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Formal grammars and formal languages are studied from the viewpoint of time- 
t~ounded grammars. A time-bound on a grammar is a measure of the "derivational 
complexity" of the language generated. Based on results of Gladkii [7] on connectivity 
in grammars, it is shown that a "linear speedup" can be obtained and that one can con- 
struct Turing acceptors to simulate grammars without loss of time. Positive containment 
and closure properties are also studied. 

INTRODUCTION 

The  subject of this paper is the s tudy of formal grammars and the study of formal 
languages from the viewpoint  of t ime-bounded  grammars.  Much  recent activity in 
automata theory is concerned with the computational  complexity of formal languages 
as measured by the recognition capacity of t ime-bounded or space-bounded Tur ing  

acceptors. Here families of languages are defined by placing bounds on the t ime function 
of g rammars - - th i s  represents a measure of the "derivational complexity" of the 
language generated by the grammar.  The  various properties of such grammars and 
their  languages are then studied. 

The  " t ime function" Ta of a grammar G ---- (V, Z, R, X)  was first defined by 
Gladkii  [7]. For  any positive integer n such that  G generates a string of length n, 
Ta(n) is the maximum value of the set of numbers  ira(w) I X  *=> w in G and w has 
length n}, where for any string w ~ V* such that X * w, ta(w ) is the length of the 
min imum length derivation of w. I f  G generates no such string, Ta(n ) is undefined. 

A nondecreasing total recursive function f "bounds"  the grammar  G, if there exists 

* This paper represents a portion of the author's Ph.D. thesis at Harvard University [1]. 
Some of these results were announced at the IEEE Ninth Annual Symposium on Switching and 
Automata Theory, Schenectady, New York, October, 1968. This research was supported in 
part by Air Force Cambridge Research Laboratories, Air Force Systems Command, USAF, 
under Contract F19628-68-C-0029, and by the National Aeronautics and Space Administration 
under Grant No. NGR 22-007-176. 
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k > 0 such that for all n >~ k, if Tc(n ) is defined, then Tc(n ) ~ f(n). For certain 
"bounding functions" f,  we define the families ~~ ) = {L(G) [ G is a CS grammar 
such that f bounds G} and ~ ( f )  ---- {L(G) [ G is an arbitrary grammar (possibly with 
erasing rules) such that f bounds G}. These are the families of languages studied in 
this paper. 

Certain questions arise immediately. (1) I f f  is a bounding function and k > 0 a 
constant, how do ~-~ ) and ~cs(kf) compare ? Similarly, how do ~ ( f )  and ~(k f )  
compare ? In light of the result of Hartmanis and Stearns [13] for time-bounded multi- 
tape Turing machines, one suspects the families are equal. (2) If  f is a bounding 
function and L ~ ~cs ( f )  or L e ~o(f), does there exist some type of Turing acceptor 
which accepts L and which accepts within time bo u n d f  ? (3) What closure properties 
do the families possess ? 

The first two questions are answered in the affirmative by applying a theorem on 
"connectivity" in grammars. Informally, a derivation is connected if at each step the 
part of the string to which the rewriting rule is applied contains part of the result of 
the application of the rule applied at the previous step. It is shown that for every 
grammar G, one can effectively construct a grammar G' such that L(G') = L(G), 
such that every proper derivation of G' is connected, and such that T c, is bounded by 
a constant multiple of Ta �9 This result (Theorem 3.4), a modification of a result of 
Gladkii [7], yields a "linear speedup" just as for Turing acceptors (Theorem 3.5). It 
is applied again to show that a nondeterministic multitape Turing acceptor can imitate 
the derivations in a grammar without loss of time (Theorem 4.2). 

Corollaries to the result on connectivity become useful in studying the positive 
closure properties of the families ~'~cs(f) and ~q(f). It is shown that if mild restrictions 
are placed on the bounding functions, then these families are AFLs [6] closed under 
reversal and e-free substitution. If a bounding function is of the order of x 2 or greater, 
then the families are closed under intersection, but this is not the case if x 2 majorizes 
the bounding function. 

Particular attention is paid to the family LINEARcs of languages generated by 
context-sensitive grammars bounded by linear functions. It is shown that LINEARcs 
is a subfamily of every c~Ocs(f), that LINEARcs contains the e-free context-free 
languages but is a proper subfamily of the context-sensitive languages, and that the 
closure of LINEARcs under arbitrary homomorphic mappings is the family of all 
recursively enumerable sets. From these results it is shown that most of the questions 
known to be undecidable for context-sensitive languages are also undecidable for 
the languages in LINEARcs and thus in every ~cs( f )  and ~ ( f ) .  

The paper itself is divided into seven sections. Section 1 contains definitions and 
notation from automata and formal language theory which are necessary for this 
paper. In Section 2, time functions, bounding functions, and the families ~L, Fcs(f), 
etc., are formally defined and their basic properties are investigated. Section 3 discusses 
connectivity and Section 4 contains results on the simulation of grammars by machines. 
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In  Section 5, positive closure and containment results are studied, while negative 
closure and undecidabil i ty results are given in Section 6. Section 7 contains results 
relating L I N E A R c s  to other families of languages and other hierarchy results. 

1. BASIC DEFINITIONS AND NOTATION 

In  this section we state some basic definitions of automata theory and establish 

notation. For  background see [4] and [15]. 
A grammar is a quadruple G --~ (V, Z, R, X), where the vocabulary or alphabet V 

is a finite set of distinct symbols, Z C V is the terminal alphabet  or vocabulary, 
X 6 V - -  27 is the initial or starting symbol, and R is a finite set of rewriting rules or 

productions of the form cxxy 1 "" OtnYn~Xn+ 1 ---+ O~lW 1 " "  O~nWn~Xn+ 1 with each c~ i 6 Z * ,  
Yi ~ (V  -- Z)  +, wi ~ V*, and for some i, wi ~ Yi .11fp --~ 0 ~ R, then for any cz, fl 6 V*, 
we write ~pfl ~> soft and say that the rule p -+  0 is applicable to the string apfl and that 

p--+O transforms apfi to sOft. If  0o ,0  t .... , 0  n ~ V *  and for each i > 0 ,  Oi_ 1 ~  Oi, 
then D : 00 :> 01 ~ "- => 0n is a derivation of length n. I f  0, 0' ~ V*, we write 0 + 0' 

if for some n > 0, there is a derivation D : 00 :~ "" => 0 n of length n such that 

0 = 0  o and 0 ' ~ - - 0 n ,  and write 0 *  0' if 0 ' - - - -0  or 0 + 0'. A derivation 

D : 00 ~ "" ~ 0n is proper if 00 = X and if i v ~ j  implies Oi v ~ Or. For  any set 
U C V*, L(G, U) = {w ~ U I there is a proper  derivation X => "" ~ w in G}. The 
language generated by G is L(G) = L(G, Z*), so L(G) ~- {w ~ 27* [ there is a proper  

derivation X => "" ~ w in G}. 
A language L _C 27* is e-free if e r L. In  this paper we shall deal exclusively with 

e-free languages, so that for any grammar G considered we have L(G) = L(G, Z+). 
A rule p --+ 0 is length-preserving if[ p [ = ] 0 I, decreasing or erasing if [ p I > ] 0 t, 

and increasing if [ p I < [ 0 I. 2 
A grammar G ~ (V, Z, R, X)  is Type 0 if each rule in R is of the form ~Z/3 --+ ~y/3 

where ~,/3, 7 ~ V* and Z ~ V - -  27.3 I t  is well known that for any grammar G there is 

a Type  0 grammar G'  such that L(G') = L(G), and that the family of languages 
generated by all Type  0 grammars is the family of recursively enumerable sets. 

A grammar G = ( V , Z , R ,  X)  is monotonic if p - +  0 ~ R  implies [p [ ~ [ 0 ]. A 
grammar is context-sensitive (CS) if it is both Type  0 and monotonic. A language L 
is a CS language if there is a CS grammar G such that L(G) = L. I t  is well-known 

that if G is a monotonic grammar,  then L(G) is a CS language [5, 16]. Denote the 
family of CS languages by C_SS. 

A grammar G = (V, Z, R, X)  is context-free (CF) if p - ~  0 ~ R implies p ~ V - -  Z, 

1 For a set A, A* is the monoid with identity e freely generated by A. A + = A*A. 
For a string w, I w I is the length of w. 

3 A Type 0 grammar is sometimes called context-sensitive with erasing. 
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i.e., ] P I = 1. A language L is a CF language if there is a CF grammar G such that 
L(G) = L. Denote the family of CF languages by CF. 

A grammar G ~- (V, Z, R, X)  isfinite-state if each rule in R is of the form Z --~ aY  
or Z -+ a or Z --+ e, where Z, Y ~ V --  Z, a e Z. A languageL is afinite-state language 
if there is a finite-state grammar G such that L(G) = L. The family of finite-state 
languages is identical to the family of regular sets, those sets accepted by finite-state 
automata. 

I t  is assumed that the reader is familiar with the basic concepts of automata theory. 
In particular, a basic knowledge of finite-state automata, pushdown store automata, 
linear bounded automata, and Turing machines is assumed. It  is well known that a 
language is finite state if and only if it is accepted by a finite-state automaton (deter- 
ministic or nondeterministic), that a language is CF if and only if it is accepted by a 
nondeterministic pushdown store automaton, that a language is CS if and only if it is 
accepted by a linear bounded automaton, and that a language is generated by a Type 0 
grammar if and only if it is accepted by a Turing machine. In this paper we 
consider acceptance by several types of Turing machines and we briefly review their 
definitions. 

A one-tape off-line Turing machine has exactly one tape, (see [14]). Initially, the 
input is assumed to be written on the tape and a computation begins with the single 
read-write head scanning the leftmost input symbol. There is just one read-write 
head on this tape and this head can both read and write in any tape square. The 
transitions of this machine depend only on the current internal state of the machine 
and the contents of the tape square being scanned. In any one step of a computation 
of such a machine, any combination of the following operations may be performed: 
change the internal state; write in the tape square currently scanned (i.e., change the 
scanned symbol); move the read-write head either one square to the left or one square 
to the right or do not move the head at all; the machine halts. 

An on-line, multitape Turing machine has one tape upon which the input is originally 
written. This tape has only one head and this is a read-only head. The input is scanned 
from left to right during a computation and the read-only head never moves left. 
This machine may also have some finite number of storage tapes, each storage tape 
having exactly one read-write head (see [13]). In any one step of a computation of such 
a machine, any combination of the following operations may be performed: change the 
internal state; move the read-only head of the input tape one square to the right; 
on each of the storage tapes, write in the currently scanned tape square (i.e., change the 
scanned symbol); on each of the storage tapes, move the read-write head one square 
to the left or one square to the right or do not more the read-write head; the machine 
halts. 

I f  M is a Turing machine and f is a function, then M accepts within time bound f 
if for each input w accepted by M, there is a computation of M upon input w which 
accepts w and which has no more than max(If(w)[, [ w 1) steps. 
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In most cases the Turing machines discussed are nondeterministic. Thus, at any 
step in a computation there is a finite set of possible transitions. 

The set of positive integers is denoted by N. 

2. TIME FUNCTIONS AND BOUNDING FUNCTIONS 

In this section we define the time function of a grammar. We also define bounding 
functions and the families of languages determined by bounding functions. Some 
basic properties of grammars, their time functions, and bounding functions are 
established. 

We begin by developing the notion of the time function Ta of the grammar G. 
Ta is a (partial) function such that for any n > 0 for which Ta(n ) is defined, Ta(n) 
bounds the length of the shortest derivations of all strings of length equal to n which 
are generated by G. This definition is due to Gladkii [7]. We first define the (partial) 
function t a which assigns to a string w the length of the shortest derivation of w in G 
if such a derivation exists. 

DEFINITION 2.1. For any grammar G = (V, 27, R, X) and every w eL(G,  /7+), let 
ta(w ) be the least integer m such that there is a proper derivation of w in G of length m. 

For any grammar G = (V, 2:, R, X),  t a : V* -~ N is a partial recursive function. To 
see this, note that L(G, V § is a recursively enumerable set since L(G, V +) can be 
enumerated by considering for each n > 0, the strings generated by aIi proper 
derivations of length no greater than n. If  X ~ ' "  =~ w is a proper derivation in G 
of length m, then ta(w ) <~ rn. To compute ta(w ) it is sufficient to consider all proper 
derivations of G of length no greater than m and find the shortest derivation of w. 

DEFINITION 2.2. For any grammar G = (V, Z', R, X), define To : N -~ N the 
(partial) time function of G by 

tmax{to(w) ] w ~ V n, X + w}, if L(G, V n) ~ 
TG(n) = lundefined otherwise. 

The time function Tc of a grammar G may be viewed as a measure of "derivational 
complexity" [7], and one may measure the derivational complexity of a language L 
by assigning to L the "smallest" time function of all grammars which generate L. 
We now proceed to investigate properties of the functions To and to define families of 
languages based on "bounds" on derivational complexity. 

In this paper we deal only with e-free languages. This is a technical convenience 
which simplifies certain proofs and the principal results will still hold if this restriction 
is relaxed (but certain arguments would need to be revised). Thus neither to(e) nor 
To(O) are defined. 

57t/5/4-5 
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If  for some G = (V, Z, R, X), Tc is total recursive, then both L(G, V +) andL(G) 
are recursive sets. In  fact, if Ta is bounded above by a nondecreasing partial recursive 
function, then both L(G, V +) and L(G) are recursive sets. However in general Tc  
need not be partial recursive. We see this in Proposition 2.4 below. 

Notation. For any partial function g:A -+ B, we write g(a)$ ifg(a) is defined and 
g(a)~ otherwise. 

LEMMA 2.3. Let G = (V, Z, R, X) be a grammar and let f be a nondecreasing partial 
recursive function. I f  for all n such that Ta(n)~, both f(n)~ and Ta(n) ~ f ( n ) ,  then 
L(G, V +) and L(G) are recursive sets. 

Proof. Let k be the number of elements in V. Let w ~ V  + and let m = X wl.  
Consider the set Sm of all proper derivations in G of length no greater than 
c(m) ~ ~ 1 ~ i ~  ki .  Since there are exactly c(m) words in V + of length no greater than 
m, either every word in L(G, V +) has length strictly less then m or there is a derivation 
X ~ "'" ~ w' in S m such that [ w ' ]  /> m. Since S~ is a finite set, one can search Sm 
and find such a derivation and string w' or find that there are none. In  the latter case, 
w ~L(G, V+). In  the former case, we have w' eL(G, V +) and Ta( ] w' [)$, and thus 
f([  w' [)$. Since f is nondecreasing and m ~ [w'  l, then Ta(m ) ~ f ( m )  ~ f ( [  w' [). 
Thus  w eL(G, V +) if and only if there is a proper derivation of w in G of length no 
greater than f(]  w' [). Thus  L(G, V+) is recursive, and since 2] + is recursive and 
L(G) = L(G, V +) n Z +, L(G) is recursive. 

PROPOSITION 2.4. There exists a grammar G such that Tc is not a partial recursive 
function. 

Proof. Let Go --~ (V, 2~, R, X)  be any grammar such that L(Go) is not recursive. 
Let A and Ybe  new symbols not in V, and let V 1 ~ V t3 {Y, A}. Let 

R 1 = R v { Y - + O ]  X - - - , - O E R ) v ( Y - ~ A Y ,  Y--~A} .  

Let G = (V 1 , 27, R1, Y). Clearly, L(G) = L(Go) and T c is a total function (since for 
any n, Y + An). Thus  if T c is partial recursive, then it must be total recursive and so 
L(G) is recursive. But G o was chosen so that L(Go) is not recursive. Hence, Tc is not 
partial recursive. 

We now consider a property of time functions which is useful in forming our 
definition of bounding functions. For G ~ (V, 27, R, X), let 

k =max{[0l-- IpI]p--*0ER}. 

For any w eL(G, V+), every derivation of w from X in G has length at least [ w [/k 
since one step in a derivation can increase the length of a string by at most k. Thus  
Tc is "at least linear", i.e., for any n such that Tc(n)$, n/k ~ To(n). Thus  we have 
the following proposition: 
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PROPOSITION 2.5. I f  G =- (V, •, R, X)  is a grammar such that L(G, V +) is infinite, 
one can effectively find a positive integer k such that for any n, if Tc(n)~, then n/k ~ To(n). 

DEFINITION 2.6. A function f is a bounding function if it is a nondecreasing total 
recursive function with the property that there is a positive integer k such that for all x, 
f (x )  ~ x/h, and such that for all x >/O,f(x) >/O. 

DEFINITION 2.7. A bounding function f bounds grammar G = (V, Z, R, X) if 
for any integer, n, if T6(n)~, then Tc(n) ~ f(n). 

DEFINITION 2.8. I f f  is a bounding function, define =~CPcs(f ) = {L(G) ] G is a CS 
grammar and f bounds G} and ~ ( f )  - { L ( G )  [ G is an arbitrary grammar and f 
bounds G}. 

The families ~cs( f )  and ~ ( f )  are the families of languages which we shall study. 
We shall considerf as a measure of derivational complexity of the languages in ~cs ( f )  
and in 5r 

Note that if G is an arbitrary grammar such that f bounds G, then G may have 
erasing rules so that L(G) is not necessarily CS. However, by Lemma 2.3 we have the 
following result. 

COROLLARY 2.9. I f  f is a bounding function, then both ~'cs(f) and ~ ( f )  are families 
of recursive sets. 

Notation. For any function f and any constant c ~ 0, let c - f  be the function 
defined for all x as 

i l if cf(x) <~ 1 
c . f ( x ) - - I c f ( x )  otherwise. 

For any function f,  let C_(f) be the family of functions c - fwhere  c > 0 is computable. 
From the definition of bounding functions, it is clear that i f f  is a bounding function, 

then so is every function in C(f).  
We shall be particularly concerned with the families of languages generated in 

linear time. 

DEFINITION 2.10. A grammar G is a linear-time grammar if it is bounded by some 
bounding function which is linear. Define LINEARcs = {L(G) ] G is a linear-time 
CS grammar} and LINEAR -- {L(G) I G is an arbitrary linear-time grammar}. 

We shall show in Section 5 that CF C LINEARcs C CS. 
If  f and g are bounding functions such that for every x > O, f (x)  ~ g(x), then 

clearly s162 _C ~,Wcs(g ) and 5r C ~O(g). As a result of Theorem 3.5, we shall see that 
for any bounding function f and any computable c > 0, ~0cs(C " f )  = ~cs ( f )  and 
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.L,O(c . f )  = ca(f), so that 5ecs(f ) = UoE_c(,) -LPcs(g) and ~r = [.JgEffq) ~O(g). Thus, we 
will have LINEARcs = Ug~ffr s = s and LINEAR = Ug~ff(,) .oCe(g) ----- s 
where i is the identity function, i(x) = x. From the requirement that a bounding function 
be "at least linear", we shall then have LINEARcs _C Lacs(f ) and LINEAR C s 
for every bounding function f. 

While it is immediate that for every bounding function f, s __C .LP(f), it is not 
known whether &a(f) equals s In particular, it is not known whether LINEAR 
equals LINEARcs.  

We close this section by stating a lemma concerning restrictions on the form of the 
rules of grammars. This lemma is very useful in establishing positive closure properties 
(Section 5). It is easy to prove this result using straightforward but tedious arguments 
based on proofs in [16] and [17]. Recall that only e-free languages are considered. 

DEFINITION 2.11. A grammar G = (V, 2:, R, X) is of degree m if 

m = max{[ p [, [01 [ p ---~ O~R}.  

LEMMA 2.12. I f  G is a grammar of degree m > 2, one can effectively construct a 
Type O grammar G' = ( V, l ,  R, X )  such that the following conditions hold: 

(i) L(G')  = L(G); 

(ii) G' is CS i f  and only i f  G is monotonic; 

(iii) i f  p --~ 0 E R, then p --~ 0 has one of the forms 

Z i --~ YiY~ \ 
Z1Z~ --~ YIZ2 
ZiZ~ ~ ZI Y~ 
Z~Z, ~ Z~ 

z i g  2 .-~ Z 2 

Z1Z ~ ~ aZ~ 
Zi  --+ a 

(iv) for  any n with Tc(n)$, both 
M = 8m(m + 1). 

a ~ Z, Zl  , Z~ , Y1,  Y ,  ~ V - 27; 

To,(n)~, and Tc,(n) ~ MTc(n )  where 

3. CONNECTIVITY IN GRAMMARS 

In this section, we define the notions of a connected derivation and a connected 
grammar. The basic connectivity results are stated and then applied to obtain a "linear 
speed-up" theorem (3.5) and its corollaries. The notions of connectivity in grammars 
are essentially those of Gladkii [7] although some minor changes have been made in 
the basic definitions. Independently, Griffiths [12] has studied similar notions. 
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DEFINITION 3.1. If  D : F  o ~ F 1 ~ " " ~  I'~ is a derivation in grammar 
G = (V, Z, R, X) ,  a production sequence for D is a sequence of n ordered pairs, each 
element of the pair being an ordered triple, where the ith pair is <(Bi, P i ,  Ci), 

(B i ,  Qi ,  c i ) )  with BiPiC i = 1T'i_l, BiQiC i ---- [ ' i ,  and Pi " - +  Qi e R. 
Notice that every derivation has at least one production sequence and may have more 

than one. Also, notice that for each i, 0 < i < n, F i ---- BiQiCi -~ Bi+lPi+tCi+l. 
Thus,  F 0 = BiP~C~ ~ B~QaC ~ = I" 1 = B~P2C 2 ~ B2Q2C 2 = P 2 = BaPaC a =~ "'" 

Bn_lQn_lCn_l = F~_ 1 = BnP,~C~ ~ BnQ,~Cn = T',~. 

DEFINITION 3.2. Consider a derivation D : F 0 => "'" ~ / ' n  in grammar 
G (V, 2J, R, X) and a production sequence S = {<(Bi, Pi Ci), (Bi Qi,  i))}i=l 
for D. For every i ~ 0,..., n - -  1, 

(a) step i + 1 occurs to the left of step i if [ Bi+lPi+l ] ~ ] B i ] ;  

(b) step i + 1 occurs to the right of step i if ] Pi+lCi+l [ ~ ] Ci [; 

(c) step i + 1 is connected to step i if I Bi+tPi+l ] > [ Bi I and ] Pi+lCi+l ] > [ C i [. 

Consider Cases (a), (b), and (c) in  Definition 3.2. Since Bi+lPi+lC~+l = BiQiG 
and, as the left-hand side of a rewriting rule, Pi+l =/= e, it is immediate that Cases (a) 
and (b) cannot occur simultaneously. Now ]Bi+lPi+a]<~]Bi] if and only if 

] Ci+t I >~ l QiCi I, and 1 Pi+lCi+l [ <~ I Ci I if and only if I Bi+l I >~ I BiQi I. Thus, 
the three cases are mutually exclusive and exhaust the possibilities, that is, exactly 
one of the following occur: (i) step i + 1 is connected to step i; (ii) step i + 1 occurs 
to the left of step i; (iii) step i + 1 occurs to the right of step i. 

DEFINITION 3.3. A derivation in a grammar is a connected derivation if there is a 
production sequence for it such that each step is connected to the previous step. 
A grammar is a connected grammar if each proper derivation is connected. 

It  is easy to see that if G --~ (V, Z', R, X)  is a finite-state grammar such that e (~L(G), 
then G is a connected grammar, since in any proper derivation D : X :~ / '1  => "'" =>/ 'n ,  
e a c h / ' i  is in Z+ u 27"V. Note that a CF grammar cannot be connected unless it is 
a linear CF grammar. 

In  [9] it is shown that for every e-free context-free language L there is a grammar 
G ---- (V, 27, R, X) such that L(G) ~ L and such that each rule in R is of one of the 
following forms: 

Z~aY1 t Z - - ~ a  a ~ Z , Z ,  Y 1 , Y ~ e V - - X .  

Z -+ a Y 1 Y  2 

(Such a grammar is a "standard 2-form" grammar.) We can construct a connected 
grammar G 1 = (V1, X, R1, X1) such that L(G1) = L ( G )  and such that for any n > 0 
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both T~(n)~, iff Tal(n)~,, and Ta(n) = T%(n). The construction is as follows. Let X 1 
be a new symbol and 21 = { a l [ a e ~  } be a set of new symbols, and let 
V 1 = V t3 2"1 u {X1}. Let 

= {X1 --+ a l a E 2 " , X - - + a ~ R }  
u { X  1 ~ a tY l  [ a e 2", Yx ~ V - -  2", X - - ~  aY l  e R } 
tA { X  I -+ alY1Y2 [ a e X , Y1,  Y2 e V - -  2", X- -+ aY1Y~ E R } 
k..) { b x Z  .--+ bal , blZ --+ ba [ b, a ~ X, Z e V - -  2", Z -+ a ~ R} 
t3 {blZ---~ balYx l b , a ~  2", Z, YI  ~ V - -  2", Z---~ aY1E R } 
k) {blZ--+ balY1Y~ [ b , a E 2", Z, YI , Yz e V - -  2", Z--+ a Y x Y  2 ~ R}. 

In  the above construction it is obvious that L(G1) = L(G). The symbols of 2'  1 play 
the role of "connectors," since by the form of the rules if X 1 ~ F 1 ~ ... =>/ 'n  is a 
proper derivation in G1, then i < n implies that _P, has exactly one symbol from 2'  1 
a n d / ' n  has one symbol from X 1 or is a string from which nothing can be derived. 
However, the preservation of the time function stems from a property that is unique 
to CF grammars: any proper derivation of a terminal string can be transformed into 
a proper derivation of that string such that at each step the leftmost nonterminal symbol 
is the symbol transformed at that step. 

I t  is easy to see that for an arbitrary grammar G one can construct a connected 
grammar G' such thatL(G')  = L(G). This follows from the fact that for any grammar 
G one can construct a nondeterministic one-tape off-line Turing machine that 
"simulates" G. Since a Turing machine computes by scanning adjacent squares in 
successive moves, the grammar obtained from this machine will be connected. 
However, the "obvious" construction--which begins with grammar G, produces 
Tur ing machine M which simulates G, and then produces a connected grammar G'  
from M ~ m a y  not preserve the order of the time function of G; in fact, it is not unusual 
for T a, to be on the order of (Ta) ~ (the simulation of grammars by Turing machines 
is discussed further in Section 4). What is needed here is a construction of a connected 
grammar G'  from G such thatL(G')  : L(G) and Ta" ~ C(Ta). 

Gladkii [7] has established the following: 
I f  G is a grammar, one can construct a connected grammar G' and find a constant k 

(which depends only on G) such that L(G') = L(G) and such that for any n > 0, if 
Ta(n)J,, then Ta,(n),~, and Ta,(n) ~ hTa(n). 

We shall use a variation of this result which is stated below. A detailed proof appears 
in [I]. 

CONNECTIVITY THEOREM 3.4. I f  G is a grammar, one can effectively construct a 
connected Type 0 grammar G 1 = (V, Z,  R, X )  and a constant k > 0 such that 

(i) L(G1) ---- L(G); 
(ii) G 1 is CS i f  and only i f  G is monotonic; 
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(iii) every proper connected derivation in G 1 has a unique production sequence; 

(iv) for any n > O, i f  Ta(n)~, then both Tal(n)~ and Tal(n ) <~ kTa(n); 
(v) i f  f is a bounding function such that f bounds G, then function k " f bounds G 1 . 

Theorem 3.4 is a powerful tool for studying t ime-bounded  grammars and the 
languages they generate. The  first application of this result is a " l inear  speed-up"  

theorem for grammars similar to that  of Hartmanis  and Stearns [13] for mult i tape 
Tur ing  machines. 

THEOREM 3.5. Let G be a grammar and let f be a bounding function that bounds G. 
For any positive computable number c, one can effectively construct a connected grammar G o 
such that L( Go) = L( G) and the function c " f bounds G O . 

Proof. There  is nothing to prove if c ) 1 so assume c < 1. Let  m be the least 
positive integer such that 2/m ~ c. Since c is computable,  m can be found effectively. 

By Theorem 3.4 there is no loss of generali ty if one assumes that G = (V, 2,  R, X )  
is connected and that each proper  connected derivation in G has a unique product ion 

sequence. Let  k = max{[ 0 1 - -  [ P ] [ P --~ 0 ~ R}. Thus,  if N O ~ '-. ~ -Pt in G, then 
[ F t ] - -  [ I '  o ] ~ kt, since length can be increased by at most k at each step. 

Construct  grammar G o as follows: 

(i) Let  X o be a new symbol and let RsnoR x = {X o -+  w [ w ~ I,)i<(2m+l)kL(G, Vi)}. 
S i n c e f i s  recursive a n d f  bounds G, Oi<(em+l)kL(G, V i) can be effectively found so that  

RSHOR T can be effectively constructed. 

(ii) For  each i = 1,..., (2m + 1) k and 

~bE V*, ] / ' ]  ~ i ,  there exist 0 0 ..... 0 5 

0 o => "" ~ 0 5 is a connected derivation in 
Rid can be effectively constructed. 

each j = 1 ..... m let Ri. j = {F --+ r [ I', 
V* such that 0 0 = / I ,  0 5 =~b, and 

G}. Since i / ' ]  ~< i ~< (2m + 1)k, each 

([ ](2m+l)k m 
(iii) Let  R o : R W RSHOR T k.)~,~Ji=l 0 j= l  Ri,J), let V o = V W {X0} , and let 

a o : (V o, Z', Ro,  2(o). 

We must  show that  (A)L(Go) = L(G), (e)  G o is connected, and (C) c �9 f b o u n d s  G o . 

(A) F rom the construction of Ro,  it is immediate that for any w ~ V +, X o + w 
in G o only if X + w in G, so that L(Go,  V +)C_L(G, V+). But R_CRo;  so 
L(G, V +) C_L(Go, V+). The  symbol X o can only occur once in any proper  derivation 

in G o and in that occurrence serves as the initial symbol. Hence, L(Go,  Vo+ ) = 
L(Go,  V ~) = L(G, V +) and L(Go) = L(G). 

(B) Let  D : X  o ~ 01 ~ . . . ~ O n  be a proper  derivation in G o . By the 
construction of R o, for each i = 1,..., m, either Oi_ 1 ~ 0 i in G or there exist 

~Wi, 1 , . . . )  ~7i,p(i) E V q- s u c h  that  Oi_ 1 ~ rri. 1 ~ "'" : ~  7~i,o(i) =~ 0 i is a connected derivation 
in G, where 0 o = X. Thus  D' : X ~ "" ~ 01 ~ "" ~ O n is a proper  derivation in G. 
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Since G is connected, D '  is a connected derivation and so D is a connected derivation 
in Go. Thus  G o is a connected grammar. 

(C) S u p p o s e d  : X ~ 01 => .." ~ 0o is a derivation in G and I 0,[ < (2m + 1)k. 
Then  X o --~ 0 o is a rule in RS~IORT _C R0, so that t%(Oo) = 1 ~ c "f(I 0o I). Thus if 
T%(n)~ and n < (2m + 1)k, then Tao(n ) = 1 ~ c " f (n) .  

Suppose D : X => 01 => .." => 0 o is a proper connected derivation in G such that 
100[ > / (2m + 1)k and that a = ta(Oo). By choice of k, ta(Oo) >/ [00 I/k so that 
a >/] 0o Ilk ~ 2m + 1. Let  S = {((Bi,  Pi ,  Ci), (B i ,  Q, ,  Ci))}L1 be a production 
sequence for D such that each step is connected to the previous step. Let  p be the 
greatest integer such that pm ~ a. By the construction of R 0 , 

D' : X o ~ Om ~ "'" ~ 0~ 

is a proper connected derivation in Go. 
There are two cases: 

(i) I f  pro = a, then O,n : 0o and tco(Oo) <~ p = a/m < 2a/m ~ ca : ct~(Oo) <~ 
cTa(I Oo I) ~< cf(I Oo I). 

(ii) I f  p m <  a, then 0p,~ =~ ... ~ 0~ is a connected derivation in G of length 
a --  pm < m. Consider the production sequence {((B,,  P , ,  Ci) , (B i ,  Q, ,  Ci))}~.=m+l. 
Then there exist B" and C" such that each BiPiC i can be expressed as B"a,PiBiC" 
and each BiQ~C~ can be expressed as B"aiQ~fliC" where ] ai I ~ (o - -  pm) k < mk and 
[fli I ~ (cr - -  pro) k < mk (recall that the derivation is connected and k = max{l p I, 

I 0 ] ] p ~ 0 ~ R}). Thus  %,~+tPo,,+lfiom+l ~ ... ~ a~Oofio is a connected derivation 
in G with i %m+lPora+lfJom+l I < (2m + 1)k; so %m+lPom+lflora+l --+ %Q.fio is a rule 
in R o . Hence Oom = Bo~+lPo~n+lCo~+l = B"%,~+lPo~+lfio~+lC" and 0o = B"o~oQ~ C", 
so that X o ~ 0,~ ~ ."  =~ Oom ~ 0o is a derivation of length P + 1 in Go. Thus  
t%(Oo) < p + 1 : aim + 1 <~ 2~/m ~ ca = ctG(Oo) <~ cTc(I 0o [) ~ cf(I 0o I)- 

Thus  for any n such that Tco(n)~, T~o(n ) ~ c "f(n);  so c �9 f b o u n d s  G o . 
By (A), (B), and (C), G o has the desired properties. 

COROLLARY 3.6. Let G be a grammar and f a bounding function such that f bounds G. 
For any positive computable number c, one can construct a connected grammar G' and a 
positive integer k such that L(G') = L(G), and whenever Tc,(n)~, Tc,(n) : 1 i f  n < k 
and Tc,(n) ~ cf(n) i f  n >~ k. 

COROLLARY 3.7. I f  f is a bounding function and c is a positive computable number, then 

-5fcs(f ) = .Lfcs(C " f )  and .W(f)  = .Lf(c . f ) .  Thus, .Lfcs(f ) = Ugh_c(,)Lfcs(g) and 

s  = Ou~_cO') s 

COROLLAI~Y 3.8. I f  i is the function by i(x) = x for all x, then L I N E A R c s  = ~~ ) 
and L I N E A R  = -~(i). 
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COROLLARY 3.9. For any bounding function f,  L I N E A R c s C L P c s ( f )  and 
L I N E A R c s  _C L I N E A R  _C ~ ( f ) .  

Proof. S i n c e f i s  a bounding function, there is a constant k > 0 such that  for all n, 

kn ~ f ( n ) .  Thus  L I N E A R c s  = ~ c s ( i ) =  s C_o~cs(f ) and LINEARcs_C 
L I N E A R  = 5e(i) = s176 i)  _C ~ ( f ) .  

COROLLARY 3.10. I f  f is a bounding function and G is a grammar such that f bounds G, 
then one can effectively find a grammar G' and a constant c ~ 0 such that L(G') = L(G) 
and such that for any n where TG,(n)~, Tc'(n) ~ cf (n). 

Proof. Let  G'  and k be as in Corollary 3.6. Consider those n such that Tc,(n)~. 
I f  f ( 1 )  >/ l,  then for n ~ h, Tc,(n ) = 1 ~ < f ( l )  <~f(n) since f is nondecreasing. 
Since f (n) >~ Tc,(n) for n ~> k, c = 1 will do. I f  f ( 1 )  < 1, then for n < k, 

Tc,(n) = l < ( 1 / f ( 1 ) ) 2 f ( 1 ) ~ ( l / f ( 1 ) ) 2 f ( n )  since f is nondecreasing. Since 

l / f (1)  > l ,  for n >/h, T~,(n) <~ f(n) <~ (1/f(1))2f(n). Hence c = ( l / f (1))  2 will do. 
We now turn to an application of connectivity to a certain class of l inear-t ime 

grammars.  Suppose G - -  (V, Z', R, X)  is a CS grammar such that  each rule in R is 
of one of the following forms: 

Z~-~ Y~ \ 
Z 1 --+ Y1Y2 

Z1Z2 --+ Y1Z2 
Z1Z2 --+ Z1 Y2 [ 
Z~Z~ ~ aZ2 [ 

aZ2 ~ aZ3 
Z 1 ---+ a 

a 6 Z, Z1, Z2 , Y1, Y2 ~ V - Z. 

We lose no generality assuming that G is connected; hence, every proper  
derivation of G is connected. 

Let  L be the set of those w ~ L(G) such that there is a connected proper  derivation 
X ~ Ct ~ "'" ~ Cn = w in G with the following property:  for some k ~ n, every 
rule used in the subderivation X ~ r ~ "'" =~ q~k is a CF  rule and every rule used 
in the subderivation r ~ "'" =~ Cn = w is a length-preserving rule. We shall show 
that if there is an integer p > 0 such that every such derivation has length bounded 

by  p r w l, then L is CF. 
Let  L 1 be the set of all strings ~ ~ V* such that there is a proper  derivation of ~ in G 

which uses only C F  rules. Hence, L 1 is a CF  language over V. We view L 1 as the set 

of strings obtained by the "CF-subder iva t ion"  of the type described above. To any 

CF grammar G 1 such thatL(G1) = L I ,  add the set of rules {Z --+ (Z, a) I a ~ Z', Z E V}. 

Let  the resulting language b e L  2 . Since this set of rules is CF  and G 1 is a C F  grammar, 

L 2 is CF. 
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Consider a nondeterministic one-tape off-line Turing acceptor M which operates 
as follows. Upon receiving input over V • 27, say w 1 = (Z1, al) "'" (Zn, an), M 
imitates some derivation Z 1 "-. Z~ ~ ~b 1 => "" => ~b t in G which is connected and 
which uses only length-preserving rules. I f  ~b t = a 1 "" a s ,  then M accepts w 1 . 

Since the derivations have length bounded by f ( x )  = px and since the imitated 
derivations of G are connected, M operates within a linear time bound. In [14], Hennie 
shows that a deterministic one-tape off-line Turing acceptor which operates in linear 
time accepts only a regular set. This result may be extended to nondeterministic 
machines in a straightforward manner. Hence, if L~ is the language accepted by M, 
then L 3 is regular. 

Let  h : (V • 27)* --+ 27* be the homomorphism determined by defining h((Z, a)) = a 
for Z ~ V, a ~ 27. Let L 4 = h(L 2 n L3). Since L 2 is CF and L 3 is regular, and since the 
family of CF languages is closed under homomorphic mappings, L 4 is CF. But clearly, 
L 4 = L so that L is CF. 

This argument verifies one's intuitive feelings that a language like 

L = {a•b"c"{n >~ 1} 

cannot be generated in linear time by first generating a string in a*b*c* and then 
checking to see that the number of a 's  matches the number of b's, ete. This argument 
does not show that L is not in L I N E A R c s .  In  fact, it is shown in Section 7 that 
L I N E A R c s  contains every language accepted in linear time by a nondeterministic 
multicounter acceptor, and hence contains L. 

4. SIMULATION OF GRAMMARS BY MACHINES 

It  is natural to ask what relationship exists between the generation of a language by 
a grammar within a given time bound and the recognition of that language by a Turing 
acceptor. In  particular, if f is a bounding function and G is a grammar such that f 
bounds G, does there exist a nondeterministic Turing machine M (multitape, multi- 
head, or whatever) such that M recognizes L(G) within time bound g for some g E C( f )  ? 

One approach to answering this question is to determine a machine model in which 
we can simulate derivations of grammars of some given family. For example, if G 
is a Type  3 grammar, then one can construct a nondeterministic finite state machine M 
such that M accepts L(G) in real time 4 and such that the computations of M essentially 
imitate the proper derivations of G. Similarly, if G is a standard 2-form context-free 
grammar [9], then one can construct a nondeterministic pushdown store machine M 
such that M accepts L(G), M operates in real time, and the computations of M 
essentially imitate the proper left-to-right derivations of G (see [8]). In  the first case, 

4 That is, if M accepts an input w, it does so by means of a computation of ] w [ steps. 
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the time function T a is Ta(n) = n. In the second, if Ta(n)~, then Ta(n) ~ n. Hence 
M preserves the order of the time bound. 

Since for any grammar G = (V,  •, R,  X ) ,  L(G,  V +) is a recursively enumerable 
set, one can construct a one-tape off-line deterministic Turing machine M with the 
property that if 01 ~ "-" =~ O n is a derivation in G, then there is a computation 
% ~ "" ~-- ~r m of M and a sequence of integers i 1 ,..., in such that for a n y j  ~ 1,..., n, 
the tape content of ~ri~ is an encoding of 0j. However, the length m of the computation 
% ~-- "" ~-- rr,~ is generally of an order of at least n ~. In  fact, if G is bounded by f ,  

then there is a one-tape off-line nondeterministic Turing machine M which imitates 
the derivation of G within time g �9 C_(f2), but not necessarily a machine M '  of this type 
which imitates the derivations of G within time bound h where limn~o~ h(n)/( f (n))  2 ~- 0. 

There are two basic reasons why the time function of an "imitating" off-line machine 
may reach the sequare of the time function of the grammar: 

(1) In  any arbitrary derivation D : 00 ~ '-- ~ 0 n of an arbitrary grammar G, 

for any i, 0 < i < n, the step 0 i ~ 0i+1 may occur arbitrarily far to the right or to the 
left of the step Oi+ 1 ~ 0 i . But the simulation by machine must take place as if D were 
connected, since the process of reading and writing on a Turing tape is a connected 
process--i.e., adjacent tape squares are scanned in successive moves. Thus, if G is not 
connected, particularly if D is not connected, then as many as [ Oi_ 1 I steps must be 
added to the simulation process. 

(2) I f  c~rrfl ~ o~Ofi in G where ] 0 I > ] ~r 1, then on the corresponding simulation 
machine tape we must either move ~ to the left or move/3 to the right in order to make 
room for the ] 0 I - -  I~1 extra symbols, and this takes a number of machine steps 
which is on the order of l c~ I or [fi ]. A similar process takes place if J 0 [ < I rr I. This 
process may occur in a grammar to an arbitrary depth of embedding and arbitrarily 
far from either end of the tape. Thus  the simulation process may need on the order of 
m 2 extra steps, where m is the maximum length of any string generated. 

One method of overcoming (1) is to restrict our attention to connected grammars, 
so that each proper derivation is connected. By Theorem 3.4 we lose no generality if 
our interest is in the recognition of languages by means of imitating derivations. 

We cannot overcome (2) on a one-tape off-line machine since it is known that a 
one-tape off-line nondeterministic Turing acceptor recognizes only regular sets in linear 
time [14], and as indicated above (and shown in Section 5), for every context-free 
language L there is a grammar G such that L(G) = L and for all n such that Ta(n),~, 

Ta(n ) ~ n. Thus, we turn to on-line multitape Turing acceptors (with one head per 
tape). We consider machines with two pushdown store working tapes and one input 
tape. We visualize the two pushdown tapes as being "head-to-head," the first "pushing 
down to the left, the second "pushing down" to the right in the following way. 

Let G = ( V, X, R, X) be a grammar and Z I ' ' ' Z , ~  I71"'" Y n ~ R ,  each 
Z i ,  Y i  �9 V. For any strings X 1 "" A t ,  B1 "'" B~ such that each -d i , Bi  �9 V, we wish 
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to imitate the derivation A1 "'" AtZI  "'" ZmB 1 "'" B8 ~ A1 "'" AeY1 "'" YnB1 "'" B , .  
Suppose that for some j, 1 <<. j ~ m, A 1 "." A t Z  1 "" Zj is stored on pushdown Tape 1 
with the read-write head scanning Z~, and that Zj+I "'" ZmB1 "'" B8 is stored in push- 
down Tape 2 with the read-write head scanning Zj+I �9 

The machine operates by first reading Z~-+I "'" Z,~-I off pushdown Tape 2 until Z,~ 
is scanned, storing Zj+ 1 ..- Zm-1 on pushdown Tape 1 so that A 1 ." A~Z 1 ".. Zm-t is 
stored on Tape 1 with Z,~_ 1 being scanned. Then Z 2 "" Zm-1 is read off pushdown 
Tape 1 and stored on pushdown Tape 2, so that Tape 1 contains A t "" A t Z  t with Z t 
being scanned, and Tape 2 contains Z 2 "" Z,~B 1 -" B~ with Z~ being scanned. This 
action essentially checks to see that Z 1 ".. Zm occurs so that the rule Z t ... Z~--~ 
Y1 "'" Y, can be applied. At this point, ]11 "'" Y, is written on Tape 1 in place of Z1, 
and Z~ ... Z m is erased from Tape 2. Finally, for some k, 1 ~ k ~< n, Y~+I "'" Y, is 
read off Tape 1 and stored on Tape 2. 

Thus, if G is a connected grammar, any step in a derivation of G can be imitated 
by at most 4M steps by a two pushdown store machine, where M is the degree of G. 

From the above discussion, the following is immediate: 

LEMMA 4.1. Let G = (V, l ,  R, X )  be a connected grammar and let f be a bounding 
function that bounds G. One can effectively construct a nondeterministic Turing machine M 
with two pushdown store tapes (and no other tapes) and an integer k ~ 0 such that: 

(i) for every w E L(G, V+), there is a computation of M of length no greater than 
kf(] w {) which begins with tape content X and halts with tape content w; 

(ii) every computation of M begins with tape content X ,  and if  it halts with tape 
content w, then w ~ L(G, V+). 

We now have our theorem on "simulation." 

THEOaI~M 4.2. I f  G = (V, X, R, X )  is a grammar and f is a bounding function such 
that f bounds G, then one can effectively construct an on-line nondeterministic Turing 
acceptor M with three pushdown store tapes such that L ( M )  = L(G) 5 and such that for 
each w e L ( G )  there is a computation of  M of length no greater than max(f(I w I), ] w I) 
which accepts w. 

Proof. By Theorem 3.4, we may assume that G is connected. Using the methods 
of [13], we can modify the machine M 1 of Lemma 4.1 to construct a machine M~ 
with two pushdown store tapes such that for any proper derivation X ~ 01 ~ ."  => 0~ 
in G, there is a computation of M 1 of length no greater than n/4 which halts with an 
encoding of 0~ of length no more than [ 0~ I/4 on the two tapes. 

From M s we construct a machine M a by adding an input tape, which is read only 
from left to right, and an additional pushdown store tape which we shall call Tape 3. 

5 L(M) is the set of inputs accepted by M. 
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The  two pushdown store tapes from M 2 will be called Tapes  1 and 2. M 3 operates in 
three phases. 

Phase 1 

In  Phase 1, M 3 operates like M 2 , imitating an arbitrary proper derivation of G 
on Tapes  1 and 2. Simultaneously, the input w is read, one symbol per step, and stored 
on Tape  3, compressed (as in [13]) by a factor of four so that no more than [ w [/4 
tape squares are needed. 

This  phase ends when M 3 guesses that the contents of Tapes 1 and 2 are an encoding 
of a string w' ~L(G).  6 

Phase 2 

In Phase 2, M 3 positions the tape contents of Tapes 1 and 2 so that Tape  1 holds 
the encoding of a prefix of w', say w 1 , with the tape head at the right end of the 
encoding of wl ,  and Tape  2 holds the encoding of a suffix of w', say w 2 , with the tape 
head at the left end of the encoding of w 2 , where w' ~- w lw  2 . The  particular choice 
of w t and w 2 is made by guessing that at the end of Phase 2, the input read and stored 
on Tape  3 has length equal to ] w 1 l. 

Meanwhile, M 3 continues to read input if the input has not already been completely 
stored on Tape  3. This  phase ends when the positioning of Tapes  1 and 2 is completed. 

Phase 3 

In Phase 3, M 3 compares the contents of Tape  1 with the input read up to this 
point and simultaneously compares the contents of Tape  2 with any additional input 
still to be read. I f  wlw 2 = w, then M 3 halts in an accepting state. Otherwise, M z 
continues to operate in some arbitrary nonaccepting manner.  

Thus  M 8 accepts w if and only if w ~ L ( G ) .  Further,  for any w ~ L ( G ) ,  there is a 
proper derivation of w in G of length no greater than f ( [  w I)- This  derivation can be 
imitated in Phase l by a computation of no more than f(]  w I)/4 steps. Since w is stored 
in only ] w J/4 tape squares, Phase 2 takes at most I w r/4 steps. Finally, Phase 3 takes 
I w ]/4 steps if the input is entirely stored on Tape  3 by the end of Phase 2 and takes 
max(l w F/4, i w [ - -  (f(I  w 1)/4 + ] w I/4)) steps otherwise. Thus  this min imum length 
accepting computation takes at most 

f ( l  w J)/4 + J w ]/4 -/- max(I w I/4, I w [ - -  (f([  w I)/4 + t w ]/4)) ~ max(I w I,f(l  w I)) 

steps. 
Theorem 4.2 can be strengthened if one looks at different classes of bounding 

functions. I f  limn_~o~f(n)/n ~ 3, the Tur ing machine need have only two pushdown 
store tapes if one allows it to operate by first imitating a derivation on these tapes and 

6 The ability of a nondeterministic machine to "guess" is described in [2]. 
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then comparing the result with the input, so the input is not read until the end of the 
computation. Since this type of comparison takes no more than 2n steps, a speed-up 
of another 1/3 allows one to obtain the same result with respect to preservation of time. 
If limn_,~f(n)/n 2 > O, the input can be read first, stored on the "bottom" of one of 
the pushdown store tapes. After imitating some derivation on the pushdown store 
tapes, this stored input can be compared with the result of the imitated derivation. 
This comparison need take no more than kn 2 steps for some k > 0; so again time can be 
preserved. 

Note that the converse of Theorem 4.2 does not hold for linear functions. It is 
easy to see that the language {wcwRcw I w ~ {a, b}*} can be accepted in real time by 
a deterministic on-line Turing acceptor with one storage tape. However, in Section 6 
it is shown that the language cannot be generated by a grammar G such that 
l im, .~ TG(n)/n 2 = O. 

It is well known that the family of CS languages is precisely the family of languages 
accepted by nondeterministic linear-bounded automata. In [17] Landweber showed 
that if M is a deterministic linear-bounded automaton, then L(M) is CS. In [16] 
Kuroda showed that if M is a nondeterministic linear-bounded automaton, then L(M) 
is CS, and that if G is a CS grammar, thenL(G) is accepted by some nondeterministic 
linear-bounded automaton. The arguments in [16] and [17] can be extended to time- 
bounded models to yield the following propositions: 

PROPOSITION 4.3. I f  M is a one tape off-line nondeterministic Turing acceptor 
which accepts within time bound f (where f is a bounding function), then one can construct 
a connected grammar G such that L(G) = L(M) and such that f bounds G. In this case, 
G essentially imitates the action of M. 

PROPOSITION 4.4. Let f be a bounding function such that for some c >~ 1 and all x, 
f (x )  >/cx 2. A language L is accepted by a nondeterministic linear-bounded automaton 
that accepts within time bound f if  and only i lL  ~ ~cs(f) .  

Similarly, we have: 

PROPOSITION 4.5. Let f be a bounding function such that for some c >/ 1 and all x, 
f (x)  >~ cx 2. A language L is accepted by a nondeterministic one-tape off-line Turing 
acceptor which accepts within time bound f if and only if L ~ ~ ( f ) .  

5. POSITIVE CLOSURE AND CONTAINMENT PROPERTIES 

In this section positive closure and containment properties of the families ~"q~cs(f) 
and ~o(f) are studied. First, it is shown that LINEARcs (hence, ~~ ) and ~ ( f ) )  
contains the e-free CF languages. Then, it is shown that LINEARcs contains CS 
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languages which are not CF by showing that LINEARcs forms a basis for the recur- 
sively enumerable sets. 

LEMMA 5.1. I f  L is an e-free CF language, then L ~ LINEARcs .  

Proof. By the results of [9], there is a CF grammar G = (V, E, R, X )  such that 
L(G) = L and such that each rule in R is of one of the forms 

Z~aY1 t Z--+ a Z, Ya , Y~ ~ V - -  Z, a c Z. 
Z --+ a Y 1 Y ~  

Since each rule in R either 
into a terminal symbol, it is 
is bounded by i(n) = n, so 

is length-increasing or transforms a nonterminal symbol 
clear that for any n such that Tc(n),~, To(n) ~ n. Thus G 
L(G) E ~fcs(i) = LINEARcs .  

LEMMA 5.2. For any finite set Z and any recursively enumerable set L C_ Z*, there 
is a language L'  c LINEARcs and a homomorphism h such that h[L'] = L. 

Proof. Let G = (V, Z, R, X) be a Type 0 grammar such that L(G) = L. We lose 
no generality by assuming that each rule in R is of one of the forms 

p ~ O  t p, O E ( V - Z ) * , Z ~  V - -  X , a ~ Z .  
Z - - ~ a  ~ 

Let X',  D, and d be three new symbols, and let V' = V ~0 {X', D, d} and Za = Z U {d}. 
Let 

R'  = { X ' ~  d X ,  d D  ~ dd) 
k) {p ---> @ ] p, O ~ ( V  - -  Z ) * ,  l p I < [01, p ~ 0 E R }  
U { P - - ~ D ~ O ] p , O ~ ( V - - Z )  * , ]p[  > / l O [ , p - ~ O c R ,  k = [P l - -  I Olq-  1} 
w {Z---~ a [ Z ~  V -  Z, a e Z ,  Z--~ a ~ R }  

{ZD --~ D D Z  I Z c V --  Z}. 

I f  G' = (V',  Za , R',  X ' )  then L(G') C {d}+ L(G) and for each w eL(G) ,  there is an 
integer h > 0 such that dkweL(G ' ) .  Let h : Z a * - - + Z *  be the homomorphism 
determined by defining h(d) ~- e and for a ~ Z, h(a) = a. Then h[L( G')] = L( G) = L .  
Further, since each rule in R' is either a length-increasing rule or of the forms dD --~ dd 
or Z - +  a, it is immediate that for any n such that Tc,(n)~ , Tc.(n) <~ 2n. Thus 
L( G') ~ LINEARcs .  

THEOREM 5.3. For any bounding function f ,  -~fcs(f) and ~ f ( f )  contain the e-free 
CF languages and also CS languages which are not CF. 
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Proof. Consider the languages L and L '  in Lemma 5.2. I f  L is not CF, then neither 

is L' ,  since the CF  languages are closed under  arbitrary homomorphic  mappings.  

Since L '  is in L I N E A R c s  , it is CS. 

Gladkii  [7] showed that  L I N E A R c s  contains the e-free CF  languages and also 
contains non -CF  languages. The  proofs here are different from those in [7]. 

We  now study the positive closure properties of the families o~'cs(f ) and 5r  For  
the most part  we investigate A F L  [6] operations, but  we also explore reversal, v inter-  
section, and substitution. 

I t  is a straightforward exercise to show that the families ~ c s ( f )  and ~ ( f )  are closed 
under  union, concatenation, and reversal, the arguments being based on simple 
grammar  constructions. Similarly, the "cross-product"  construction used in [4] to 

show that  the C F  languages are closed under  intersection with regular sets can be 

modified to show that the families -~9~ ) and i t ( f )  are closed under  intersection 

with regular sets. Thus  we state the following theorem without proof. 

THEOREM 5.4. For any bounding function f, the families -~'~ ) and ~ ' ( f )  are closed 
under union, concatenation, reversal, and intersection with regular sets. 

We now investigate the closure of s and .og~ under  certain mapping 
properties.  We begin by showing closure under  LINEARcs-subs t i tu t ion .  s Recall that  

for any f ,  each language in s or c~( f )  is e-free. Hence every s 
and every ~ ( f ) - s u b s t i t u t i o n  is e-free. 

THEOREM 5.5. I f  f is a bounding function, then -2~ and ~ ( f )  are closed under 
LINEARcs-subs t i tu t ion .  

Proof. This  proof involves a straightforward but  tedious argument,  and so only a 
sketch will be given (the details may be found in [1]). 

Let  G = (V, Z, R, X)  be a grammar such t h a t f b o u n d s  G. Assume that i fp --* O 6 R, 
then p ~ (V - -  Z)*.  Let  c > 0 be a constant such that for all n ~ O, Ta(n)$ implies 

To(n) ~ cf(n). 
L e t ,  be a LINEARcs-subs t i tu t ion  on Z. For  each a ~ Z, let Ga = (Va,  Z~,  R~,  X~) 

be a CS grammar such that G ,  is l inear-t ime and such that L(G~) = ~'(a). Assume that  

if p - ~  0 ~ R~,  then p ~ (V~ - -  Z~)*. Let  co > 0 be a constant such that  TG,(a)~ 

7 If w ~ Z*, the reversal of w, w R is defined as follows: if w = e, then w R = e; if w = a ~ 27, 
then w R = a; if w = at "'" a , ,  n > 1, a, ~ Z, then w R = a,  "" al �9 If L _C Z*, the reversal 
ofL isL a = {wR]weL}. 

s Let Z be a finite nonempty set of symbols. For each a e 27, let Za a finite nonempty set of 
symbols, and let v(a) be a subset of Za*. Let r(e) = (e), r(al "'" a,) = r(al) "'" r(an) for n >1 1, 
a~ E Z, and 7[L] = 0~eL r(w) for L _C 27*. Then T is a substitution on 27, and is an e-free sub- 
stitution if for each a e Z, e r r(a). If o~- is a family of languages and r(a) E ~ for each a ~ 27, 
then r is an ~-substitution. 
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implies Ta,(n) ~ can. We lose no generality by assuming that for all a, b ~ Z, if a # b, 
then (Va - -  Za) n (V b --  Zb) = (Va - -  Za) n (V --  Z) = ~b. 

Let Z ~- {d[ a ~ 2} be a set of new symbols. Let h : V* --+ ((V - -  Z) td 2~)* be the 
homomorphism determined by defining h ( Z ) ~ - Z  for Z E V -  Z and h(a) -~  ff 

for a ~ Z. Let R 1 ----- {h(9 ) --~ h(O) l P --+ 0 ~ R} t3 {~ --+ X a t a ~ Z}  u (Uaer Ra), let 
V 1 : V U •t_) ([,)a~r Va), and let Z 1 -~ Oa~zZ  a . Let G 1 = (V1, Z1, R1, X1). 

We would like to say that L(G1) • T[L(G)]. However, rules must be added to ensure 
that the following situation does not occur. I f  for some a E Z, y ,  z ~ V*, X * yaaz  in 
G, then X * y X a X a z  in G1. It  is possible that {w ~ Za* ] X a X  a * w in Ga} contains 
more than L(Ga)L(Ga) ~- -r(a) z(a). Hence we must add rules to R 1 to see that this 
does not occur. This may be accomplished by making "copies" of each Ga and adding 
rules to ensure that strings of the f o r m y X ~ X a z  do not occur. The details may be found 
in [1]. 

Let q ~- max{c, c a ] a ~ Z}. Then it is clear that cf(x) + (c I Jr 1)x bounds G 1 . 
Further, the modification of G 1 described above yields a grammar bounded by 
(c + c I + 1)f. Thus  ~-[L(G)] e s if G is CS and ~-[L(G)] e i v ( f )  if G is arbitrary. 

COROLLARY 5.6. I f  f is a bounding function, then .L~'cs(f ) and s  are closed under 
e-free regular substitution. 

COROLLARY 5.7. I f  f is a bounding function, then 5ecs(f ) and .L:(f) are closed under 
nonerasing homomorphism2 

The  families ~,CPcs(f ) and 5('(f) are closed under e-free substitution i f f  meets a 
simple condition. 

DEFINITION 5.8. A function f is superadditive if for all x, y >~ O, f ( x )  + f ( y )  <~ 

f ( x  + y). 

THEOREM 5.9. I f  f is a superadditive bounding function, then &~ ) and ~ ( f )  
are closed under e-free substitution. 

COROZLARY 5.10. I f  f is a superadditive bounding function, then i~  and ~ ( f )  
are closed under Kleene + .  

Proof. Since {a} is an e-free regular set, {a} + ~ L I N E A R c s  _C ~cs(f)_C ~ ( f ) .  
For any L ~ ~q~ let r be the ~q~cs(f)-substitution on {a} defined by ~-(a) = L. 
Then  r({a} +) = 0w~(a}+ ~'(W) = L  +. Since ~ c s ( f )  is closed under e-free substitution, 
L + = z({a}+) _C ~cs( f ) -  The  same argument applies to .~ ( f ) .  

We now investigate closure under inverse homomorph i sm:  ~ To  do this we must 

g A homomorphism h : Z* --+ A * is nonerasing if h(w) = e implies w = e. 
10 A family o ~" of languages is closed under inverse homomorphism if L ~ ~- and h a homo- 

morphism imply h-l[L] = {w [ h(w) eL} ~ ~ .  

57I/5/4-6 
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introduce new functions and new families of languages. These results closely parallel 
those of [3] for families of languages accepted by time-bounded Turing acceptors and 
for images of AFLs under bounded erasing. 

Notation. For any function f and any integer k > 0, define the function fk by 
fk(x) = f (kx ) .  For any bounding function f, let : T ( ~ c s ( f ) ) =  U~L, ecs(fk) and 
Sf(L'a(f)) = [.)k s 

DEFINITION 5. I 1. A function f is semihomogeneous if for every k 1 > 0, there is a 
k2 > 0 such that for all x ~ O, f (k ix  ) <~ kJ(x) .  

It is straightforward to verify that i f f  is semihomogeneous (superadditive), then for 
any integer k > 0, fk is semihomogeneous (superadditive). Also note that a 
nondecreasing functionfis semihomogeneous if and only if there is a k I ~ 1 such that 
for some k 2 > 0 and all x > O,f(klx ) <~ k~f(x). 

LEMMA 5.12. I f  f is a semihomogeneous bounding function, then s = ~cs(f)  
(and Sf(Se(f)) = s 

Proof. For any h 1 > 0, there is a k z > 0 such that for all x ~ O, fk~(x) =- f(klX) 
kz f (x  ). Thus, Lfcs(fk,) C L~~ = s ) so that Sf(Lfcs(f)) = {.)k s --- 
~'cs(f)- But -~acs(f ) = ~cs(ft) _C [.JR oLfcs(fk)- Hence, Sf(Lfcs(f)) = -~cs(f)- 

Note that many functions arising in the study of computational complexity of formal 
languages are both superadditive and semihomogeneous, e.g.,f (x) = x log x, f (x)  = x k 
for k ~ 1. Exponential functions are not semihomogeneous. In [11], it is shown that 
families of languages accepted by Turing acceptors which operate within tape bound 
f (x)  = 2 ~ are not closed under inverse homomorphism. We cannot show such strong 
results here since we do not know, for example, whether ~ ( 2  ~) and s are different 
families. Here we parallel results in [3] for the families of languages defined by time- 
bounded Turing acceptors by showing that s is closed under inverse homo- 
morphism if and only if s ~ Sf(~cs(f)) (5.21), and that the smallest AFL 
containing .~~ ) is the smallest AFL containing 5a(Lfcs(f)) (5.25). 

In order to show that 5P(Secs(f)) and 5P(L~e(f)) are closed under inverse 
homomorphism, we shall show that these families are closed under limited erasing, it 
We follow the arguments of [5]. 

LEMMA 5.13. l f  f is a bounding function, then both S~(s and Sf(La(f)) are 
closed under union, concatenation, reversal, intersection with regular sets, LINEARcs- 
substitution, regular substitution, and nonerasing homomorphism. I f  f is superadditive, 
5~163176 and 5a(&a(f)) are also closed under substitution and Kleene +. 

it  A h o m o m o r p h i s m  h : 2:* --~ A * is k-limited on L, k > 0 an integer and L _C Z*,  i f  e ~ h i l l  
and i f  for all w EL and all x, y,  z ~ 27" such that w = xyz, h(y) = e impl ies  ] y I ~< k. A family  
~ -  of  languages is closed under  limited erasing i f  L E ~" and h k- l imited  on  L imply  hi l l  ~ 5 r. 
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Proof. If  f is a bounding function and k a positive integer, fk is also a bounding 
function, and so s has each of the desired closure properties. Since 
~9~ = U~ ~CPcs(fk) and -~cs(fk)C ~~ , 5P(~,q~ the union of an 
increasing chain of families, each of which has the desired properties. Thus  ~9~176 
has the desired closure properties. Similarly, 5P(i~ has the desired closure 
properties. 

Notation. Let  27 be an alphabet and c a symbol not in Z. Let  X~ = Z k9 {c}. 
Let  fie : Z~*---> Z* be the homomorphism determined by defining fie(a) = a for 
a 6 2J and fie(c) = e. 

LEMMA 5.14. Let f be a bounding function and L e ~~ ). I f  L C 27"(c2727")* 
where c is not in 27, then ff~[L] ~ L, fcs(f3). 

Proof. Notice tha tL  _C 27"(cZ27")* where c r 2J implies that c r  and that no word 
in L contains two consecutive c's. 

Let  G = (V, 27c, R,  X )  be a CS grammar such that L(G)  = L  and f bounds G. 
Assume that each rule in R is of one of the forms 

z ,  z2 -~ Y, y q  
 ,nl Z,,Z2, Y,, r2 V--Zo,a 27o. 

Z ,  ----> 

Let k be the least positive integer such that To(n)+ implies To(n) <~ kf(n) .  
Let 

V, = V u ( V  X V) u ( V  X V X V), 
27,. = & u ( &  x & ) u ( &  x & x &), 

and let h : V,* -+ V* be the homomorphism determined by defining 

h(v,)  = v 1 ] 

h(('~, , v2) ) v 'v2 i v , ,  '/32, v 8 e V. 
h((vl, v~, v3)) v,v2v3 

Trivially, h is nonerasing and surjective, and h-1127~ *] = 27,*. Also, for any w E V,*, 
(1/3) l h(w)l <~ I wl ~< I h(w)]. 

Le tg  : 27,* -+ Z~* be the homomorphism determined by defining 

g(a) = a 

g((a, b)) ~- ab 
g((a, b, d)) = abd 

g((a, c)) = g((c, a)) = g((a, c, c)) = g((c, a, c)) = g((c, c, a)) ---- a 
g((a, b, c)) = g((a, c, b)) = g((c, a, b)) = ab 

g(c) = g((c, c)) = g((c, c, c)) = c 
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for all a, b, d e 27. Then  g is nonerasing, g(w) E s  if and only if 

w ~ (271 - {c, (c, c), (c, c, c)})*, 

and g(w) ~ {c}* if and only if w e {c, (c, c), (c, c, c)}*. Thus,  for any 

L '  C (Z' t - -  {c, (c, c), (c, c, c)})*, g[L'] =/~,[h[L']] .  

We now construct a CS grammar G O such that h[L(Go)] = L(G) = L, g[L(Go) ] = 
m[h[L(Go)]] = ~,[L], andA bounds Co. 

Construct the following sets of rules: 

R1 = {Z1 ~ (Y1, Y2), (Z1, Z2) -~  (Y1, Y2, Z2), (Z2, Z1) ~ (Z2, Y1, Y2), 
(&,  Zl,  Z3) ~ ( & ,  Y0(Y, ,  &), (&,  & ,  Zl) -~ (&,  &)(Y1, r,),  
(Z1, Zz , Z3) --~ (Y1,  Y~)(Z~ , Z3) [ Z 1 --~ Y1Y~ e R, Z~ , Z3 e V --  2~c}; 

n ,  = {(z~, &) -~ (Y1, v~), (Zl ,  & ,  &) -~ (Y l ,  Y~, &), 
( z .  , Z l  , & )  - *  ( &  , Y 1 ,  Y~), ( z .  . z 3 ( z ~  , z,) -~ (&,  Y1)(Y,, z,), 
( z .  , & , z o ( z ,  , & )  ~ ( &  , z ,  , Y O ( Y ,  , & ) .  

( z .  , Z l ) ( &  , z4  , & )  ~ ( &  , v~)(Y~ , & . & ) ,  

( &  , & , z o ( &  , & , z . )  - ~  (z~ , z ,  , YO(Y~ , & , Ze) l 
Z1Z~ --+ Y~ Y2 e R, Za , Z4 , Zh , Z6 e V - -  S,}; 

R .  = {Z1 ~ a, (ZI , & )  ~ (a, Z , ) ,  (Z ,  , ZO ~ ( &  , a), 
( &  , Z ,  , Z 3  ~ ( &  , Z ,  , a), ( &  , Z l  , & )  ~ ( &  , a, & ) ,  
( Z 1 , Z ~ ,  Zz) ~ (a, Z , ,  Z3) [ Z 1 ~ h e R ,  Z ,  , Z3 e V}. 

Let  R o = R t u R~. w R 3 and G O = (V1,271, R0, X).  Then  Go is a CS grammar  and 
clearly h[L(Go, VI+)] = L(G, V +) since G O simply imitates the derivations of G 
within the "coded"  vocabulary V 1 and h "decodes" 171" to V*. By construction of R o , 
it is clear that L(Go) _C 27~ U ((27~ • S~) U (27~ • 27~ • S~))*. Further,  if w e V* and 

* . . * . 

X =~ w an G, then there exists w t e h-X(w) such that X =~ w 1 an G o and t6o(wl) = to(w); 
�9 , * . * . 

conversely, ff w e V 1 and X =~ w an Go, then X ~ h(w) an G and tG(h(w)) = tCo(W ). 
Since for any W e V l * ,  (1/3)lh(w)] % [ w [  ~<lh(w)[ and for w e L ( G o , V + ) ,  
tG(h(w)) = tGo(W), we have Teo(n ) <~ TG(3n). Since TG(n)~ implies Tv(n) <~ kf(n), 
Tc(3n) ~< kf(3n) = kf3(n). Thus,  kfz bounds Go ; so L(Go) e LZ(f3). 

Since h[L(G o , VI+)] = L(G, V+), h[L(Go) ] = L(G) = L. Since 

L(Go) c_ % u ((so x s,o) u (s~ x z ,  x so))* 

and h[L(Go) ] = L, the hypothesis that L C 27"(c2:27")* implies that no word of L(G0) 
contains any occurrence of (c, c) or (c, c, c) and that c ~L(Go). Thus,  

L(Go) C_ (Z~ - {~, (~, ~), (c, ~, 4})* 

so that g[L(Go) ] = ~c[h[L(Go)]] ----/~c[L]. Since g is nonerasing and L(Go) e -oq~cs(f~), 

/~e[L] ---- g[n(Go) ] e s 
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TrIEOREM 5.15. I f  f is a bounding function, then Sf(Lfcs(f)) is closed under limited 
erasing. 

Proof. Let L E 5~(~cs(f))  and let h : 2 7 " - +  2J* be a homomorphism that is 
k-limited on L. I f  27 is an alphabet such that L _C Z'* and c 6 Z', let g : 27* -+ 27c* be the 
homomorphism determined by defining g(a) = h(a) if h(a) ~ e and g(a) = c if 
h(a) = e. Then  g is nonerasing; so g[L] E 5T(~acs(f)) and also/~c[g[L]] = h[L] so that 
/z c is k-limited ong[L].  Since e 6 h[L], g[L] n {c} + = r Thus  it is enough to show that 

/z~[g[g]] E 5e(Se(f)). 
Let  L 1 = g[L]. Since L 1 E Sf(Secs(f)) there is an integer q such that L 1E ~cs(f~), 

and since 5f(L, ecs(fq) ) = 5f(~cs(f ) ) ,  we lose no generality by assuming that q = 1. 
Let d be a symbol not in 27c �9 Let r be the regular substitution on 27~ defined by 

r(a) = {a} for a e 27 and r(c) = {c, d}. Let R = 2]* U 2]*(d2727")* k) 27"(dc27")* 
and L 2 = r[L1] (3 R. Since R is regular and T is a regular substitution, L~ E .s176 ). 
ButL~ _C 27c*(dZ'cSe*)*. Let va : (2J, u {d})* --~ 27e* be the homomorphism determined 
by defining va(a) = a for a E Zc and v,(d) = e. By 5.14, vails] E 5a(~~ Clearly 
ize[va[L2] ] =/zc[L1] = h[L], and since no word in va[L~] or in L,  has a substring of k 
or more c 's, /z c is k - -  1 limited on va[L2]. Thus, applying the regular substitution ~-, 
the intersection with regular set R, and the homomorphism va in sequence at most k 

times will yield/z,[L1] = h[L]. Thus  h[L] E Sf(oLa(f)). 

THEOREM 5.16. I f  f is a bounding function, then 6 e ( ~ ( f ) )  is closed under linear 
erasing. 12 

Proof. Since S~(.~a(f)) = Ok Lf(fk) and for any k, 6a(~(fk))  = ~(L~'(f)), it is 
sufficient to show that the image of ~ ( f )  under linear erasing is included in 6P(s 
Let G = (V, Z, R, X)  be a grammar such that f bounds G and such that p --~ 0 E R 
implies p E (V - -  27)*. Let  h : 27* --* X* be a homomorphism and k a positive integer 

such that for all w eL(G),  t w I ~ k I h(w)l. 
Let g : V* -*  V* be the homomorphism determined by defining g(Z)  = Z for 

Z E  V - -  2J ands(a)  = h(a) for a E Z. Sinceg extends h to V*, [ w [ ~< k I g(w)l for all 
w E V * .  Let R o = { g ( p ) - - ~ g ( 0 ) l p - * 0 E R }  and let G 0 = ( V , 2 7 , R 0 , X ) .  Then  
L(Go) = h[L(G)]. For any 

w eL(G,  V+), tao(g(w)) <~ ta(w) ~ Ta(I w 1) ~ Tc(k I g(w)[) <~f(k I g(w)l), 

and for any w' e L ( G  o , V +) there exists w Eg-l (w ') such that tao(w' ) ~< ta(w) 

Ta(] w t) <~ Tc(k Is(w)1) <~f(k[g(w)l) .  Thus  Tco(n ) ~< Tc(kn) <~f(kn) = fk(n), sofk 
bounds G O and h[L(G)] = L(Go) e ~ ( f k )  C_ SP(~(f) ) .  

1~ A homomorphism h : 27* --~ A * is linear-erasing on L for L _C 27* if there exists an integer 
k > 1 such that for all w eL, [ w [ ~ k [ h(w)[. A family oar of languages is closed under linear 
erasing ifL ~ ~ and h linear-erasing on L imply h[L] e ~ .  
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COROLLARY 5.17. l f  f is a bounding function, then oc#(~(f)) is closed under limited 
erasing. 

COROLLARY 5.18. l f  f is a bounding function, then the closure of ow(Sacs(f)) under 
linear erasing is included in S:(~r 

THEOREM 5.19. I f  f is a bounding function, then 5a(s and 5:(s176 are closed 
under inverse homomorphism. 

Proof. In [11], it is shown that for any family ~" of e-free languages, i f f f  is closed 
under regular substitution, limited erasing, and union and intersection with e-free 
regular sets, then o~" is closed under inverse homomorphism. Hence the above lemmas 
yield the result. 

COROLLARY 5.20. I f  f is a semihomogeneous bounding function, then s and ~ ( f )  
are closed under inverse homomorphism. 

We shall now show that if s ) is closed under inverse homomorphism, 

then .g*acs(f) = 5:(X~cs(f)). 

THEOREM 5.21. I f  f is a bounding function, then s (resp., s162 is closed under 
inverse homomorphism if and only if s ---- 5#(~~ (resp., ~ ( f )  = 5#(~*a(f))). 

Proof. Since 5#(~'cs(f)) = (3k ~cs(fk), and for any k, oq'(~gacs(fk) ) = 5#(~('cs(f)) , 
it is sufficient to show that if ~gOcs(f ) is closed under inverse homomorphism, then 
~r =-LPcs(f2). Thus  consider L ~ .gPcs(f2) where L C 2:*. We shall show that 

g e ~q'cs(f)" 
Let  G = (V, Z, R, X)  be a CS grammar such that f2 bounds G and L(G) = L. 

Let  q be the least integer such that Tc(n)~ implies TG(n) <~ qf2(n). Then  for any 
w eL(G,  V+), there is a proper derivation of w in G of length no greater than 

qfz(] w l) = q f(2] w ]). 
Let  X '  and c be symbols not in V, let Ve = V v3 {c, X'}, and let 

L e = {ale "" a,~c l ai ~ Z, al "'" a,~ ~ L}. 

Let h : V* --~ Vc* be the homomorphism determined by definining h(Z) = Zc for 
each Z ~ V .  Let  R ' - ~ { X ~ h ( 0 ) ] X - - + 0 ~ R } t 3 { h ( p ) ~ h ( 0 ) I p ~ 0 E R } .  Let  
G ' =  (V c, Z'r R', X') .  Then,  it is immediate that L ( G ' ) =  L , ,  G' is CS, and 
h[L(G, V+)] = L(G', V~+). Further, if w eL(G', V~ +) then I w ] is even and there is a 
proper derivation of w in G of length no greater than qf~(I w I/2) = q f(2 ] w I/2) = 
qf(I w 1) so that q fbounds  G'. Thus, Lc = L ( G ' )  e ~qcs(f). ButL = h-liLt] and s ) 
is closed under inverse homomorphism so that L e ~cs ( f ) .  

We summarize the positive closure results so far obtained by formally defining 
AFLs  [6] and stating these results in terms of AFLs. 
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DEFINITION 5.22. An abstract family of languages (AFL) is a family containing at 
least one nonempty set and closed under union, concatenation, Kleene + ,  intersection 
with regular sets, nonerasing homomorphism and inverse homomorphism. An AFL 
is full if it is closed under arbitrary homomorphism, and is e-free if every language 
in it is e-free. 

THEOREM 5.23. I f  f is a superadditive bounding function, then 5:(.~ecs(f)) and 
5:(s are e-free AFLs, closed under reversal and substitution, but are not full AFLs. 
Also, 5:(Se(f)) is closed under linear erasing. 

COROLLARY 5.24. l f  f is a superadditive semihomogeneous bounding function, then 
~acs(f ) and s are e-free AFLs, closed under reversal and substitution, but are not 
full AFLs. Also, ~ ( f )  is closed under linear erasing. 

From the proof of Theorem 5.21, we see that 5~176 is included in the closure 
of ~cs( f )  under inverse homomorphism. Hence we have the following corollary. 

COROLLARY 5.25. For any bounding function f, the smallest AFL containing ~cs( f )  
(resp., La(f)) is the smallest AFL containing ow(Lacs(f)) (resp., 5 : (~( f ) ) ) .  

We now establish one more closure property, that ~qacs(f ) and ~ ( f )  are closed 
under intersection if f is "at least quadratic." This is not an AFL property, since there 
are AFL's and full AFL's which are not closed under intersection. In Section 6, we 
show that we cannot relax the condition of being "at least quadratic." 

THEOREM 5.26. I f  f is a bounding function such that for some c > 0 and all x, 
f ( x )  ~ cx 2, then -~acs(f ) and ~ ( f )  are closed under intersection. 

Sketch of the Proof. For i = 1, 2, let Gi = (V~, Zi ,  R~, X~) be CS grammars 
bounded by f. Let X and Z be new symbols not in V x w V s . Let 

r~ = { x } u ( r ~  x r~) v ( r ,  x {z})uz~uz~. 

One can construct a CS grammar G 3 = (V3, Z 1 n Z~, R3, X) which generates strings 
in Z 1 c~ Z 2 by first imitating a derivation of G 1 on the "first-coordinates" of symbols 
in (V~ • {Z}) and then imitating a derivation of G 2 on the "second coordinates" 
of the symbols of strings in (Z 1 • {Xz})(Z 1 • ({Z} u V~))*. If both derivations give 
the same terminal string, that string can be generated by rules of the form (a, a) ~ a. 
Since f is "at least quadratic", the number of steps necessary to imitate length 
increasing steps in a derivation in G2 will not majorize f.  Thus the construction is 
essentially that used in proving by means of CS grammars that the family of CS 
languages is closed under intersection. 
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COROLLARY 5.27. I f  f is a bounding function such that for some c > 0 and all x, 
f ( x) >~ cx 2, then 5P(&Ocs(f)) and 5~(Se(f)) are closed under intersection. 

The question of whether LINEARcs is closed under linear erasing remains open. 
However, the methods used to prove Lemma 5.16, Theorem 5.17, and Theorem 5.26 
may be used to show the following propositions. 

PROPOSITION 5.28. Let ~ be a finite alphabet and c ~Z .  Suppose L C X'c*, 
L e LINEARcs,  and k > 0 is an integer such that each w e L is of the form w = Wl ct 
where w I e Z*  and t ~ k ~ / ~ .  Then i~c[L] e LINEARcs. 

PROPOSITION 5.29. I f  f is a bounding function with the property that for some k > 0 
and all x, hf(x) >~ x ~, then 5g(ZPcs(f)) is closed under linear erasing. 

6. NEGATIVE CLOSURE PROPERTIES AND UNDECIDABILITY RESULTS 

In this section we establish some negative closure results of the families ~cs(f )  
and &o(f), particularly for the families LINEARcs and LINEAR. We also establish 
various undecidability results for the family LINEARcs and thus for all families 
~r and oLP(f). 

The most interesting negative closure result is due to Gladkii [7]. 

THEOREM 6.1. Let ~ : {a, b)* --+ {a, b}* be any function with the property that there 
is a constant k > 0 such that for all w e {a, b}*, [ ~b(w)] ~ k [ w t. Let 

L~ = {wc~b(w) cw ] w e {a, b}*}. 

I f  f is any bounding function such that l i m , ~ f  (n)/n 2 = O, then Lo (~ s 

While in [7] this theorem is proved only for the case of CS grammars, it can be 
extended to arbitrary grammars [1]. This theorem is most useful in establishing the 
following. 

THEOREM 6.2. I f  f is any bounding function such that l i m , ~ f ( n ) / n  2 = O, then 
~r is not closed under intersection. In particular, LINEARcs is not closed under 
intersection. 

Proof. Let L 1 = {wcwRcw ' l w, w' e {a, b}*} and L~ -~ {w'cwcw R ] w, w' e {a, b}*}. 
Clearly, L 1 and L 2 are deterministic context-free languages so that 

L1, L 2 e LINEARcs _C ~r 

Let ~b:{a, b)*--+{a, b)* be defined by ~,b(w)= w R for all w e { a ,  b)*, so that 
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I~b(w)l = ]wl  for all w~{a,b}*.  Then L~ = {wcwRcw I w~(a ,b )* )  = L l n L 2 .  By 
Gladkii's result, L~ r -'q'cs(f) so that L 1 n L 2 r ~,ecs(f ). 

COROLLARY 6.3. I f  f is any bounding function such that limn_.~f(n)/n 2 = O, then 
Z, ecs(f ) is not closed under complementation. 

COROLLARY 6.4. I f  f is any bounding function such that limn_~f(n)/n 2 ---- O, then 
~~ ) is not closed under intersection with deterministic context-free languages. 

The above results also apply to the appropriate families .La(f) and 6e(~(f ) ) .  
In proving Lemma 5.2, we showed that for each Type 0 grammar G1, one can 

construct a monotonic grammar G2 such that each rule of G 2 is either a length- 
increasing rule or a length-preserving rule which generates a terminal symbol, and 
such that if L(GI) CX*, then L(G2) C{d)*L(G~) and ~a[L(G2)] = L(GI), where 
d ~ X  and t z a : ( X u  {d))*-~ X* is the homomorphism determined by defining 
tza(a) = a for a ~ Z and i~a(d) = e. The restrictions on the form of the rules of G 2 
are sufficient to force G 2 to be bounded by the function f ( x )  -~ 2x, so that Gz is a 
linear-time grammar. From the results in Section 5, from G 2 one can construct a 
linear-time monotonic grammar G 3 such that L(G3) = {d)* L(G2) (and so tza[L(G~)] 
L(G1) ). We use this fact to establish the following results. 

THEOREM 6.5. I f  f is any bounding function, then neither ~cs ( f )  nor ~ ( f )  is 
closed under arbitrary homomorphic mappings. 

Proof. The image of LINEARcs under arbitrary homomorphic mappings is the 
family of recursively enumerable sets. But ~acs(f ) and ~ ( f )  are families of recursive 
sets and LINEARcs is a subfamily of both of these families. 

THEOREM 6.6. The question "is L ~ ~ ?" is undecidable for L ~ LINEARcs .  

Proof. As above, for every Type 0 grammar G 1 (hence, for every recursively 
enumerable set L(Gx)), one can construct a linear-time grammar G 2 such that 
k~a[L(G~)] ~- L(G1). NowL(G~) = ~ if and only ifL(G1) = ~, since tza[L(G~)] = L(GI). 
But for Type 0 grammars G, it is undecidable whetherL(G) ~- ~; hence, this question 
is undecidable for linear-time grammars. 

COROLLARY 6.7. Each of the following questions is undecidable for L ~ LINEARcs 
and R a regular set, where L C_ X+: 

(i) i s L C R ?  
(ii) is  Z +  - -  L = X +  ? 

(iii) is R C_ X +  - -  L ? 

(iv) i s X + - - L C R ?  
(v) is S § - L = R? 
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THEOREM 6.8. The question "is L finite ?" is undecidable for L ~ LINEARcs.  

Proof. As above, for every Type 0 grammar G 1 , one can construct a linear-time 
grammar G 3 such that I~d[L(Ga)] ~ L(G1) and such that L(G3) is finite if and only 
ifL(G3) ---- 4. ButL(G3) = ~ if and only ifL(G1) = 4. Hence, it is undecidable whether 
L(G3) is finite. 

For any bounding function f, L INEARcsC~cs ( f )  CLP(f) so that the 
undecidability properties of LINEARcs apply to the families -~ecs(f ) and &o(f). 
Recall that every e-free CF language is in LINEARcs so that any question that is 
undecidable for the CF languages is undecidabIe for languages in LINEARcs.  (For 
a discussion of undecidability properties of the CF languages, see [4], [10], or [15].) 

Consider the construction of linear-time grammars from Type 0 grammars as 
indicated above. Let s be the smallest AFL containing the languages generated by 
those linear-time grammars. Then ~a is an "effective family of languages" and an 
"effective AFL" in the sense of Greibach [10], since the proofs of the positive closure 
results in Section 5 all involved effective constructions. Further, the proofs of 
Theorems 6.6 and 6.8 and Corollary 6.7 show that those results also apply to &a. 
Since L~ ~ is a subfamily of LINEARcs,  the results of [10] can be applied to prove the 
following theorem. 

THEOREM 6.9. The question "is L CF?" is undeddable for L E LINEARcs.  

7. HIERARCHY RESULTS 

The languages studied in this paper are defined by time-bounded grammars. In 
Section 4, it was shown that if a language is generated by a grammar bounded by a 
function f, then the language is accepted by a nondeterministic Turing acceptor which 
accepts within time bound f. In this section we study the relationships between the 
families -~cs(f) (and .o~(f)) and certain families of formal languages which have been 
studied extensively in the literature, particularly those defined by time-bounded 
acceptors. 

DEFINITION 7.1. A language L is quasi-realtime if there is a nondeterministic 
multitape Turing acceptor M such that L(M) ~ L and such that M accepts within 
time bound i. in A language L is real-time definable if there is a deterministic multitape 
Turing acceptor M such that L(M) ---- L and such that M accepts within time bound i. 

THEOREM 7.2. The families LINEARcs and LINEAR are proper subfamilies of 
the quasi realtime languages and are not comparable to the real-time definable languages. 

a3 Again, i is the identity function. 
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Proof. By Theorem 4.2, i fL E LINEAR, thenL is accepted by a nondeterministic 
multitape Turing acceptor which accepts in linear time. In [1] and [2], it is shown that 
linear time is no more powerful than quasi realtime, so that every language in 
LINEAR is a quasi realtime language. In [2], it is shown that the quasi realtime 
languages are closed under intersection, but the results of Section 6 show that neither 
LINEARcs nor LINEAR are closed under intersection. Hence the containment is 
proper. 

In [19] it is shown that there are CF languages which are not real-time definable. 
Since the CF languages are in LINEARcs ,  there are languages in LINEARcs which 
are not real-time definable. The language {wcwRcw f W e {a, b)*) is clearly real-time 
definable, but, as shown in the proof of Theorem 6.2, is neither in LINEARcs nor in 
LINEAR. Hence, the families LINEARcs and LINEAR are not comparable to the 
family of real-time definable languages. 

A characterization of LINEARcs in terms of languages accepted by some class of 
machines has not been obtained. Since {wcwRcw ] w ~ {a, b}*} is not in LINEARcs , 
any such characterization could not depend on machines with the power to "remember 
and compare." However such machines would be able to "count," since in [1] the 
following theorem is established. 

THEOREM 7.3. The family of languages accepted by nondeterministic on-line multi- 
counter machines which accept in linear time is a proper subfamily of LINEARcs .  

We now consider more general time bounds. 

THEOREM 7.4. Let f be the function f (x)  ~- 2 x. Then ~9~(~-ecs(f)) is the family of 
all CS languages. 

Proof. Recall that for any nondeterministic linear-bounded automaton M, there 
is a constant k such that for any input w, M either halts in an accepting state, halts in a 
nonaccepting state, or enters a loop within kiwi steps. Thus M accepts within a time 
bound g(x) = k x. By Proposition 4.3, L(M) ~ ~L, acs(g) _C d~(~C~cs(f)) so that every CS 
language is in ~'~(~cs(f)). But cj(~CPcs(f)) is a family of CS languages. Thus ~9~(s162 
is the family of all CS languages. 

PROPOSITION 7.5. The family of languages accepted by nondeterministic multitape 
Turing acceptors which accept in polynomial time is precisely the family of languages 
generated by arbitrary grammars within polynomial time. 

Proof. This follows immediately from Proposition 4.5 and the results of [13] on 
the imitation of multitape machines by single tape machines. 

I t  is an open question whether the languages of Proposition 7.5 are CS. In fact it is 
not known whether ~ ( f )  is a family of CS languages whenf(x)  = x 2. 
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Based on results in [3] and [13] and on Proposit ion 4.5, it is straightforward to 

show that i f f  is a bounding function such that  inf~oof(x)/x  ~ > 0, andg  is a bounding 
function such that for all x, g ( x ) >  2 I1~1, then L f ( f ) C  Lf(g) and 6 f ( L f ( f ) ) ~  

Sf(~e(g)). Hence there is an infinite hierarchy of families L f ( f )  ~ L f ( f ' )  ~ Lf ( f " )  C . . .  
and an infinite hierarchy of A F L s  6 f ( L f ( f ) ) ~  S f ( L f ( f ' ) ) C  6P(~f ( f " ) )~  ..'. I t  is 

not known if smaller differences in bounding functions yield hierarchies. 
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