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oduction 

The work of G. Higman, A. Karrass, Hanna Neumann, B. H. Neumann, D. Solitar 
and many others has drawn attention to groups which are graph products - free 
products with amalgamation, HNN groups, tree products and the like. They are 
fundamental groups of graphs of groups in the terminology of Bass and Serre. The 
theory of groupnets (Brandt groupoids) lends itself neatly to the study of such groups. 

The bridge between topology and combinatorial group theory provided by the 
groupnet has been used more frequently since the appearance of Higgins’ formalisa- 
tion [7] of the theorems of Grushko, Kurosh, Neilsen and Schreier in terms of 
groupnets. The category ‘gPpk~~t of qroupnets contains as a full subcate,gory the 
category 9%~ of groups, but also contains algebraically-determined constructs - 
homotopies, fibrations and ‘unit intervals’ - which are either undefined or vacuous in 
2%~ yet correspond closely to the topological definitions through the forgetful 
functor from %@net to the category of directed graphs. Restriction of the object set 
to abelian groupnets determines the category &net v~b ich contains the category .& 
of abelian groups as full subcategory. 

The term groupnet is preferred to groupoid in oy*der to emphasise the graph 
underlying each groupnet, to harmonise with more general definitions of partial 
product net and pregroupnet [4] and to avoid ambiguity with the algebraist’s 
groupoid (a set with a binary operation). All the grou net theory used here is foun 
in [4], as is a description of thie close relationship between the graph product of a 

c edge morphisms and the fundamental group of a graph 
uct approach does, however, appear to be the more 

natural. 

* The work reported in this paper is part of a dissertation presented in October 1976 for a Ph. 
Pure athematics at the Australiran National University. I wish to acknowledge t 

encou ement of my supervisor, 
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In this paper, the ringoids of Mitchell [9] are extended to form a category of 
ringnets, which is employed to construct a ‘mapping cylinder’ complex for the 
homotopy colimit G of each diagram of groupnets (Q A), given any diagram of 
complexes corresponding to (D, A), with the subsequent proof (Corollary 5.6) that 

if G is a graph product, and each vertex complex is a free resolution of its 
trivial module, then the G-mapping cylinder is a free <esolution of its trivial 
module. 

In the course of proof the notion of chain homotopy is extended to a form strongly 
motivated by the topological definition of homotoFjr. . 

This mapping cylinder complex determines Mayer-Vietoris sequences for graph 
products which extend the results of Bieri [l] for HNN groups and Lyndon and Swan 
[11] for free products with amalgamation. The sequences are in turn used to 
generalise results on cohomological dimension and duality groups. Several of these 
results are shown to be equivalent to those of Chiswell[3] (see also Dicks [S]), Bieri 
and Eckmann [l, 21 derived by other means. 

General categorical notation employed is as follows: ]%?I denotes the object set 
of a small category U=, f E %? means f is 8 morphism of %, an object C of %’ may at any 
time represent its identity morphism 1 c, and all diagrams denote the statement that 
they commute wherever possible. The unit interval groupnet will be denoted 
I ={O, 1, *, *-‘3. 

2. The category of ringnets 

Groupnets form a wider class than groups, extending the category of small 
monoids for which every morphism is an isomorphism to the category of small 
categories for which every morphism is an isomorphism. The analogous extension 
from unital rings to ringoids; that is, from the category Bng of small preadditive 
monoids to the category Bngoid of small preadditive categories, has been dealt 
with in depth by Mitchell [9]. The category %?ngnet described below forms an 
even wider &!ES than Sngoid, with full subcategory inclusion functors Brig-, 
Bngoid + %ngnet. 

efinition. A category %? is partially preadditive if it admits an abelian groupnet 
structure on horn sets. A functor between partially preadditive categories is partiaZZy 
additive if it is an abelian groupnet morphism on each horn set. 

For instance, &bnet is partially preadditive. 

A ringnet is a small partially preadditive category. The category of 
all ringnets and the partially additive covariant functors between them is called 
%!ngnet. 
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The set of morphisms R = VpEzR R( p)l of a ringnet %! is algebraicaliy an abelian 
groupnet whose additive identities form an associative product net with identities, 
the set of zeros zR of R. Composition F* 0 F in %! will be written as a product rr* in R 
throughout, while lB!l is identifiable with either Id zR or the set of identities 
Id18={li:i~IdzR}ofR.Thezeromapz:R-*tRisgivenforrinR(p)byzr=p. 

ln these terms, a covariant partially additive functor is a ringnet morphism 
f : kt + S; that is, a set map satisfying 

(i) f : ZR + ZS is a morphism of partial product nets with identities, 
(ii) for each p in zR, f : R( p)+S(f(p)) is an abelian group morphism, 
(iii) if i E Id zR, then f (li) = If(i), and 
(iv) if rr* E R, then f (rr*) = f(r)f(r*). 

2.3. Definition. The groupringnet ZA of a groupnet A has as zero set the grouprtet 
rZA={(i, j)ElIdAxIdA:A(i, j)#O}withIdrZA~IdA,~~(i,j)=i,p(i,j)=j,and 
partial product (i, j)(j, k) = (i, k). For each (i, j), ZA(i, j) is the free abelian group on 
{[a]: a E A(i, j)}, while li = [i] for i in Id A and the product is extended linearly from 
that of A. 

The trivial groupringnet for A is Z(Id A): it is a disjoint union of copies of the ring 
of integers Z, one for each identity of A, and extends the description of Z as the 
groupring of the trivial group. Any groupnet morphism extends linearly to a 
groupringnet morphism. 

The tensor product R @ S of two ringnets has 2;i.P 0 S) = zR x zS, R @ S(p, q) = 
R(p) Oz S(q), and all actions defined by co-ordinate. For groupnets A and B, 
Z(AxB)=ZA@ZB. 

Functorial natural equivalence becomes homotopy of ringnet morphisms, 
described as follows: two ringnet morphisms f, g : R + S are homotopic (f = g) if 
there is a ringnet morphism F : ZI 0 R -) S satisfying 

(i) F([O], r) = f(r) Vr E R, and 
(ii) F([1], F) = g(r) VF E R. 

Such a homotopy F is entirely defined by f and 

{F([*], Ii), F([*-‘I, li): i E Id zR}. 

Any ringnet morphism f : R + S induces a constant homotopy x( f) : 

groupnet morphisms induce homotopic groupringnet norphisms. 
f=f= Homotopic 

2.4. Definition, A ringnet diagram (D, R) is a functor R from the free category on . 

the directed graph D to 9bzgnet. It consists of a collection of ringnets (R, : v E D} and 
a collection of ringnet morphisms {R, : RAe + R,, e E D}. 

Each ringnet diagr.am has a homotopy colimit but its construction is not of concern 
here. A rather less free object is of interest. 

comprises 
* A neprescntation u : ( ) of a ringnet dia 
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(i) a ringnet o(D, R), 
(ii) a ringnet morphism a, : R, + a(D, R), Vu E D, and 
(iii) a ringnet homotopy a, : oA, = a,, 0 Re, ‘de E D. 
Each groupnet diagram (D, A) induces a groupringnet diagram (D, 

obvious manner. 

3. Modules over ringnets 

For a ring X, a left (right) unitary X-module is an additive covariant (contravari- 
ant) fun&or X-, &b. For a ringoid %?, a left (right) unitary %-module is an additive 
covariant (contravariant) functor %4%. A covariant functor describes a left 
module in terms of the categories concerned, but a right module in terms of the 
internal algebraic structure. 

3.1. Definition. If 8! is a ringnet, a unitary R-module is a partially additive functor 
B + &bnet. If A is a groupnet, a ZA-module is referred to as an A-module. For any 
R-module & the abelian groupnets {A(i) : i E Id zR} will be assumed disjoint as 
there always exists a functor naturally isomorphic to & for which this is true. A 
covariant partially additive functor .ltl : 3 + &bnet has the internal algebraic struc- 
ture of a right R-module M Explicitly, if zM, the set of zeros of M, is the set of 
additive identities of the abelian groupnet M = ViEIdzR d(i), M(t) is the abelian 
group in A(i) with additive identity z, and the right mupp : M-wId ZR is extended by 
component from ~2 = i, z E zM n&(i), then the following rules are obtained (cf 
Mitchell [9, p. 171’: 

(i) (m fm*)r=- mr+m”r,pm =pm*=Ar, 
(ii) m(r + r*) = mr + mr*, pm = hr” = Ar, 

(iii) m(rr*) = (mr)r*, pm = iir, pr = hr*, 
(iv) ml,, = m. 
Similarly, a contravariant functor with left map A determines a left R-module. 

It proves necessary to extend the definition of a bimodule from the usual one; 
namely, a bifunctor partially additive in both arguments, contravariant .in one and 
covariant in the other. 

on. An abelian groupnet M is an R-S bimodule if it is both a left 
e and a right S-module such that, for r E R, s E S and m E M, if either of 

(rm)s or r(ms) is defined, both are and are equal. 
If CT : 3 -+ 3’ is a partially additive covariant functor and JV: @! + &net and 

4 : 9+ afbnet are both c a natural transformation N+&a is 
t modules and is a groupnet morphism 

at f(w) = f(n)cr(r) whenever nt is 
en O- is the identity on R, f is known as an R-morphism. Composed 
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functor &CT is called the (right) pullback along LP and has 

ZAP = ((2, i) E ZM x Id ZR : a(i) = ps}, 

“(2, i) = M(z) x {i}, ~(r, i) = i, and (m, hr)r = (mg(r), pr). The canonical U- 
morphism C* : Mu + M is called pullback projection. The category of right (left) 
R-modules and R-morphisms is called R-&o& (R-&o& but usually the superscript 
is suppressed. An R-module z is a zero module if 2 = ~2, and each (right) zero 
R-module Z determines an abelian subcategory R-Mod(Z) of R-&od, called the 
category of standard R-modules and R-morphisms over 2 in which 

(i) IR-&od(Z)l is the class of all (right) R -modules M for which ZM = 2, and 
(ii) morphisms are those (right) R-morphisms which are the identity morphism 

on 2. 
Results in R-&od(Z) are usually obtained by imitating the proof of the cor- 

respondir;g result in &b ‘pointwise on 2’. For instance R-Mod(Z) admits arbitrary 
products and coproducts, with direct sum 

(++*,=~,,,, VZEZ 

j = j=l 

If z = Id R, then R&od(%) is known as the csrtegory R-Aodreg of regular (right) 
R -modules and R -morphisms. 

For example, the trivial groupringnei Z(Id A) <or a groupnet A is regular as either 
a left or right A-module and is called the trivial /L-module TA. The pullback of a 
regular module is regular and in f;sct if the groupnet morphism c : A -) B is extended 
to groupringnets then (TB)” = 2X as A-modules. 

3.3. Definition. If M is a right K-module and N 9s a left R -module their tensor 
product M 69~ N over R is an abelian groupnet witl- 

Id(M&N)= . 

= bw) E ZM x ZN : pu = hv)/((up, v) - (u, pv) Vp E zR : kp = pu, pp = ho) 

and 

M & N(a) = u M(u) I& N(v)l((mr, n) = (m, rn) whenever defined). 
(u,U)Ea 

Should M be an S-R bimodule then M @R N inherits a left S-module structure. The 
tensor product associates and satisfies the identities M @R R = M and M 8~ (S”) 2 
Ma for a ringnet morphism c : R + S. 

For two left R-modules M and N the set homR(M, N) of R-morphisms has an 
abelian groupnet structure with Id homR(M, N) = horn&M, zN) and 
horn&& N)(h) = {f ts horn&& N) : f IzM = h]. The horn functor h 
defined is no longer right adjoint to the tensor functor M @R -J for an 

so that the straightfoward extension of classical theory so far gene 
must be used with caution when dealing with cohomology theory. However, for a 



28 K. J. Horndam 

ringnet morphism CT : R ++ S the identity horn@” & M, L) 2 homR(M, “L) holds 
f,or left modules M an3 L. 

3.4. Definition. Let R be a ringnet, 2 be a (left) zero R-module, ,% be a set diagram 

x &X z 2 and let % : R-&od(Z) + Yet be the forgetful functor. A standard 
R-module M over Z is free with basis Z if 

(i) X is a subset of @M, 
(ii) zX={y~z: y=zx,xEX}and 
(iii) for any N in jR- &od(Z)l and Yet diagram 

X g ,$IN 

(D3.1) 

Id R 

the*:c: “.s a unique exte:nsion g : M + N of g in R-&od(Z). In fact M H%’ constructed 
3s 

(i) m(y)= jJ R(p)x{x} V~EZ, with 
FEza 
xcx 

p.tx=y 

(ii) R-action r*(r, x) = (r*r, x) defined whenever (r, x) E FZ( y) and pr* = Ay. 
If R = ZA for a group A, and 2 is the zero A-module (01, a standard free 

A-module with basis Z’ over 2 is precisely the classical free A-module with basis X. 
For each monomorphisin m : B - A in %rpnet, the (right) pullback ZAM of A along 
m : ZB - ZA is a free (right) B-module. 

The structural requirements of each generating diagram %’ and each set diagram 
(D3.1) imply that each set X may determine more than one free module over 2. 
Hence a free module in R-&od(Z) is not necessarily a free object of that category, 
though most of the properties associated with free objects are preserved [S, 2.2.201. 

The category of standard R-chain complexes over Z is called R-%omp(Z) and 
consists of those R-chain complexes (C, a) for which Cn E IR-Jlod(Z)I and d, E R- 
&od(Z) for n in and those R-chain maps f : C + D for which fn E R- 
JtGod(Z)(C,, D,J for It is, of course, abelian. When 2 = Id R it is called 
R-B’ompreg, the cat regular complexes and morphisms. If u : R + S 

is an -complex, chain map f : C + 
a a-chain map if fn is a a-morphism for all n. In future the only complexes considered 
will be standard over some zero module. 
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If M is an R-module, a complex over M is a standard chain complex 

with augmentation map E : C~+M. If 0 : R + S is a ringnet morphism and C is an 
S-complex then the pullback complex “C consists of the pullback modules “C, 
together with the pullback morphisms “a, : (i, c)+i, ac). It follows that the pullback 
of a standard/regular/exact complex is standard/regular/exact; the pullback of a 
resolution of M is a resolution of the pullback of M, and thus that if CT : A + B is (a 
groupnet morphism and C is a resolution of TB then “C is a resolution of TA. 

4.1. Example. For each ringnet R, the unit R-complex 9 is defined as 9 = TI Oz Et 
where 

R=zR -R1--+Ro-),zR 
a1 

is the element of R-%omp(zR) defined by 
(i) Ri = R is the free (right) R-module over tR with basis {y} x Id R++ Id R with 

z(y, i) = i, 
(ii) R. = R @ R is the free (right) R-module over ZR with basis {a, /3} x 

Id R* Id R with z(cy, i) = r(P, i) = i, and 
(iii) a,( y, r) = (ar, r) - (p, r) Vr E R. 
In the homotopy theory for complexes, 9 !zerves .!rl a fashion comparable to the 

way ZI, I and [0, l] serve for rqr,gnets, grou,nets and topological spaces, respec- 
tively. It is a left ZIG R-complex with left map 1 x A : 2.9 -H Id I x Id R and left 
action defined by coordinate: ([i], r)(pi, 5, r*) = (hi, & rr*) for i in I, rr* in R and 5 in 
{CU, & y}. It is also a complex of free right Z(Id I) ‘3 R-modules over 29, with 
generators denoted as (1, a3, i) = (a, i), (1, p, i) = (b, i), (1, y, i) = (c, i), (0, cy, i) = 
(*a, i), (0, p, i) = (*b, i) and (0, ‘y, i) = (*c, i). In these terms a&, r) = (a, r) - (b, r), 
&(*c, r) = (+a, r) - (*b, r), and the ZI @ R-action br:c 3mes 

([*I7 r)(a, r*) = (*a, rf’j, 

([*-‘I, r)(*a, r*) = (a, rr*) and so on. 

The tensor product C 8~ D of a standard left R-complc: x D and a standard right 
R-complex C is the obvious extension of that for complel:es over a ring. 

If C is a left standard R-complex, then 4i OR C is z. left standard Z.! $2 R-complex, 
which since R & C, = C, will be henceforth written as 

(9 0 CML z) = {a} x C,(z) 63 0 x G(z) 0 {cl x CAO, 

(9 0 C),(O, z) =(*a} x C,,(r) 0 {*b}x G(zl 0 {*c)x CL-I(Z), 

, al:’ - C? - (c, ac?, 

a,,((*a, C) + (*b, c’) + (w, c”)) = (*a, ac + dt) + (*b, ad - c”) - (w, ad’). 
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Homotopy of two chain maps between standard complexes is only possible if the 
images of the zeros under the second map are acted on by specific ringnet elements to 
give the images of the zeros under the first map. This condition is automatically 
satisfied for regular chain complexes, including complexes over a ring. 

4.2. Definition. Let C be a standard R-complex, D be a standard S-complex, 
cr, T : R + S be homotopic ringnet morphisms with homotopy v : cr = T, and f, g : C + 
D be a, r-chain maps respectively for which f(z) = v([*], ht)g(z) for z in zC. A 
v-homotopy F : f = g between fund g is a v-chain map F : 9 @R C + D satisfying 

(i) F,(*a, c) =fn(c) and 
(ii) F, (ii, c) = g,(c) for all c in Cn and or in Z. 

It is thus completely determined by f, g and (F,(*c, c’): C’E Cn_l, n E Z}. 

In fact, v-homotopy extends the usual definition for complexes over a ring. 

4.3. Lemma [S, 3.2.33. Morphism ;f f~ t+-homotopic to g if and only if there is u set 
G = {G,,: n E Z} of a-morphisms G,,, : C,_ + D,,+l satisfying 

(i) G,(Z) = f(z) Vz E zC, and 
(ii) @G + G@(c) = j(c) -- F([*], Isc&$) Vc E G,, n E Z. 

Chain maps between cornylexes o’tic: ii rings are chain homotopic in the classical sense 
if and only if they a e x ( I) - homotopic. 

5. The mapping cykIer 

5.1. Definition. A complex diugrum (D, R, C) consists of a directed graph D, a 
ringnet diagram (D, R), an R,-complex C” for each v in D and an R,-morphism 
Ce : CAe + Cpe for each e in D. It is a stundurd/regulur/projective/free/exuct complex 
diagram when C” i:, a standard/regular/projective/free/exact complex for each v 
in D and, in the first two cases, when Ce is a standard/regular chain map for each 
e in D. 

efinition. A a(D, R)-mupping cylinder p : (D, R, C) + p(D, R, C) for a 
complex diagram (D, R, C) comprises 

(i) a representation u : (D, R) + a(D, R) of (D, R), 
(ii) a o-(D, R)-complex p(D, R, C), 

(iii) a u,,-chain map JL” : CD -) p(D, R, C) for v in D, and, 
(iv) a ir,-homotopy pe : pAe = $‘eoCe for e in D, which is 
(v) universal with respect to all constructions satisfying conditions (ii)-( 

Once 0 has been prescribed, the mapping cylinder may be considered as a 
‘homotopy colimit with respect to a’. 
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The following construction of the mapping cylinder corresponds to the process in 
90p of adding a handle to the lniion of vertex spaces for each edge of the directed 
graph, identifying its initial boundary with the source complex and its terminal 
boundary with the sink complex. 

5.3. Theorem. For each representation (7 : (D, R) + S for a starxlardkomplex dfagram 
(D, R, C), there exists an S-mapping cylinder p : (0, R, C) + M; moreover, M is a 
standard S-complex. 

Proof. Some notation is first necessary. For each e in D, Ca, represents a subscripted 
copy of the unit RA,-complex. In 9’ 0, CE - the R,-tensor product of the pullback 
S” of S along a, with CE for each v in D - the element ((s, AC), c) with ps = U&C) 
will be written (s, c). In the 210 RA,-tensor product Se 0, (&, @ Che)n of the 
pullback Se of S along ue with (9e 0 CAe)n, for each e in D, the element 
((s, (El], AC)e), (a, c)) w$h ps = gpeRe(Ac) will be written (s, d, c, e), and the element 
((s, ([0], AC)e), (*d, c)) with ps = ~&AC) will be written (s, *d, c, e) for d in {a, b, c}. 
Thus, in this terminology, 

(s, *d, C, 4 = (sue ([*I, AC), (4 C, e ). (DS. 1) 

(i) For each e in D, z(S’ C&e (Ca, @ CA’)) = z(S^” @he Che). Define an abelian 
groupnet M, to have identity set 

zM = (,46 z(s~ 0, Cv))/( (sg r)n’(saeCC*19 xz)9 ce(z))9 
V(q, Z) E r(SAe @A, CAe), e ED 

)_ 

With W, = W n r(S” 0, C”) for each set equivalence class W of ZM and v in L), let 

MS,(W)= u (S”OuC)(~)@ u (S’lG, (.PeOCAej,(w) 
WEW” WEWAe 
UED ecD 

/( (s, c’) = (s, *a, C, e), V(S, c I E SAe OAe Ci’, e ED 

(S, Cz (c)) = (S, b, C, e), V(S, C i(c)) E SPe Ope CT, e ED > . 
(D5.2) 

This equation may be simplified using (D5.1) to 

M,,(W) = u (S” @u C:)(W) @ U (SAe Oe CZ-I J(W) x(e)* 
WEW” WE WA, 
VED ecD 

(D5.3) . 

The left S-action on S” 0, C” and Se @e (.%= 0 Che) is compatible with the relations 
in (DS.2) so that M, is an S-module. 

(ii) Boundary map & : M, --) .A&-1 is induced from the boundary maps on the 
direct summandh; of ( 5.2) SO that, using (DS.S)l, MS, c) = (s, W and d,Js, c, e) = 

(s, 92) - (a?([*], Ad, c-1 c ( )) -- (s, dc, e). Routine calculation shows that 8, is a 
well-defined S-morphism and thrit (M, a) is a standard S-complex. 
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(iii) In terms of (D5.2) the a,-morphism F” : C”+M is given by &E(c) = 
(C&C), c) for v in D and all n, and the cr,-homotopy ccc : .% 0 CA’ + M is given by 

LX*4 d = (ue([OI, AC), *d, G 4 

and 

&(d, C) z (ue([lb W, (4 G 4 

for d in {a, b, c}, e in D and all n. 

(v) If v : (D, R, C) -) N satisfies (5.2. ii-iv), the unique map 8 : M + N proving the 
universality of p is given (in terms of (D5.3)) by O,,(s, c) = s. vi(c) for c in Cl, and 
&(s, c’, e) = s. vi(*c, c’) for c’ in CE1. 

5.4, Lemma. The mapping cylinder is a mapping cone. 

Proof. Consider ( 5.3). Define standard S-complexes (K, a) and (K’, a’) over ZM by 

K,(W) = J.l.l~ (SAe 69~~ C;l”)(W>X{& 
ecD 

K:,(W) = U (S” 0, C:)W, 
WEW” 
VIED 

for all W in zM, a, : (s, c, e) - (s, ac, e) and 8;: (s, c) c) (s, ac). Define S-chain map 
d* : K + K’ by @(s, c, e) = (s, c) - (sw~([*], AC), C”,(c)). Then M,, = KL 0 K,,-l and 

a((& c'), (s, C, e)) = (a'@', c') +a*(s, C, e), -a(s, c, e)). 

5.5. Corollary. L,et (D, A) be a groupnet diagram with mapping cylinder 
m : (D, A) + G aYzd induced representation m : (D, ZA)+ ZG of (D, ZA). Let 
(D, ZA, C) be a standard complex diagram with G-mapping cylinder 
g : (D, ZA, C) + M. Then 

(i) if (D, ZA, 5‘) is regular, M is regular, 
(ii) if (D, ZA, C) is free, M is free, 

(iii) if G is a graph product and (0, ZA, C) is exact, M is exact, and 
(iv) if G is a graph product and Cv is a resolution of TA, for each v in D, then M is a 

resolution of TG. 

roof. (i) An isomorphism ZM = Id G is required. As 

ZM = {(i, k) E z G: kEIdA,,vED} 

! ’ (i, k) - (i, 1) VA,(k, 1) # 0, v ED, 
/( (i, j) - (i, A,(j)) Vj E Id Ahe, e ED > ’ 

the map C: + Id G induced from [(i, k) = i is a well-defined surjection If 
l(i, i) = l(i, j) then there is an element g = l-I;= 1 pl of G(i, j), where each pl has one of 
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the forms 

p1= 

I 

m,,(a), a E A,,, 01 ED, 

m&*1, [sl), q E Id AIM,? Q E D, 

m=,(C*-‘I, Cd), q E Id hel7 a E D. 

33 

(D5.4) 

Considered as an element of zZG, 

(i, j) = (i, i)(hpl, ppl) l 8 * (Ah ppd; 

hence in zM, (i, j) = (i, pp,J-(i, hpn) = (i, pp,-I) - (i, i) by induction, and t is an 
isomorphism. 

(ii) If Ci is the free left AU-module with basis %i = Xf: -H zXY,, then Mn is 
isomorphic to the free left G-module over ZM with basis 

2l!?n =x, 2 2x,, 
with 

2x, = (u {w~zM:((Ay,hy),Y)EW,ysrX:}) 
UED 

and the obvious induced map z. 
When (D, ZA, C) is a free regular complex diagram, Fa”, = M, may be written, for 

each i in Id G, as 

mn(i) = U ZG(i, An) x(x} 0 U ZG(i, An) x {[x!e]J. 
(i,hzxkzZG (i,hzxkzZG 

XEX:: Xf xg1 

VED eED 

For the next two sections of proof it is assumc:c’ G is a graph product. 
(iii) Since the maps m, . l A, + G are embeddiugs, the right pullback ZG’ of ZG 

along m, is a free right AU-module. If (D, ZA, C) is exact, the complex 
(ZG” 0, C”, 10 a) is exact for each v in D. Thus (K, a) and (K’, a’) are exact. The 
result follows either by direct computation or from the long exact homology 
sequence for the short exact sequence K’ -M -H K’, where K;f = K,-l and 
ai = -a,+ 

(iv) If C” is a TA, = TV-resolution for each v in D, then for each e in D, 
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ni=e (LJ ZA, C) determines an exact regular complex diagram (D, ZA, B), 
re B” is the augmen complex C” + TV and Be is the extend&d chain map 

determined by (D5.5). If is the G-mapping cylinder g f (D, ZA, B), then M* is 
exact and M is exact in all dimensions greater than 1, by (iii) above. If,. for each 
i in IdG, 

No(i) = U G”“(i, jl @Ae LA j) x {e), 
‘;g=-&-y . 

etsD 

then Mg (i) = MO(i) 0 No(i). If po : M$ -, MO is projection of the first coordinate, 
A&(i) = M!$ (i)/E*No(i) for i in Id G, and p-1: M!$ + M-1 is the canonical quo- 
tient map, then 

. . . - M,, -*.- -M, -MO-M_, F -Id& 

(D5.6) 

where E(& =p+E*(mo, 0). 
But No s E *No, so the bottom row of (D5.6) is exact. The G-morphism q : M-1 + 

TG defined by (g, [pg]) c-) [Ag] for g E G is an isomorphism, since g = ny=, pl 
(see (D5.4)), so that in M-1 

(g9 bgl) = (;ii; Pl9 [APnl) = 

= (.\g, [hg]) by induction. 

5.6. Corollary. Under the conditions of (SS), if G is a graph product and Cv is a free 
resolution of TV for v JZ D then the G-mapping cylinder M is a free resolution of TG. 
Moreover, if G* is the koop group at a selected identity i of Id G, - the classical case - 
then M(i) is a free G*-resolution of 2. 

roof. If T is a maximal tree in the connected component of G containing i, ach 
g E G(i, j) for j in Id A, may be uniquely written as g = g*ti,i for g” in G* and tl,j in 
T(i, j). The classical result follows from (5.5) when every free generator n of M, is 
replaced by element ti,Axx of M,, and corresponding adjustments are made to the 
boundary maps. 

It is not necessary that G be a graph product for the mapping cylinder of an exact 
complex diagram to be exact, but neither is exac ness of the complex diagram 
sufficient to ensure exactness of the mapping cylinder. 
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its applications 

I 0 R + S is a ringnet homotopy and f, g : C + D are v-homotopic standard 
chain maps, their induced homology chain maps differ only by a ‘change of base point 
isomorphism’. For, if F:f=g and c&era,(z), then f(c)+Im&+l(r)= 
v([*], hc)(g(c) + Im a,+,(z)). It follows that homotopic chain complexes in R- 
%?omp(Z) have is$omorphic homology modules. It is possible to extend the 
comparison theorem generally to take into account chain maps between complexes 
over different ringnets, but only the following partial generalisation will be needed 
[S, 4.2.41. 

6.1. Lemma (Regular Comparison Theorem). Let C be a projective complex over M 
in R-Wompreg, let D be a resolution over N in S-Wompreg and let a : R + S be a ringnet 
morphism. Then any o-morphism f : M + N lifts to a a-chain map g : C + D with 
sg = f&; any two such lifting maps are x(c+homotopic. 

6.2. Definition. Let A be a groupnet, M be a right A-module and N be a left 
A-module. If C is a projective left A-resolution of TA, the homology module 
H,(A; M) of A with coeficients in M is the homology module H(M @A C), and the 
cohomology module H*(A; N) of A with coefficients in N is the homology module 
H(homA(C, N)). 

The definition is independent of the projective !t:ft A-resolution C of TA. 
In order to determine the Mayer-Vietoris sequences of the next theorem, it must 

be noted that under the conditions of (§.3), for each left S-module L, each element h 5 
of horn&M, zL) determines a unique collection {h, E homo(zCu, z”L) : v E Dj with 
h&) = (z, h(cr,(hz), z)) for z in zCv, and vice versA. 

6.3. Theorem (Mayer-Vietoris Sequence). Let a : ,D, R) + S be a ringnet represen- 
tation and CC : (D, R, C) + M be the S-mapping c Jlinder of the standard complex 
diagram (D, R, C). Let N be a right S-module and a_. be a left S-module. The following 
sequences are exact, for each Y in z (N 0s M) ant! h in hom.&M, zL): 

. l l + LI H,(NAe @he C”“)(y) x(e) h 1l. Hm(Nu 0, C”)(y) 
YEYhe YEYU 
eeD VED 

(D6.1) 

1% H,,,(N OS M)( Y) 2 u H,,, _I(NAe OAe C^‘)(y) x(e)-+ l 8 9 , 

YEYA, 
ecD 

g . l + H,(hom&Z, L))(h) 2 n H,(hom,(C”, ‘U)!h,) 2 
OED 

(D6.2) 

(homA, ( CAe, AeL))( h,e) x {e} x 
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Proof. (D&l). Directed graph D determines a groupnet diagram (D, 1) with the 
trivial group at each vertex and the identity morphism on each edge. The induced 
ringnet diagram (D, 2) has a representation j : (D, 2) + 2 consisting of the obvious 
identity morphisms and homotopies. The pullback NV of N along a, : R, -, S 
determines a standard -complex (N 0 C)” = N” 0, C”. If 

~==(Noc)~:(No~)A~-*(N~~)~” 

is given by 

c’k (G C) = (fl~e(C*l9 AC)9 G (C)l 

(where the notational conventions are those of (5.3) with S replaced by N), a 
standard complex diagram (D, 2, N 0 C) is determined, whose j(D, Z)-mapping 
cylinder H is isomorphic to N 8~ M In other words, the mapping cylinder commutes 
with tensor products. For Y E z(N &M), 

K(Y)= IJ (N” 0, CXy)O IJ (NAe OAe CA,‘_1 )(y)x{e) 
YCY” YE Y&c 
UED etsD 

so that (5.4) there is a short exact sequeyce 

I_I (N”@vG)(y) -N&Mm(Y) T IJ (NAeO,eCg-l)(y)x{e} 
YE& InI pm YEYSL, 
VED eED 

for each dimension m. As the homology functor preserves arbitrary coproducts, 

H( u (NV @a&)(y)) = u H(N” O,C:)(y) 
YCY” YOU” 
VED VCED 

and the required result is given by the long exact homology sequence correspcnding 
to this short exact seq ence, together with these isomorphisms. Map d, is deter- 
mined from the homology morphism of 

8% : (n, c, e) t) (n, c) - C”, (n, c). 

(D6.2). Since homs(-, L) is left exact, the short exact sequence (5.4) 
K & w Mm * KL induces the left exact sf,(r_uence 

horn&L, L) - homs(M,, L) + horn&&, L) 

whil;:h in fact is short exact. Each f~ horn&L, L)(h) determines a collection 
cfo E hom,(CL, “L)(h,): v ED) with f,(c) = (AC, f(cr,,(Ac), c)) and vice versa, to 
determine an isomorphism 

horn&X,,, L)(h) = n hom,(CL, “L)(h,) 
VED 

and similarly there is an isomorphism 

homs( L, L) s n hom&Cg+ ““L)!h,e) x(e). 
etzD 
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Since the.homology functor preserves arbitrary products, the required result follows 
from these isomorphisms together with the long exact homology sequence of the 
short exact sequence above. Map 6, is determined from the homology morphism of 

82 : (s, cm, Ie) - (s, cm) - (sa,C*l, Acm), G (cm)>. 

6.4. Coroky (Mayer-Vietoris Sequence for Graph Products). Let (D, A) be a Y 

groupnet diagram with graph product m : (D, A) + G. Let N be any imight G-module and 
L be any left G-module. The following sequences are exact : 

l l -3 LI Hm(A~e; NAe)(y)x(e)+ LI Hm(&; N")(Y)+~J,(G; NW) 
YEYA, YCY" 
eED VED 

(D6.3) 

l 8 +Hm(G; L)+ n H”(A,; “L)(h,)+ n H”(A,,; heL)(hh,)X{e} 
VED eeD 

-) H”+‘(G; L)(h) + l l l . 
(D.6.4) 

Proof. There always exists a standard complex diagram (D, ZA, C) with C’ a free 
AU-resolution of T,, hence (5.6) there always exists a mapping cylinder complex 
which is a free G-resolution of TG. 

Any groupnet diagram (11, A\ determines a derived loop group diagram (D, A*) 
where AZ is the collection of 1 fop groups of A,, at selected identities, determined by 
a retraction r, : A, =+ AZ, and where A$ = rpeOA,e If A, is 1 monomorphism, SO is .A:. 
If the mapping cylinder of (D, A) is cocnected, so is that of (D, A*) and they have 
isomorphic loop groups [4, Theorem 8.43. 

6.5. Corollary (Mayer-Vietoris Sequence for groups with the homotopy type of 
graph products). Let (D, A) be a groupnet diagram of connected groupnets with 
derived loop group diagram (D, A*) for which each A, is a monomorphism. Assume 
the graph product m : (D, A*) + G is connected, and let r : G + G* be a retraction of G 
to its loop group G* at a selected identity. For any regular right G*-module N and any 
regular left G*-module L the following sequences are exact: 

l l l + u Hm(Afe; N)X{e}+ IJ Hm(AZ;N)+HmIG*;W 
eaD UED’ 

(D6.5) 

+ u Hm-l(Afe; N) x(e)+ 9 l l 9 
eED 

*. a--) “(G*;L)+ n H”(A$;L)+ n H”(A~~;L)x(e)+H”“(G*;L) 
VED eeD 

-) l ’ ‘. (D6.6) 
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roof. If t : A + A* is a retraction of a connected groupnet A onto its loop group at a 
selected identity, N is any regular right A*-module, and L, C are any regular left 
A*-modules then there are isomorphisms N @A+ C = NC @A ‘C and hom,&C, L) = 
horn,&‘, 'L). Since there always exists a free left A*-resolution of TA* whose 
pullback along t is a projective A-resolution of TA, HJA; N’) =H,(A*; N) and 
H*(A; 2) = H*(A*; L). As (N’)” =N and “(‘L)=L here, the results follow 
from (D6.3) and (D6.4) since the regularity of modules ensures that all zeros are 

. singleton sets. 

A regular G*-module is classically a G*-module. If (D, A) is a group diagram 
derived from a graph of groups, the Mayer-Vietoris sequences for the graph of 
groups are found from those of (D, A) by dividing out, in each dimension, one copy 
of each source vertex (co)homology group and one of the corresponding pair of 
‘edge’ groups. Specifically, the short exact sequences 

and 

H”(Afe;L)+&H”(A$;L) 

are divided out. The sequences for a graph of groups are due to Lyndon and Swan 
[ 11,2.3] in the case of the free product with amalgamation, to Bieri [l] in the case of 
the HNN group and also recently to Chiswell[3] and Dicks [S] in the general case. 

6. efinition. A con ected groupnet A is of finite cohomological dimension 
cd(A) 5 m if Hk (A ; L) = 0 for every k 4 m and every regular A-module L. It is of 
cohomological dimensio 2 m if cd(A) 5 m and cd(A) 6 m - 1. Homological dimension 
hd(A) is correspondingly defined. If (D, A) is a groupnet diagram with connected 
vertex groupnets, 

nE = sup{cd A A=: eED}boO 

and 

nv =sup{cdA,: vED,v#he,eED)dm. 

Numbers nE and nv are similarly defined in terms of homological dimension. I3oth 
n v and nv are assumed to exist. 

a. If (D, A) has connected vertex groupnets and connected graph product 
m : (D, A)+ G, then 

cdG=nV ifnE<nV, 

nVscdGsnv+l ifnE=nV. 

reover, the corresponding result holds for homological dimension. 
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This result is a simple consequence of (6.4). It is pr i>ved by Bieri [ 1,4.1] for HNN 
groups and partially proved by Gildenhuys [6, Theorem 21 in the case when D is a 
tree. The result cd G < 1 +sup(rt E, n v, for the general case is also obtained by 
Chiswell [3]. 

. Lemma. If D is a finite graph, (D, A) is a group diagram, the graph product G of 
(D, A) is connected, and G* is the loop group of G at a selected identity, then 

(i) if A,, is of type (@) for all v in D, so is G”, and 
(ii) if A, is of type (FP) for all v in D, so is G*. 

This result is a consequence of (5.5.ii), (5.6) and (6.7). It is also proved by Chiswell 
[3, Theorem 33 and for iamalgamated free products and HNN groups, by Bieri and 
Eckmann [l, 21. 

Since Strebel [lo, Theorem, Section 4.41 has shown that all duality groups are 
necessarily of type (FP), the final results of this paper follow from (6.4). 

6.9. Theorem. Let D be a finite graph, (D, A) be a group diagram with connected 
graph product G, and G* be the loop group of G at a selected identity. If 

(i) A, is a duality group of dimension n - 1 for all v in D such that v = he for some e 
in D, and 

(ii) A, is a duality group of dimension n for all other v in D, 
then G* is a duality group of dimension n. 

6.10. Lemma. Under the conditions of (6.9), if A, is a duality group of dimension n 
for all v in D, and if cd G* s n, then G* is a duality group of dimension n. 

These results extend those of Bieri and Eckmann [ 1, “21 for HNN groups and free 
products with amalgamation. 
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