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Abstract

The two-continuum rheological model taking account of a change in the hydrogen-binding energy has been proposed in this
paper. As in the case of conventional approach our model makes it possible to describe the hydrogen transfer and its accumulation
in the metals and to explain changes in the mechanical properties of metals that are caused by that accumulation. The proposed
rheological model describes the hydrogen transition from a mobile state to the bound one, depending on the stress–strain state.
Concurrent with this achievement our model describes the changes in the material matrix taking place as a result of the hydrogen
addition to the matrix atoms. These processes lead to weakening and destruction of the material.
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1. Introduction

Taking into account the effect of hydrogen on the me-
chanical properties of materials is an extremely crucial
problem for science and modern practice. The interac-
tion between hydrogen and solid materials is a good
mechanical example of the effect of a small parameter.
For instance, aluminum alloys with mean hydrogen mass
concentrations of 0.4–0.8 ppm (part per million) display
hydrogen-induced embrittlement.
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Hydrogen embrittlement is the reason for numerous
catastrophes, so its mechanisms are thoroughly studied
[1–6].

It is impossible to design modern constructions with-
out precise calculations carried out in advance. Since hy-
drogen strongly affects material strength, there are many
studies concentrated on simulating this effect. Several
basic approaches have been developed taking into ac-
count the effect of hydrogen on dislocation emergence
and movement, and on crack formation. Approaches tak-
ing into account internal hydrogen pressure in metals and
physical approaches have also appeared.

The emergence and movement of dislocations and
their effect on localized plasticity (Hydrogen-Enhanced
Localized Plasticity (HELP)) near crack tips leads to
ion and hosting by Elsevier B.V. This is an open access article under
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local plasticity occurring in the materials due to very
high dislocation concentrations. The HELP mechanism
was first described in Ref. [7]. Later, based on the phys-
ical considerations of the interaction potentials between
hydrogen and dislocations, Refs. [8–10] formulated the
constitutive equations modeling the local changes in ma-
terial properties at the mouth of a microcrack.

At the same time, the calculations carried out in Ref.
[8] indicate that substantial changes in the mechanical
properties of a material occur for local hydrogen con-
centrations of about 9000 ppm, which is a very high
value for most metals.

The constitutive equations assume an implicit power-
law dependence on local hydrogen concentration that
cannot be measured directly, i.e. the parameters of the
equations (including the exponent) can be assessed only
indirectly. Due to this circumstance, these parameters for
specific materials cannot be found experimentally, which
may result in significant errors in strength calculations.

To verify the model in Ref. [11], we calculated local
plasticity for a crack with a spherical tip. We were able
to demonstrate that even model local hydrogen concen-
trations are only 100 higher than the mean baseline data.
Considering these means are commonly values of about
1 ppm, local concentrations do not exceed 100 ppm.
Therefore, the test calculation does not confirm that lo-
cal hydrogen accumulation in metals under external me-
chanical loads is possible for concentrations up to about
9000 ppm (i.e. steels).

Using modified Fick’s law for the HELP model is
another source for its possible errors [12]. This law ex-
plicitly includes the temperature dependence of the stress
pattern coefficients but does not include the exponential
dependence of the diffusion coefficient on temperature,
which means there is no balance in taking into account
the thermal velocities of hydrogen particles and the main
matrix of a material. In other words, the effect of the
temperature on the matrix is taken into account while its
effect on hydrogen particles is not.

There are quite a number of uncertainties described
by the authors of the model; in particular, there is a non-
linear dependence of the inner potential on the stress in-
tensity and on hydrogen concentration. Since this model
implies dealing with large local concentrations many
times higher than those observed in practice, all non-
linearities must play a major role.

There is also the decohesion model (Hydrogen-
Enhanced Decohesion (HEDE)) [13] that is similar to
HELP. Their difference is that the HEDE model takes
into account the decrease in the formation energy of free
fracture surfaces that occurs with an increase in local
hydrogen concentration.
Ref. [14] notes that the HELP model requires huge
computational resources to solve any applied problem,
so the only solution is using a continuum model of dis-
location evolution. However, this substitute often proves
inadequate, which is why the authors recommend using
the submicrocrack growth criterion, by which they ba-
sically reduce all problems with hydrogen to modeling
crack formation and decreasing crack resistance.

The evolution of hydrogen-induced cracks is mod-
eled in Ref. [15]. Initially, it is assumed that the crack
has already generated along a pipe’s wall, while hydro-
gen is transformed into a molecular gaseous state and
creates excessive pressure contributing to crack growth.
The chemical potential gradient depending on stresses
is considered to be the main cause of hydrogen diffu-
sion. Additionally, a decrease in crack resistance due
to parameter changes of the fracture criterion is taken
into account when establishing the conditions for crack
growth. Consequently, it is possible to calculate only the
crack growth rate that is compared with the experimental
results [16].

We should point out that there is no connection be-
tween the model and the real physical mechanism of
hydrogen effect. Ref. [17] discusses two- and three-
dimensional settings of the hydrogen-induced crack
growth problem. Significant differences have been found
in the values of maximum decohesion stress and thresh-
old stress intensity used for describing metal properties
when approximating the same experimental results. As
it turns out, these must be set differently. For greater cer-
tainty, Ref. [18] recommends selecting these parameters
based on only the 3D model.

Ref. [19] presents a theoretical calculation of the
changes in the shear modulus and the crystalline lattice
parameters of a platinum-zirconium alloy. This calcu-
lation was done using wave pseudopotential. The ratio
where for each hydrogen atoms there are 3 or 4 ma-
trix atoms (4000 ppm) was used as the calculation basis,
which is absolutely improbable for ordinary construction
materials. At these hydrogen concentrations hydrides
form even in zirconium alloys, i.e., from a mechanical
standpoint, the metal turns into a composite.

Ref. [20] takes into account the variation in the stress
tensor due to internal pressure that hydrogen creates by
penetrating the metal matrix. Tensile tests in samples
were simulated by the finite element method (FEM),
with the results compared to the experimental data [21].
In contrast with the previous studies, only the effect
of hydrogen on the spherical part of the stress tensor
was examined. With this approach, the effect of hydro-
gen is detected only for concentrations above 17 ppm,
which, for steels, is a high value (according to the
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existing experimental data, e.g., Ref. [33], on average
this effect starts at a value that is several times lower).

One more reason to doubt that the comparison of the
FEM-calculation results to the data of Ref. [20] was ad-
equate is that the experimental conditions were not de-
scribed sufficiently. Tensile tests involved grooved sam-
ples stretched with simultaneous cathodic hydrogen sat-
uration. Judging from the description of the experiment,
hydrogen concentration was not monitored at all. More-
over, the stress-strain curves given in Ref. [20] are perfor-
mance. Their flaw is that they do not take into account
the variations in the diameter of the journal of a sam-
ple, which results in underestimating the actual tensile
strength and the elastic moduli from the data of these
curves.

The molecular dynamics method [22–24] is also used
to model hydrogen embrittlement but due to the small
sizes of the modeled ensembles this method only allows
to describe micromechanisms in crack tips or disloca-
tions, which makes it impossible to model construction
behavior. The quantum mechanical approach [25,26] has
the same flaw: due to high heterogeneity of real metals
it is only applicable to describing crack behavior in per-
fect crystals or for modeling the behavior of individual
microcracks and dislocations.

Thus, to predict the behavior of constructions made
of hydrogen-containing materials, a macromodel is nec-
essary that would take into account the effect of small
hydrogen concentrations on the mechanical properties
of materials.

2. A two-component continuum for modeling
hydrogen degradation of materials

Hydrogen is captured into various traps inside materi-
als, such as dislocations, microcracks, surfaces of grains,
etc. [1,2]. Each type of trap corresponds to a specific
binding energy [27].

The studies of the metal–hydrogen interaction re-
vealed the major role of hydrogen concentration distri-
bution over types of trap or over binding energy levels
[28]. For example, the total hydrogen content in steels is
0.2–4.0 ppm. However, only hydrogen with low binding
energies (i.e., diffusively mobile) greatly affects strength
and plasticity. On the contrary, all of the hydrogen dis-
solved in aluminum alloys has low binding energies of
0.2–0.8 eV. The diffusively mobile hydrogen concen-
trations important for mechanical strength have similar
values in steels and aluminum alloys, namely, less than
1 ppm. In steels diffusively mobile hydrogen constitutes
5–10% of the total dissolved hydrogen mass. In contrast,
all of the hydrogen dissolved in aluminum alloys remains
diffusively mobile.

Hydrogen with low binding energies tends to tensile
stress zones (the Gorsky effect [29]). The accumulation
of hydrogen in a fracture zone can happen both as a
result of sorption from the external medium, and of the
redistribution of its natural concentrations inside the ma-
terial. Hydrogen with low binding energies diffuses eas-
ily; at the same time, low binding energies indicate that
its interaction with metal is very weak. On the contrary,
hydrogen with high binding energies interacts very in-
tensely with metal, but migrates very slowly within it.
The mechanical properties of the host material deterio-
rate, mainly due to hard interaction, as hydrogen attached
to metal atoms takes energy out of the crystalline struc-
ture.

Therefore, an increase in the binding energy of hy-
drogen is accompanied by the binding energy inside the
crystalline lattice decreasing by the same amount, which
is associated with a degradation of its mechanical prop-
erties [30]. Consequently, the hydrogen-containing ma-
terial may be assumed to contain two interacting con-
tinuums. The diffusely mobile hydrogen mass inside a
volume V is written as the following integral:

m−
H =

∫
V

ρ−
H dV

Here m−
H and ρ−

H are the mass and the bulk density of
diffusely mobile hydrogen.

The balance equation of hydrogen mass has the dif-
ferential form
∂ρ−

H

∂t
+ ∇ · (v−

Hρ−
H ) = j−H ,

where j−H is the bulk source of diffusely mobile hydro-
gen, v−

H is the velocity vector of its movement.
In terms of concentration N−

H = ρ−
H /mH the hydrogen

mass balance equation can be written as

∂N−
H

∂t
+ ∇ · (v−

H N−
H ) = j−H

mH
.

A similar mass balance equation can be written for
hydrogen bound to the material matrix

∂N+
H

∂t
+ ∇ · (v+

H N+
H ) = j+H

mH
,

where N+
H and v+

H are the particle concentration and
velocity of the bound hydrogen particles (and also of
the particles of hydrogen-containing material bound to
them).

The equality

− j− = j+ = j
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Fig. 1. A one-dimensional model of a crystalline lattice with added
hydrogen particles; C0 and CH are the hardnesses of elastic bindings in
a crystalline lattice without and with hydrogen particles, respectively.

H H
means there is no distributed internal hydrogen transport
within the material. Thus, we are describing only the
transition of hydrogen from one state to another and its
redistribution due to diffusion.

As previously noted, hydrogen concentrations criti-
cal for the mechanical properties of the material are, as
a rule, rather low. Consequently, the internal transitions
of hydrogen particles between energy levels can be de-
scribed as linear relations:

j = αN−
H − βN+

H . (1)

Let us now move on to the dynamic equations of
the host material. Rheologically speaking, these are the
equations of the first continuum which models the solid
body and the hydrogen particles bound to its particles.
The dynamic equation of the first continumm has the
form

∇ · τ = (ρ0 + ρ+
H )v̇+

H + jv̇+
H + R,

where Eτ is the stress tensor, R is the force of the inter-
action between the host medium and the diffusely mobile
hydrogen (between the continuums).

The second continuum modeling the diffusely mobile
hydrogen can evidently be simulated as an ideal gas.
The gas pressure p has a positive sign in compression.
Therefore, the dynamic equation can be written as

−∇p = ρ−
H v̇−

H − jv−
H − R.

The magnitude of the velocity vector v−
H of the dif-

fusely mobile hydrogen particles is small, as this speed
describes hydrogen diffusion in a solid body.

The elastic deformation energy of a solid body com-
prises two parts: the spherical and the deviatoric. We
can accordingly identify the spherical part and the iner-
tia tensor deviator

τ = σ I + s,

where σ are the principal stresses, s is the deviator, I is
the unit spherical tensor.

The Gorsky effect means that the triaxial tensile en-
ergy determines hydrogen diffusion and the interaction
between hydrogen and the host material matrix. Conse-
quently, the spherical part of the stress tensor can be as-
sumed to depend on the second continuum. The dynamic
equations of a two-continuum medium in this case have
the form

∇σ = (ρ0 + ρ+
H )

∂v+
H

∂t + jv+
H + R − ∇ · s,

−∇p = ρ−
H

∂v−
H

∂t − jv−
H − R.

To simplify further analysis, let us restrict ourselves to
a one-dimensional case, as it allows to illustrate the main
concept of constructing a rheological model of a material
containing high natural hydrogen concentrations.

Let us discuss an idealized one-dimensional crys-
talline lattice of a material. It can be schematically de-
picted by point masses connected by springs (Fig. 1).
The weakening of the interaction between the particles
of the material due to hydrogen particles attaching to the
crystalline matrix creates a chain of new elastic bind-
ings in the crystalline lattice. These bindings affect the
hardness of the whole chain. Evidently, the mass of hy-
drogen particles can be neglected in this case, i.e., we
can assume that m0 >> mH .

The exact manner of the physical interaction is of
no importance for the rheological model. Hydrogen par-
ticles may be atoms, molecules or more complex struc-
tures, i.e., hydride molecules. The same goes for material
particles (and this why we use the term ‘particles’).

The total chain stiffness taking into account the bulk
concentration of hydrogen particles N0 can be obtained
from the following ratio:

N0

C�

= N0 − N+
H

C0
+ N+

H

CH
.

The constitutive equation, constructed similarly to the
one-dimensional model containing added hydrogen par-
ticles, has the form

σ = E�ε, E� = E0EH N0

N0EH + N+
H (E0 − EH )

,

where σ is the stress; N0 is the volume concentration of
the crystalline lattice particles in an infinitesimal volume;
N+

H is the volume concentration of the crystalline lattice
particles to which hydrogen particles with an elastic con-
straint CH have attached (and simultaneously the volume
concentration of bound hydrogen); EH is the equivalent
elastic modulus describing the rigidity of the hydrogen-
altered binding in the crystalline lattice of the material;
E0 is the initial elastic modulus of the material contain-
ing no hydrogen; ε is the strain; E � is the total elastic
modulus of the hydrogen-containing material.

The value of E� can be significantly lower than the
initial elastic modulus of the material containing no hy-
drogen, as EH << E0:

E� = EH
E0N0

N0EH + N+E0
≈ EH

1

(N+/N0)
<< E0. (2)
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The above equation clearly illustrates the strong ef-
fect that the concentration of the attached hydrogen par-
ticles N+

H has on the total elastic modulus: the higher the
proportion of the added hydrogen particles N+

H /N0, the
lower the elastic modulus of the material.

The number of lattice particles to which hydrogen par-
ticles are added depends on lattice stress in each point
and on time. The unknown functional relationship be-
tween E� and N+

H (ε, x, t ) can be found using the two-
component continuum model.

The equation for

σ = σ (ε, N+
H (ε, x, t ))

can be found from Eq. (2) based on the standard form
for a one-dimensional elastic chain:

σ = E�ε = E0ε

[
1 − N+

H

N+
H + N0EH/(E0 − EH )

]

≈ E0ε

[
1 − N+

H

N+
H + N0EH/E0

]
.

This equation illustrates the dependence of stresses
on the concentration of the added hydrogen particles.

Similarly to the equation for an ideal gas located in the
pores and voids of a material, the constitutive equation
describing the relationship between the pressure p and
the density of the second medium ρ−

H has the form

p = 3

2
N−

H kT,

where N−
H is the volume concentration of the mobile

hydrogen particles, k is the Boltzmann constant, T is the
absolute temperature of the mobile continuum.

We believe that the force R of the interaction between
the mobile hydrogen particles and the lattice can be also
described through the approach used for ideal gas flow.
This allows to obtain the following representation for the
quantity R:

R = F (ε)ρ−
H [v−

H − v+
H ]. (3)

The force of interaction can be regarded as a linear
function of the difference between the particle speeds in
the two-continuum medium. The parameter F (ε) (de-
pends on the strain ε) is proportional to the area of the
flow section and depends on the properties of the mate-
rial, such as the parameters of the crystalline lattice, the
surface area of crystalline grains, the ratio between this
area and the grain volume, porosity, etc.

The source term J was taken in the form suggested in
Ref. [31], i.e., similar to Eq. (1):

J = αN− − βN+,
H H
where α and β are the positive coefficients describing
sorption and desorption of diffusely mobile hydrogen
within the crystalline lattice from diffusion channels.

To illustrate the role of these coefficients, the solution
of the equations of particle balance may be used assum-
ing that the volume density distribution of the bound
and the mobile hydrogen particles is uniform [31]. This
system of equations has the form

dN+
H

dt = αN−
H − βN+

H
dN−

H
dt = −αN−

H + βN+
H

. (4)

Let us impose the following initial conditions:

N+
H (0) = 0, N−

H (0) = 
−.

This means that in the initial moment of time there is
no bound hydrogen in the material, while the diffusely
mobile hydrogen has the concentration 
−. In this case
the solutions of the system (4) have the form:

N+
H = α

α + β

−(1 − e−(α+β)t ),

N−
H = 
−[1 − α

α + β
(1 − e−(α+β)t )].

The obtained time dependences are shown in
Fig. 2. They demonstrate the process of hydrogen sat-
urating the host medium and of the diffusely mobile hy-
drogen concentration decreasing to equilibrium values
determined by the sorption and desorption coefficients.
The parameters α and β must be found experimentally,
as the sorption and desorption mechanism lie outside the
scope of our discussion.

We should note that Eq. (4) describes the exchange of
hydrogen particles with different binding energies (the
bound and the mobile) on the condition that the mobile
hydrogen particles have a zero speed. As follows from
Eq. (3), this happens on the condition that F (ε) = 0, i.e.
when transfer of mobile hydrogen particles is impossi-
ble. Obviously, in this case all diffusely mobile hydrogen
is going to change its binding energy and add to the host
medium particles on the condition that α >> β.

After substituting ρ+
H = mH N+

H , ρ−
H = mH N−

H и n+ =
N+

H
N0

we can write the complete systems of equations for
the one-dimensional case of a two-continuum medium
in the following form:

∂σ
∂x = (ρ0 + ρ+

H )
∂v+

H
∂t + Jv+

H + R,

− ∂ p
∂x = ρ−

H
∂v−

H
∂t + Jv−

H − R,
∂ρ0

∂t + ∂(ρ0v+
H )

∂x = 0
∂N+

H
∂t + ∂(N+

H v+
H )

∂x = J/mH
∂N−

H
∂t + ∂(N−

H v−
H )

∂x = −J/mH .

(5)
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Fig. 2. Plots of normalized concentrations of diffusely mobile (N−
H ) and bound (N+

H ) hydrogen particles versus time for their uniform spatial
distribution in the crystalline lattice. Here α and β are the positive coefficients describing sorption and desorption of diffusely mobile hydrogen
inside the crystalline lattice, 
− is its initial concentration.
Here

σ = E0EH
EH +n+(E0−EH )

ε,

R = F (ε)ρ−
H [v+

H − v−
H ],

J = αN−
H − βN+

H .

The obtained system of Eq. (5) is complete. At
the same time, these equations are strongly non-linear,
which is the reason why our further analysis is going to
be restricted to the case of static uniaxial stress–strain.

We should note that the concept of a static stress state
is rather arbitrary. It must be classified as a balance equa-
tion of a continuous medium (5). The assumption of
static deformation allows to describe the movement of
the second component by pure kinematic relations. In
other words, the structural changes in the material over
time are a dynamics of sorts. Therefore, it is natural to
search for a solution to the problem in the following
form:

ε = εst + ε̃(x, t ), v+
H = 0 + ṽ+

H , v−
H = 0 + ṽ−

H ,

where εst is the uniform static deformation.
Evidently, the functional dependence N+

H =
N+

H (x, ε, t ) can be represented as

N+
H (x, εst + ε̃, t ) = N+

H (x, εst , t ) + ∂N+
H

∂ε

∣∣∣∣
ε=εst

ε̃(x, t ).

Respectively, the following equation can be written
for the stresses σ :

σ = σst + σ̃ = E0

[
1 − n+

EH/E0 + n+

]
εst

+E0

[
1 − n+

EH/E0 + n+

]
ε̃ + O(ε̃).

We should note that σ is connected to ε̃, i.e., there are
induced stresses connected to the reorganization of the
internal structure that generates the stressses σ̃ .

The complex relationship of the stress

σ = σ (ε, N+(ε, x, t )) = σ (ε, N0 · n+(ε, x, t ))
H
and the deformation transform the first equation of the
system (5) into the equation

∂σ

∂ε

∂ε

∂x
+ ∂σ

∂n+

[
∂n+

∂ε

∂ε

∂x
+ ∂n+

∂x

]

= (ρ0 + ρ+
H )

∂v+
H

∂t
+ Jv+

H + R.

Staying within the static approach, we can rewrite this
equation as

∂σst

∂ε

∂εst

∂x
= 0; (6)

∂σ̃

∂x
= (ρ0 + ρ+

H )
∂ ṽ+

H

∂t
+ J|ε=εst

ṽ+
H + R |ε=εst

− ∂σ

∂n+

∣∣∣∣
ε=εst

∂n+

∂x

∣∣∣∣
ε=εst

.

Here

σ = E0εst

{
1 −

[
n+

n++EH/E0

]∣∣∣
ε=εst

}
,

σ̃ = E0ε̃

{
1 −

[
n+

n++EH/E0

]∣∣∣
ε=εst

}
,

R|ε=εst
= −F (εst )ρ

−
H v−

H

. (7)

The second equation in the system (6) describes the
dependence of stress pattern ε̃ induced by bond restruc-
turing, for the case when the principal term is known

∂σ

∂n+ · ∂n+

∂x

∣∣∣∣
ε=εst

.

We can write the following relations for the second
continuum:

−∂ p

∂x
= F (εst )mHN−

H v−
H , p = 3

2
N−

H kT ., (8)

where ρ−
H = mH · N−

H is the diffusely mobile hydrogen
density.
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The Eq. (8) are converted to a form

3

2
kT

∂N−
H

∂x
= −F (εst )mHN−

H v−
H .

The last equation is similar to Darcy’s law where the
diffusion coefficient depends on the strain field εst .

Therefore, we obtain the following expression for the
hydrogen particle speeds (the second continuum)

v−
H = − 3kT

2F (εst )mH

1

N−
H

∂N−
H

∂x
. (9)

The above-listed equations should be complemented
with the the balance equations for the bound and the
diffusely mobile hydrogen particles:

N0
∂n+
∂t = αN−

H − βN0n+
∂N−

H
∂t + ∂N−

H v−
H

∂x = −(αN−
H − βN0n+)

.

Using Eq. (9), we obtain from these equations a new
equation for the proprotion of the bound hydrogen par-
ticles in the material:

∂2n+

∂t2
+ (α + β)

∂n+

∂t

− 3kT

2mHF (εst )

[
β

∂2n+

∂x2
+ ∂3n+

∂t∂x2

]
= 0. (10)

Eq. (10) is a mixed-type equation, as it contains terms
typical for hyperbolic equations: ∂2n+/∂t2, ∂2n+/∂x2,
as well as terms typical for parabolic equations: ∂n+/∂t ,
∂3n+/∂t∂x2. This means that a comprehensive analysis
of a non-stationary task for a finite initial distrubance
must reveal a characteristic moving front of an increase
(or a decrease) in hydrogen particle concentration.

In order to analyze this equation, we shall use the
Fourier method of variable separation. For this end, we
are going to assume that

n+(t, x) = T+(t ) · X+(x).

Then

T̈+(t ) + (α + β)Ṫ+(t )
3kT

2mHF (εst )
(βT+(t ) + Ṫ+(t ))

= X ′′+(x)

X+(x)
= −γ 2

x .

Hence, we obtain an ordinary differential equation for
X+(x):

X ′′
+(x) + γ 2

x X+(x) = 0,

and also an ordinary differential equation for T+(t ):

T̈+(t ) +
(

α + β + γ 2
x

3kT

2mHF (εst )

)
Ṫ+(t )

+ γ 2
x

3kT

2mHF (εst )
βT+(t ) = 0.
Let us solve this problem with the following initial
conditions:

n+(0, x) = 0,

N−
H (0, x) = 
−(

1 + cos 2πx
λ

)
,

ṅ+(0, x) = α
−
N0

(
1 + cos 2πx

λ

)
,

(11)

where the parameter λ is determined by the microstruc-
tural parameters of the material in question.

First let us construct the equations for the constant
term of the X+(x) series based on the initial conditions
(11). In this case γ 2

x = 0 and the equation for the time
multiplier T+(t ) has the form:

T̈+(t ) + (α + β)Ṫ+(t ) = 0.

The solutions of this equation will be the functions of
the form

T+(t ) = T0 + T1e−(α+β)t ,

where the constants T0 and T1 are determined by the
initial conditions.

For the second term of the X+(x) series we have the
γ 2

x = 4π2

λ2 value, and the equation for T+(t ) has the form

T̈+(t ) +
(

α + β + 4π2

λ2

3kT

2mHF (εst )

)
Ṫ+(t )

+ 4π2

λ2

3kT

2mHF (εst )
βT+(t ) = 0. (12)

Let us introduce the notation

G(εst ) = 3kT

2mHF (εst )

(
2π

λ

)2

.

Then Eq. (12) takes the form

T̈+(t ) + (α + β + G(εst ))Ṫ+(t ) + G(εst )βT+(t ) = 0.

Its solution is a function

T+(t ) = T3e−ξ1t + T4e−ξ2t ,

where

ξ1 = 1

2

[
α + β + G(εst )

−
√

(α + β + G(εst ))
2 − 4βG(εst )

]
;

ξ2 = 1

2

[
α + β + G(εst )

+
√

(α + β + G(εst ))
2 − 4βG(εst )

]
.

Substitution into the initial conditions produces, after
integration over a full harmonic period, the following

relations:
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Fig. 3. The calculated (line) and the experimental (symbols) values of
the maximum tensile stresses in the AISI 4135 steel alloy depending on
the initial concnetration of the diffusely mobile hydrogen; the calcula-
tion was made using the proposed rheological model; the experimental
data is taken from Ref. [33].
T0 = −T1 = α
−
N0(α+β

)

T3 = −T4 = α
−

N0

√
(α+β−G(εst ))

2+4βG(εst )

.

These expressions allow to write the final form of the
solution for the relative proportion of bound hydrogen
particles:

n+(t, x) = α
−

N0

(
(1 − e−(α+β)t )

α + β

+ (e−ξ1t − e−ξ2t )cos 2πx
λ√

(α + β + G(εst ))
2 − 4βG(εst )

)
. (13)

Predictably, the diffusely mobile hydrogen that is uni-
formly distributed over the volume increases its bind-
ing energy independent of diffusion, while the non-
uniformly distributed hydrogen diffuses, with the dif-
fusion rate determined by the function F (εst ) that is a
conventional size of the flow section of the hydrogen
diffusion channels depending on the strain εst .

A decrease in the value of F (εst ) leads to an increase
in G(εst ). If F (εst ) → 0, then ξ1 will tend to 0, while the
multiplier (e−ξ1t − e−ξ2t ) in Eq. (13) will tend to e−βt .
These difference between the exponents determines the
non-uniformity in hydrogen concentration distribution
along the spatial coordinate. Therefore, a redistribution
of hydrogen concentrations due to diffusion will decel-
erate. In the limiting case we will obtain the following
formula:

n+(t, x) = α
−

N0

(
1

α + β
+ e−βt

G(εst )
cos

2πx

λ

)
.

This means that the redistribution of hydrogen parti-
cles in the limiting case will also be determined by the
sorption and desorption processes.

The equations of the system (7) can be used to model
the effect of hydrogen on the σ (ε) dependence, which
is easily measured. We should note that the effects con-
nected to the changes in temperature, and also non-linear
phenomena caused by the changes in the bound hydrogen
contents due to material deformation can be described by
the suggested model.

The experimental data of Ref. [32] prove that the
yield point is particularly strongly dependent on hydro-
gen concentration.

A linearly elastic material may be logically assumed
to have a free surface area that, for small strains, is pro-
portional to the deformation itself. Consequently, the α

and β coefficients must linearly depend on deformation.
Then for small deformations we may adopt a linear de-
pendence for the coefficient ratio:

β

α
= k0 + k1ε. (14)
The latter relationship depends the change in the ma-
terial properties during hydrogen redistribution in it, al-
lowing to obtain a good approximation of the experimen-
tal data. Fig. 3 shows the dependence of the maximum
tensile stresses on the initial diffusely mobile hydrogen
concentration for steel. The calculated dependence was
compared to the experimental data. This data was ob-
tained in Ref. [33] for the AISI 4135 steel and is repre-
sented by the squares in Fig. 3.

The proposed approach was used to study the effect
of hydrogen on pipeline wall stresses [34] and on fatigue
strength of metals [35,36].

3. Discussion of the results

The discrepancy between the theoretical and the ex-
perimental data (see Fig. 3) observed for a low initial con-
centration of diffusely mobile hydrogen can be attributed
to the fracture mechanisms that are not connected to hy-
drogen effect and, consequently, not described by the
model. The rest of the experimental points show a good
agreement with the curve, which proves that the model
is adequate for describing the examined processes.

As this model describes material fracture, it does not
make any assumptions about microcracks existing in
the material or of a specific concentration or orienta-
tion of dislocations [8]. This approach is also different
from modeling hydrogen embrittlement by introducing
a crack resistance parameter [15].

According to extensive experimental studies con-
ducted over many decades, the unusually strong effect
of hydrogen on the stress–strain behavior of materials
can be explained only by the fact that it accumulates
in microlocations such as cracks or dislocations. Any at-
tempts to describe such a mechanism by HELP or HEDE
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models result in having to simultaneously deal with pro-
cesses of different scales. In this case, the process at the
microlevel often turns out to be localized in the material
and temporally unstable. For this reason, certain aver-
aged characteristics have to introduced for calculations
of real constructions and numerical modeling (and thus
the local peculiarities are found to be diffused) that de-
prive these models of their initial physical clarity.

The HELP model [7] used a physical mechanism of
hydrogen effect that manifests itself as changes in the
local mechanical properties of a metal but only for quan-
titative ratios of about 1 : 1 between hydrogen particles
and metal atoms. It proves impossible to obtain these
mean hydrogen concentrations to find the specific pa-
rameter values of the constitutive equation, and to subse-
quently set an experiment or carry out a calculation based
on the physical mechanisms of the interaction between
hydrogen and metal. Such an experiment or a calcula-
tion is actually hard to imagine from a physical stand-
point, as solid-state hydrogen has a lattice constant that
is 1.5 times higher than the corresponding value for most
metals.

Therefore, the volume concentration of pure hydro-
gen particles is even in the solid state three times lower
than that of metal atoms.

The main advantage of the proposed constitutive
equations and two-component model equations is that
they can be applied at a macrolevel. The micromecha-
nisms of hydrogen effect were included into the rheo-
logical model. The parameters α, β, EH, k0 and k1 must
be determined within the scope of macrovalues, such as
experimental stress–strain state diagrams.

Despite the perceived simplicity of this approach and
the large number of published data, not all of it can be
used for the approximation in question. Almost all of the
experimental data was obtained for samples saturated
either in electrolyte solutions or in gaseous hydrogen.

Contrary to the established opinion that hydrogen par-
ticles within metals are redistributed rapidly due to the
concentration gradient, a simple calculation shows that
such a process can last anywhere from tens of hours to
several years, and its rate depends on the binding energy
of trapped hydrogen. Our own experiments show that in
case of zinc hydrogenation through a galvanic process
hydrogen concentration redistribution does not become
uniform even after a whole year of sample exposure at
room temperature.

Therefore, hydrogen concentrations in materials and
its volume distributions must be determined accurately
in order to find the characteristics of a rheological
model. This involves certain difficulties, and the major-
ity of the researchers find these parameters indirectly by
measuring cathodic current and charging time. As a
result, the obtained data is unsuitable for determining
model parameters, as hydrogen is in this case located
near sample surface. For example, there is as yet no
unique relationship established between ultimate tensile
strength and hydrogen-charging time [37].

A descending part present on the σ (ε) curve of a
hydrogen-containing material indicates the instability of
the material under stress. The failure under an actual
load will occur when the point of the maximum stress
is reached in the respective curve. This point can be in-
terpreted as the ultimate tensile strength of the material
due to its hydrogen saturation.

4. Conclusions

The proposed model allows to describe the kinetics of
hydrogen particles in metals, and, in particular, to assess
the transition of hydrogen from a mobile to a bound state
(depending on the stress–strain state of the material) and
to describe the accumulation of bound hydrogen which
ultimately leads to material fracture.

Using the model does not require making any pre-
sumptions of defects and their distribution in the mate-
rial.

Analyzing the linear, as well as non-linear model ap-
proximation for the case of uniaxial tension in the ab-
sence of hydrogen diffusion, produces adequate results.

We suggest a new approach to simulating the behavior
of deformed solid matter taking into account the effect
of hydrogen on free surfaces and interatomic bonds in
single crystals on different scales. This gives grounds for
applying the model to describing multi-scale materials
with nano- and microstructures.
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