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The propagation of finite-amplitude time-harmonic shear horizontal waves, in a pre-stressed compress-
ible elastic layer of finite thickness embedded between two identical compressible elastic half-spaces, is
investigated. This is accomplished by combining finite-amplitude linearly polarized inhomogeneous
transverse plane wave solutions in the half-spaces and finite-amplitude linearly polarized unattenuated
transverse plane wave solutions in the layer. The layer and half-spaces are made of different pre-stressed
compressible neo-Hookean materials. The dispersion relation which relates wave speed and wavenumber
is obtained in explicit form. The special case where the interfaces between the layer and the half-spaces
are principal planes of the left Cauchy–Green deformation tensor is also investigated. Numerical results
are presented showing the variation of the shear horizontal wave speed with the pre-stress and the prop-
agation angle.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of finite-amplitude waves in pre-stressed elas-
tic solids, which give rise to a constitutive non-linearity, has gained
attention since the early 1960s and there are useful analytical re-
sults available in the literature. However, the exact results avail-
able are much sparser, when compared to the studies on
infinitesimal wave propagation in pre-stressed elastic solids. A
good overview of infinitesimal waves and finite-amplitude waves
propagating in pre-stressed elastic materials is given by Destrade
and Saccomandi (2005, 2010). Finite-amplitude homogeneous as
well as inhomogeneous waves have been investigated previously,
for both incompressible and compressible pre-stressed elastic sol-
ids. Here, the review of previous work will be limited to the prop-
agation of finite-amplitude waves in pre-stressed compressible
elastic solids which is of interest in the present paper.

For pre-stressed compressible elastic media, the propagation of
finite-amplitude homogeneous plane waves was studied prior to
the propagation of finite-amplitude inhomogeneous plane waves.
John (1966) and Currie and Hayes (1969) showed that three line-
arly polarized finite-amplitude homogeneous waves, one longitu-
dinal and two transverse, can propagate in any direction in a
pre-stressed Hadamard material. Boulanger et al. (1994) also stud-
ied finite-amplitude homogeneous wave propagation in a
pre-stressed Hadamard material and showed that finite-amplitude
circularly polarized transverse homogeneous waves can propagate
in this material along special directions called acoustic axes. The
acoustic axes are determined by the static deformation of the
material and are independent of the choice of the material con-
stants and the material function which occur in the strain energy
function describing the Hadamard material.

One of the first researchers to consider the propagation of fi-
nite-amplitude time-harmonic inhomogeneous plane waves in
pre-stressed compressible elastic media was Destrade (1999). He
investigated the propagation of finite-amplitude linearly polarized
time-harmonic inhomogeneous transverse plane waves in a pre-
stressed special Blatz-Ko material, sometimes also called com-
pressible neo-Hookean material or restricted Hadamard material.
These waves are polarized in the direction a perpendicular to both
the propagation direction n and the attenuation direction m. He
showed that such waves can propagate in the material only if n
and m are conjugate with respect to the strain ellipsoid associated
with B, i.e., when n � Bm ¼ 0, where B is the left Cauchy–Green
deformation tensor corresponding to the static homogeneous
deformation. Later, Rodrigues Ferreira and Boulanger (2005) also
investigated the propagation of finite-amplitude linearly polarized
inhomogeneous transverse plane waves in a pre-stressed special
Blatz-Ko material, but without assuming that they are time-
harmonic. They showed that for all given unit vectors n and m
(m not along n), linearly polarized transverse damped inhomoge-
neous plane waves may propagate. Such waves are attenuated
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(or amplified) both in space and time, and the term damped refers
to an exponential decay (or growth) with time. In the special case
when n � Bm ¼ 0, they retrieved the solution obtained by Destrade
(1999). The possibility of the superposition of finite-amplitude
transverse inhomogeneous plane waves and longitudinal waves
in a pre-stressed special Blatz-Ko material was investigated by
Rodrigues Ferreira and Boulanger (2007). They showed that the
superposition of a finite-amplitude transverse inhomogeneous
wave and a longitudinal wave is also a solution, in the case when
the propagation direction of the longitudinal wave is perpendicular
to the polarization direction of the transverse wave. All these stud-
ies considered finite-amplitude wave propagation in a pre-stressed
unbounded elastic medium. In Rodrigues Ferreira et al. (2008), a
problem with boundaries was presented, where they considered
the propagation of finite-amplitude Love waves in a pre-stressed
elastic layer of finite thickness overlying a half-space both made
of different compressible neo-Hookean materials. A finite-ampli-
tude Love wave solution is obtained provided the propagation
direction in the interface and the normal to the interface are con-
jugate with respect to the strain ellipsoid associated with the left
Cauchy–Green deformation tensor.

In the present paper, the propagation of finite-amplitude shear
horizontal waves in a pre-stressed compressible elastic layer
embedded between two identical compressible elastic half-spaces
is investigated, by combining finite-amplitude linearly polarized
inhomogeneous transverse wave solutions in the half-spaces and
finite-amplitude linearly polarized unattenuated transverse wave
solutions in the layer. This kind of configuration can be encoun-
tered for instance in adhesively bonded structures characterized
by a layer embedded between two half-spaces. Therefore, exact
analytical results can be useful when adhesively bonded structures
are examined using non-destructive methods based on propaga-
tion of elastic waves. Moreover, the configuration considered in
the manuscript, i.e., a layer embedded between two half-spaces,
can be considered as a limiting case of a symmetric layered com-
posite consisting of an inner layer of thickness d and two identical
outer layers of thickness h, in the limit when h� d. This same con-
figuration was investigated by Stoneley (1924) and Ewing et al.
(1954) for the corresponding case of time harmonic infinitesimal
wave propagation in a stratum of uniform thickness bounded on
both sides by very deep layers of different materials.

The layer and the half-spaces are made of different compressible
neo-Hookean materials. The full Hadamard material involves two
constitutive constants C and D (John, 1966). The compressible neo-
Hookean material considered here, which is also called restricted
Hadamard, is a special case with D ¼ 0 and C ¼ l (Willson, 1977).
It is noted that the results obtained here are possible because the
compressible neo-Hookean material does not give rise to normal
stresses. Normal stresses would yield additional boundary condi-
tions, which cannot be satisfied in context of this paper. The consti-
tutive equation for compressible neo-Hookean material and the
equations of motion are presented in Section 2. In Section 3, the dis-
placement fields for finite-amplitude linearly polarized inhomoge-
neous transverse wave motion and finite-amplitude linearly
polarized unattenuated transverse plane wave motion are obtained.
In Section 4, the geometry of the problem is described in which a pre-
stressed compressible elastic layer is embedded between pre-
stressed compressible elastic half-spaces rigidly bonded at the inter-
faces. It is shown that the left Cauchy–Green deformation tensors in
the half-spaces can be obtained uniquely when the left Cauchy–
Green deformation tensor in the layer is known. The dispersion rela-
tion is obtained in explicit form provided that the direction of the
normal to the plane of constant phase n and the direction of the nor-
mal to the plane of constant amplitude m are conjugate with respect
to the strain ellipsoid associated with the left Cauchy–Green
deformation tensor. Dispersion curves are presented for a particular
choice of material parameters which show an explicit dependence
on the underlying deformation. In Section 5, the special case when
the interfaces are principal planes of the left Cauchy–Green defor-
mation tensor is considered, where the propagation of finite-ampli-
tude shear horizontal waves is possible along any direction in the
principal plane. Numerical results are presented showing the varia-
tion of the shear horizontal wave speed with the pre-stress and the
propagation angle.

2. Governing equations for compressible neo-Hookean material

The governing equations for finite-amplitude time-harmonic
waves propagating in a pre-stressed compressible neo-Hookean
material are given in this section. A homogeneous, compressible
isotropic elastic body is considered which when unstressed occu-
pies the configuration Bu This body is subjected to a large static
homogeneous deformation

x ¼ FX; xi ¼ FiRXR; ði;R ¼ 1;2;3Þ; ð1Þ

which results in a pre-stressed equilibrium configuration Be where
F is the deformation gradient tensor, X is the position vector of a
particle in the undeformed configuration and x is the corresponding
position vector in the intermediate state of static deformation. The
associated left Cauchy–Green deformation tensor B is given by

B ¼ FFT: ð2Þ

The strain energy function W ðnHÞ
c , of a compressible neo-Hook-

ean material, also called ‘special Blatz-Ko material’ or ‘restricted
Hadamard material’, measured per unit volume in the undeformed
state is given by

2W ðnHÞ
c ¼ lðtrB� 3Þ þ GðJÞ � Gð1Þ; ð3Þ

where l is the shear modulus and GðJÞ is a function of J in which
J ¼ det F. From Eq. (3), the symmetric Cauchy stress tensor T is gi-
ven by (Beatty, 1996),

T ¼ 1
2

G0ðJÞIþ lJ�1B; ð4Þ

where I is the identity tensor. It has been shown by Hayes (1968) that
the constitutive equation for Hadamard material reduces to the con-
stitutive equation given in Eq. (4), when the ordered forces inequali-
ties and the strong ellipticity conditions are satisfied. Here, for
compressible neo-Hookean material, the strong ellipticity conditions

l > 0; G00ðJÞP 0; ð5Þ

are assumed to hold. Since the configuration Bu is assumed to be
stress free with J ¼ 1 and B ¼ I, G0ð1Þ ¼ �2l. In addition, compari-
son with linearized elasticity yields G00ð1Þ ¼ 2ðkþ lÞ, where k and
l are the Lamé parameters (Boulanger et al., 1994).

To the large static homogeneous deformation given in Eq. (1), a
finite-amplitude time-dependent displacement uðx; tÞ is superim-
posed and the body thus occupies a time-dependent deformed
configuration Bt The particle at x in the intermediate state of static
deformation then moves to �x which is given by

�x ¼ xþ uðx; tÞ: ð6Þ

The deformation gradient tensor �F with respect to the unde-
formed configuration is given by

�F ¼ @�x=@X ¼ F̂F; ð7Þ

where F̂ ¼ @�x=@x is the deformation gradient tensor with respect to
the intermediate state of static deformation. The corresponding left
Cauchy–Green deformation tensor �B is given by
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�B ¼ �F�FT ¼ F̂BF̂T: ð8Þ

The equations of motion in the absence of body forces can be
written as

div�x
�T ¼ �q €�x;

@�Tij

@�xj
¼ �q€�xi ði; j ¼ 1;2;3Þ; ð9Þ

where div�x corresponds to the divergence operator with respect to
the position �x, �T is the Cauchy stress tensor at time t, �q ¼ q0=

�J is the
mass density at time t in which q0 is the mass density in the unde-
formed state and �J ¼ det �F. Note that a superimposed dot indicates
differentiation with respect to time t. The first Piola–Kirchhoff
stress tensor �P at time t with respect to the intermediate state of
static deformation is given by

�P ¼ Ĵ �TF̂�T; ð10Þ

where Ĵ ¼ det F̂. The equations of motion given in Eq. (9) can thus be
written as

divx
�P ¼ q €�x;

@�Pij

@xj
¼ q€�xi ði; j ¼ 1;2;3Þ; ð11Þ

where divx corresponds to the divergence operator with respect to
the position x, and q ¼ q0=J is the mass density in the intermediate
state of static deformation.

3. Transverse wave motion in a homogeneously deformed body

In this section, transverse wave solutions in pre-stressed com-
pressible elastic neo-Hookean material are considered (see Rodri-
gues Ferreira et al., 2008). The finite-amplitude linearly polarized
transverse inhomogeneous plane waves are propagating with
wave speed v in the direction of n, polarization is in the transverse
direction a with the amplitude varying along the direction of m.
The superimposed finite-amplitude time-dependent displacement
field uðx; tÞ ¼ �x� x is thus given by

uðx; tÞ ¼ f ðm � xÞgðn � x� vtÞa; ð12Þ

where n, a, m are unit vectors and f and g are real functions to be
determined. It is assumed that the unit vectors m and n are not par-
allel and that the polarization direction a is orthogonal to both m
and n such that

a �m ¼ a � n ¼ 0: ð13Þ

In Eq. (12), the planes defined by m � x ¼ constant are the planes of
constant amplitude and the planes defined by n � x ¼ constant are
the planes of constant phase.

For the wave motion given by Eq. (12), the deformation gradient
tensor F̂ with respect to the intermediate state of static deforma-
tion yields

F̂ ¼ Iþ f 0gða�mÞ þ fg0ða� nÞ;
F̂�1 ¼ I� f 0gða�mÞ � fg0ða� nÞ; ð14Þ

and

det F̂ ¼ 1; ð15Þ

where f 0 and g0 denote the derivatives of f and g with respect to
their argument. The Cauchy stress tensor at time t for the pre-
stressed compressible neo-Hookean material can then be written as

�T ¼ 1
2

G0ðJÞIþ lJ�1F̂BF̂T: ð16Þ

Hence, the first Piola–Kirchhoff stress tensor �P at time t given in
Eq. (10) yields
�P ¼ 1
2

G0ðJÞF̂�T þ lJ�1F̂B: ð17Þ

Then, substituting Eqs. (6), (12), and (17) into the equations of
motion Eq. (11) yields

qv2fg00a ¼ lJ�1ðf 00g m � Bmþ 2f 0g0n � Bmþ fg00n � BnÞa: ð18Þ

Substituting q ¼ q0=J, it can be shown that the displacement gi-
ven in Eq. (12) is the solution of the equations of motion, if and
only if the functions f and g satisfy the equation

ðn � Bn� l�1q0v2Þfg00 þ 2n � Bm f 0g0 þm � Bm f 00g ¼ 0: ð19Þ

The unit vectors m and n are chosen such that

n � Bm ¼ 0; ð20Þ

which implies that the unit vectors m and n are conjugate with re-
spect to the B-ellipsoid x � Bx ¼ 1. Eq. (19), thus yields two uncou-
pled equations for the functions f and g,

v2
mðf 00=f Þ ¼ �b; ðv2

n � v2Þðg00=gÞ ¼ b; ð21Þ

where b is an arbitrary constant, vm and vn are the wave speeds of
homogeneous bulk waves propagating along m and n, respectively,
and given by

q0v2
m ¼ lm � Bm; q0v2

n ¼ ln � Bn: ð22Þ

With the assumption that b is negative, let b ¼ �c2 for some
real c, then Eq. (21) yields a linearly polarized inhomogeneous
time-harmonic transverse plane wave if v2 < v2

n. The displacement
field of this wave is

uðx; tÞ ¼ A exp � c
vm

m � x
� �

cos
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
n � v2

p ðn � x� vtÞ
 !

a; ð23Þ

where c and A are arbitrary constants. If b is assumed to be positive,
let b ¼ j2 for some real j, then Eq. (21) yields a linearly polarized
unattenuated time-harmonic transverse plane wave if v2 > v2

n. The
displacement field of this wave is

uðx;tÞ¼ Bsin
j

vm
m �x

� �
þC cos

j
vm

m �x
� �� �

cos
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2�v2
n

p ðn �x�vtÞ
 !

a;

ð24Þ

where j, B and C are arbitrary constants. Note that when the con-
dition given in Eq. (20) is not satisfied, other solutions may be ob-
tained (see Rodrigues Ferreira and Boulanger, 2005) but they are
not time-harmonic. In this paper, the interest is in time-harmonic
shear horizontal waves.

Note that the traction vector t on the plane m � x ¼ constant can
be shown to be the same whether it is measured per unit area of
the intermediate state of static deformation or per unit area of
the current state (Rodrigues Ferreira et al., 2008) and is given by

t ¼ �Pm ¼ �Tm ¼ Tmþ qv2
mf 0 g a: ð25Þ
4. SH waves propagating in a pre-stressed layer between two
half-spaces

A compressible isotropic elastic layer of finite thickness is con-
sidered to be embedded between two identical compressible iso-
tropic elastic half-spaces. The layer and the half-spaces are
homogeneous and made of different compressible neo-Hookean
material with material parameters and mass density ~l, ~G, ~q0 and
l, G, q0, respectively. In the remainder of the paper, all quantities
with a tilde refer to variables and parameters of the layer. The layer
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is assumed to be rigidly bonded to the half-spaces. The origin O lies
at the interface of the layer and the lower half-space.

4.1. Pre-stressed equilibrium state

The elastic layer and the half-spaces are subjected to a large sta-
tic homogeneous deformation such that the half-spaces are identi-
cal even after the deformation. The initial deformations are given
by,

~x ¼ ~FX and x ¼ FX; ð26Þ

where X denotes the position vector of material particle in the
undeformed solids. The associated left Cauchy–Green deformation
tensors for the pre-stressed layer and the half-spaces are given by

~B ¼ ~F~FT and B ¼ FFT: ð27Þ

The unit vector m is taken to be normal to the faces of the layer, in
the intermediate state of static deformation. As shown in Fig. 1, the
lower half-space occupies the space m � x P 0, the layer occupies
the region �h 6m � ~x 6 0 and the upper half-space occupies the
space m � x 6 �h. The focus here is on the finite-amplitude time-
harmonic shear horizontal waves, propagating in a direction n
and polarized in a transverse direction a, both parallel to the inter-
face. Thus, the unit vectors n, a and m form an orthonormal triad.
Since the layer and the half-spaces are rigidly bonded, displace-
ments and tractions are continuous at the interfaces. Using these
continuity conditions, the left Cauchy–Green deformation tensor B
in the half-spaces can be determined uniquely when the left Cau-
chy–Green deformation tensor ~B in the layer is known (Rodrigues
Ferreira et al., 2008) and will be briefly discussed here. In previous
studies of infinitesimal wave propagation in pre-stressed elastic lay-
ered media, each medium was subjected to different pre-stress con-
ditions (Wijeyewickrema and Leungvichcharoen, 2009; Kayestha
et al., 2010). In these studies, the continuity of stress component
perpendicular to the interface had been used to obtain the stretches
in that direction, however, the stretches in the other directions were
prescribed independently in each medium.

In the pre-stressed equilibrium state, at the interfaces
m � x ¼m � ~x ¼ 0 and m � x ¼m � ~x ¼ �h, the continuity of the dis-
placement and the traction vector can be written as
0⋅ >m x

0⋅ =m x

h⋅ = −m x

h⋅ < −m x

1x

2x

3x

O

a
n

m

0, ,Gμ ρ

0, ,Gμ ρ

0, ,Gμ ρ

Fig. 1. Pre-stressed layer between two identical half-spaces. Wave propagation is in
the direction of n, polarization is in the transverse direction a and the amplitude
varies along the direction m, normal to the faces of the layer. Here, n, a, m are unit
vectors.
uðxÞ ¼ ~uð~xÞ and Tm ¼ ~Tm: ð28Þ

The displacement in the half-spaces is given by

uðxÞ ¼ x� X ¼ ðI� F�1Þx; ð29Þ

and the displacement in the layer can be written as

~uð~xÞ ¼ ~x� X ¼ ðI� ~F�1Þ~x: ð30Þ

At the interface m � x ¼m � ~x ¼ 0, the position vector can be written
as, x ¼ ~x ¼ pnþ qa, while at the interface m � x ¼m � ~x ¼ �h, it can
be written as x ¼ ~x ¼ pnþ qa� hm, for arbitrary p and q. Then, the
continuity of the displacement given in Eq. (28a) at m � x ¼
m � ~x ¼ 0 yields

F�1ðpnþ qaÞ ¼ ~F�1ðpnþ qaÞ: ð31Þ

Since Eq. (31) should hold for all p and q, the displacement continu-
ity results in

F�1n ¼ ~F�1n; F�1a ¼ ~F�1a: ð32Þ

From Eq. (32),

F�1n� F�1a ¼ ~F�1n� ~F�1a: ð33Þ

Then, using the identity F�1n� F�1a ¼ ðdet FÞ�1FTðn� aÞ, (Chad-
wick, 1999) and similarly for ~F, yields

ðdet FÞ�1FTm ¼ ðdet ~FÞ�1~FTm; ð34Þ

which gives

J�2m � Bm ¼ ~J�2m � ~Bm: ð35Þ

Similarly, at the interface m � x ¼m � ~x ¼ �h, the displacement con-
tinuity yields the same expression as shown in Eq. (35). Making use
of the Nanson’s formula, the unit vector M normal to the faces of the
layer in the undeformed state is given by

M ¼ ðm � BmÞ�1=2FTm ¼ ðm � ~BmÞ�1=2~FTm; ð36Þ

and the thickness of the layer in the undeformed state is

H ¼ hðm � ~BmÞ�1=2
: ð37Þ

Next, using the continuity of the traction given in Eq. (28b) at the
interfaces m � x ¼ m � ~x ¼ 0 and m � x ¼m � ~x ¼ �h yields

lJ�1n � Bm ¼ ~l~J�1n � ~Bm; ð38Þ

lJ�1a � Bm ¼ ~l~J�1a � ~Bm; ð39Þ

and

1
2

G0ðJÞ þ lJ�1m � Bm ¼ 1
2

~G0ð~JÞ þ ~l~J�1m � ~Bm: ð40Þ

Eq. (40) can be used to obtain J for the half-space using Eq. (35) and
because ~B is given, J and m � ~Bm are known. In Rodrigues Ferreira
et al. (2008), the uniqueness for the determination of J in the half-
space has been discussed. It was shown, using the strong ellipticity
conditions, that Eq. (40) has at most one positive solution for J, and
it has one and only one solution if in addition the assumption
lim
J!0

G0ðJÞ ¼ �1 is made. After J is obtained, the components of B
can be determined from Eqs. (35), (38), and (39). The remaining
components of B i.e. a � Ba, n � Bn and n � Ba can be determined
using Eq. (32) resulting from the displacement continuity. In order
to use the exact wave solutions described in the previous section,
the condition given in Eq. (20) is assumed to be satisfied in the
layer, which by Eq. (38) implies that it is also satisfied in the half-
spaces. Thus,

n � ~Bm ¼ 0; n � Bm ¼ 0: ð41Þ
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Using Eq. (41), the components of the left Cauchy–Green defor-
mation tensor B are now given by

m � Bm ¼ ðJ=~JÞ2m � ~Bm; ð42Þ

a � Bm ¼ ð~l=lÞðJ=~JÞa � ~Bm; ð43Þ

a � Ba ¼ a � ~Baþ ða �
~BmÞ2

m � ~Bm

~l2

l2 � 1
� �

; ð44Þ

n � Bn ¼ n � ~Bn; ð45Þ

n � Ba ¼ n � ~Ba: ð46Þ

Using Eqs. (42)–(46), the left Cauchy–Green deformation tensor B
can be written in tensorial form in terms of ~B from which it can
be shown that Bn ¼ ~Bn (Rodrigues Ferreira et al., 2008).

4.2. Finite-amplitude shear horizontal wave

In this section, finite-amplitude shear horizontal waves propa-
gating with the wave speed v are investigated by combining the
solutions of the finite-amplitude linearly polarized inhomogeneous
transverse plane wave motion and the finite-amplitude linearly
polarized unattenuated transverse plane wave motion given in
Eqs. (23) and (24), respectively. In the pre-stressed upper and low-
er half-spaces, since the waves decay in the direction of the unit
vector m, the displacement field given in Eq. (23) is considered.
The displacement field in the lower half-space uLHðx; tÞ is thus gi-
ven by

uLHðx; tÞ ¼ A expð�s1m � xÞ cosðkðn � x� vtÞÞa; ð47Þ

where A is an arbitrary constant, and the displacement field in the
upper half-space uUHðx; tÞ is thus given by

uUHðx; tÞ ¼ D expðs1m � xÞ cosðkðn � x� vtÞÞa; ð48Þ

where D is an arbitrary constant. In the pre-stressed layer, the dis-
placement field given in Eq. (24) is considered. The displacement
field in the layer ~uðx; tÞ is thus given by

~uðx; tÞ ¼ ðB sinðs2m � xÞ þ C cosðs2m � xÞÞ cosðkðn � x� vtÞÞa: ð49Þ

In Eqs. (47)–(49), the following notations have been introduced

s1 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2

v2
m

s
¼ c

vm
; s2 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n
~v2

m

s
¼ j

~vm
; ð50Þ

where

k ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2
p ¼ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � ~v2
n

p ; ð51Þ

is the wavenumber. The wavenumber in the displacement fields of
the half-spaces and the layer has to be same in order to satisfy the
continuous interface conditions. Recalling Eq. (22), the homoge-
neous bulk wave speeds vm, vn, ~vm and ~vn propagating along m
and n in the half-spaces and in the layer, respectively, are given by

q0v2
m ¼ lm � Bm; q0v2

n ¼ ln � Bn;

~q0 ~v2
m ¼ ~lm � ~Bm; ~q0 ~v2

n ¼ ~ln � ~Bn; ð52Þ

and the shear horizontal wave speed v has to satisfy

~v2
n < v2 < v2

n: ð53Þ

The traction vector obtained in Eq. (25) can be written for the
lower and upper half-spaces as,

tLH ¼ Tm� Aqv2
ms1 expð�s1m � xÞ cosðkðn � x� vtÞÞa; ð54Þ
and

tUH ¼ Tmþ Dqv2
ms1 expðs1m � xÞ cosðkðn � x� vtÞÞa: ð55Þ

Similarly, the traction vector for the layer is given by

~t¼ ~Tmþ ~q~v2
ms2ðBcosðs2m �xÞ�C sinðs2m �xÞÞcosðkðn �x�vtÞÞa: ð56Þ

In the time-dependent deformed state, at the interface
m � x ¼m � ~x ¼ 0, the continuity of the displacement and the trac-
tion are given by

uLHðx; tÞ ¼ ~uðx; tÞ and tLH ¼ ~t: ð57Þ

Similarly, at the interface m � x ¼m � ~x ¼ �h, the continuity of
the displacement and the traction vector are given by

~uðx; tÞ ¼ uUHðx; tÞ and ~t ¼ tUH: ð58Þ

Substituting Eqs. (47), (49), (54), and (56) in Eq. (57) and using
the continuity of traction given in Eq. (28b) yields

A� C ¼ 0; ð59Þ

and

Aqv2
ms1 þ B~q ~v2

ms2 ¼ 0: ð60Þ

Next, substituting Eqs. (48), (49), (55), and (56) in Eq. (58) and
using the continuity of traction given in Eq. (28b) yields

B sinðs2hÞ � C cosðs2hÞ þ D expð�s1hÞ ¼ 0; ð61Þ

and

~q~v2
ms2Bcosðs2hÞþ ~q~v2

ms2C sinðs2hÞ�Dqv2
m s1 expð�s1hÞ¼0: ð62Þ

The set of four homogeneous simultaneous equations with four un-
knowns A, B, C and D given in Eqs. (59)–(62) lead to the dispersion
relation, which after some algebraic manipulation can be written as

tanðs2hÞ ¼ 2qv2
m ~q~v2

ms1s2

~q2 ~v4
ms2

2 � q2v4
m s2

1

: ð63Þ

From Eqs. (42), (45), and (52), the relations

qvm

~q~vm
¼ q0c

~q0~c
;

vn

~vn
¼ c

~c
; ð64Þ

can be obtained, where c ¼
ffiffiffiffiffiffiffiffiffiffiffi
l=q0

p
and ~c ¼

ffiffiffiffiffiffiffiffiffiffiffi
~l=~q0

p
are the trans-

verse bulk wave speeds in the undeformed half-spaces and layer,
respectively. Using Eq. (64) and the expressions for s1 and s2 defined
in Eq. (50), the dispersion relation can be re-written as

tan khð~vn=~vmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

~v2
n
� 1

s !
¼

2 q0c
~q0~c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

~c2 � v2

~v2
n

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

~v2
n
� 1

q
v2

~v2
n
� 1

� �
� q0c

~q0~c

� �2
c2

~c2 � v2

~v2
n

� � : ð65Þ

When there is no pre-stress, B ¼ ~B ¼ I, J ¼ ~J ¼ 1, hence
vm ¼ vn ¼ c in the half-spaces and ~vm ¼ ~vn ¼ ~c in the layer, so that
the dispersion relation given in Eq. (63) reduces to

tanðkhb2Þ ¼
2l~lb1b2

~l2b2
2 � l2b2

1

; ð66Þ

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=~c2 � 1

p
. Eq. (66) agrees with Eq.

(8) of Stoneley (1924) and Eq. (4-232) of Ewing et al. (1957) when
the upper and lower half-spaces are identical.

For a given left Cauchy–Green deformation tensor ~B in the layer
and a given unit vector m, there is, in general, only one propagation
direction n in the interface along which a finite-amplitude shear
horizontal wave may propagate. Indeed, because the two condi-
tions n �m ¼ 0 and n � ~Bm ¼ 0 have to be satisfied, the propagation
direction n must be along m� ~Bm. In the case when m is along a
principal axis of ~B, then the two conditions n �m ¼ 0 and
n � ~Bm ¼ 0 are automatically satisfied for any propagation direc-



Fig. 2. Dispersion curves for finite-amplitude shear horizontal waves. Here,
Mn ¼ np=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=~c2 � 1

p
, ðn ¼ 1;2;3; . . .Þ. For ð~vm=~vnÞMn < kh < ð~vm=~vnÞMnþ1; nþ 1

modes can propagate. Thus, for 0 < kh < ð~vm=~vnÞM1, only one mode can propagate
(fundamental mode).

Fig. 3. Polar plots of the first two modes v i=c, ði ¼ 1;2Þ of the finite-amplitude shear
horizontal wave speeds for Example 1 when kh ¼ p. The homogeneous shear bulk
wave speeds vn=c and ~vn=c are also shown.
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tion n orthogonal to m. Thus, the propagation direction n can be
along any direction in the interface.

When the dispersion relation given in Eq. (63) is satisfied, the
solution of the homogeneous equations given in Eqs. (59)–(62)
for A, B, C and D can be written as

A ¼ �a ~q~vmj expð�ch=vmÞ; ð67aÞ

B ¼ aqvmc expð�ch=vmÞ; ð67bÞ

C ¼ �a ~q~vmj expð�ch=vmÞ; ð67cÞ

D ¼ �a ½qvmc sinðjh=~vmÞ þ ~q~vmj cosðjh=~vmÞ�; ð67dÞ

where a is an arbitrary constant which characterizes the amplitude
of the shear horizontal wave. Let ðg; n; fÞ denote the Cartesian coor-
dinates along ðn; a; mÞ such that

g ¼ n � x; n ¼ a � x; f ¼m � x: ð68Þ

Using Eqs. (67) and (68), the displacement fields given in Eqs.
(47)–(49) can be written in terms of a as

uLHðx; tÞ ¼ �a ~q~vmj expð�cðhþ fÞ=vmÞ cosðkðg� vtÞÞa; ð69Þ

uUHðx; tÞ ¼ �a expðcf=vmÞ ½qvmc sinðjh=~vmÞ
þ ~q~vmj cosðjh=~vmÞ� cosðkðg� vtÞÞa; ð70Þ

~uðx; tÞ ¼ a expð�ch=vmÞ½qvmc sinðjf=~vmÞ
� ~q~vmj cosðjf=~vmÞ� cosðkðg� vtÞÞa; ð71Þ

or, equivalently, recalling Eq. (51),
Table 1
Parameters for the layer and the half-spaces.

Layer

Principal stretches Stress component

Example 1 ~k1 ¼ 2:0;
~k2 ¼ 0:9;
~k3 ¼ 0:7

e1 � ~Te1 ¼ 2:695~l
e2 � ~Te2 ¼ 0:163~l
e3 � ~Te3 ¼ �0:091

Example 2 ~k1 ¼ 1:2;
~k2 ¼ 0:8;
~k3 ¼ 0:75

e1 � ~Te1 ¼ 0:44~l;
e2 � ~Te2 ¼ �0:671
e3 � ~Te3 ¼ �0:779
uLHðx; tÞ ¼ �a ~q~vmk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n

q

� exp �kðhþ fÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2

v2
m

s !
cosðkðg� vtÞÞa; ð72Þ
uUHðx; tÞ ¼ �a exp kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2

v2
m

s !
qvm k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2
q

sin
�

kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n
~v2

m

s !
þ ~q~vmk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n

q
cos kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n
~v2

m

s !#
cosðkðg� vtÞÞa;

ð73Þ
~uðx; tÞ ¼ a exp �kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2

v2
m

s !
qvm k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n � v2
q

sin
�

kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n
~v2

m

s !
� ~q~vmk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n

q
cos kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � ~v2

n
~v2

m

s !!
cosðkðg� vtÞÞa:

ð74Þ

Fig. 2 shows dispersion curves obtained from Eq. (65) for
~q0=q0 ¼ 1 and ~l=l ¼ 0:6. These dispersion curves are similar to
linear isotropic elasticity, however, these curves have explicit
dependence on the pre-stress. As stated in Eq. (53), the condition
that the finite-amplitude shear horizontal waves can propagate
within ~vn and vn can be observed clearly in Fig. 2 where the upper
limit for the shear horizontal waves to propagate is the homoge-
neous bulk wave speed of the half-space vn. Since the wave speed
Half-spaces

s Principal stretches Stress components

;

;
~l;

k1 ¼ 2:0;
k2 ¼ 0:9;
k3 ¼ 0:709

e1 � Te1 ¼ 4:478~l;
e2 � Te2 ¼ 0:311~l;
e3 � Te3 ¼ �0:091~l;

~l;
~l;

k1 ¼ 1:2;
k2 ¼ 0:8;
k3 ¼ 0:855

e1 � Te1 ¼ 0:6599~l;
e2 � Te2 ¼ �0:964~l;
e3 � Te3 ¼ �0:779~l;



(a) (b)

(c) (d)

Fig. 4. Dispersion curves for the first 14 modes of Example 1 when (a) h ¼ 0� , (b) h ¼ 15� , (c) h ¼ 45� and (d) h ¼ 75� .
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is normalized with vn, the maximum value for each mode is 1 and
the lower limit of the shear horizontal wave speed is ~vn. In con-
trast, for the dispersion curves due to infinitesimal wave propaga-
tion in a rigidly bonded layered pre-stressed composite, at the
low wavenumber limit, at most two finite limiting phase speeds
exist and the higher modes have infinite phase speeds. At the high
wavenumber limit, the phase speed of the fundamental mode and
the higher modes tend to Rayleigh surface wave speed, interfacial
wave speed or the limiting phase speed of the composite (Kayestha
et al., 2010).

5. Numerical results

As discussed in Section 4, when m is along a principal axis
of ~B, the propagation direction n can be along any direction
in the interface. Numerical results obtained from the dispersion
relation Eq. (65) are presented here for this special case.The
unit vectors e1, e2 and e3 along the principal axes of ~B are given
by

n ¼ cos he1 þ sin he2; a ¼ � sin he1 þ cos he2; m ¼ e3; ð75Þ

where h is the angle which n makes with the direction e1,
h 2 ½0; 2p�. In the pre-stressed layer, the left Cauchy–Green defor-
mation tensor is given by

~B ¼ ~k2
1 e1 � e1 þ ~k2

2 e2 � e2 þ ~k2
3 e3 � e3; ð76Þ

where ~k1, ~k2 and ~k3 are the principal stretches in the layer. Then,
from Eqs. (42)–(46), the left Cauchy–Green deformation tensor B
in the half-space can be written as
B ¼ ~k2
1 e1 � e1 þ ~k2

2 e2 � e2 þ k2
3 e3 � e3; ð77Þ

where k2
3 ¼ ~k�2

1
~k�2

2 J2. Next, it is assumed that both the layer and the
half-spaces are neo-Hookean materials of the Levinson and Burgess
type where the material function is (Levinson and Burgess, 1971)

GLBðJÞ ¼ ðkþ lÞðJ2 � 1Þ � 2ðkþ 2lÞðJ � 1Þ; ð78Þ

with l > 0 and kþ l P 0, which is consistent with Eq. (5). Using
Eqs. (35) and (78) in Eq. (40), the expression for J can be obtained as

J ¼ ð
~kþ ~lþ ~l~k�2

1
~k�2

2 Þ~J � ð~kþ 2~lÞ þ ðkþ 2lÞ
ðkþ lþ l~k�2

1
~k�2

2 Þ
; ð79Þ

where ~J ¼ ~k1
~k2

~k3 and k, l and ~k, ~l are the Lamé parameters of the
half-spaces and the layer, respectively. The corresponding Cauchy
stress tensor for the layer and the half-spaces are given by
~T ¼ ð~l~J�1~k2

1 þ~Jð~kþ ~lÞ � ð~kþ 2~lÞÞe1 � e1

þ ~l~J�1~k2
2 þ~Jð~kþ ~lÞ � ð~kþ 2~lÞ

� �
e2 � e2 þ ð~l~J�1~k2

3 þ~Jð~k

þ ~lÞ � ð~kþ 2~lÞÞe3 � e3; ð80Þ

and

T ¼ ðlJ�1~k2
1 þ Jðkþ lÞ � ðkþ 2lÞÞe1 � e1

þ lJ�1~k2
2 þ Jðkþ lÞ � ðkþ 2lÞ

� �
e2 � e2 þ ðlJ�1k2

3 þ Jðk

þ lÞ � ðkþ 2lÞÞe3 � e3; ð81Þ

respectively. In addition, using Eqs. (52), (75), (76), and (77), the
homogeneous bulk wave speeds for the layer and the half-spaces
can be written as



(a) (b)

(c) (d)

(e) (f)

Fig. 5. Displacements normalized by ~u1
f¼0 for kh ¼ 3 and kh ¼ 6 when h ¼ 0� for Example 1.
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~v2
n=~c

2 ¼ v2
n=c2 ¼ ~k2

1 cos2 hþ ~k2
2 sin2 h;

~v2
m=

~k2
3~c2 ¼ v2

m=k
2
3c2 ¼ 1: ð82Þ

Two numerical examples have been considered in which Example 1
corresponds to the case of a volume increase while Example 2 cor-
responds the case of a volume decrease. The layer and the half-
spaces are chosen such that ~q0=q0 ¼ 1 and ~l=l ¼ 0:6. Polar plots
are given for the finite-amplitude shear horizontal waves kh ¼ p,
which refers to wavelength twice the thickness of the layer. The
wave speeds are normalized with the transverse bulk wave speed
in the undeformed half-space, c. In addition, dispersion curves for
the propagation angles h ¼ 0�, 15�, 45� and 75� are given for the first
14 modes. The prescribed parameters ~k1; ~k2; ~k3 and the computed
parameters e1 � ~Te1, e2 � ~Te2, e3 � ~Te3 , k1 ¼ ~k1, k2 ¼ ~k2, k3 ¼ ~k�1

1
~k�1

2 J,
e1 � Te1, e2 � Te2, e3 � Te3 are shown in Table 1. The Lamé parameters
for the layer and the half-spaces are chosen such that ~k ¼ ~l and
k ¼ l.

5.1. Example 1

The layer undergoes a volume increase of 26% and the
half-spaces undergo a volume increase of 27.6%. Fig. 3 shows the



Fig. 6. Polar plots of the first two modes v i=c, ði ¼ 1;2Þ of the finite-amplitude shear
horizontal wave for Example 2 when kh ¼ p. The homogeneous shear bulk wave
speeds vn=c and ~vn=c are also shown.
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variation of finite-amplitude shear horizontal wave speeds with
the propagation angle h. It can be seen that the first two modes
of the finite-amplitude shear horizontal waves can propagate for
(a)

(c)

Fig. 7. Dispersion curves for the first 14 modes of Example 2
any angle h, within ~vn=c to vn=c. In addition, it can be observed that
the wave speeds of the finite-amplitude shear horizontal waves de-
pend on the pre-stretch with maximum wave speed corresponding
to the maximum stretch and minimum wave speed corresponding
to the minimum stretch. Fig. 4 shows the dispersion curves where
it can be seen that, with increasing kh the number of modes that
can propagate within ~vn=c to vn=c increases and the number of
modes differ with the propagation angle.

The first three modes of displacement fields given in Eqs. (72)–
(74) are plotted in Fig. 5 for kh ¼ 3 and kh ¼ 6 when h ¼ 0�. Note
that the maximum number of modes that can propagate at
h ¼ 0� are 3 modes for kh ¼ 3 and 6 modes for kh ¼ 6 (see
Fig. 4(a)). The displacements which have been normalized by the
first mode displacement of the layer at f ¼ 0, clearly show that
the higher modes penetrate further into the lower and upper
half-spaces.
5.2. Example 2

In this example, the layer undergoes a volume decrease of 28%
and the half-spaces undergo a volume decrease of 18%. The polar
plots showing the variation of shear horizontal wave speeds with
the propagation direction n for kh ¼ p are presented in Fig. 6. It
can be observed that only the first two modes of the finite- ampli-
tude shear horizontal waves can propagate for all propagation
directions within ~vn=c to vn=c. Comparing Figs. 4 and 7, it can be
seen that for the same propagation angle, the homogeneous bulk
wave speeds of the layer and the half-space are larger in Example
(b)

(d)

when (a) h ¼ 0� , (b) h ¼ 15� , (c) h ¼ 45� and (d) h ¼ 75� .



(a) (b)

(c) (d)

(e)

Fig. 8. Displacements normalized by ~u1
f¼0 for kh ¼ 3 and kh ¼ 6 when h ¼ 0� for Example 2.
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1 than in Example 2, which is due to the pre-stretch. The influence
of the pre-stretch can be seen in these figures which imply that the
pre-stress leading to volume increase results in an increase of the
wave speed. Larger the homogenous bulk wave speeds, larger are
the wave speeds of the shear horizontal wave, as these wave
speeds are within the range of the homogeneous bulk wave speeds
of the layer and the half-space.

The displacement fields given by Eqs. (72)–(74) are plotted in
Fig. 8 for kh ¼ 3 and kh ¼ 6 when h ¼ 0�. The maximum number of
modes that can propagate are 2 modes for kh ¼ 3 and 3 modes for
kh ¼ 6 (see Fig. 7(a)). Here too, it can be seen from the displacement
profiles, which have been normalized by the amplitude of the first
mode, that the higher modes penetrate further into the half-spaces.
6. Summary and conclusions

In this paper, the dispersion relation for finite-amplitude shear
horizontal waves propagating in a pre-stressed layer embedded be-
tween two identical half-spaces made of pre-stressed compressible
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neo-Hookean materials has been obtained in explicit form. It has
been shown that, finite-amplitude shear horizontal waves may
propagate, provided that the direction of normal to the planes of
constant phase and the direction of normal to the planes of constant
amplitude are conjugate with respect to the B-ellipsoid and ~B-ellip-
soid, where B and ~B are the left Cauchy–Green deformation tensors
corresponding to the initial deformation of the half-spaces and the
layer, respectively. Numerical results are presented for the special
case when the interfaces are principal planes of left Cauchy–Green
deformation tensor. It has been observed that the wave speeds of
the shear horizontal waves are larger when the layer and the
half-space undergo volume increase, which is true for all the prop-
agation directions. In addition, it has also been observed that the
number of modes propagating for a particular kh value differ with
the propagation angle.
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