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A unilied single proof is given which implies theorems in such diverse lields as 
continuous algebras of algebraic semantics, dynamic algebras of lo$s of programs, 
and program verification methods for total correctness. The proof concerns 
ultraproducts and diagonalization. i:) I987 Academic Press, Inc. 

1. IN-I-R~IxJcTI~N 

A widely investigated question today is the problem of finding logics for 
expressing and proving program properties: various kinds of such logics 
have been studied, e.g., equational, algorithmic, dynamic, temporal, etc. A 
common question in all the cases, is whether the logics can be first order, 
since then it inherits all the nice properties and results known about tirst- 
order logics. A way to address this question is to note that models of the 
logics, in which programs take values, are in a one-to-one correspondence 
with classes of structures, or algebras; then, the problem translates into: are 
the corresponding structures first-order detinable? E.g., dynamic logics with 
while loops correspond to classes of continuous dynamic algebras. This 
raises the question of which classes of continuous dynamic algebras are 
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lirst-order axiomatizable. Now, in general, it is not so easy to prove that a 
class is lirst-order axiomatizable because one might have to look rather 
hard for the axioms; however, it is even more diflicult to prove that it is not 
because then one has to show that no adequate axiom system exists. In this 
paper, we consider a general tool to prove that algebraic structures are not 
lirst-order axiomatizable; we then use this tool to prove properties of very 
different kinds of structures for models of programs. We show that a class 
of structures which is lirst-order axiomatizable is in some sense “bounded”; 
i.e., roughly speaking, all iterations stop after a linite number of steps. This 
is done by using the technical tool of ultraproducts and closure under 
ultraproducts. 

This theorem then applies to a wide variety of structures for logics of 
programs, e.g., to prove (un)boundedness of a class of structures, non-lirst- 
order definability, etc. We show the consequences of this theorem in three 
kinds of very useful classes of models for programs, namely: (1) continuous 
algebras, which are the fundamentals of both denotational and algebraic 
semantics and are used in the (in)equational logics for programs; (2) 
dynamic algebras, which correspond to the dynamic logics of programs; 
and (3) general computational models of programs and program 
verilication methods. In all three cases, our theorem yields very easy proofs 
of either non-lirst-order delinability and/or necessary properties for lirst- 
order axiomatization and closure under ultraproducts of the classes con- 
sidered. We stress the fact that the necessary conditions; (un)boundedness 
of the class, are usually very easy to check. The case of dynamic algebras 
answers a question by Kozen, namely, which classes of dynamic algebras 
are closed under ultraproducts. 

We deduce as easy corollaries of our theorem proofs of results in 
(Andreka and Nemeti, 1976; Courcelle and Guessarian, 1978; Guessarian, 
1981; Kfoury and Park, 1975). 

The paper is organized as follows: Section 2 is devoted to the proof of 
the main theorem, and Section 3, to deriving consequences from it. 

2. THE MAIN THEOREM 

Notations. N denotes the set of natural numbers. If (D, < ) is an 
ordered set, an m-chain is an increasing sequence x, < x1 < . . . < x,, < . . . , 
indexed by N. For a class K of algebras, denote by Up K the closure of K 
under ultraproducts. 

Our main theorem will state that, roughly speaking, in a class of 
algebras closed under ultraproducts, if all chains have a least upper bound, 
then all chains have a linite number of different elements. To this end we 
lirst introduce the technical notion of a chain that we need. 



UNIFYING ?rHEOREM 33 

DEFINITION 1. Let D be a poset (partially ordered set), h = { hH 1 n E N} 
an m-chain, and x --c ,, y (abbreviated into -C ) the relation “X is the 
immediate predecessor of y in ZI,” i.e., for some n in N, x = ZIP and y = ZIP + , . 
Let q(x, y, rr) be a formula, where n is a sequence of variables, possibly of 
length 0. ZI is said to be a q-chain iff there exists a n such that, for all 
elements x, y of Zz: x +y * CJI(X, y, 7r). 

THEOREM 1 (unifying theorem). Let K be a class of ordered algebras 
which is closed under ultraproducts i.e., Up K = K. Suppose every algebra in 
K satisfies the property that every q-chain has a least upper bound then, 
there exists afinite n such that every q-chain in any algebra of K has at most 
n distinct elements, i.e., has length at most n, 

Proof The idea is to proceed by diagonalization. Assuming q-chains 
are unbounded, we can tind an infinite sequence of q-chains of strictly 
increasing length. Then, the corresponding sequence in a suitable 
ultraproduct has no least upper bound because of a diagonal argument. 

Suppose the result is not true and, for any n in N, there exists Zn in K 
such that Zn has a q-chain of length at least n, i.e., Iin: N + Z,, i,,( 1) -C 
4( 2) < . . . c i,Jn) and 3x(n) V’ q(i,Jj), i,,(j+ 1 ), x(n)). 

Let U be a non-principal ultralilter on N and let Z= ZZZ,,/U. Let (P,,)~~ N 
be the sequence of elements of ZZZk detined by: Vn,kp,,(k) = ik(n). The 
elements of pn can be represented as a matrix 

PI P2 P3 ..’ 

PI(~)GP2(l)GP~(~)G ... EZ, 

p,(2)<p2(2)<p3(2)< ... EZ2 

P,(3)<P2(3)<P3(3)< ... EZ3 

For P= (~(k))~~~ in Z7Zk let p = p/U be its equivalence class in Z. Then 
for any n and k > n, we have p,,(k) < p,, + I (k); U being non-principal con- 
tains all complements of finite sets, hence Z7m c ,CD + r for any n. Moreover, if 
x is the sequence of variables of Z defined by rr= (n(n))mGN, Vk, Vn: q(Zk(n), 
b& + 11, n(k)) = dzdkh Pi+ ,(k), n(k)), hence, ~(p~, p,,+, , z) and 
G”LE/v is a q-chain. Let q = lub{Z?,,i n EN), in Z. Let now p in ZZZk be 
detmed by p(n) =p,Jn) and let q be in g, 

Vn, Vkan: pJk)=tJn)<i,Jk)=p(k), hence Vn, p,,<Z!& p is thus an 
upper bound for the Z?,,‘s: q being the least upper bound of the p,,‘s, q < p; 
hence by the definition of ultraproduct of ordered algebras, C = {k 1 q(k) < 
itJk)=p(k)j is in U. Let B2={klq(k)>p2(k)j; for ksA=CnB2, 
q(k) ap2(k) > ik( 1). For each k in A let jk be the largest integer such that 
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jk < k and &( jk) -C q(k). Let q’ in 171k be defined by q’(k) = i,J jk) for k in A, 
and q’(k) arbitrary for k not in A. We will show that q’ is an upper bound 
of the pn’s, a contradiction. 

Obviously @ -C q; moreover, since for all k in ,4 l U, q’(k) < q(k), q’ # q. 
Suppose 4’ is not an upper bound for the p,,‘s . Then for some PI in N, 
{kE A/pJk) = ik(n) < i,Jjk)} does not belong to U; hence B= 
{kEA/ik(jk)cik(n)} belongs to U. Let A’= {k/pn+,(k)= i,Jn+ l)<q(k)}; 
A’~U,letA”=BnA’n{m/m~n~l~,thenA”~U,A”#~andQk~A~, 
ik(jk) -C ik(n) -C iJn + 1) <q(k). But this contradicts the definition of jk. 
Hence for any PI, p,, < q’ and this shows that q is not the lub of the ,Cn’s. 
Hence p,, is a q-chain without lub in Z, a contradiction. [ 

Theorem 1 has the following (slightly weaker) corollary: 

COROLLARY. Let K be a first-order definable class of ordered algebras 
such that every q-chain in K has a least upper bound; then, there exists a 
finite n such that every q-chain in K has length at most n. 

For that corollary, J. Tiuryn gave a direct and short proof, based on the 
compactness theorem, which proceeds as follows: 

Proof of the Corollary. Let T be the first-order axioms defining K. 
Assume K contains algebras with arbitrarily large q-chains, then K con- 
tains an algebra with a q-chain having no lub. Extend the language by 
adding a new unary function symbol F and new constants rc, dO, 
d , ,..., d,, ,... . 

Detine 

~=Tu~(di<dj+,)~~(dj,d,+,,~)li~~} 

u ~Q.~{d;+,~~~((d~~f(.~)) A (f(x)<x))}/ieN}. 

Every finite S” c S has a model. Assume all the dis occurring in S” have 
a subscript i < n; take ZH in K having a p-chain d0 < d, < . . < d,,. Define 
f:Z,,-+I,, by f(x)=zy d, +4x then d0 else max{d,]d;+,<x, O<i<n}. 
Hence, by the compactness theorem, S has a model Z whose reduct 
(obtained by forgetting the dis and f) belongs to K. Then, the chain 
d,, < d, < . . . is a q-chain without a lub: if c is any upper bound of the d;s, 
then f(c) -C c is also an upper bound of the d;s. 0 

This corollary is sufficient for many applications, but it is not enough to 
prove Theorem 2, which solves a problem by Kozen. 
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3. APPLICATIONS 

Let Z = (F, ( < ) ) be a signature where the symbols in F are possibly 
many-sorted operation symbols. Consider Z-algebraic structures A such 
that < is a partial ordering on the underlying carrier; FI is said to be com- 
plete (with respect to the ordering) iff every chain has a least upper bound, 
in short a lub. 

DEFINITION 2. The height of a Z-algebraic structure ,4 is 

h(A) = 
i 

rnax{p/u, <Q< ... < uP and ai # ciVz’ # j} if this max is finite 
w otherwise. 

A class K of Z-algebraic structures is &oz&ed if all algebras A in K 
have height <n. A class K is bounded iff it is n-bounded for some n in N. 

The height of a Z-algebraic structure A is thus the maximum length of a 
chain in A if this maximum is finite, c~ otherwise. This notion could be 
extended to the case where Z is a many-sorted signature, by taking the 
maximum height of the various carriers; however, we do not need it here. 
Then, Theorem 1 has the following consequences: 

THEOREM 2 (Courcelle and Guessarian, 1978). Zf a cfass of K complete 
L-algebraic structures is closed under ultraproducts, then K is bounded. 

ProofI Apply Theorem 1 with rc the empty sequence of variables and 4 
defined by ~(x, JJ): x < y. 1 

Note that, in exactly the same manner, by forgetting the algebra 
operations in the detinitions above, we can derive 

COROLLARY 3. Zf a class K of complete partially ordered sets is closed 
under ultraproducts, then K is bounded. 

Classes of n-bounded algebras are particularly useful in semantics of 
programming languages. The most widely studied such class is the class D 
of 2-bounded algebras, also called discrete algebras, because the ordering 
on their carriers is a discrete, or flat, ordering (Nivat, 1975). 

COROLLARY 4. Any first order definable class qf complete z-algebraic 
structures is bounded. 

ProoJ Note that first-order detinable classes are closed under 
ultraproducts. (See Chang and Keisler, 1973, p. 173). [ 

Ordered algebras and complete partially ordered sets are very important 
in giving semantics to programming languages. Both denotational seman- 
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tics (Scott, 1976; Plotkin, 1976; and Smyth, 1978) and algebraic semantics 
(Guessarian 1981; Nivat, 1975; ADJ 1977) use complete or ordered, or 
most often bounded, algebras to define semantics. Corollary 4 gives one 
reason why bounded classes occur so often. 

We now turn to another area of application of the unifying theorem, 
namely dynamic algebras, which are equally important in the theory of 
programming. Dynamic algebras intuitively correspond to the dynamic 
logic of programs, in the same way as Boolean algebras correspond to 
classical logics, They were first introduced by Kozen (1982) and Pratt 
(1982) and studied in (Nemeti, 1981, 1982a; Reiterman and Trnkova, 
1984). For an overview and connections see (Jonsson, 1984; Henkin, 
Monk, and Tarski, 1985). 

Formally, let Z=( v ,;, *, ., -, 0 ) be the signature on the two 
element set of sorts {Bool, Act}, delined as follows: 

v . 9 3 are of type: Act x Act -+ Act 
* is of type: Act + Act 

is of type: Boo1 x Boo1 + Boo1 
- is of type: Boo1 + Boo1 
0 is of type: Act x Boo1 --+ Boo1 
2 will be the above delined signature in the rest of the paper. 

Intuitively (Bool, ., - ) is a boolean algebra whose elements correspond 
to predicates, e.g., some post-conditions to be satislied by the programs ; . 
corresponds to “and” (intersection), and - to negation (complementa- 
tion). <Act, v , ; , *) similarly represents an algebra of actions performed 
by programs, and v corresponds to “or” (union), ; to composition, and * 
to iteration. u 0 p then corresponds to the total correctness of the action 
performed by the program a with respect to the post-condition p, i.e., 
u 0 p is the set of initial states such that p holds after an execution of a 
starting with a state in Q 0 p. 

DEFINITION 3. An algebra D = (A, B, 0 ) of signature Z is said to be a 
dynamic set afgebra, in short Ds, if there is a set U, called the base of D, 
such that 

(1) B= CR.> - ) is a boolean set algebra of some subsets of U, i.e., 
E s p(U), . is intersection, and - complementation. 

G’l A=(4 v,;, *) is a Kleene set algebra with base U, i.e., A G 
Y( U x U), v is set-theoretic union, ; is composition of relations, * is the 
transitive reflexive closure of a relation, namely, a* = n {b G U x Ui a s b 
and b is a reflexive and transitive relation on U]. 
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(3) aOp={~~U[~u~~suchthat (~,a)~a},foranyain~Iand~ 
in B. 

Dynamic set algebras are called Kripke structures and denoted by K in 
(Pratt, 1982). 

DEFINITION 4. Let D = (A, B, 0 ) be an algebra of signature .Z, and a 
in II, 0 -C FI E IV. Let an be defined inductively by 

a1 =a 

a t7+ l = an v (a; a”) vn>o. 

Let K be a class of algebras of signature Z. K is said to be strongly 
n-bounded, in short n-s-bounded, iff K + (Va), an = an+ ‘. K is strongly 
bounded, or s-bounded, iff it is n-s-bounded for some n. 

Recall that for a formula q, K k CP means that q holds in all algebras 
of K. 

Note that the above defined sequence an is monotone whenever the 
relation a <be a v b = b detines an ordering on A. 

DEFINITION 5. The class Da of dynamic algebras is the variety’ of 
algebras with signature ,X detined by 

1. Equations defining the usual boolean algebras, e.g., 

x.y= y.x 

x. -(-y. -z)= -(-(x.y). -(x.z)) 

x. -(y. -y)=x 

x + y abbreviates - ( -x . -y), 0 abbreviates x ’ -x, and x < y abbreviates 
x+y=y. 

2.a a 0 0=0 

b ~O(Y~+Y~)=(~OY~)+(~OY~) 
3. a~va~oy=(a~oy)+(a~o y) 
4. a,;a~oy=a~oa~oy 

5. y+aoa*oy<a*oy<y+a*o(aoy~-y). 

’ K is a variety (or equational class) iff K is delinable (i.e., axiomatizable) by a set of 
equations. Varieties are characterized by the theorem (Birkhoff, 1935): K is a variety iff K is 
closed under homomorphisms, subalgebras, and products. See (GrStzer, 1979) for the theory 
of varieties. 
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A dynamic algebra is said to be c~nrz%z~~~~ if in addition it satisties 

6. VnEN z>anO y*z>a* 0 y 

The class of continuous dynamic algebras is denoted by Cn. 
A dynamic algebra is said to be strongly continuous if, in addition, 

7. the relation a < be a v b = b is a partial ordering on ,4, and 
8. Vat A, a* = lub{a’] n IE N], and the operation ; is continuous in 

the sense that it commutes with lub’s. 

These conditions are expressed by inlinitary quasi-equations (or 
generalized equational implications) similar to 6. Note that such quasi- 
equations are not lirst order. 

The class of strongly continuous dynamic algebras is denoted by Kn. 

Continuous dynamic algebras and the variety Da were introduced by 
Pratt (19g2) and strongly continuous dynamic algebras by Kozen (1982). 
Intuitively, the continuity assumptions roughly amount to require that a* 
be the least upper bound of the afl’s. In dynamic set algebras for instance, 
a* = u{a’l n E N}, hence Ds s Cn and Ds G Kn. Clearly, we have the 
following inclusions: 

DsGKnGCnsDa. 

The difference between Kn and Cn is that in Cn only the boolean 
algebra part is required to be ordered and continuous, whereas in Kn, also 
the action algebras are ordered and continuous. 

COROLLARY 5. Let KS Kn be a class of strongly continuous d.vnamic 
algebras, $ the closure Up K of K under ultraproducts is contained in Kn, 
then K is s-bounded. 

The proof uses 

LEMMA 6. Zf a class KG Kn of strongly continuous dynamic algebras is 
closed under ukraproducts, then K is s-bounded. 

Proof We need to prove that the sequence {an 1 n E N] is of linite 
length. So we adjust the delinition of q to make this sequence into a 
q-chain; then, theorem 1 can be applied. 

We lirst remark that strongly continuous dynamic algebras are naturally 
ordered by a < b G a v b = b. Apply then theorem 1, with q defined by: 
q(x, y,~~)ey=(xv (qx)), for x, ~EFI where D=(A,B, 0) is an 
algebra in K; II here is the sequence of variables, of length 1. 

Let X, <.x1< ... <x~< ... be a q-chain; then we prove that for any n 
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in N x,,=x, v rF’;x,. This is true for n = 2 by the definition of q. 
Assume it holds for n; then: X~ < X~ + , * .x,~ + i = .x,! v (r~; x,~) by delinition 
of 43. 

X ?t+i =x, v (7? ; x,) v 7c;(x, v 7Y;x,) 

=x, v 7-P; x, v 7c;x, v 7c;rcn;x, 

Now x < rcn, hence we may drop the component rt ; xi and x,, + i = xi v 
(7f v 7c;nn);x~=x~ v 7c”+‘;xl. 

In strongly continuous dynamic algebras, rc* is the lub of { rr” 1 n l N}; 
moreover v and ; commute with lub’s; hence every q-chain /i = 
i x, v rr” ; xi 1 fl E N} has a lub which is xi v rr* ; x,. So, K satislies the 
hypotheses of theorem 1, hence, for some n in N, every q-chain in K is of 
length at most n. This implies that K is s-bounded: for let pi A be an 
action, then /i = {p” 1 n e N} is a q-chain, hence it is of length n. So Vp p” = 
P 

l7+1 
. ! 

Proof of Corollary 5. Assume Up KG Kn. Let L = Up K. Then 
Up L = Up (Up K) = Up K= L s Kn; hence L satislies the hypotheses of 
lemma 6; L is thus s-bounded, and so is K since KG L. 4 

COROLLARY 7 (Andreka and Nemeti, 1976). Assume KG Ds is a class 
of dynamic set algebras which is not s-bounded. Then: (i) Up K @ Kn and 
(ii) Up K SZ ISP Ds, where ISP Ds is the closure of Ds under isomorphisms, 
subalgebras, and products, or equivalently (Gratzer, 1979) the infinitary 
quasivariety generated by Ds. 

Prooj (i) is Corollary 5, and (ii) stems from the fact that ISP Ds c Kn; 
Kn is an infinitary quasi-variety, namely a class defmed by generalized 
equational implications of the form Ai=, ej =+ e, where e, ei, iE Z, are 
equations, possibly intinitely many; hence (Andreka and Nemeti, 1976; 
Gratzer, 1979), Kn is closed under isomorphisms, subalgebras, and 
products. 1 

Let us comment some more on some useful properties of ISP K. Sain has 
shown that the smallest intinitary quasivariety containing a class K is 
ISP K (see Nemeti and Sain, 1982; Gratzer, 1985). Another important 
property of ISP K is that it is the smallest class having free algebras 
(possibly with detming conditions) and containing K. Using these (and 
related) results, Makowsky and Mahr proved that infinitary quasi-varieties 
are of central importance for computer science, see (Ehrig and Mahr, 
1985). Similar results can be found in (Burstall and Goguen, 1982). 

Corollary 7 generalizes to the case where we substitute Kn for Ds. 
However, neither Corollary 5 nor 7 can be improved by replacing Kn with 
Cn. Namely, 
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FACT 8. There is KG Ds such that K is not s-bounded but Up KG Cn. 

ProojI Let Z be the set of integers and a={(n,n+l)inEZl. Let 
D = (A, B, 0 ) be a Ds with base Z, generated by ( {a}, @). Then 
II= I@, Z}, is the 2-element boolean algebra, hence D is in Cn. A, the 
action set, is generated by a and the operations ;, v , *; ,4 will contain, e.g., 
a, a*, a;a ,..., a2 ,,.., (a ; a)2, etc. Thus, the class K= { Dl consisting of the 
single algebra D is not s-bounded, since an # an+ ‘Vn. Now clearly 

hence 
K k Vy(y=O or y= 1). 

Up K + Vy( y = 0 or y = 1). 

thus Up KG Cn (since every dynamic algebra with a finite boolean sort is 
obviously continuous). 1 

But Fact 8 should be compared with Corollary 9 below. We first detine 
the notion of boundedness of a class KG Da of (general) dynamic algebras. 

DEFINITION 6. A class KG Da of dynamic algebras is said to be 
n-bounded if K + V(a, y) a”+’ 0 y = a” 0 y. K is said to be bounded if it 
is n-bounded for some n. 

COROLLARY 9. Let KG Da be a class of dynamic algebras. Zf Up KG Cn 
is a class of continuous dynamic algebras, then K is bounded. 

Prooj As in Corollary 5 it suflices to prove that L = Up K is bounded; 
therefrom will follow that KC L is also bounded. We will again apply 
Theorem 1, where q is now the formula: q(y,, y2, rc)~y~ = y, + rt 0 y, 
(recall that + is the sum of the Boolean algebra). A q-chain is an a-chain 
xI<xz< ‘.. <x,,< ... such that Vn, .~~+~=.x,,+rt 0 x,,. By induction on 
n we prove that: Vn, x,,+ , = x, + rr” 0 x,. This is obviously true for x2; 
assume it holds for x,~ + , , then 

-‘-,r + 2 =x, + ?r'? 0 x, + 7c 0 (x, + 7Y 0 x,) by induction 

=x, +7f 0 x, +?I 0 x, +7c 0 7Y 0 x, by WJ 
z x,+~~ox,+~o.K,+~;~~o~K, by 4. 

By induction on n, we check that rt 0 x < X~ 0 x: this is obvious for 
n= 1, and xn+’ ox=(7tnv7c;7tn)ox=7cnox+(7r;Tcn)o.x~7r~ox. 
Hence 

X n+2=xl+7rno x,+(7c;7P) 0 x, 

=x, + (7c v n ; 7f) 0 x, by -2(b) 
=x, +7rn+j 0 x,. 
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Now, by6, rc* Oxr=lub{rr’Oxr~ti~N}, hence, {xI+rYOxI~n~N} 
has a lub which is equal to x1 + rr* 0 x,. The hypotheses of Theorem 1 
apply, thus ensuring that every q-chain in K has length at most n. Then for 
any u, y, an 0 y is obviously a q-chain of parameter u, hence is of length n, 
i.e., L is n-bounded. 1 

We now state a result which was known to the fathers of the theory of 
dynamic algebras (Kozen, 1982; Pratt, 1982), namely that no first-order 
axiom can express that u* is the lub of {a’ 1 n E N}. The proof given here is 
a very short one. 

COROLLARY 10. (1) Neither Cn nor Kn is first-order axiomatizable, and 

(2) there exists a dynamic algebra D such that, for some action a, a* 
is not the lub of {u” 1 n E N}. Moreover, D is not even continuous. 

ProojI (2) Da, being a variety, is closed under ultraproducts, so, if (2) 
were false, then Kn = Cn = Da would be closed under ultraproducts, hence 
would consist only of s-bounded algebras. Now, let D = (A, B, 0 ) be any 
dynamic set algebra on the base set N, with Q E FI, where u is the relation 
~={(n+l,~)ln~N~,andwithy={O}~~.Letn~N,thenn+l~u~O~ 
but n+ 1 Eu”+’ 0 y; hence D is not bounded. This example shows that 
both inclusions Kn G Da and Cn s Da are strict. 

(1) Similarly, if K=Kn (resp. K = Cn) were first-order 
axiomatizable, then K would be closed under ultraproducts, and hence 
would be bounded, which is not the case. 1 

The next corollary gives necessary and sufficient conditions for a class K 
of dynamic set algebras to be closed under ultraproducts and first-order 
axiomatizable. 

Recall that the *-free reduct is obtained by forgetting the * operation. 

COROLLARY 11. Let KG Kn. Then 

(i) K is first-order axiomatizable $f: the *-free reduct of K is first- 
order axiomatizable and K is s-bounded 

(ii) K is closed under ultraproducts lff: the *-free reduct of K is closed 
under ultraproducts and K is s-bounded. 

ProojI (ii) G- obvious. 
= assume K is s-bounded and the *-free reduct of K is closed under 

ultraproducts. Then, there is an n such that K k x* =x’. So x* is tirst- 
order defmable in K, hence, by our assumption, K is closed under 
ultraproducts. 
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(i) Assume K is lirst-order axiomatizable. Then, by Corollary 5, K is 
n-s-bounded for some n, hence K l= X* =x”. Let ,4x be a set of lirst-order 
axioms delining K. Let Ax’ be obtained from FIX by replacing x* 
everywhere with xn. Then Ax’ is a first-order axiomatization for the *-free 
reduct of K. To prove the other direction, assume Ax’ defines the *-free 
reduct of K and that K is H-s-bounded. Then, the set Ax = ,4x’ u {x* = x”} 
defines K, which is thus lirst-order axiomatized. 1 

THEOREM 12. A class KC Cn, or KC I Ds, where I Ds denotes the 
closure of Ds under isomorphisms, is closed under ultraproducts $f the *-free 
redact of K is closed under ultraproducts and K is poiynomially equivalent 
with its *-free reduct (i.e., * is term-definable from the rest of the operations 
in K). 

ProoJ Immediate from Corollary 11. 1 

It might be of interest to note that, though ultraproducts in the standard 
sense lead out from the class of dynamic set algebras because of the above 
results, the category-theoretic version of the ultraproduct notion of Sain 
(Sain, 1983; Sain and Hien, in press) does exist in the categories of both 
dynamic algebras and continuous dynamic algebras. The ultraproduct con- 
structions in (Henkin, et al., 1981, ultraproduct sections) could also be 
adapted to the present situation so that dynamic set algebras would be 
closed under them. 

Let us show another application of Corollary 5. 

DEFINITION 7 (Tarski and Ng, 1977). A transitive relation algebra, in 
short Tr, is an algebraic structure (A, v , ; , *), where A G 9’( U x U) for 
some base set U. v and ; are the usual union and composition of 
relations, and a* is the transitive closure of a for any a in A. 

The definition of boundedness is the same as the defmition of strongly 
bounded dynamic algebras (Definition 4). 

COROLLARY 13. Let KG Tr. If K is not bounded, then Up K CZ Tr. 

ProojY The same as that of Lemma 6. 1 

We note that the above corollary immediately yields similar results for 
Ng-Tarski relation algebras and also’ for Kleene algebras. The reason for 
this is as follows: both of the quoted kinds of algebras differ from Tr by 
adding more operations only. Such additions do not change the meaning of 
ultraproducts on the original operations ( v , ; , and *). 

The following corollary is a celebrated result which has influenced the 
development of program verilication theory decisively (Kfoury and Park, 
1975). 
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COROLLARY 14 (Kfoury-Park, 1975). Let K be an axiomatizable class 
of models of some signature 2 and let p be a blockdiagram program of 
signature z. Assume that p is not equivalent in K to a loop-free program. 
Then p diverges in K. (In more detail there is A E K such that p does not ter- 
minate in A for some input.) 

ProoJ Let K= Up K be a class of models of similarity type d and p be a 
program of type d not equivalent to a loop-free one in K. Now we shall use 
the notation of (Andreka et al., 1982; or Nemeti, 1982b). In particular, 
td denotes a many sorted similarity type obtained from d (roughly by 
adding two new sorts: time and intensions), Mtd denotes the class of all 
(many-sorted) structures of similarity type td. To denotes the axioms of 
ordering for sort “time” and Mod(To) z M,d denotes the class of all 
models of To. Deline A4 = { (T, D, Z, ext ) E Mod(To) 1 D E K}. K is closed 
under ultraproducts, hence M is also closed under ultraproducts. Thus 
M=UpM by K=UpK. Let M=(T,D, Z, ext)EM. Without loss of 
generality we may assume that p is monadic, that is, that a trace of p is a 
single element of Z instead of a tuple of such elements. Let ,ri E Z and z, E c 
wedefme (y,z)<(~~i,zi)-=-[z<z, and (Vi<z)y(i)=yl(i) and (yl,zi) is 
a partial trace of p in M (i.e., yi is a trace until zi)], where y(z) abbreviates 
ext(-r, z). Intuitively, (JJ, z) means the restriction of y to {z, E Tiz, <z}. 
Clearly, < is a partial ordering. Since p is not equivalent in K with a loop- 
free program, there are arbitrarily long linite execution sequences of p in K 
hence there are arbitrarily long chains ( (yi, zj) 1 i < n) in A4. By Theorem I 
then there is M = (T, D, Z, ext ) G M and an inlinitely long strictly increas- 
ing chain ( (yj, zi) 1 iE N) in M. But then (y,,(n) in EN) is a nonter- 
minating execution-sequence of p in D. 

So far we proved the conclusion of the corollary for all classes closed 
under ultraproducts. This is slightly stronger than the corollary. Since every 
lirst-order axiomatizable class is closed under ultraproducts, the corollary 
follows, 1 

APPENDIX: A FEW BASICS ABOUT ULTRAPRODUCTS 
(CHANG AND KEISLER, 1973). 

An ultralilter over a set Z is a set U of subsets of Z such that 
(i) Ze U 

(ii) if X, Ye U then Xn YE U 
(iii) if Xo U and Xc YCZ then Yo U 

(iv) XE U-Z-X+! U. 

Every ultrafilter U has the linite intersection property, namely the inter- 
section of any linite number of elements of U is non-empty. 
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An ultrafilter is principal if it is of the form 

u= pqx&f} for some x0 in Z. 

Equivalently, an ultralilter is principal iff it contains a finite set. Con- 
sequently, a non-principal ultrafilter contains no finite set, hence contains 
all cofinite sets. 

Let U be an ultrafilter on IV, and let {Z,, 1 n E N} be a family of posets. 
The ultraproduct Z= ZZZJU is the quotient of ZZZ” by the congruence w U 
defined by: for p=(~(n))~~~ and q=(q(n))nEN, pwuq iff {rzjp(n)= 

qkd) E CJ. 
More generally, a formula q holds in Z iff {H 1 q holds in Zn} G U. 
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