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Abstract

This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave
fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable
assumption, we construct various pairs of super- and subsolutions and employ the comparison principle
and the squeezing technique to prove that the equation has a unique nondecreasing traveling wave front (up
to translation), which is monotonically increasing and globally asymptotically stable with phase shift. The
influence of advection on the propagation speed is also considered. Comparing with the previous results,
our results recovers and/or improves a number of existing ones. In particular, these results can be applied to
a reaction advection diffusion equation with nonlocal delayed effect and a diffusion population model with
distributed maturation delay, some new results are obtained.
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1. Introduction

In this paper, we are concerned with an one space dimensional reaction advection diffusion
equation with nonlocal delay of the form

ou ou
o =dAu+ BB_ +g(u(x,t), (h * S(u))(x, t)), xeR, t>0, (1.1)
X

where d > 0, B € R, A is the Laplacian operator on R, 4 is a nonnegative kernel satisfying

T o0 T o0
//h(y,s)dyds=1, /f|y|h(y,s>dyds<oo, (12)
0 —o

0 —oo

and the convolution is defined by

0 oo
(h*S(u))(x,t):/ / h(x —y,—s)S(u(y, 1 +s))dyds.

—T —00

For g(u, v) and S(u), we impose the following conditions:

(H1) g € C%([0,1] x [S(0), S(D],R) and drg(u,v) > 0 for (u,v) € [0, 1] x [S(0), S()];
S e C%([0,1],R) and S’ (u) >0 for u € [0, 1].

(H2) 2(0,8(0)) = g(1, S(1)) =0, 912(0, S(0)) + 328(0, $(0))S'(0) < 0, and 31 g(1, S(1)) +
9g(1, S(1))S8'(1) < 0.

Under condition (H2), it is obvious that 0 and 1 are stable equilibria of (1.1). We are interested
in traveling wave solutions that connect the two stable equilibria O and 1. Throughout this paper,
a traveling wave solution of (1.1) always refers to a pair (U, ¢), where U = U (§) is a function
on R and c is a constant, such that u(x, ) := U (x — ct) is a solution of (1.1) and

lim U(£) =0, lim U(E)=1. (1.3)
E——00 E—+o00

We call c the traveling wave speed and U the profile of the wave front. If ¢ =0, we say U is a
standing wave. Moreover, we say a traveling wave U (x — ct) is monotone if U(-):R — R is a
strictly increasing function.
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For some special cases of Eq. (1.1), many well-known results have been obtained under the
bistable assumption. Some of them can be summarized as follows:

G If B=0, S(u) =u and h(x,t) = §()5(x), §(-) is the Dirac delta function, then (1.1)
reduces to the local equation without delay

]
a_b::dAu—|—g(u,u), xeR, t>0. (1.4)

In [20], Fife and McLeod have proved the globally exponential stability of traveling wave solu-
tions of (1.4), see also Volpert et al. [44].

() If B=0, S(u) =u and h(x,t) =5 — t)6(x), then (1.1) reduces to the local equation
with a discrete delay

2—’:=dAu+g(u(x,t),u(x,t—r)), xeR, >0, t>0. (1.5)
Schaaf [38] considered Eq. (1.5) for the so-called Huxley nonlinearity as well as Fisher non-
linearity. He studied the existence of traveling wave solutions in such equations by using the
phase-plane technique, the maximum principle for parabolic functional differential equations,
and the general theory for ordinary functional differential equations. Smith and Zhao [42] proved
the global asymptotic stability, Lyapunov stability and uniqueness of traveling wave solutions
of (1.5) with bistable nonlinear term, by first establishing the existence and comparison theo-
rem of solutions for (1.5), where they appealed to the theory of abstract functional differential
equations of Martin and Smith [35], and then using the elementary sub- and supersolutions com-
parison and the squeezing technique developed by Chen [13].
i) If B=0, h(x,t) =68(¢)J (x), then (1.1) reduces to the nonlocal equation

ou

o =dAu +g<u(x,t), / J(x — y)S(u(y,t)) dy), xeR, >0, (1.6)

—00

which was considered by Chen [13]. He proved the existence, uniqueness and global asymptotic
stability of traveling wave solutions by developing the so-called squeezing technique. See also
Alikakos et al. [1], Berestycki and Nirenberg [6], Chen [12], Chen and Guo [14,15], Ermentrout
and McLeod [18], Evans et al. [19], Fife and McLeod [20], Ma and Zou [29,30] and Shen [39,40]
for similar results related to this technique.

) IfB=0, g(u,v) = —au+v, S(u) =b(u) and h(x,t) =5(t — t)J (x), then (1.1) reduces
to the nonlocal equation

o0

0

a—?:dAu—om(x,t)—l—/J(x—y)b(u(y,t—r))dy, xeR, r>0,t>0, (1.7
—00

which was studied by Ma and Wu [28]. Under the bistable assumption, by establishing the ex-
istence and comparison theorem of solutions for (1.7), which is similar to that of Smith and
Zhao [42], they proved the uniqueness and global asymptotic stability of traveling wave solu-
tions by using the moving plane technique and the squeezing technique. Moreover, they proved
the existence of traveling wave solutions by considering a nonlocal equation without delay, which
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is similar to the approach of Chen [13], and then passing to Eq. (1.7). In fact, this method is also
used by Chen [11] for a neural network model and Ou and Wu [36] for a delayed hyperbolic—
parabolic model.

Observing the above equations (1.4)—(1.7), we can see that these equations are either local or
nonlocal, either with a discrete delay or without delay. In some situations (for example, when
it models a feedback signal transmitted as a nerve impulse as discussed in Wu [48]), discrete
delay is a good approximation, but in other situations (for example, pollution of an environment
by dead organisms is clearly a cumulative effect), discrete delay is not realistic. However, even
when a discrete delay can be regarded as a good approximation, there is likely to be some spread
of the delay around some mean value and the use of a distributed delay can be regarded as
allowing for stochastic effects in what is otherwise a deterministic model (see [16,26,31]). In
fact, Volterra [45] already used a logistic equation with distributed delay to examine a cumulative
effect on mortality of a deteriorating environment due to the accumulation of waste products and
dead organisms.

In view of individuals taking time to move, spatial dispersal/diffusion was dealt with by sim-
ply adding a diffusion term to corresponding delayed ODE model in previous literatures, namely,
adding a Laplacian term to the ODE model. But in recent years it has become recognized that
there are modelling difficulties with this approach. The difficulty is that diffusion and time de-
lay are independent of each other, since individuals have not been at the same point in space
at previous times. Britton [9] made the first comprehensive attempt to address this difficulty
by introducing a nonlocal delay, that is, the delay term involves a weighted spatial-temporal
average over the whole of the infinite domain and the whole of the previous times. Another ap-
proach to overcome this difficulty was developed by Smith and Thieme [41], where the technique
of integration along characteristics was used to derive a system of (ordinary) delay differential
equations for the matured population of single species with two age classes (immature and ma-
ture) and with spatial dispersal among discrete patches. Since then, great progress has been made
on the existence of travelling wave fronts in reaction—diffusion equations with nonlocal delays,
see Ashwin et al. [2], Al-Omari and Gourley [3], Billingham [8], Gourley [22,23], Gourley and
Kuang [24], Gourley and Ruan [25], Ruan and Xiao [37], So et al. [43], Wang et al. [46] and
Zou [49]. Notice that all these equations are monostable.

Though there have been many results for reaction—diffusion equations with bistable nonlinear-
ity and nonlocal delays, some new problems have arisen recently. In [27], Liang and Wu derived
a reaction advection diffusion equation with nonlocal delayed effects of the form

u 9 [ ou r
—=—|D,— +Bu | —duyu(x,t)+e¢ Ja(x—}—Br—y)b(u(y,t—t))dy, (1.8)
Jat 0x 0x

1
Vara

the immature, « represents the effect of the dispersal rate of the immature on the growth rate of
the matured population, and B is the velocity of the spatial transport field. By choosing three
different birth functions b(u), they established the existence of traveling wave fronts of Eq. (1.8).
We note that they only considered (1.8) with monostable nonlinearity. The bistable case remains
open.

In fact, reaction advection diffusion equations are widely used to model some reaction—
diffusion processes taking place in moving media such as fluids, for example, combustion,

7"'2 . . .
e« , T >0, is the time delay, ¢ reflects the impact of the death rate of

where Jy(x) =
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atmospheric chemistry, and plankton distributions in the sea, see Berestycki [7], Cencini et al.
[10], Gilding and Kersner [21] and the references therein. Of particular interest is the influence
of advection terms on the propagation of traveling wave fronts, which were studied by many re-
searchers, see Berestycki [7], Gilding and Kersner [21], Malaguti and Marcelli [32,33], Malaguti
et al. [34]. However, in their works, the delay and nonlocal effect were not considered.

Recently, Al-Omari and Gourley [4] rigorously derived a nonlocal reaction—diffusion model
for a single population with stage structure and distributed maturation delay, namely,

ou;

B = Di Aui + b(um(x, 1)) — yui(x, 1) —f/G(x,y,s)f(s)e_”b(um(y,t —s))dyds,
0 2

ou

a—tm=DmAMm—d(Mm(X,t))+//G(x,y,s)f(s)e_ysb(um(y,t—s))dyds,
0 2

(1.9)

where 2 c RV is open and bounded, G (x, y, t) is the solution subject to homogeneous Neumann
boundary condition of

0G

EZDIAXG5 G(xﬂy’o)z(s(x_y)'
If the bounded domain £2 is replaced by the whole real line (—o00, 00), then the second equation
of (1.9) reduces to

—a—y)?

9 —a=w~ :
u ¢ 4Dis f(s)efmb(um(y,f_s)) dyds.

T o0
1
= Dy im0 + [ [ e
3 m AUm (um(x ))+ A7 D;s
0 —o0
(1.10)

For some special cases of (1.10), the existence of traveling wave fronts has been studied by many
authors. For example, Gourley and Kuang [24] and Al-Omari and Gourley [5] considered the
case where d(u,;, (x, 1)) = om,%l (x,t) and b(up, (x,1)) = Buy (x, t); So et al. [43] studied the case
where d (it (x, 1)) = Qi (x, 1), b(upm (x, 1)) = Bum (x, t)e~n 1) We also note that, under the
bistable assumptions, system (1.7) considered by Ma [28] is also a special case of (1.10) with
discrete delay. However, to the best of our knowledge, there is no result for Eq. (1.10) with
bistable nonlinearity and distributed delay.

Motivated by the above discussion, in this paper we treat the existence, uniqueness and global
asymptotic stability of traveling wave fronts of (1.1) under the bistable assumptions, that is, (H2).
The assumption (H1) is necessary to establish the comparison theorem for the Cauchy problem
of (1.1). Contrasting to [13,42], we only require that the quasi-monotone condition holds on
[0, 113, namely, (H1) holds. Under (H1), as showed in Section 2, if the Cauchy-type initial value
lies between O and 1, then the solutions of (1.1) also lie between 0 and 1. Though some spe-
cial models can be modified so that the quasi-monotone condition holds on a larger domain by
extending the nonlinearity, for example, Eq. (1.5) with the Huxley nonlinearity and Eq. (1.7),
in which nonlinearities were extended to [—§, 1 + 8] and R2, respectively, see [28,42]. How-
ever, we do not know whether each g satisfying (H1) can be extended to g € C 2([—6 , 1+ 48] x
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[S(0) — ¢, S(1) 4 €]) with d»g(u, v) > 0 for (u,v) € [-§, 1 + 8] x [S(0) — &, S(1) + ¢]. There-
fore, in this paper we use different super- and subsolutions from that in [13,28,42], which was
used in our paper [47]. Thus, we can discuss Eq. (1.1) only under condition (H1).

In order to take advantage of our estimates for super- and subsolutions, we make the following
extensions for g and S. Define a function S: [—9, 10] - R by

R S(0) + S'(O)u — u?, u€[-9,0],
Sw) =1 Sw), ue,1),
S +SMw—-1)+@w—132 uell,10].

Then define g: [0, 1] x [S(—9), S(10)] — R by

g(u, $(0)) + d2g(u, S(0))(v — §(0)), (u,v) €[0,1] x [S(=9), S(0)],
§u,v) =1 gu,v), (u,v) € [0, 1] x [S(0), S(D],
gu, S(1)) + 928, S()(v — S(1)),  (u,v) € [0, 1] x [S(1), S(10)].

Obviously, s (u) is continuous and nonnegative on [—9, 10], 3;g(u, v) is continuous on [0, 1] x
[S(0), S(1)], and 8,8(u, v) is continuous and nonnegative on [0, 1] x [S(=9), S(10)]. For the
sake of convenience, we still denote S and g by S and g in the remainder of this paper.

The rest of the paper is organized as follows. In Section 2, we establish the existence and
comparison principle of solutions for the initial value problem of (1.1). In Sections 3 and 4, by
constructing some super- and subsolutions of (1.1) and using the comparison result established
in Section 2 and the squeezing technique of Chen [13] and Smith and Zhao [42], we consider the
uniqueness and asymptotic stability of traveling wave fronts, respectively. In Section 5, we first
consider the existence of traveling wave fronts for a class of reaction—diffusion equation without
delay, where the method of Chen [13] can be applied, and then obtain the existence of traveling
wave fronts of (1.1). In particular, in Lemma 5.4, we use a uniformly continuous function H (x),
which is different from the Heaviside function used by Chen [13] and Ma and Wu [28], so that the
existence and comparison principle can still be used. Thus, we exactly and rigorously show the
existence of traveling wave fronts. In Section 6, we apply our results to the above equations (1.8)
and (1.10) and obtain some new results.

2. Existence and comparison of solutions

Let X = BUC(R, R) be the Banach space of all bounded and uniformly continuous functions
from R into R with the usual supremum norm. Let

X+={(peX: p(x) =0, xeR}.

It is easy to see that X+ is a closed cone of X and X is a Banach lattice under the partial
ordering induced by X*. By [17, Theorem 1.5], it then follows that the X-realization d Ay
of d A generates a strongly continuous analytic semigroup 7(t) on X and T(1)XT C X, > 0.
Moreover, by the explicit expression of solutions of the heat equation

ou
EZdAM’ xeR, t>0, Q.1

u(x,0)=¢kx), xekR,
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we have

- —y)?
T)ex)= Jard: / exp(— (x4d:)) )(p(y)dy, xeR, t>0, p() € X.

—00

Consider the following equation

dv av

— =dA B—, eR, t>0,

o AT I X ~ 2.2)
v(x,0) =p(x), x eR.

In fact, if u(x, 1) is the solution of (2.1), then v(x,t) = u(x + Bt,t) is a solution of (2.2). In-
versely, if v(x, t) is a solution of (2.2), then u(x,t) = v(x — Bt,t) is a solution of (2.1). Thus,
the existence and uniqueness of solutions of (2.2) follow from the existence and uniqueness of
solutions of (2.1). In particular,

® Y
v(x, 1) =u(x + Bt, 1) = ﬁ_/ exp<—W)<p(y)dy.

Define bounded linear operators U(¢) : X — X, t > 0, by

U0)¢(x) = ¢(x),

(x + Bt — y)?

1 o
U(t)(p(x):\/ﬁ /CXP< adr

)fﬂ(y)dy, xeR, >0, p()eX. (23)

It is easy to prove that U (¢) is a strongly continuous semigroup on X. Obviously, U(t) X+t c X,
t 2 0. In particular, when B =0, U(¢) =T (¢).

Let fo(-):[0, 1] — R be defined by fo(u) = g(u, S(u)), u € [0, 1]. By the continuity of fy
and condition (H2), it then easily follows that there exist a—, a* € (0, 1) with a~ < a™ such that
fo(-): [0, 1] — R satisfies

fo0) = fo(a™) = fo(a™) = fo(1) =0,
fow)>0 forue(a®,1), and fo(u) <0 forue (0,a”).

Let L1 = max{|d1g(u,v)]: 0 <u <1, S(0) <v<S(1)} and define

@(Jt)—#ex —&— L +@ t—w J>20,t>0
D= Jamar P\ 2 ' 4 adi ) T '

Clearly, ® € C([0, o0) x (0, 00), R).

Let C = C([—t, 0], X) be the Banach space of continuous functions from [—t, 0] into X with
the supremum norm, and let C* = {p € C: ¢(s) € XT, s € [—1, 0]}. Then C™ is a positive cone
of C. As usual, we identify an element ¢ € C as a function from R x [—7, 0] into R defined
by ¢(x,s) = ¢(s)(x). For any continuous function w:[—71,b) — X, b > 0, we define w; € C,
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t €[0,b), by w;(s) = w(t +5), s € [—71,0]. Then t — w; is a continuous function from [0, b)
toC.Forany p € [0, 1]c ={p € C: ¢(x,s) €[0,1], x eR, s € [—1, 0]}, define

0 oo
F(w)(x)=g<<ﬁ(x,0),/fh(x—y, —S)S(fp(y,S))dde)

-7 —00

By the global Lipschitz continuity of g(-,-) on [0, 1] x [S(0), S(1)], we can verify that F(¢) € X
and F: [0, 1]c — X is globally Lipschitz continuous.

Definition 2.1. A continuous function v:[—7,b) — X, b > 0, is called a supersolution (subso-
lution) of (1.1) on [0, b) if

t

v(t) Z (LQQU@E —s)v(s) + [ U(t —r)F(v,)dr, 2.4)

N

forall 0 < s <t < b. If v is both a supersolution and a subsolution on [0, b), then it is said to be
a mild solution of (1.1).

Remark 2.2. Assume that thereisa v € BUC(R x [—1, b), R), b > 0, such that v is C?inx eR,
C'inr e (0,b) and forx €R, 1 € (0, b)

0 oo
2—1;2(<)dAu+Bg—v+g<v(x,t),f/h(x—y,—s)s(v(y,z+s))dyds>. (2.5)
X

—T —00

Then, the positivity of the linear semigroup U (t): X+ — X implies that (2.4) holds. Hence v
is a supersolution (subsolution) of (1.1) on [0, b).

We now establish the following existence and comparison result.

Theorem 2.3. Assume that (H1) and (H2) hold. Then for any ¢ € [0, l]c, (1.1) has a unique
mild solution u(x,t, ¢) on [0, 0c0) which is a classical solution to (1.1) for (x,t) € R x (t, 00).
Furthermore, for any pair of supersolution ¢ (x,t) and subsolution ¢~ (x,t) of (1.1) on [0, b)
with 0 < ot (x, 1), (x,t) <1 for x e R, t € [-7,b), and ¢t (x,5) > ¢~ (x,5) for x € R,
se[—7,0], 0 <b <00, wehave ot (x,1) > ¢ (x,1) forx eR, 0<t <b, and

z+1
et ) —9 (x, 1) = O, 1 — 1) / (" (y.10) — @~ (. 10)) dy

forany J >0, x and ze Rwith |x —z| < J,and b >t >ty > 0.
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Proof. Under an abstract setting as in [35], a mild solution of (1.1) is a solution to its associated
integral equation

t
u(t)=U(t)(p(O)—i—/U(t—s)F(us)ds, t >0,
0

up=¢ €0, 1]c.

We firstly prove the conclusions except the last inequality in the theorem when B = 0. Assume
that B = 0. In this case, U(¢t) = T (¢). Clearly, v = 1 and v~ = 0 are an ordered pair of super-
and subsolutions of (1.1) on [0, c0). Notice that F : [0, 1]¢ — X is globally Lipschitz continuous.
We further claim that F is quasi-monotone on [0, 1]¢ in the sense that

1
hl_i)rl(f)1+ 7 dist((0) — ¢(0) +A[F(¥) — F(#)]; XT) =0

for all ¥, ¢ € [0, 1]¢ with ¢ > ¢. In fact, it follows from (H1) that

oo

0
F(¢>—F(¢)=g(w<-,0>, / f I =y, —s)S(w<y,s))dyds>
0 oo
—g<¢<-,0>,/ / B -y, —s>s(¢(y,s))dyds>
0 o©
>g(w<-,0>, / / W -y, —s>s(¢><y,s>)dyds>
0 oo
—g<¢<-,0>,/ / h-—y, —s>s(¢<y,s>)dyds>
> —L(¥(0) —¢(0) inX. (2.6)

Hence, for any u > O such that L1u < 1,

Y (0) = ¢(0) +u[FW) = F()] = (1 = Liw)(¥(0) —¢(0) >0 inX.

Then when B = 0, the existence and uniqueness of u(x, ¢, ¢) follows from [35, Corollary 5] with
S(t,s)=T(t,s),t =25 >0, and B(t, 9) = F(¢). Moreover, by a semigroup theory argument
given in the proof of [35, Theorem 1], it follows that u(x, t, ¢) is a classical solution for ¢ > 7.

Assume B =0 and ¢ (x, t) and ¢~ (x, t) are a pair of super- and subsolutions of (1.1). For
simplicity, let ¥ (x, s) = et (x,s), p(x,8) =@~ (x,5), x € R, s €[—7,0]. Then ¥, ¢ € [0, 1]¢c
and ¥ > ¢ in C. Again by [35, Corollary 5], we have

O0<ux,t,d)<ulx,t,¥)<1, xeR, b>t>0. 2.7)
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Applying [35, Corollary 5] with v¥(x,#) =1 and v~ (x,t) = w(x,t), vT(x,t) = u(x,t) and
v~ (x, t) =0, respectively, we have

o (x,)<ulx,t,¢) <1, xeR, b>1t2>0, (2.8)
and

O0<u(x,t,¥y)<e@t(x,1), xeR, b>r>0. (2.9)
Combining (2.7), (2.8) and (2.9), we obtain et (x,t) > ¢ (x,t) forall x eRand b >t >0
when B =0.

Now we consider the case B # 0. Define i(y,s) = h(y — Bs,s) for y e R and s € [0, ].
Consider the initial value problem

OY _ aav+ g(v(x, 1), (7 SW) (. 1) R, 1>0
o = v+glvlx, 1), (nx5W))(x, 1)), xer, >0, (2.10)
vo=g¢ €0, 1]c.

By a direct verification, we can show that if u(x,f) is a (wild) solution of (1.1) with ini-
tial value ¢ € [0, 1]c, then v(x,?#) = u(x — Bt,t) is a (wild) solution of (2.10). Inversely, if
v(x,t) is a (wild) solution of (2.10), then u(x,t) = v(x + Bt,t) is a solution of (1.1) with
initial value ¢ € [0, 1]c. Moreover, if u(x,t) is a supersolution (subsolution) of (1.1), then
v(x,t) = u(x — Bt,t) is a supersolution (subsolution) of (2.10). Inversely, if v(x,t) is a su-
persolution (subsolution) of (2.10), then u(x,t) = v(x + Bt,t) is a supersolution (subsolution)
of (1.1). Applying the results for the case B = 0 to (2.10), we can show that the conclusions hold
for B # 0 except the last inequality in the theorem.

It remains to prove the last inequality in the theorem. Let v(x, t) = et (x,t)—¢ (x,1),x €R,
t € [-7,00). Then v(x,1) >0, x € R, ¢ € [~7, b). Clearly, ¢;", ¢, € [0, 1]c and ¢;" > ¢; in C
for all b > t > 0. For any given o > 0, by Definition 2.1 and (2.6), for any b > t > 1y, it follows
that

t

v(t) 2 Ut —to)v(ty) + / Ut —0)(F(pf)— F(py))do
fp

> U(t —to)v(to) — Ly / Ui —06)v(0)do.

4]

Let
2() = e Ty —1)v(tg), b>1t> 1.

Then z(¢) satisfies

t
z(t)=U(t—to)z(t0)—LI/U(t—G)z(G)dG, b>t>1.

fo
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Using [35, Proposition 3] with v~ = z(t), v = 400, S(t,5) =S (¢,5) =U(t,s) =U(t — s),
b>t>s5>0,and B(t,¢) =B~ (t,¢) = —L1¢(0), we have v(¢) > z(¢) for all b > ¢t > ty. Thus
it follows that

et () —@ () = e VU —10) (9T (t0) — 9~ (t0)), b >1t>1. (2.11)
Combining (2.3), (2.11) and the definition of ® € C([0, co) x (0, b), R), we then have

z+1
et ) —@ (x, 1) = O, 1 — 1) f (¢*(v.10) — @~ (y.10)) dy

for all x € R with |x —z| < J and b > t > 19 > 0. The proof is complete. O

Remark 2.4. By Theorem 2.3, it follows that if ¢ (x, ) and ¢~ (x,t) are the pair of super-
solution and subsolution of (1.1) given in Theorem 2.3 and ¢ (x, 0) # ¢~ (x, 0), then for any
b>1t>0,

z+1
ot D) =9 (6,1) 2 O, 1) f (67, 0)— o~ (y,0)) dy > 0.

In particular, if u(x,t, ¢) is a solution of (1.1) with the initial Value ¢ €10,1]¢c and ¢(x,0)

(£ constant) is nondecreasing on R, then for any 7 > 7 and x € R, U, 1) >0.

Lemma 2.5. Assume that (H1) and (H2) hold. Let U (x — ct) be a nondecreasing traveling wave
front of (1.1). Then U’ (&) > 0 for £ € R.

Remark 2.6. For t = 0, that is, for the equation without delay, Theorem 2.3, Remark 2.4 and
Lemma 2.5 still hold.

3. Uniqueness of traveling wave fronts

In this section, we will consider the uniqueness of traveling wave fronts of (1.1). To prove our
results, we need the following two lemmas.

Lemma 3.1. Assume that (H1) and (H2) hold. For any travelling wave front U (x — ct) of (1.1)
with0 < U (&) <1, § €R, we have limg_, 1o, U'(§) = 0.

In fact, noting that

0 +o0

hm //h(y,—s)U@ y+ecs)dyds =0

—T —00
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and

0 +oo

lim //h(y,—s)U(é—y—}-cs)dyds:l,
§—>+o0
—T7 —00

we can prove Lemma 3.1 by an argument similar to that of [42].

Lemma 3.2. Assume that (H1) and (H2) hold and let U (x — ct) be an increasing traveling wave
front of (1.1). Then there exist three positive numbers o (which is independent of U), oy and §

such that for any 8 € (0, 8] and every &) € R, the functions w* and w™ defined by

wh(x, 1) :=min{U (x — ct + & + 008(1 — e 7)) + §e~Fo' 1},
w™(x, 1) :=max{U (x — ct + & — 008(1 — e ")) — s P00}

are a supersolution and a subsolution of (1.1) on [0, 00), respectively.

Proof. Clearly,0 < U () < 1.Hence,0 <U(x —ct) < 1,x € R, t € R. By Theorem 2.3 and the

monotonicity of U (-), it follows that U (-) € C'(R) and U’'(¢) > 0, & € R. Since

im [918(u, v) + el drg(r, 5) + B]
(u,v,r,s,@,B)— (0+,5(0),0+,5(0),5(0),0)
=918(0, S(0)) + 5'(0)9,¢(0, S(0)) <0

and

li dg(u,v) +welTorg(r,s) +
(u,v,r,s,w,ﬁ)—)(l—,l?(ll),1—,S(1),S’(1),0)[ lg(u U) @e Zg(r S) ﬂ]
=0918(1, S(1)) + S'(1)d(1, S(1)) <0,
we can fix By > 0 and §* > 0 such that
918, v) + e dyg(r, 5) < —fo

for all

(u,v,r,s,) €[0,8%] x [S(0) — 8%, 5(0) + 8] x [0, 6]
x [8(0) — 8%, 5(0) + 8] x [$'(0) — 6%, §"(0) + &6¥]

and

(u,v,r,s,) €[1—=8% 1] x [S(1) = 8%, S(1) +8*] x [1 —8*,1]

x [S(1) = 8%, (1) +8*] x [§'(1) — 8%, §'(1) + 8*].

By (1.2) and the following results:

@3.1)
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/fh(y $)S(UE —y+cs)+8)dyds =S(1),

&, 3)—>(O<> 0)

//h(y $)S(UE —y+cs)+8)dyds =S(0),

&, 3)—>( 00,0)

h =
(sa)—><ooo)// (v, )8 (UE =y +cs)+8)dyds =S'(1),

h =
(56)—>(oo0)// (v, 9)S' (UE —y+cs)+8)dyds = S (0),

there exist Mo = Mo(U, Bo.8*) > 0 and § =3(U, Bo. 8") € (0, 6%) such that for all £ > My and
8 €10,4],

UE)>1-— 8%, 5(1)+5*>//h(y,s)s(U(g—y+cs)+a)dyds>5(1)—5*,

0 —o0

S'(1) +8* > / / h(y,5)S' (UE =y +cs) +8)dyds = §'(1) — §* (3.2)

0 —o0

and for all £ < —Mj and § € [0, 3],

UE) < 8%, S(O)—S*g//h(y,s)s U —y+cs) —8)dyds < S(0) + 8%,

§'(0) —8* < / / h(y,s)S' (UE —y+cs) —8)dyds < S'(0) + 8" (3.3)
0 —o0
Set
c1 =c1(Bo, 8%)
=max{|d1g(u, v)| + k7|8, 5)|: u,r €10, 11, v,5 € [S(0), S(1 +8%)]}
and

my = m()(U, Bo, 5*) =min{U/($): 1] < M()} >0,
where k = max{S'(u): u € [0,1+8*]} > 0, and define

Bo+eci
moBo

ao—ao(U Bo, 8) § = dePot,
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We only prove that w™ (x, ) is a supersolution of (1.1) since a similar argument can be used
for w™ (x, 1). For any given § € (0, 8), let £(x, 1) = x — ct + &y + 598[1 — e P0']. Define

= {(x,t): U(S(x,t)) 4+ 8e Pt 5 1} and A~ = {(x,t): U(g(x,t)) + e Por < l}.
Then it is easy to show that for (x, ) € AT,

dwT(x,1) dwT(x,1)

at

—dAw"(x,t) — B —g(wr @, 0, (h*S(w))x, 1)) >0. (3.4)

In the following, we show that (3.4) holds for (x,7) € A~. Let (x,1) € A~. Then w* (x,¢) =
U(E(x, 1)) + 8e= P! < 1.1t follows that, for any # > 0,

N +
- B(txy o dAwt (x,1) — Baw aix’ 0 g(wr .0, (h*S(w™))(x.0)

=U'(§(x, 1)) (—c + 00dBoe P") — BoSe P' —aU” ((x, 1)) — BU'(£(x,1))
—g(UEG, D) +8e P (hxS(wh))(x,0)

T +00

= (ooU’("g‘(x, t)) — l)ﬂoae—ﬂot + g(U(S(x, t)),/ / h(y, s)S(U(n(y, s)))dyds)
0 —o©

— g(U(E(x, t)) + Se—ﬁof’ (h * S(w+))(x, t))

T +00

= (UOU/(g(x, t)) - l)ﬂOSe—ﬁol + g<U(E(x, t)),/ / h(y, s)S(U(r)(y, s)))dyds)
0 —oo

- g(U ((x, 1)) + 8eFor,

T +00

/ / h(y,)S(U(n(y,s) — o8[S — 1]e Po) + 86’90(’s))dyds)

0 —o0

T +00

> (UOU’(S(x,t)) — l)ﬂoae—ﬂot —|—g<U($(x, t)),/ / h(y,s)S(U(n(y,s)))dyds)
0

T +00

—g(U(S(X,t))—FSe—ﬂOt’/ / h(y,s)S(U(n(y,s))+8e‘ﬂ°<"”)dyds)
0 —oo

> e Pot {GoﬁoU/(-’E(x, 1) — Bo

T +00

1
—/81g( (E(x,0)) +08e P! //h(y $)S(U r/(y,s)))dyds) do
0 —00
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1 T +00
/|:32g( (E(x, 1)) + se~Pot //h(y $)S(U(n(y,s)) + 08¢ Pt~ ”)dyds>
0

0 —o0

T +00
<t [ h(y,s>s/<v<n<y,s>>+ese-f’°<'—s>)dyds] de}, (335)

where n(y,s) =&(x,t) — y +cs, s € [0, T]. We need to consider three cases.
Case (1): |E(x, 1)| < My. Since

0<U(n(y, ) +68e U= <1 46%,

S(O)g/ f h(y,)S(U(n(y,s)) + 08 PoU=9) dyds < S(1+8%),
0 —o0

and

T o
//h(y,s)S (n(y, ) + e~ Fot=9)) dy ds| <
—00

by the choice of ¢, we have

1
/ a6
0

T 400
81g< (E(x,0)) + 08¢ P! //h(y,s)S( (n(y,s)))dyds)

0 —o0

1 T +00
+/{ 82g<U($(x,t))+8e‘ﬁ0’,f / h(y,s)S(U(n(y,S))+68e—ﬁ0("”)dde>
0

"

+oo
x Pt / h(y,$)S'(U(n(y.s)) + 9567/3007&)) dyds

—00

<.

Then, by the choice of mq and og, we have

dwT(x, ¢ dwT(x, 1
WX Aty — gD
ot 0x

> [o0Bomo — Po — c118e P! = 0.

—g(wr @, o), (h*S(wh))x, 1)

Case (ii): £(x,t) = My. By (3.2) we have
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T 400

S<1>—6*</ / WGy, $)S(U(n(y, ) dyds < (1),
0 —o

T +00
S(1) —8* </ f h(y,)S(U(n(,s)) +08e PU=9) dyds < S(1) + 8%,
0 —oo
and

T +00

§'(1) — &* g/ f h(y,$)S' (U(n(y,s)) +08e P00=9) dyds < §'(1) + §*.

0 —o0

Therefore, by (3.1) and (3.5), it follows that

. +
P asut o - B g . (e S(0) . 0)

> 8e P[00 BoU’ (E(x, 1)) — Bo + Bo] = 0.

Case (iii): £(x, 1) < —Mj. The proof is similar to that for the case (ii) and is omitted.

Thus, we have shown that (3.4) holds for any (x,t) € AT U A~. Now we further show that
(2.4) holds for wt. Define w(x, 1) = w¥(x — Bt, t). To complete the proof, we only need to
show that W™ (x, ¢) is a supersolution of (2.10), namely, the following inequality

t
zb+(t)>T(r—s)w+(s)+/T(t—r)F(wj)dr (3.6)

s

holds, where

0 oo
ﬁ(w)(x)=g<<p(x,0),f / h(x -y, —S)S(w(y,S))dde)

—T —00

Define A* = {(x,): (x — Bt,1) € AT}, A= ={(x,1): (x — Bt, 1) € A~}. By (3.3), then for
any (x,1) e ATUA™,

dwt(x,1)

P dADT (x, 1) — g(DF(x, 1), (h* S(wT))(x, 1)) >0.

Since %{U(S(x — Bt, 1)) + Se_ﬂot} =U'(§(x — Bt,t)) > 0, then for every 1y € [0, 00), there
exists a unique x*(79) € R such that U(&(x*(t9) — By, 19)) + Se P00 =1, (x,19) € A for
x>xT(ty), (x, 1)) € A~ for x < xT(tp) and

dwt(xTt (4 —0,1
w™(xT (%) ) —  lim U’(é(x—Bto,l)) > 0.
9x x—xt(t9)—0



Z.-C. Wang et al. / J. Differential Equations 238 (2007) 153-200 169

Define
o0
@ (). 1.7) 1 / T () dy, 15730
w X, [,F) = ——— e - w , s >r =20,
Jardi =1 v ey
and

Tas
H(D")(x, 1) = _W FdADT(x, 1) + g(B (x, 1), (A S(@T))(x, 1)) <O

Set F(i;")(x) = g(+ (x, 1), (% S())(x, 1)), then a direct calculation implies

00
1 S
e 4di=r (y’ r) dy
—00

I _
54’(“’ )i tr) = 2(t —r)/Amd(t —r)

v : f(wﬁyiﬁf*()d
- e =) w v
dmdi—n) ] 4da—r)? y Ay
—00

—(x=y)? 2.~+
e&&»iﬂ_gjl

d
'*iiﬁﬁffif oy
! / e [F(7)(y) — H (%) (v, )] dy.

+ JaArd —r)

dy

Furthermore, integration by parts gives

® 2 92 ~+4
I [ wp i,
(t—r

—00

Jard ) dy?
xt(r)
d / —a=v? 3% (y,r)
- edMi—ry — - ° d
JArd(t —r) dy?
—0oQ
d —a—xte? JwT (xT(r) —0,r)
— e 4di—r)
JaArd(t —r) ox
L x—x¥n) septor
JaArd(E —r) 2(t —r1)
xt () )

—(x—y) -+
e 4dia—r) (y’ r) dy

1 1
- JArd(—n) _/ 20t —r)
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170
xt(r) ( )2
r-y ?tflx(t V;) s d
V@EEGTST /‘4d0 A
and
x
1 (x —y)? a2
se @) dy
Jard(t —r) 4d(t —r)
xt(r)
MR / W g
= — e —r e >
2(t — r)/Amd(t — 1) My r)«/4yr—d(t N Y

xt(r)

Hence, it follows that

E)
@@ 1)
d et 9t (e (r) — 0, 1)
| t—r
drd(t —r) ox
o

1 —(—y)? N
4'Qiﬁﬁ?f?§]‘e”(>[ (@) ) — H(@*)(v. )] dy

Since
d {—(x—x+(r))2}811)+(x+(r)—0, r)
Jamda—r P 4di—r) ox

is integrable in r € [0, 1), 3; 9 @ (W) (x,1t,r) is continuous in r € [0, ¢), and

——p?

e 3di=ry '> w+(y,r)dy w+(x 1),

r—>t 0«/47Td(l‘—r /

it follows that for 0 < s < ¢,

~+ . ~+
=1 o) St —
DT = lim (wh)(x )

—n

0
=o(w' li —o(wt
(w )(x,t,s)+nlﬁo o (w )(x,t,r)dr
N

o

«/__i___./ (904
= e r w s

drd(t —r) > Y

—00
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+/Le%ﬂr’>))z 0w * (x*(r) = 0,r)
Vand(t—r) dx
—(r—y)2
/m/ezm(: r) ( )(y) ( +)(y,r)]dydr.

In view of 3w+ (xT(r) —0,r)/dx > 0 and H(wT)(y,r) <0, we see that (3.6) holds, which
implies that w™ (x, ¢) is a supersolution of (1.1). This completes the proof. O

Theorem 3.3. Assume that (H1) and (H2) hold. Assume further that (1.1) has a monotone trav-
eling wave solution U(x — ct). Then the traveling wave solutions of (1.1) are unique up to
a translation in the sense that for any traveling wave solution U(x — ct) with 0 < U (§) < 1,

£ €R, we have ¢ =c and U(-) = U (& + -) for some & = & (U) € R.

Proof. Since U(¢) and U (¢) have the same limits as £ — 00, there exist £; € R and a suffi-
ciently large number p > 0 such that for every s € [—7,0] and x € R,

U(x—cs+§'1)—(§<0(x—5s)<U(x—cs+$1+p)+(§.

Hence,

min{U(x —cs+&+p+ aog(eﬁ"r — 1) + 005(1 - e_ﬁos)) + e Pos, 1}
> U(x —¢s) > max{U (x —cs + & — 005(6’30t —1) —o08(1 — eiﬁos)) — e Pos, 0},

where By, o and § are given in Lemma 3.2. By comparison, we obtain that for all 7 > 0 and
x eR,

min{U (x —ct + & + p+ aog(eﬁ"’ —1) +005(1 — e_ﬂot)) + 8¢t 1}
>U(x —¢t) > max{U(x —ct+& — (705(e‘30r — 1) - (T()S(l - e_’got)) —§ePor, 0}.

Keeping & = x — cr fixed and letting t — oo, from the first and second inequalities we see that
¢ = c. In addition,

U(&+& —008e7) <UE) <U(E +& + p+opdef”) forg eR. (3.7)
Define
g :=infl&: UO)KU(C+6)} and & :=sup{&: UC)>U(+8)}.

Then from (3.7), both £* and &, are well defined. Since U (- + &) < U <KUGC+ £*), we have
E <™.
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To complete the pro_of, it suffices to show that &, = &£*. For the sake of contradiction, as-
sume that &, < &* and U(-) #£ U (- + £*). Since limjg|— 0 U'(§) = 0, there exists a large positive
constant M| = M(U) > 0 such that

200¢MTU(€) <1 if |E] > M)
Note that U(-) < U(- + &*) and U(:) # U(- + £*), by Theorem 2.3, it follows that U(-) <

U(-+ &*) on R. Consequently, by the continuity of U and U, there exists a small constant
p € (0,8] with p < ﬁe’ﬂof, such that

UE) <U(E +&* —2000eP7) if§ e [-My — 1 —&*, My + 1 —£7]. (3.8)
When | + £*| > M/ + 1, we have

U(§ +&* —200pe™7) — U(§) > U(E +£" —200pe™") — U (€ +£7)

= —200pe™7U' (£ + & — 2000pe/7) > —p,
which, together with (3.8), implies that for any s € [—7, 0] and x € R,
U(x —cs) <min{U(x —cs +&* — 2000eM7 + ogp(efoT — 1)
+ aop (1 — e F0%)) + pePos 1}
Therefore, the comparison theorem and Lemma 3.2 imply that for any # > 0 and x € R,
U(x —ct) <min{U(x —ct +§* — 200pe™7 + Uop(eﬁof - e_ﬁ(”)) + pePor, 1}. (3.9

In (3.9), keeping £ = x — ct fixed and letting t — 00, we obtain U (£) < U (£ +&* — appefoT) for
all £ € R. This contradicts the definition of £*. Hence, &, = &£* and this completes the proof. O

4. Asymptotic stability of traveling wave fronts

In this section, we establish the asymptotic stability of traveling wave fronts by using the
squeezing technique, which has been used in Chen [13], Chen and Guo [14] and Smith and
Zhao [42].

Let 8o = min{%-, 1_2“+ }andlet ¢ () € C*°(R, R) be a fixed function with the following prop-
erties:

s(s)=0 ifs<O0; cis)=1 ifs>4
0<Z'(s)<1; |c"()] <1 ifs€(0,4). 4.1)

Lemma 4.1. Assume that (H1) and (H2) hold. Then, for any § € (0, o], there exist two positive
numbers € = €(8) and C = C(8) such that, for every & € R, the functions v and v~ defined by
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vh(x, 1) = min{(l +68) — [1 — (a_ - 28)e_ét]§(—e(x —&4 Ct)), 1},
vo(x, 1) = max{—zS + [1 — (1 —at — 28)e_et]§(e(x —&— Ct)), O}
are a supersolution and a subsolution of (1.1) on [0, 00), respectively.

Proof. We only prove that v (x, ) is a supersolution of (1.1) since the proof for v=(x,t) is
analogous. Given § € (0, §p], we define

mi; =m1(5) =max{82g(u, v): (u,v)eld, 1] x [S(S), S(1 +5)]} >0,
my =my(8) =min{¢'(s): 8/2< ¢(s) <1—-68/2} >0,
i1 =max{S"(u): u e, 1+3)}.

Let ho = [y [ o, h(y,5)y|dyds. Then there exists € = €(8) > 0 such that
(cf — 28)6” <1, 4.2)
max{g(u, S(u)): ue [8, a — 8/2]} + (e +de? +mik1e(t + ho)) <O0. 4.3)

We further choose C = C(8) > | B| such that

(C —Bl)e(l —a™)ma — max{|g(u, Sw))|: u €[8, 11} — (e + de* +myki€(zr + ho)) > 0.
(4.4)

Let
T, ) =1 +68) — [1 - (a_ - 25)€_€t]§(—6()€ —&+ Ct)).
By a direct computation and (4.2), it follows that for all r > —t,

At
ov" (x,1) >

Py ela™ —28)e ¢ (—e(x —E+C1)) > —€

and

o
W =e€[l—(a= —28)e “]¢'(—e(x =&+ C)) <e.

Define
Bt ={@x,0: 0F(x,)>1} and B~ ={(x,n: d"(x,1) <1}.
Then for any (x, 1) € BT, itis easy to show that

vt (x, avt(x,
WD Ayt ey — g2V D

3t o g(v+(x, 1), (h * S(v+))(x, t)) >0. (4.5
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In the following, we show that (4.5) holds for any (x,¢) € B~. Let (x,t) € B~. Then
vi(x,t) =0T (x,t) € [8, 1]. Therefore, we have

gt ), (hxS(h))(x, 1)
<g(vt 0, S(vtx, 1))
+[g(vT . 0), (hxS(07))(x. 1) —g(v (x,0), S(v(x,0))]
=g(vT(x,0), ST (x,0)) + g (v (x, 1), S (x. 1))

x/fh(y,s)S/(v*(x—y,t—s))(ﬁ+(x—y,t—s)—f)+(x,t))dyds

0 —o0

:g(v+(x,z),s(v+(x,r)))+32g(v+(x,t),s*(x,r))f / {h(y,s)
0 —o0

T (x — 61y, t —5) At (x,t — 6ys)
-5 dyds
ox ot

< g(v+(x, 1), S(v+(x, t))) +mikie(t + hy),

x §'(v'x—y,t—)) [—y

where S*(x,t) is between S(vT(x,1)) and (h * S@T))(x,1), v (x — y,t — s) is between
9t (x —y,t —s) and DT (x, t). It then follows that

ovt(x,t vt (x, ¢
VD Ayt - B0
Jt 0x

=eC[1—(a” —28)e " ]¢'(—e(x — &+ C1)) —€(a™ —28)e "¢ (—e(x —& 4+ C1))

+de*[1— (a™ —28)e“']¢" (—e(x — & + C1))

—eB[1—(a= —28)e )¢/ (—e(x =& +Cn) — g(v(x, 1), (h*S(vT))(x, 1)
>e(C—|Bl)(1—-a")¢ (—e(x —& +C1)) — € — dé?

—g(vTx, 0, S(vT(x, 1)) — mikie(r + ho)
=e(C—|B)(1—a")¢/ (—e(x — £ + C1))

—[g(vT(x, 1), S(vT(x, 1)) + (€ + de* + mikie(t + ho))]- (4.6)

gt o). (b ()@ 1)

We distinguish between two cases:
Case (i): ¢(—e(x — & + Ct)) > 1 — §/2. It then follows that

S<vt(x,nH=90"(x,1) <(1+8) — [1 — (a_ — 28)](1 —6/2) <a” —§/2.

Therefore, by (4.3) and (4.6), we have
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+ +
W —dAvt(x, 1) — BW _ g(v+(x’ 1), (h % S(U+))(x,t))

>e(C—|Bl)(1—a”)t'(—e(x —& +C1))
—[g(vT(x,0), S(T (x, 1)) + (€ + de* + mikie(t + ho))]
> —[max{g(u, SW)): u € [8,a” —8/2]} + (€ +de* + mikie(zr + ho))] > 0.

Case (ii): ¢ (—e(x — &+ Ct)) €[8/2,1 —§/2]. By (4.4) and (4.6), we have

+
W g, 0, (hxS(v™)(x,0))

>e(C—IB))(1—a™)¢'(—e(x —&+C1)

— [T (x.0). S(v*(x.0)) + (€ + de’ + mikie(r + ho))]
> e(C—1B)(1-a")m2

— [max{|g(u, S@)|: u €[8, 11} + (¢ + de* + mik1€(x + ho))]
>0.

—dAv+(x,t) _ BM _
0x

Now we conclude that (4.5) holds for all (x,?) € BT U B~. The remainder is to show that
(2.4) holds for v*. Define v+ (x,t) = v (x — Bt,t). To complete the proof, it is sufficient
to prove that 97 (x, 7) is a supersolution of (2.10). Take Bt = {(x,#): (x — Bt,1) € B} and
B~ = {(x,1): (x — Bt,t) € B™}. Notice that for every fy > 0, if 9 (x — Bfy, 1) = 1, then
there must be 0 < ¢(—e(x — Btg — & + Cty)) < 1. Thus, there exists a unique x*(tp) such
that 0 < ¢(—e(xT(to) — Bty — & + Ctp)) < 1, 0T (xT(t0) — Bto, 19) = 1, (x, o) € BT for any
x > xT(ty), (x,10) € B~ for any x < x* (1) and

5+ (xF (1) —
0T T) = 0.t0) _ e[l — (a= —28)e"]¢' (—e(x — Btg — & + Cr)) > 0.

0x x—xt(19)—0

Consequently, we can show that 97 (x, ) is a supersolution of (2.10) by a similar argument to
that of Lemma 3.2. The details are omitted. The proof is complete. O

Let U(x — ct) be a monotone traveling wave solution of (1.1). In view of Lemma 3.2, we
define the following two functions

w*(x, t,&),68) = min{U(x —ct+&+ 008(1 — eiﬁol)) + (Se*ﬁot, 1},
w™(x,1,8,8) = max{U(x —ct + & — 0o8(1 — e Fo")) — se~H' 0},
xeR, te[-1,0), & €eR, and § € [0, 00),

where og and By are as in Lemma 3.2. By the proof of Lemma 3.2 we can choose By > 0 as small
as we wish. Thus we assume that B, has been chosen such that 3¢#07 < 4 throughout this section.

Remark 4.2. If u(x, s) satisfies 0 < u(x,s) < 1forall x e R and s € [—7, 0], then for all x € R
and s € [—7,0], w™ (x, s, &, 6) < u(x,s) is equivalent to
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U(x —cs+& — 008(1 - e_ﬁos)) —8e P Cu(x,s)
and wt(x, s, &, 8) > u(x, s) is equivalent to
U(x —cs+& + 008(1 - eiﬁos)) + 8P > u(x,s).
Lemma 4.3. Let U(x — ct) be a monotone traveling wave solution of (1.1). Then there ex-
ists a positive number & such that, if u(x,t) is a solution of (1.1) on [0, c0) with initial data
0<u(x,s)<1forallx eRands €[—t,0], and for some £ e R, n >0, 0 <§ <min(§/2, JLO)
and T > 0, there holds
wy (x, —cT +£,8)(s) <ur(x)(s) <wg (x, —cT +&+1,8)(s), se[-1,0], xR,
then for everyt > T + T + 1, there exist é(t), S(t) and 7(t) such that
wy (x, —ct + (1), 8(1)) () <ur(x)(s) Swg (x, —ct + &) + A1), 5(1))(5)
fors e [—1,0], x € R, with é‘(t), S(t) and 7)(t) satisfying
E(t) € [& — 008 — 200(8 + emin(n, 1))e7, & + 1+ 098],
S(t) — (36—/30 + e min(y, 1))e—/50((t—(T+r+l)))
and
n() e [0, n+ (3eﬁor — 4)0()8 min(n, 1) + 36’307008].
Proof. By Lemma 3.2, wh(x,t,—cT +&+n,8) and w(x,t, —cT + £, 8) are super- and sub-

solutions of (1.1), respectively. Clearly, v(x,t) =u(x,T +t), t > 0, is also a solution of (1.1)
with vo(x)(s) = ur (x)(s), s € [—1,0], x € R. Then, by Theorem 2.3, there holds

w(x, b, —cT +£8) <ulx,T+1)<wh(x,t,—cT + £ +1,9),
x eR, t€[0,00).
That is
max{U(x — (T +1) + & — oo8(1 — e P0')) — 8¢ 0} Cu(x, T +1)
< min{U(x —c(T+t)+&+n +c703(1 — e_ﬂ"')) + Se_ﬂ"t, 1} “4.7)

forall x e R, ¢t € [0, 00). Let z =cT — &. Again by Theorem 2.3, we have that for any J > 0, all
x eRwith |x —z|<Jandall t >0,

z+1
u(x, T+1t)—w (x,t,—cT +£&,8) 260(J,1) / (u(y, T)—w (y,0,—cT +§&, 8)) dy.

(4.8)
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L

By Lemma 3.1, lim;|— oc U’ (r) = 0. Then we can fix a positive number M such that U’ (r) < 00

forall |[r|>M.Let J =M+ |c|(1+ 1)+ 1, n=min(n, 1), and
1 . ,
g1 = Emm{U (x): x| <2} >0.
Since

wh(y,0,—cT+&+7,8) >U(y —cT +£&+17),
wi(yvos _CT+§98) < U(y _CT+é)v
we have

z+1
f [wh (3.0, —cT +&+17,8) —w (y,0, —cT +£,8)]dy

+1
> /[U(y—cT—i—S-f—ﬁ)—U(y—cT—i—E)]dy

Il

1
=/[U(y+ﬁ)—U(y)]dy>281ﬁ-
0

Hence, at least one of the following is true:

@ [T —w™ (3,0, =T +£,8)]dy > &1
Q) [T wt (3,0, =T + £ +71.8) —u(y, )] dy > &1,

In what follows, we consider only the case (i). The case (ii) is similar and thus omitted.
Forany s € [—7,0], |[x —z| < J, lettingt =147 + s > 1 in (4.8), we have

ux, T+14+7t+5s)
>w (x,14+14+s,—cT+E,8) +6y(J)e1n
>U(x —z—c(l+7+5) —008(1 — e PoIHTTN)) _ 5= PoUHTH) 1 9 (J)ey 7,

where G (J) = minse[—,01 @ (J, 1 + 1 +5). Let

Ji=J+cl(l+1)+3 & =min{ min Go(Der 1 5/2
= C s = —_— )
: Ix|<J1 200U7(x) " 300

By the mean value theorem, it then follows that for all |x — z| < J, s € [—7, 0],
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U(x —z—c(l+745)+200en — 505(1 _ e—ﬂ0(1+r+s)))
— U(x —z—c(l+t+s)— 003(1 _ e—ﬂ()(l-i-‘[-i-s)))

=U'(u1)200e7 < Op(J)er1).
Hence,
ux, T+14+1t+5)

>U(x —o(T + 141 +5) + £ + 20080 — 008 (1 — e Pl T7H))

— §e~PollFTHs), (4.9)

The remainder of proof is similar to that of [42, Lemma 3.1] and is omitted. We only need to
notice that §e =% 4 ¢ij < § and Remark 4.2. The proof is complete. I

By Remark 4.2 and Lemmas 3.2, 4.1 and 4.3, we can obtain the following Lemma 4.4 and
Theorem 4.5. Their proofs are only duplications of proofs of [42, Lemma 3.2, Theorem 3.3], so
we omit them.

Lemma 4.4. Let U(x — ct) be a monotone traveling wave solution of (1.1) and let ¢ € [0, 1]¢
be such that

liminf min (p(x $)>a, limsup max ¢(x,s)<a .
X—00 se[—1,0 x— —oo S€[—1,0]

Then, for any § > 0, there exist T =T (p,8) >0, £ =&(¢, 8) € R and n =n(p, §) > 0 such that
wy (¥, —cT +§,8)(s) Sur(x, 9)(s) Swy (x, =T +& +1,8)(s), s€[~7,0], xR,

Theorem 4.5. Assume that (H1) and (H2) hold. Assume further that (1.1) has a monotone trav-
eling wave solution U (x — ct). Then U (x — ct) is globally asymptotically stable with phase shift
in the sense that there exists k > 0 such that for any ¢ € [0, 1]c with

liminf min ¢(x, s)>aT, lim sup max (p(x s)<a-,
x—00 se[—1,0] x——o0 SE[—

the solution u(x, t, @) of (1.1) with the initial value ¢ satisfies
|u(x,t,(p) —Ux —ct—l—é)} < Kefkt, xeR, >0,
for some K = K(¢) >0and § =&(p) € R.

Remark 4.6. Theorems 3.3 and 4.5 are still available for equation without delay.
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5. Existence of traveling wave fronts

In this section, we consider the case at =a~, namely, fo(u) = g(u, S(u)) has only three
zeros. For the case that fy(u#) has more than three zeros, we refer to [20,44]. In the following, we
denote a = a™ = a~. Moreover, we list the following conditions:

(H3) g(u,Su)) <0 for u € (0,a), g(u,Sw)) > 0 for u € (a,1) and 91g(a, S(a)) +
dg(a, S@))S (a) > 0.

As discussed in Lemma 2.3, we can show that if U(x — ct) is a traveling wave front of (1.1)
with wave speed c, then U (x — (B + ¢)t) is a traveling wave front of (2.10) with wave speed
B + c. Inversely, if V(x — ct) is a traveling wave front of (2.10), then V(x + (B — ¢)t) is a
traveling wave front of (1.1) with wave speed —B + c. Following this fact, we only need to
consider the existence of traveling wave fronts of (2.10). Define h.(y) = fof h(y + cs,s)ds,
where c is a real constant. In the first part of this section, we show the existence of traveling
wave fronts of the following equation

ou(x,t)
at

=dAu(x, 1)+ g(u(x, 1), (he x S)(x,1)), xeR, 1€[0,00), (5.1

where

8]

(hc * S(u))(x, 1) = / hc(y)S(u(x -y, t)) dy.

—00

Lemma 5.1. Assume that (H1) and (H2) hold. Then for any § € (0, 8], §o = min{%, 152}, there
exist two positive constants €y = €p(5) > 0 and Co = Co(8) > 0 such that

(i) the functions var (x, 1) and vy (x,t) defined by

vy (x, 1) =min{(148) — [1 — (a —28)e” ' |¢ (—eo(x — & + Con)), 1},
vy (x, 1) =max{—8 +[1 — (1 —a —28)e™" ¢ (eo(x — & — Cor)), 0}

are a supersolution of (5.1) for ¢ < 0 and a subsolution of (5.1) for ¢ > 0, respectively,
(i) the functions vj (x,1) and v (x,t) defined by

vhe, ) =min{(148) — [1 — (a —28)e™ ' [¢ (—ec(x — & + Cc1)), 1},
vo (e )y =max{—=8+[1 — (1 —a —28)e™*"]¢ (ec(x — & — Cc1)), 0}

are a supersolution of (5.1) and a subsolution of (5.1) for any c € R, respectively, where
€. = %ﬁd and C. = (1 + |c])Co.
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Proof. We only prove for v(‘)|r (x,t) and vj (x,t). Define

O (e, 1) =(148) —[1— (a —28)e” ' ]¢ (—eo(x — & + Cot)),
F, ) =(1+8) —[1—(a—28e “']¢(—ec(x — & + Ce)),
bo (e, )==84+[1—(1—a—28)e "]t (e(x —& — Cc1)).

By a similar argument to that of Lemma 4.1 for v*(x, 1), it is sufficient to show that for all
(x,t)€ B UB;,

v (x, 1)

Pyt dAv (x,1) — g(vi (x, 1), (he % S(v)) (x, 1)) >0, (5.2)

respectively, where i =0, ¢ and Bl.jE are defined by
Bf ={(x,n: 07,0y >1}, BT ={(x,n: 07 (x, 1) < 1}.

Obviously, (5.2) holds for (x,7) € Bl."' . Thus we only need to show that (5.2) holds for
(x,t) € B;.
For fixed § € (0, 8], let
01 = 01(8) =max{drg(u, v): (u,v) €[0,1] x [S(=8), S(1+8)]},
02=02(8) =max{S'(u): uc[8,1+3]},
00 =00(8) = 0102,
1
m;=m1(8) = min{—fo(u): ue |:8, a— 55“ > 0.

Then we can choose two positive constants €* = €*(8§) > 0 and My = My(8) > 0, with €* < §
sufficiently small and M sufficiently large, such that

T 00 T My
my — go€” —200|:/ —f / ﬁ(y,s)dydsi| > 0.
0 -

oo 0 —My

Take u = u(e*) € (0, 1) sufficiently small such that

E*
O<§(x)<7 if x < u,
*

1—%<§(x)<l ifx>4—pu,

o = o (u) > 0 sufficiently small such that

(1—w)<4—%)>4—u,
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and €g = €p(8) > 0 sufficiently small such that

eoMp <@ (4 — ), eor<W<4—%),

T o0 T My
—eo—de§+m1—goe*—2go|:// —[ / ﬁ(y,s)dyds:|>0.
0 —oo 0 —My

Set
mozmin{g"(x): %<x<4— %} > 0.

Take Cy = Cp(8) > 0 such that
€0Co(1 —a+28)mo — €9 — de — max{|g(u, SW))|: (u,v) €[8,11*} > 0.

Note that €g and Cy are independent of c.
Assume (x, 1) € B . Then we have that forallt >0,

g(vg 1), (he % S(vg))(x, 1)
< g(vg (1), S(vg (x,1)))
+ (g (vF (o 0). (he  S(85)) (. ) — g (v (1), S(vg (. 1)))]
= g(vg (x, 1), S(vg (x, 1)) + dag (v (x, 1), $*(x, 1))

o0

X / he)S (g (M) (Df (x — v, 1) —vd (x, 1)) dy

=g(;g(x,t),s(ug(x,z))) + 028 (v (x, 1), S*(x, 1))
x f]ﬁ(y +cs,5)8 (v; () (B (x — y. 1) = 05 (x, 1)) dsdy
—00 0
= g(vy (x, 1), S(vy (x, 1)) + dag(vg (x, 1), S*(x, 1))
X j fi_z(y, $)S'(vg (v — ) (O (x —y +es,1) — D (x, 1)) dyds
0 —o©

<g(vg (x,0), S(vg (x,0))

+ Qo/ [ Ry )| (—eolx — v + s+ & + Con)) — £ (—eo(x + & + Con)| dyds.

0 —o©

181
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where v} (y) is between 9 (x — y, ) and 97 (x,), S*(x, 1) is between S(vy (x,1)) and (h¢ *
S (f)g' ))(x, t). It then follows that

dvg (x, 1)
ot

= eOCO[l —(a— 23)€_Eot]§/(—60(x —&+ Cot)) —¢€ola — 23)€_Eot§(—60(x —&+ Cot))
+ded[1 — (a—28)e¢" (—eo(x — & + Cot)) — g(vg (x, 1), (he x S(B)) (x, 1))

>~y —del — g(vg (. 1), S(vg (x, 1)) — dag (v (x, 1), S*(x, 1))

—dAvg (x, 1) — g(vy (x, 1), (he x S(vg)) (x, 1)

x//f_z(y,s)S’(v(”;(y—cs))(ﬁar(x—y—i—cs,t)—ﬁar(x,t))dsdy

0 —o0

> —€o —deg — g(v (x, 1), S(vf (x, 1))

—Qo/ / l_z(y,s)|§(—eo(x —vy+es—&E+ Cot)) - {(—eo(x —&4 Cot))|dyds.
0 —o0

Let n =€g(x — & + Copt), we consider two cases.
Case (i): n = €g(x — & + Cot) < —4 + 5. Then

6*

Z(—EO(X—§+Cot))>;(4_ﬁ) >1_7’

2

SO

s<uf () =0f () <(1+8) —[1— (a —25)](1 - %)

*

(1= Va9 Ls
<|1-—= — — <a—=34.
2 ) 2 =973

By the choice of €y and @, we see that

w(—4+ 5 —4
DY _ r(x — &+ Cot) < ( D) @A+

My.
Lety el[w(x —&+ Cot), —w (x — & 4+ Cot)]. Then for ¢ <0,

eox —y+cs —&E+Cot) <eo(l —m)(x — & + Cot) + €gcs

g(l—w)<—4+%> <—44p.
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Noting that n = €g(x — & + Cot) < —4+ 5 < —4 + ., we have

T €0
/ / fz(y, s)|§(—60(x —y4cs—E&+ Cot)) — C(—Eo(x —E+ Cot))|dyds <e
0 =1
€0
Therefore,
8 o0
voa(tx 1) —dAvg (x,1) — g(v[{(x, 1), / he()S(vg (x — y. 1)) dy>

> —€y — deg — g(vaL(x, 1), S(va'(x, t)))

—Qo//fz(y,s>|;(—60<x—y+cs—s+cm))—c(—60<x—s+cot))|dyds
0 —o0

T e
—/ / I_z(y,s)dydsi|
0o zn
€0

T O
>—Go—d€§+m1—290|:/f
0 —o©

_@n
€0

_QO/ f h(y,$)|¢(—eo(x —y+cs —& + Cot)) — ¢ (—eo(x — & + Cot))| dy ds
0

@n
€0

T My

/ / y,s)dydsi| oe* > 0.

—My

T

o0
2—60—d6§+m1—200|://
0 —o0

Case (ii): =5 > eg(x — & + Cot) > —4 + 5. Then

. o0
Loa(f’ D davt e - g(vo*(x, . f he(0)S(vg (x =y, 1) dy)

> €0Co(1 —a +28)¢' (—eo(x — & + Cot)) — €9 — def
— max{|g(u, SW))|: (u,v) €[5, 11*} > 0.

Now, we conclude that for (x, 7) € B, if ¢ <0, then (5.2) holds for va' (x,1).

Noting that €, < €¢, €.C. = €9Cp, we can prove that for any ¢ € R and any (x,?) € B, (5.2)
holds for v (x, 7).

The proof is complete. O
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Remark 5.2. One observes that the functions 0, and 0 have the following properties:

0 (x,00=1+68 ifx>& 0f(x,00>a—8 forallxeR,

0 (x,1) <8+ (a—28)e™" forallr >0, x <& —Cot —4e !,
C(x,0)=—-8 ifx<& U.(x,00<a+48 forallx eR,

T, ) =1—8—(1—a—28)e " forallt >0, x =&+ Cet 4 4e. !

(5.3)

v
v

Remark 5.3. By the local regularity result of parabolic equations and the semigroup proposition
of solutions, if ug(x) € C3(R) satisfies 0 < ug < 1 and ||u0(~)||C3(R) < 00, the solution u(x, t)
of (5.1) with initial value u(-,0) = ug(-) satisfies SUP; [0, 00) llu(-, f)||CZ(R) < 0. See also the
condition (C4) and Theorem 5.1 of Chen [13].

Lemma 5.4. Assume that (H1)—(H3) hold. Let H(x) be a continuous function equal to 1 when
X > ¢, kx when 0 < x <A < g and O when x <0, k > 1 is a sufficiently large constant.

(i) Let v} and v% be the solutions to the following linear evolution problems:

av}(x,t) 1 1 ’ 1
— = dAvy(x, 1)+ 918(a, S(@)v;(x,1) + d2g(a, S(@))S' (@) (he * v;)(x, 1),
v (x,0) = H(x),
(5.4)
and
av,(x )

= =dAv}(x, 1)+ dig(a, S(@)vi(x, 1) + drg(a, S@)S (@) (he * v7)(x, 1),

1
v (x,0) = H(x) — H(—x + E) =—1+42H(x).
Then there exist constants r1 > 0, which is independent of k and c, and x. € R such that
1 _ 2 _
v[(xc’ ry) =3, v](xc’rl)—_S-

(ii) There exists a small positive constant §1 > 0, which is independent of k and c, such that for
any 6 € (0, 1), the solutions v}l and UIZI to

1
%tt) = dAvjy(x. 1) + g (v (x. 1), (he = S (o)) (. ).

v,l,(x, 0)=a+6H(x)
and

8v121(x, t)
ot

v (x,0)=a +5|:H(x) - H<_x + %)]

=dAvj(x, 1)+ g(vi(x, 1), (he % S(v)) (x, 1)),
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satisfy
v (e, ) = a+28,  vi(xe,ri) <a—28.

(iii) Forany§ € (0, 81), there exists a large positive constant ro, which is independent of k and c,
such that for r. = (1 + |c|)ro, the solutions v}” and v,zu to

1
%%(tx’t) = d vy (e, 1) + 8 (v O, 1), (he % S () ) (6, D),

U1111(x7 0O)=a+d8H(x)—aH(—r.—x)

and
dujy (x, 1) 2 2 2
— = dAvj(x, 1) + g (v (x, 1), (he * S(viy)) (x, 1)),
1
v (x,0)=a+ 5[H(x) - H(—x + %ﬂ +(l—a—8)Hx—re)
satisfy
Ve r) = a+8,  vi(xe,r1) <a—S8.

(iv) Let u(x,t) be the solution of (5.1) with initial data ug(x) € C3(R) satisfying 0 < ug < 1
and ||ug(-) ||c3(]R<) < 00. For any § € (0, 81), assume that for some finite £_(0) and £, (0),

wo(6-(0) <a—8,  uo(§+(0) >a+3s,

then for every t > 0, there exist §_(t) and 4 (t) such that

u(—@t),1)=a—3, u(4 (). 1) =a+3,
E(1) — &-(1) <max|£,(0) — £_(0) +2(1 + Ie]) (de; ' (8) + Co(d)r1), 2rc +2},

where €y(8) and Cy(8) are as in Lemma 5.1.

Proof. (i) Since dyg(a, S(a))S’(a) > 0, then the existence and uniqueness of (5.4) with initial
value ¢(-, 0) € X follows from a similar argument to that in Theorem 2.3, and the solution is a
classical solution for all > 0. Moreover, Eq. (5.4) satisfies the comparison principle.

Denote fj(a) = d1g(a, S(a)) + d2g(a, S(a))S'(a) by y. Then e”’ is an exact solution to (5.4)
with initial value 1. Further, since —H (—x + %) = —1 4 H(x), by the existence and uniqueness
of the initial value problem, one has that v%(x, 1) =—e’" + 2v} (x,1) in R x [0, 0c0). Thus, we
need only study v} (x,0).

Since 0 < v}(~, 0) < 1, comparing v,1 with 0 and e”’ then yields 0 < v}(-, 1) <ev! for all
t > 0. In addition, since for each n > 0, v}(- +n,0) > v}(-, 0), we have v}(- +n,t) > v}(-, t) for
all # > 0. Namely, v} is nondecreasing in x. Obviously, v} is continuous in x, too.
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Now, we show that lim,_, v}(x, t) = 0 and lim,_ v}(x, 1) = e’ Let L, =
max{|d2g(u, v)|: (u,v) € [0, 1] x [S(=9), S(10)]}, L3 = max{S'(u): u € [-9,10]} and A =
Ly + LyL3, where L is defined in Theorem 2.3. Let

1 _ 1
p(g0) = ;[dgg + LoLaeo(ho +1)] < T (5.5)

e %(fcl, w(x, 1) = p(eg)e’! + ¢ (ecx)e’! and ho = I ffooo h(y,s)|y|dyds. Then

8“);’ D daw. 1) — drg(a. S@)wx. 1) — dag(a. S@)S @ (he % w)(x. 1)
=2yp(e0)e™" + yL(ecx)e’ —delt" (ecx)e”" — dig(a, S(@)[p(e0)e™" + ¢(ecx)e’]
—dg(a, S(@)S'(@p(e0)e™" — dhg(a, S(@)S (@)e” / he()¢ (sc(x — y)) dy
> yp(eo)e?" —defe’ — drg(a, S(@))S (a)e” / he([¢(ec(x —¥)) = ¢(ecx)]dy
> yp(e0)e?" —dede’ —drg(a, S(@))S (@)e”’ / eclylhe(y)dy
= yo(e0)e™" —dege’" — drg(a, S(@))S (@ece”’ / yli(y +cs, s)ds dy
—00 0
> yo(en)e®! — ds2e” — trg(a, S(@))S (@)ece”” / f lA(y. ) dyds
0 —

—E)zg(a,S(a))S’(a)8C|c|eyt//si_z(y,s)dyds

0 —o0

> yp(e0)e®" — dege’" — drg(a, S(@))S' (@eoe”" (ho + 1) > 0.

This implies that w is a supersolution of Eq. (5.4). Since v} (x,0) = H(x) < w(x + 4/e., 0),
the comparison yields v} (x,1) <w(x +4/ec,t) in R x [0, 00), namely, v} (x, 1) < p(gg)e®! +
{(ec(x +4/ec))e”". Consequently,

0<vl(x,1) < pleg)e®’  forx < —4/e.. (5.6)

Similarly, we can show that e”’ — w(—x, t) is a subsolution. Since v} x,00=Hx)>1-—
w(—(x — 1 — 4/e.),0), we have v} (x,1) > e”" — w(—(x — 1 —4/g.), 1), that is, v}(x,1) >
e’ — p(eg)e’! — t(—e.(x — 1 —4/e.))e?". We can conclude that

vhx, 1) = e’ — p(eo)e®’ forx >1+4/e,. (5.7)
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Note that &g may be as small as we wish. Combining (5.6), (5.7) and 0 < v} (-, 1) <e¥’, we have
lim v}(x,r)=0 and lim vj(x,7) =e"".
X—>—0Q X—> 00
Set rq such that €' =9. Then by the choice of &g, we have

< v,l(x, r)) <1 forx <4/e,

0
9<vi(x,r) <10 forx > 1 +4/e..

Thus, by the monotonicity and continuity of v}(-, r1), there exists x. € (—4/e., 1 +4/¢e.) such
that

v} (x¢,r1) =3.

Consequently, v? (x¢,r1) = —3.
(i1) Note that there exists K, > 0, K> is independent of ¢, such that for any u € CO(R) with
0<a+u<l,

|g(a+u,hexSa+u))—0ig(a, S(a))u — d28(a. S())S (a)he * u| < K2||u||go(R). (5.8)

Then let K = 4K5e?"1 and §; = min{ 16 110“ W, 8o}. For 8 € (0, 81), consider the func-

tion w(x,t) =a + 8v1(x 1) + K§2er+hr, Clearly, for any x € R and ¢ € [0, 7], we have
0 < w(x,t) < 1. We can calculate, for r € [0, r{], that

% —dAw(x, 1) — g(wx, 1), (he * S(w))(x,1))
Bv,( 1)

ot
= K82V — g(w(x, 1), (he x S(w))(x, 1) + dig(a, S@)[6vF(x, 1) + K82 T11]

+ (v + DKV —sd Avi(x, 1) — g(w(x, 1), (he % S(w))(x, 1))

+ dg(a, S(@)S'(a) / he()[8v(x — y, 1) + K82V D ] dy

—00

2
> K820 Ko |8ul(x, 1) + K87V |2
> K8% — Ka (8¢ + K% +V1)? > 0.
This implies that w(x, t) is a supersolution of (5.1) on [0, 7{]. Thus, by comparison,
Vi (xe, 1) Sw(xe, 1) < a4+ 8vi(xe,r1) +8=a —28.

In a similar manner, one can show that w(x, ) =a + Sv} (x,1) — K821 i5 a subsolution
of (5.1)in R x [0, r{] so that vH(xC, r) =>a—+26.
(iii) For & € (0, 81), let &g be a sufficiently small positive constant such that p(gg)e?*'1 < § and

g0 < %, where p(go) is defined by (5.5). Consider w(x, t) = max{W(x, 1), 0}, where W (x,t) =
2 y
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v}l(x,t) + Y(x, 1), v(x, 1) = —p(g0)e*™ — ae’t(—e.(x — x.)). By Remarks 2.4 and 2.6,
%v}l(x, t) > 0 for t > 0. In view of %w(x, t) >0, then for t > 0 and x € R, %ﬁ)(x, t) > 0.
Thus, for every 7y € (0,7], there exists a unique x~(fp) such that w(x~ (%), — 0) > O,
(x, t9) € B+ for x < x™ (ty), (x, tg) € B— for x > x~ (ty), and

0 J .
—ﬁ)(x_(to) +0, to) = lim —w(x, 1) >0,
0x x—x~(19)+0 0X

where By = {(x,1) e R x (0,r1]: w(x,1) <0}, B_ ={(x,t) € R x (0,r1]: w(x,t)> 0}. Then
by the same argument as in Lemma 3.2, the inequality

Jw(x,t)
at

—dAw(x,t) — g(w(x, 1), (hc * S(w))(x, t)) <0 for(x,t) e BUB_

implies that w(x, t) is a subsolution of (5.1) in R x [0, r1]. Now we only prove that the above
inequality holds for (x,t) € B_. If (x,t) € B_, namely, w(x, t) = w(x, t), then

E)wg);, D_ dAw(x, 1) — g(w(x, 1), (he * S(w))(x,1))
1
- W — dAvjy(x, 1) = 2hp(e0)e™ — rae*'§ (—ec(x — x0))

+dagte™ t (—ec(x — x0)) — g(wx, 1), (he * S(w)) (x,1))
< —2xp(e0)e™™ +daefe™ — raeM ¢ (—ec(x — xc))

+g(vip(x, 0, (hx Si) (x,0) = g(wix, 1), (he % S@)) (x, 1))
< —2xp(e0)e™™ +daefe™ — raeM ¢ (—ec(x — xc))

+Li[p(e0)e™ +aet ¢ (—ec(x —x0))]

o0
+ LoLsp(e0)e™ +aLaLse f he()E (—ec(x — y — x0)) dy
—0o0
< —rp(e0)e® + dagle
o0
+aLyLze / heW)|¢(—gc(x —y —x0)) — ¢ (—c(x — x0)) | dy
—00

o0
< —ap(eo)e™ +daefe™ +aLyLzece™ / |¥1he(y) dy

—00

< [—Ap(so) + dasé +aLyL3ieg(ho + t)]e)" <0.

Thus, w(x, t) is a subsolution of (5.1) in R x [0, 71]. Let ro = 9/¢¢ and r. = (1 + |¢|)rg. Then
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W(x,0) = vy (x, 0) — p(e0) — ag (—ec(x — x.))
<vj(x,0) — ag (—ec(x — xc))
<vj(x,0) —aH(—re —x)
= v}, (x,0)

and w(x,0) < v,l”(x, 0). By comparison, we have v,‘”(x, H>wx,t) > v,],(x, 1) — p(eg)e®M —

aeM¢(—e.(x — x.)). In particular,
Ui (e 11) = vy (xe, 11) — pleg)e? = a+28 —8=a+ 6.

Similarly, w(x, ) = min{vZ (x, ) + p(g0)e?* + (1 —a — 8)e* ¢ (e.(x — x.)), 1} is a superso-
lution of (5.1) on R x [0, r1]. Since

v (x,0) + p(eo) + (1 —a — )¢ (sc(x — x.))
> 07 (x,0) + (1 —a — )¢ (sc(x — xc))
> 07 (x,0)+ (1 —a—8)H(x —rc)

= v}, (x,0),

then vjj, (x, 1) <w(x, 1) <v(x, 1) + pleo)e™ + (1 —a — 8)eM ¢ (ec(x — xc)) on R x [0, r1].
Hence,

Vi (e, 1) S0 (xe, 1) + p(eg)e™ <a—28+8=a—38.
@iv) For § € (0, 61), by Lemma 5.1 and (5.3),
(148 —[1—(a—28)]¢(—€c(x —£-(0)))
> up(x,0) > =8+ [1 — (1 —a = 28)]¢ (ec(x — £+.())).
Following the comparison, we have
(1+8) —[1—(a—28)e "]t (—€c(x — &-(0) + Cct))

>min{(1+68) — [1 — (@ —28)e™ " |¢ (—€c(x — £-(0) + Cc1)), 1}
>u(x,t) > max{—8+[1— (1 —a —28)e "]t (ec(x — &4(0) — Cct)), 0}
> =8+ [1—(1—a—28e "¢ (ec(x — £4(0) — Cet)).

From (5.3), £, (1) <&+ (0) + Ceot + 466_1, E.(t)=2&_(0)—C.t — 4ec_1. Hence,

E4(1) = §-(1) SE4(0) —5-(0) +2Cct + 8¢, !
= £4(0) —£-(0) +2(1 + [e]) (4¢; " + Cot).
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In particular, for all # € [0, r1], we have

E (1) — (1) <E(0) —£-(0) +2(1 + [cl) (4¢; ' + Cor1).
To finish the proof, we need to prove the following: for every #; > 0,

E+(n +r1) — - (t +r1) <max{§4(n) — 6-(11), 2rc +2.

By translation, we can assume that (0, 1) = a so that £, (1) > 0 > £_(¢1). By symmetry, we
need only consider the case &, (f1) > |£_(#1)|. Noting that r1, 61 and r¢ are independent of k, we
take k > % SUP;¢[0,00) | %u(-, Dl oy for H (x) in the following.

Set r4 = max{&4(t1), rc + 1}. Then, u(- +ry, 1) > v,l”(-, 0) in R, so that, by comparison,

u(xe +re, 11 +11) =i (xe, 1) = a +8,
which implies that &4 (11 +r1) < xc + 4.

Setr_ =max{&(t;) —&_(t1),rc + 1}. Thenu(- + &4 (1)) —r—, 1)) < v12”(~, 0) in R. By com-
parison, we have

u(xe +E4(t) —r—, 11 +r1) < vjp(xe, r1) <a—8,

which implies that £_ (] +r1) > xc +&4+(11) —r—.
Combining the two estimates for & (t; + r1) and &_(¢#1 + r1), we have

E(t14r1) —E_ (11 +r1) <ryp—Ep(t) +r- <max{é4 (1) — §- (1), 2re + 2.
This completes the proof. O

Theorem 5.5. Assume that (H1)—(H3) hold, then for every ¢ € R, Eq. (5.1) admits a unique
monotonic traveling wave front (U., C(c)) satisfying (1.3).

Proof. Let v(x, t) be the solution of

dv(x,t) _
o —dAv(x,t)+g(v(x,t),(hC*S(v))(x,t)), (x,1) e R x [0, 00), (5.9)
v(x,0) =¢(x), x eR.

Here and in the sequel, ¢(-) always refers to the function ¢ satisfying (4.1). First of all, by
comparison, we have 0 < v(x,#) <1 on R x [0, 00).
Forallr > 0,s >0, x €RR, and z € R, by Remark 2.4,

z+1
v (x, 1 +5) > O(Ix —z|,1) / ve(y, s)dy. (5.10)

Z

In particular, taking s = z =0, we have v, (x, 1) = ©(|x],1)¢(1) > 0in R x [0, 00). Observe that
Lemma 5.1 implies

lim v(x,z)=1 and lim v(x,1)=0
X—> 00 X—>—0Q
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for all ¢ > 0. It then follows that there exists a unique function z(«, ¢) defined on (0, 1) x [0, co)
such that v(z(a, 1), 1) =&, @ € (0, 1), £ € [0, 00). Note that dz(a, 1) /da = 1/2E&DL -

We claim that for every T > 0, v(-, T') is Lipschitz continuous in R. In fact, for any positive ¢
such that ge*” <9, consider w(x, 1) = min{v(x, 1) + e, 1}, A is defined as in Lemma 5.4. For
any (x,t) € R x (0, T'] such that v(x, 1) + geM < 1, there is

Jw(x,t)
at

=ere + g(v(x, 1), (h,; * S(v))(x, t)) — g(w(x, 1), (hC * S(w))(x, t))

> ere’ —eLie™ —eLyLse™ >0,

—dAw(x,t) — g(u)(x, 1), (hc * S(w))(x, t))

which implies that w(x, ) is a supersolution of (5.1) in (x, #) € R x (0, T'] by the same argument
as in Lemma 3.2. Now since v (-, 0) < v(- + ¢, 0) < min{v(:, 0) + ¢, 1}, it follows by comparison
that v(-, 1) < v(-+e,1) <min{v(-, 1) +ee?, 1} forall t € [0, T]. Hence, v(-, T) is nondecreasing
and is Lipschitz continuous in R.

From (5.3), one sees that for every small positive § > 0, there exist €9 = €¢(5) and Cy = Cp(9)
such that

2a+8,1) <z(a+8, r)—|—46_1+C (t—r) VYO<r<t<oo,

2@—810>z(a—8r)—4 ' —Cot —r) YO<r <t < o0, 5.11)
z2(1=28,1) <z(a+38, r)+4e*1+C(t—r) Vr >0, t—r>e '|Ing|, ’
2(28,1) <z(a—8,r) —de ' —Co(t — 1) Vr>0, t—r>e '|Ing|,

where €. = C:. = (1 + |c])Cop. Here we prove (5.11). We only prove the first inequality.

- 1+\c| ’
Since v(-, r) is increasing in x for every fixed r, let © = z(a + 8, r), then

vix,r)=z2a+48§ forx>pu,
vix,r)<a+48 forx <pu.

But there are

v, (x,0)=-4 for x < u,
—$<v, (x,0)<a+3$ for,u<x<u+4ec_1,
v, (x,0)=a+$ forx>u+4e;1

Hence, 07 (x,t —r) < v(x,t) for all t > r >0 and x € R. Now, if xo = z(a + §,1) >
zla+38,r)+ 466_1 + C.(t —r), then by (5.3),

V(o t—r)21=8—(1—a—28)e " >1-8—(1—a—-28)=a+3s.

This contradicts to v, (xp,t —r) < v(xg,!) =v(z(a + 8,1),t) = a + §, which implies that the
first inequality of (5.11) holds.

For u(-,0) = ¢(-), there are 0 < £_(0) < £, (0) < 4. Then by using Lemma 5.4 and (5.11), we
can derive the following:
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(a) For every § € (0, 81/2], there exist M* = M*(8) > 0 and L* = L*(8) > 0, independent
of ¢, such that

2(1=8,1) —2(8,1) < M* + L*(8)|c| V¥t >0. (5.12)

(b) For every M > 0, there exists a constant @(M , ¢) > 0 such that
0 N
a—v(x+z(a,t),t)>@(M,c) Vi>1, xe[—-M, M]. (5.13)
X

The detailed proofs of (a) and (b) are similar to that of [13, (a), (b), p. 144].

Note the comparison functions W™ (x, ) and W~ (x, ) are defined by (5.15) in Lemma 5.6.
Since the family {v(- + z(a,t),?)} consists of monotonic bounded functions, there exist a se-
quence {#;}%2, and a nondecreasing function U.(-) such that j — oo, t; — oo and v(§ +
z(a,tj),tj) = Uc(§) for all & € R. Clearly, U.(0) = a and 0 < U, < 1. In addition, from (5.12)

we know that for all small § > 0,
Us(M*+L*c]) >1—-8 and Uc(—M* — L*|c|) <. (5.14)

This implies that limg _, oo U(§) =1 and limg_, _o, U (§) = 0. Furthermore, by virtue of the con-
dition (C4) and Remark 5.2(2) of Chen [13], we can show that U, is the profile of a traveling
wave front and there exists C(c) € R such that (U., C(c)) is a traveling wave front to (5.1). The
remainder of the proof is analogous to Steps 3 and 4 of Chen [13, Theorem 4.1], so we omit
them.

So far, we complete the proof of the existence. In view of Remark 4.2, the uniqueness of
traveling wave fronts is obvious. O

Lemma 5.6. Assume that (H1)—(H3) hold, and let v(x,t) be a so{ution of (5.9). Then there exist
three positive numbers 1 (which is independent of v), o1 and & such that for any é € (0, 8]
and every & € R, the functions W and W™ defined by

WT(x,t):= min{v(x +& +018(1 — 67’3”), r+ 1) +8e P11 1},
W (x, 1) = max{v(x + & — 018(1 — e P1"), 1 + 1) — 8e7P1", 0}, (5.15)

are a supersolution and a subsolution of (5.1) on [0, 00), respectively.

Proof. We prove only that W (x, t) is a supersolution of (5.1) on [0, 00). Since %v(x, t)>0
f9r all (x,t) € R x (0, 00), then we only need to show that for all (x, ) € R x (0, co) satisfying
W™ (x,1) < 1, the inequality

AWt (x,1)

T dAWT (x,1) — g(WH(x,1), (he x S(WH))(x,1)) >0 (5.16)

holds, where W (x, 1) = v(x + & +018(1 —e™P1"), 14 1)+ 8¢~ F1" . In the following, we always
assume (x,t) € R x (0, 0o0) satisfying W+ (x, ) < 1.
In Lemma 3.2, by setting t = 0, we can fix 8; > 0 and (ST > 0 such that

018 (u,v) + warg(r,s) <—p (5.17)
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for all (u,v,r,s, @) €[0,87] x [S(0) — &7, S(0) + 871 x [0,8]] x [S(0) — &7, S(0) + 87] x
[S'(0) — 8%, §'(0) + 8% and (u, v, r, s, @) € [1 — 8%, 11 x [S(1) — 87, S(1) + 871 x [1 — 8%, 1] x
[S(1) =87, S(1) +87]1x [§'(1) =87, S'(1) 4 87]. By the continuity of S(v) and S’(v), there exists
81 €0, 871 such that for any & € [—81, 811,

8t N
|S(1+8)—S(1)|<§1, }S(S)—S(O)|<?],

8t 8t
|S'(1+8) = S'(D)| <§1, |S'(8) — S (0)] <?‘.

Further, there exists Mo = Mo(v, Bo, 87) > 0 such that for any & € [—51, 1+ 31],

e’} —My

S(E)[ / + f hc(y)dy}
My —00

Let §; = min{3;, }. Take

oo —My

S’(é‘)[ / + f hc(y)dy}
My —©

5
L

5

< b
3

<

p1 =max{|01g(u, v)| + k2|02g(r, $)|: u,r €[0,1], v €[S(0), S(D], s €[S©0), S(1+57)]},
where k1 = max{S'(u): u €[0, 1+ 871}, and define

B1+ pi

01 = = >
O (Mo + M* 4 L*|c]) B

where @(Mo + M* 4 L*|c|) is defined by the previous (b). For any given 8 € (0, 8;), let £(x, 1) =
x + & + ood[1 — e~ P0'] Tt then follows that, for any t > 0,

+
w —dAWY(x, 1) — g(W+(x, 1), (hc % S(W+))(x, t))
=015,316—ﬁ1f%v(5(x, n,t+1)+ %U(S(x, 0,0+1)— Bise Pt —dAv(EGL D+ 1)
—g(WH@x,0), (he x S(WF))(x, 1))

3
> 018,31e_’5”8—v(§(x, 0,t+1) = prde P!
X

+00
- g(v(é(x, 1),t+ 1), / hc(y)S(v(S(x —y,1),t+ 1))dy>

—0o0

—g(WT(x,0), (he x S(WH))(x, 1))

> e Pt {glﬂla%v(é(x, N, 1+1)—pi
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400
- E)lg(v(é(x, 1), + 1) + 6,8 ot / hc(y)S(v(é(x -y, 0, t+ 1)) dy)

—00

+00
_82§<U(§(x*t)’t+1)+56_ﬂ0t» / hc(y)S(U(é(x—y,t),t+1)+9256—ﬂlt)d)’>

+00
x / he()S' (v(Ex —y,0),1+1) +925e—ﬁ0')dy}. (5.18)

Let n(x,t) = x + & + 008[1 — e "] — z(a, t + 1). We consider three cases.
Case (1): n(x,t) > Mo+ M* + L*|c|. Then by the previous (a),

v(E@, D, t+ ) =v(n, ) +zat+ D+ 1) Zv(z(1 =8, 1+ 1,1 4+1)=1-3.

For y € [-My, My,

v =y, 0, t+ 1) >v(n(x, 1) — Mo+z(a,t + 1)1+ 1)

>
>v(z1 =8, t+1),1+1)=1-3.

Therefore,
+00
/hc<y>s(v(§<x—y,r>,r+ 1)) dy
My H4o0
=< / +f )hc(y)s(v(soc—y,t),t+1))dy
—0o0 My
My
T / he)SEG =y, 0,1+ 1)) dy
—My
P
;_?Mr / he(y)S(1 —8)dy > S(1) — 67.
—My
Similarly,
+o0
S(1) +68% > [ he(S(V(EQ =y, 1)1 +1) +628e™) dy > S(1) - 38,
+o0

S'()+687 = / heS' (V(EC =y, 0,1+ 1) + 028 P")dy > §'(1) - 6.

—00
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Thus, by (5.17), we have that (5.16) holds.
Case (ii): [n(x, 1) < Mg+ M* + L*|c|. Then, by the choice of o and (5.18),

AW (x, 1)
ot
> 8¢ P11 [0110 (Mo + M* + L¥|c]) — p1 — p1] > 0.

—dAWF(x, 1) — g(WH(x,0), (he x S(WTF))(x, 1))

Case (iii): n(x,t) < —(Mo+ M* + L*|c|). The proof is similar to that for the case (i) and is
omitted.
This completes the proof. O

Lemma 5.7. Assume that (H1)—(H3) hold. Then the wave speed C(c) of the traveling wave front
(U¢, C(c)) in Eq. (5.1) is a continuous function of ¢ € R.

Proof. Without loss of generality, we assume that U, (0) = a for each ¢ € R. Then U.(x — C(c)t)
satisfies

—c<c)Ug(s>=dU:<s>+g<Uc<s>, f / ﬁ(y,s)S(Uc(s—y+cs>)dyds),
0 —o©

where £ = x — C(c)t. Hence,

&
1
U, = MCEGE=9) g U, J
© d()»z(C(C))—M(C(c)))|:/€ Ue)(s)ds
+f eMC(C%“”H(l/c)(s)ds], (5.19)
&

where

_C - C2 4dL —C C2 4dL
and

H(Uc)(E)ZLlUc(rS)+g<Uc(f§),/ / ﬁ(y,S)S(Uc(E—y+cs))dyd5>-
0 —oo

Since 0 < Us(€) < 1 and A2(C(c)) — A1(C(c)) = +/C%(c) +4dLy/d > 2./L1/d, it is easy to
show that

, G
|UC(E)|<2\/TL1

where G = 2L 4+ 2max{|g(u, v)|: (u,v) €[0, 1] x [S(0), S(1)]}.

forevery ce Rand & e R,
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Here we first show that for any bounded c € R, the speed C(c) is also bounded. In fact,
consider functions U.(x) and v, (x, 0) defined in Lemma 5.1 with § = 8o, and there exists xp € R
such that v (x — xg, 0) < U.(x) for all x € R. Then by comparison, we have that v_ (x —xo, 1) <
U:.(x — C(c)t) forall x e R and ¢ € [0, 00), that is,

=8+ [1—(1—a—28)e " ]¢(e(x —xo — Cet)) < Ue(x — C(0)1). (5.20)

Now we claim that C(c) < C,. If not, namely, C(c) > C¢, then we fix x — xg — Cct = £§* with
¢ (ec&*) =28, hence, Us(x — C(c)t) = Up(E* 4+ x9 + (C. — C(c))t). Letting 1 — 0o in (5.20),
then we have § < U.(—o0), which is a contradiction to U.(—o0) = 0. Thus, we have C(c) <
C. = (1 + |c])Cp. Similarly, comparing functions U, (x) and vj (x,0), we obtain C(c) > —C, =
—(1+|c]Co.

Suppose ¢, — ¢, but C(c,) does not converge to C(c), then there exists a subsequence
cp, — ¢ so that C(cy,) — b # C(c). Let H* = sup{|c,|}. Since Ucuk (-) is nondecreasing,
Ucnk (0) = a, and by (a) and (b) in Theorem 5.5, Uan () also satisfies, for sufficiently small
5 >0,

Ue, (x) <8, ifx <—M*— L"H* < —M* — L*|cy, .
Ue, (x) >1—8, ifx>M*+L*H* > M*+ L|cy].

By the Arzela—Ascoli theorem and the above inequalities, we can choose a subsequence of {cy, },
such that Ucnk (-) converges uniformly to a continuous function U(-) in R. We still denote this

subsequence by c,, . Obviously, U (-) is nondecreasing, 0 < U(-) < 1, and
lim U(x)=0 and lim U(x)=1.
X—>—0Q X—> 00

In Eq. (5.19) with ¢ being replaced by ¢, , we let k — oo and apply the dominant convergence
theorem to get

d(A2(b) — A1(b))

£ 00
1
UE)=——— [ f HMOE g (U)(s)ds + f M OE= g (U)(s) ds].
—00 S
Hence U (x — bt) is a solution of (5.1). Furthermore, by virtue of Theorem 3.3, we have C(c) = b,
which is a contradiction. This completes the proof. O

Theorem 5.8. Assume that (H1)~(H3) hold. Then (1.1) admits a strictly monotonic traveling
wave front U (x — (—B + ¢*)t) with |c*| < Co, where Co = Co(8o) is given in Lemma 5.1.

Proof. It is easy to see that if there exists ¢* € R such that C(c*) = ¢*, and U(x — ¢*t) is a
monotonic traveling wave front of (5.1), then U (x — ¢*t) is also a monotonic traveling wave
front of (2.10) and U (x — (—B + ¢*)t) is also a monotonic traveling wave front of (1.1) with
wave speed — B + c*. Therefore, it suffices to show that the curves y = —c and y = —C(c) have
at least one common point in the (c, y) phase.
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For ¢ > 0, let vy (x, ) be the subsolution of (5.1) given in Lemma 5.1 with § = 8o. Then
there exists a large constant xqo such that U¢(-) > v (- — xo, 0). Therefore, by the comparison, it
follows that U.(x — C(c)t) > vy (x — xo, ) forall # > 0 and x € R. Thus, we have

=8+ [1—(1—a—28)e )¢ (ep(x — xo — Cot)) < Ue(x — C(o)t).

By a similar argument to that for (5.20), we have C(c) < Cyp. Similarly, we can show that C(c) >
—Co for ¢ < 0 by comparing U.(x — C(c)t) with UJ (x,t). Thus, we can find a common point
of the curves y = —c and y = —C(c) in ¢ € [-Cp, Co]. The proof is complete. O

Now we consider the influence of advection on the propagation of fronts in Eq. (1.1).

Remark 5.9. Assume that (1.1) has a traveling wave front connecting equilibria O and 1 when
the advection term is absent, namely, B = 0, then when B 5 0, the advection term may cause a
shift of the unique wave speed. Moreover, if the wave speed is positive (negative) when B =0,
then when B # 0, the wave speed can be null or negative (positive or null), which is dependent
of B. As showed in the beginning of this section, for Eq. (1.1) with A(y,s) = h(y)3(s), if the
wave speed is ¢ when B = 0, then when B # 0, the wave speed is —B + c¢. But for general
kernel A (y, s), the change of the wave speed due to the advection term becomes very complicated
because of the effect of the time delay.

6. Applications

In the previous sections, we have studied the existence, uniqueness and asymptotic stability
of traveling wave fronts of nonlocal reaction advection diffusion equation (1.1) with distributed
delay. This equation is more general than the versions studied by Schaaf [38], Chen [13], Smith
and Zhao [42] and Ma and Wu [28]. Obviously, our main results include those in these papers.
In particular, our results can be applied to Eqgs. (1.8) and (1.10). Note that though we only con-
sider the existence for the case fé (a) > 0, we can get a similar result for the case fé (a) =0 by
a perturbation f; of fp so that f/(a) > 0, see also Remark 5.2(5) in [13]. Note that twice differ-
entiability of g and S in (H1) is only used for determining the inequality (5.8), otherwise, g and
S only need to be continuously differentiable. Furthermore, our results are easily extended to the
following equation with multi-delay

au au
E szu + Bg +g(l4(x’ l)s (hl * S](M))(.x, t)v U] (hm * Sm(u))(x, t)),
where kernels k1, ..., hy, are required as & in (1.1), m € N.

Now we consider Egs. (1.8) and (1.10).

Example 6.1. Assume that Eq. (1.8) satisfies the following conditions:

(C1) Thereexist 0 < a; < ap < a3 suchthateb(a;) —dpa; =0,i =1,2,3; eb(u) —d,u <0 for
ue(ay,ay); eb(u) — dyuu > 0 foru € (az, az).
(C2) b() € C*([ar,a3)), b'(-) 2 0, &b/ (a1) < dm, €b/(az) > dy, €b'(a3) < dp.
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We refer to b(u) = puze_ﬁ“ which is widely used in the literature and satisfies (C1) and (C2),
where p > 0 and B > 0 are appropriate constants, see also Ma and Zhao [30]. Now set i(x, t) =
! (u(x,t) — ay) and denote u still by u, then Eq. (1.8) reduces to the following equation

asz—ai

ou 0 ou dnay
—=— — +Bu ) —d ) — ———
ot 3x< m8x+ u) mi (%, 1) az —ap
o
€
+ﬁ / Ja(x—}—Br—y)b((ag—al)u(y,t—f)—i—al)dy. 6.1
3—ai
—0oQ

Thus, we only need to consider Eq. (6.1). In particular, (H1)-(H3) hold for Eq. (6.1). By The-
orems 3.3, 4.5 and 5.8, Eq. (6.1) admits a unique monotonic traveling wave front, and hence,
Eq. (1.8) admits a unique monotonic traveling wave front U (x — ct) (up to translation) which is
asymptotically stable and satisfies limg . _oo U(§) = a1 and limg_, 1 oo U (§) = a3.

Example 6.2. Assume that Eq. (1.10) satisfies the following conditions:

(C3) There exist 0 < a; < ap < a3 such that eb(a;) —d(a;) =0,i =1,2,3; eb(u) —du) <0
foru € (a1, az); eb(u) —dwu) > 0 for u € (a», az), where ¢ = fof f(s)e V¥ ds.
(C4) b(-),d(-) € C*(la1, a3]), b/ () 2 0, b (a1) < d'(ar), eb/(az) > d'(a2), €b' (a3) < d'(a3).

Then by a same argument as that for Eq. (1.8) and by Theorems 3.3, 4.5 and 5.8, we obtain
the existence, uniqueness and asymptotic stability of traveling wave fronts of (1.10) connecting
equilibria u = a; and u = a3.
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