 of ampicillin sodium. After about 36h, CFU was counted and
transformation efficiency was calculated.

[(Fig._4)TD$FIG]

Fig. 4. The relationship among the low efficient transformation of DNA, gene transfer, ionic control, and bacterial diversity loss. In plate, the different colors represent the
various bacteria. The blue dots in plate point to the oneness of bacteria. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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necessary Ca2+concentration of 0.5mmol L�1 obviously promot-
ed the transfer efficiency of plasmid DNA exposed to PAHs. In
other words, the enhancement of DNA transformation on
exposure to PAHs cannot be attributed to the formation of
hydroxyl–calcium phosphate by anti-DNase in DNA, but is
related to the isolation of the DNA from PAHs by Ca2+.

Based on this experimental evidence, such a Ca2+-controlled
mechanism for the transfer of genetic material exposed to PAHs
may involve the combination of Ca2+ with the —POO�— groups in
DNA to form strong electrovalent bonds. Because —POO�— groups
and Ca2+ are different in electric charges, each Ca2+ will
theoretically bond two —POO�—, resulting in a chain of —POO�—
groups that may lock up neighboring nucleotides [15]. This will
weaken the molecular effect of DNA on PAH and promote the low-
efficiency transfer of DNA plasmids exposed to PAH contaminants
(Fig. 4).
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