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Abstract

This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave
fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable
assumption, we construct various pairs of super- and subsolutions and employ the comparison principle
and the squeezing technique to prove that the equation has a unique nondecreasing traveling wave front (up
to translation), which is monotonically increasing and globally asymptotically stable with phase shift. The
influence of advection on the propagation speed is also considered. Comparing with the previous results,
our results recovers and/or improves a number of existing ones. In particular, these results can be applied to
a reaction advection diffusion equation with nonlocal delayed effect and a diffusion population model with
distributed maturation delay, some new results are obtained.
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1. Introduction

In this paper, we are concerned with an one space dimensional reaction advection diffusion
equation with nonlocal delay of the form

∂u

∂t
= d�u + B

∂u

∂x
+ g

(
u(x, t),

(
h ∗ S(u)

)
(x, t)

)
, x ∈ R, t > 0, (1.1)

where d > 0, B ∈ R, � is the Laplacian operator on R, h is a nonnegative kernel satisfying

τ∫
0

∞∫
−∞

h(y, s) dy ds = 1,

τ∫
0

∞∫
−∞

|y|h(y, s) dy ds < ∞, (1.2)

and the convolution is defined by

(
h ∗ S(u)

)
(x, t) =

0∫
−τ

∞∫
−∞

h(x − y,−s)S
(
u(y, t + s)

)
dy ds.

For g(u, v) and S(u), we impose the following conditions:

(H1) g ∈ C2([0,1] × [S(0), S(1)],R) and ∂2g(u, v) � 0 for (u, v) ∈ [0,1] × [S(0), S(1)];
S ∈ C2([0,1],R) and S′(u) � 0 for u ∈ [0,1].

(H2) g(0, S(0)) = g(1, S(1)) = 0, ∂1g(0, S(0)) + ∂2g(0, S(0))S′(0) < 0, and ∂1g(1, S(1)) +
∂2g(1, S(1))S′(1) < 0.

Under condition (H2), it is obvious that 0 and 1 are stable equilibria of (1.1). We are interested
in traveling wave solutions that connect the two stable equilibria 0 and 1. Throughout this paper,
a traveling wave solution of (1.1) always refers to a pair (U, c), where U = U(ξ) is a function
on R and c is a constant, such that u(x, t) := U(x − ct) is a solution of (1.1) and

lim
ξ→−∞U(ξ) = 0, lim

ξ→+∞U(ξ) = 1. (1.3)

We call c the traveling wave speed and U the profile of the wave front. If c = 0, we say U is a
standing wave. Moreover, we say a traveling wave U(x − ct) is monotone if U(·) : R → R is a
strictly increasing function.
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For some special cases of Eq. (1.1), many well-known results have been obtained under the
bistable assumption. Some of them can be summarized as follows:

(i) If B = 0, S(u) = u and h(x, t) = δ(t)δ(x), δ(·) is the Dirac delta function, then (1.1)
reduces to the local equation without delay

∂u

∂t
= d�u + g(u,u), x ∈ R, t > 0. (1.4)

In [20], Fife and McLeod have proved the globally exponential stability of traveling wave solu-
tions of (1.4), see also Volpert et al. [44].

(ii) If B = 0, S(u) = u and h(x, t) = δ(t − τ)δ(x), then (1.1) reduces to the local equation
with a discrete delay

∂u

∂t
= d�u + g

(
u(x, t), u(x, t − τ)

)
, x ∈ R, t > 0, τ > 0. (1.5)

Schaaf [38] considered Eq. (1.5) for the so-called Huxley nonlinearity as well as Fisher non-
linearity. He studied the existence of traveling wave solutions in such equations by using the
phase-plane technique, the maximum principle for parabolic functional differential equations,
and the general theory for ordinary functional differential equations. Smith and Zhao [42] proved
the global asymptotic stability, Lyapunov stability and uniqueness of traveling wave solutions
of (1.5) with bistable nonlinear term, by first establishing the existence and comparison theo-
rem of solutions for (1.5), where they appealed to the theory of abstract functional differential
equations of Martin and Smith [35], and then using the elementary sub- and supersolutions com-
parison and the squeezing technique developed by Chen [13].

(iii) If B = 0, h(x, t) = δ(t)J (x), then (1.1) reduces to the nonlocal equation

∂u

∂t
= d�u + g

(
u(x, t),

∞∫
−∞

J (x − y)S
(
u(y, t)

)
dy

)
, x ∈ R, t > 0, (1.6)

which was considered by Chen [13]. He proved the existence, uniqueness and global asymptotic
stability of traveling wave solutions by developing the so-called squeezing technique. See also
Alikakos et al. [1], Berestycki and Nirenberg [6], Chen [12], Chen and Guo [14,15], Ermentrout
and McLeod [18], Evans et al. [19], Fife and McLeod [20], Ma and Zou [29,30] and Shen [39,40]
for similar results related to this technique.

(iv) If B = 0, g(u, v) = −αu+ v, S(u) = b(u) and h(x, t) = δ(t − τ)J (x), then (1.1) reduces
to the nonlocal equation

∂u

∂t
= d�u − αu(x, t) +

∞∫
−∞

J (x − y)b
(
u(y, t − τ)

)
dy, x ∈ R, t > 0, τ > 0, (1.7)

which was studied by Ma and Wu [28]. Under the bistable assumption, by establishing the ex-
istence and comparison theorem of solutions for (1.7), which is similar to that of Smith and
Zhao [42], they proved the uniqueness and global asymptotic stability of traveling wave solu-
tions by using the moving plane technique and the squeezing technique. Moreover, they proved
the existence of traveling wave solutions by considering a nonlocal equation without delay, which
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is similar to the approach of Chen [13], and then passing to Eq. (1.7). In fact, this method is also
used by Chen [11] for a neural network model and Ou and Wu [36] for a delayed hyperbolic–
parabolic model.

Observing the above equations (1.4)–(1.7), we can see that these equations are either local or
nonlocal, either with a discrete delay or without delay. In some situations (for example, when
it models a feedback signal transmitted as a nerve impulse as discussed in Wu [48]), discrete
delay is a good approximation, but in other situations (for example, pollution of an environment
by dead organisms is clearly a cumulative effect), discrete delay is not realistic. However, even
when a discrete delay can be regarded as a good approximation, there is likely to be some spread
of the delay around some mean value and the use of a distributed delay can be regarded as
allowing for stochastic effects in what is otherwise a deterministic model (see [16,26,31]). In
fact, Volterra [45] already used a logistic equation with distributed delay to examine a cumulative
effect on mortality of a deteriorating environment due to the accumulation of waste products and
dead organisms.

In view of individuals taking time to move, spatial dispersal/diffusion was dealt with by sim-
ply adding a diffusion term to corresponding delayed ODE model in previous literatures, namely,
adding a Laplacian term to the ODE model. But in recent years it has become recognized that
there are modelling difficulties with this approach. The difficulty is that diffusion and time de-
lay are independent of each other, since individuals have not been at the same point in space
at previous times. Britton [9] made the first comprehensive attempt to address this difficulty
by introducing a nonlocal delay, that is, the delay term involves a weighted spatial–temporal
average over the whole of the infinite domain and the whole of the previous times. Another ap-
proach to overcome this difficulty was developed by Smith and Thieme [41], where the technique
of integration along characteristics was used to derive a system of (ordinary) delay differential
equations for the matured population of single species with two age classes (immature and ma-
ture) and with spatial dispersal among discrete patches. Since then, great progress has been made
on the existence of travelling wave fronts in reaction–diffusion equations with nonlocal delays,
see Ashwin et al. [2], Al-Omari and Gourley [3], Billingham [8], Gourley [22,23], Gourley and
Kuang [24], Gourley and Ruan [25], Ruan and Xiao [37], So et al. [43], Wang et al. [46] and
Zou [49]. Notice that all these equations are monostable.

Though there have been many results for reaction–diffusion equations with bistable nonlinear-
ity and nonlocal delays, some new problems have arisen recently. In [27], Liang and Wu derived
a reaction advection diffusion equation with nonlocal delayed effects of the form

∂u

∂t
= ∂

∂x

(
Dm

∂u

∂x
+ Bu

)
− dmu(x, t) + ε

∞∫
−∞

Jα(x + Bτ − y)b
(
u(y, t − τ)

)
dy, (1.8)

where Jα(x) = 1√
4πα

e
−x2
4α , τ > 0, is the time delay, ε reflects the impact of the death rate of

the immature, α represents the effect of the dispersal rate of the immature on the growth rate of
the matured population, and B is the velocity of the spatial transport field. By choosing three
different birth functions b(u), they established the existence of traveling wave fronts of Eq. (1.8).
We note that they only considered (1.8) with monostable nonlinearity. The bistable case remains
open.

In fact, reaction advection diffusion equations are widely used to model some reaction–
diffusion processes taking place in moving media such as fluids, for example, combustion,
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atmospheric chemistry, and plankton distributions in the sea, see Berestycki [7], Cencini et al.
[10], Gilding and Kersner [21] and the references therein. Of particular interest is the influence
of advection terms on the propagation of traveling wave fronts, which were studied by many re-
searchers, see Berestycki [7], Gilding and Kersner [21], Malaguti and Marcelli [32,33], Malaguti
et al. [34]. However, in their works, the delay and nonlocal effect were not considered.

Recently, Al-Omari and Gourley [4] rigorously derived a nonlocal reaction–diffusion model
for a single population with stage structure and distributed maturation delay, namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
= Di�ui + b

(
um(x, t)

) − γ ui(x, t) −
τ∫

0

∫
Ω

G(x,y, s)f (s)e−γ sb
(
um(y, t − s)

)
dy ds,

∂um

∂t
= Dm�um − d

(
um(x, t)

) +
τ∫

0

∫
Ω

G(x,y, s)f (s)e−γ sb
(
um(y, t − s)

)
dy ds,

(1.9)

where Ω ⊂ R
N is open and bounded, G(x,y, t) is the solution subject to homogeneous Neumann

boundary condition of

∂G

∂t
= Di�xG, G(x, y,0) = δ(x − y).

If the bounded domain Ω is replaced by the whole real line (−∞,∞), then the second equation
of (1.9) reduces to

∂um

∂t
= Dm�um − d

(
um(x, t)

) +
τ∫

0

∞∫
−∞

1√
4πDis

e
−(x−y)2

4Dis f (s)e−γ sb
(
um(y, t − s)

)
dy ds.

(1.10)

For some special cases of (1.10), the existence of traveling wave fronts has been studied by many
authors. For example, Gourley and Kuang [24] and Al-Omari and Gourley [5] considered the
case where d(um(x, t)) = αu2

m(x, t) and b(um(x, t)) = βum(x, t); So et al. [43] studied the case
where d(um(x, t)) = αum(x, t), b(um(x, t)) = βum(x, t)e−aum(x,t). We also note that, under the
bistable assumptions, system (1.7) considered by Ma [28] is also a special case of (1.10) with
discrete delay. However, to the best of our knowledge, there is no result for Eq. (1.10) with
bistable nonlinearity and distributed delay.

Motivated by the above discussion, in this paper we treat the existence, uniqueness and global
asymptotic stability of traveling wave fronts of (1.1) under the bistable assumptions, that is, (H2).
The assumption (H1) is necessary to establish the comparison theorem for the Cauchy problem
of (1.1). Contrasting to [13,42], we only require that the quasi-monotone condition holds on
[0,1]2, namely, (H1) holds. Under (H1), as showed in Section 2, if the Cauchy-type initial value
lies between 0 and 1, then the solutions of (1.1) also lie between 0 and 1. Though some spe-
cial models can be modified so that the quasi-monotone condition holds on a larger domain by
extending the nonlinearity, for example, Eq. (1.5) with the Huxley nonlinearity and Eq. (1.7),
in which nonlinearities were extended to [−δ,1 + δ] and R

2, respectively, see [28,42]. How-
ever, we do not know whether each g satisfying (H1) can be extended to g̃ ∈ C2([−δ,1 + δ] ×
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[S(0) − ε,S(1) + ε]) with ∂2g̃(u, v) � 0 for (u, v) ∈ [−δ,1 + δ] × [S(0) − ε,S(1) + ε]. There-
fore, in this paper we use different super- and subsolutions from that in [13,28,42], which was
used in our paper [47]. Thus, we can discuss Eq. (1.1) only under condition (H1).

In order to take advantage of our estimates for super- and subsolutions, we make the following
extensions for g and S. Define a function Ŝ : [−9,10] → R by

Ŝ(u) =
⎧⎨
⎩

S(0) + S′(0)u − u2, u ∈ [−9,0],
S(u), u ∈ (0,1),

S(1) + S′(1)(u − 1) + (u − 1)2, u ∈ [1,10].

Then define ĝ : [0,1] × [S(−9), S(10)] → R by

ĝ(u, v) =
{

g(u,S(0)) + ∂2g(u,S(0))(v − S(0)), (u, v) ∈ [0,1] × [S(−9), S(0)],
g(u, v), (u, v) ∈ [0,1] × [S(0), S(1)],
g(u,S(1)) + ∂2g(u,S(1))(v − S(1)), (u, v) ∈ [0,1] × [S(1), S(10)].

Obviously, Ŝ′(u) is continuous and nonnegative on [−9,10], ∂1ĝ(u, v) is continuous on [0,1] ×
[S(0), S(1)], and ∂2ĝ(u, v) is continuous and nonnegative on [0,1] × [S(−9), S(10)]. For the
sake of convenience, we still denote Ŝ and ĝ by S and g in the remainder of this paper.

The rest of the paper is organized as follows. In Section 2, we establish the existence and
comparison principle of solutions for the initial value problem of (1.1). In Sections 3 and 4, by
constructing some super- and subsolutions of (1.1) and using the comparison result established
in Section 2 and the squeezing technique of Chen [13] and Smith and Zhao [42], we consider the
uniqueness and asymptotic stability of traveling wave fronts, respectively. In Section 5, we first
consider the existence of traveling wave fronts for a class of reaction–diffusion equation without
delay, where the method of Chen [13] can be applied, and then obtain the existence of traveling
wave fronts of (1.1). In particular, in Lemma 5.4, we use a uniformly continuous function H(x),
which is different from the Heaviside function used by Chen [13] and Ma and Wu [28], so that the
existence and comparison principle can still be used. Thus, we exactly and rigorously show the
existence of traveling wave fronts. In Section 6, we apply our results to the above equations (1.8)
and (1.10) and obtain some new results.

2. Existence and comparison of solutions

Let X = BUC(R,R) be the Banach space of all bounded and uniformly continuous functions
from R into R with the usual supremum norm. Let

X+ = {
ϕ ∈ X: ϕ(x) � 0, x ∈ R

}
.

It is easy to see that X+ is a closed cone of X and X is a Banach lattice under the partial
ordering induced by X+. By [17, Theorem 1.5], it then follows that the X-realization d�X

of d� generates a strongly continuous analytic semigroup T (t) on X and T (t)X+ ⊂ X+, t � 0.
Moreover, by the explicit expression of solutions of the heat equation

⎧⎨
⎩

∂u

∂t
= d�u, x ∈ R, t > 0,

u(x,0) = ϕ(x), x ∈ R,

(2.1)
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we have

T (t)ϕ(x) = 1√
4πdt

∞∫
−∞

exp

(
− (x − y)2

4dt

)
ϕ(y)dy, x ∈ R, t > 0, ϕ(·) ∈ X.

Consider the following equation⎧⎨
⎩

∂v

∂t
= d�v + B

∂v

∂x
, x ∈ R, t > 0,

v(x,0) = ϕ(x), x ∈ R.

(2.2)

In fact, if u(x, t) is the solution of (2.1), then v(x, t) = u(x + Bt, t) is a solution of (2.2). In-
versely, if v(x, t) is a solution of (2.2), then u(x, t) = v(x − Bt, t) is a solution of (2.1). Thus,
the existence and uniqueness of solutions of (2.2) follow from the existence and uniqueness of
solutions of (2.1). In particular,

v(x, t) = u(x + Bt, t) = 1√
4πdt

∞∫
−∞

exp

(
− (x + Bt − y)2

4dt

)
ϕ(y)dy.

Define bounded linear operators U(t) :X → X, t � 0, by

U(0)ϕ(x) = ϕ(x),

U(t)ϕ(x) = 1√
4πdt

∞∫
−∞

exp

(
− (x + Bt − y)2

4dt

)
ϕ(y)dy, x ∈ R, t > 0, ϕ(·) ∈ X. (2.3)

It is easy to prove that U(t) is a strongly continuous semigroup on X. Obviously, U(t)X+ ⊂ X+,
t � 0. In particular, when B = 0, U(t) = T (t).

Let f0(·) : [0,1] → R be defined by f0(u) = g(u,S(u)), u ∈ [0,1]. By the continuity of f0
and condition (H2), it then easily follows that there exist a−, a+ ∈ (0,1) with a− � a+ such that
f0(·) : [0,1] → R satisfies{

f0(0) = f0
(
a−) = f0

(
a+) = f0(1) = 0,

f0(u) > 0 for u ∈ (
a+,1

)
, and f0(u) < 0 for u ∈ (

0, a−)
.

Let L1 = max{|∂1g(u, v)|: 0 � u � 1, S(0) � v � S(1)} and define

Θ(J, t) = 1√
4πdt

exp

(
−|B|J

2d
−

(
L1 + |B|

4d

)
t − (J + 1)2

4dt

)
, J � 0, t > 0.

Clearly, Θ ∈ C([0,∞) × (0,∞),R).
Let C = C([−τ,0],X) be the Banach space of continuous functions from [−τ,0] into X with

the supremum norm, and let C+ = {ϕ ∈ C: ϕ(s) ∈ X+, s ∈ [−τ,0]}. Then C+ is a positive cone
of C. As usual, we identify an element ϕ ∈ C as a function from R × [−τ,0] into R defined
by ϕ(x, s) = ϕ(s)(x). For any continuous function w : [−τ, b) → X, b > 0, we define wt ∈ C,
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t ∈ [0, b), by wt(s) = w(t + s), s ∈ [−τ,0]. Then t 	→ wt is a continuous function from [0, b)

to C. For any ϕ ∈ [0,1]C = {ϕ ∈ C: ϕ(x, s) ∈ [0,1], x ∈ R, s ∈ [−τ,0]}, define

F(ϕ)(x) = g

(
ϕ(x,0),

0∫
−τ

∞∫
−∞

h(x − y,−s)S
(
ϕ(y, s)

)
dy ds

)
.

By the global Lipschitz continuity of g(·,·) on [0,1]× [S(0), S(1)], we can verify that F(ϕ) ∈ X

and F : [0,1]C → X is globally Lipschitz continuous.

Definition 2.1. A continuous function v : [−τ, b) → X, b > 0, is called a supersolution (subso-
lution) of (1.1) on [0, b) if

v(t) � (�)U(t − s)v(s) +
t∫

s

U(t − r)F (vr ) dr, (2.4)

for all 0 � s < t < b. If v is both a supersolution and a subsolution on [0, b), then it is said to be
a mild solution of (1.1).

Remark 2.2. Assume that there is a v ∈ BUC(R×[−τ, b),R), b > 0, such that v is C2 in x ∈ R,
C1 in t ∈ (0, b) and for x ∈ R, t ∈ (0, b)

∂v

∂t
� (�) d�v + B

∂v

∂x
+ g

(
v(x, t),

0∫
−τ

∞∫
−∞

h(x − y,−s)S
(
v(y, t + s)

)
dy ds

)
. (2.5)

Then, the positivity of the linear semigroup U(t) :X+ → X+ implies that (2.4) holds. Hence v

is a supersolution (subsolution) of (1.1) on [0, b).

We now establish the following existence and comparison result.

Theorem 2.3. Assume that (H1) and (H2) hold. Then for any ϕ ∈ [0,1]C , (1.1) has a unique
mild solution u(x, t, ϕ) on [0,∞) which is a classical solution to (1.1) for (x, t) ∈ R × (τ,∞).
Furthermore, for any pair of supersolution ϕ+(x, t) and subsolution ϕ−(x, t) of (1.1) on [0, b)

with 0 � ϕ+(x, t), ϕ−(x, t) � 1 for x ∈ R, t ∈ [−τ, b), and ϕ+(x, s) � ϕ−(x, s) for x ∈ R,
s ∈ [−τ,0], 0 < b � ∞, we have ϕ+(x, t) � ϕ−(x, t) for x ∈ R, 0 � t < b, and

ϕ+(x, t) − ϕ−(x, t) � Θ(J, t − t0)

z+1∫
z

(
ϕ+(y, t0) − ϕ−(y, t0)

)
dy

for any J � 0, x and z ∈ R with |x − z| � J , and b > t > t0 � 0.
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Proof. Under an abstract setting as in [35], a mild solution of (1.1) is a solution to its associated
integral equation

⎧⎪⎪⎨
⎪⎪⎩

u(t) = U(t)ϕ(0) +
t∫

0

U(t − s)F (us) ds, t > 0,

u0 = ϕ ∈ [0,1]C.

We firstly prove the conclusions except the last inequality in the theorem when B = 0. Assume
that B = 0. In this case, U(t) = T (t). Clearly, v+ = 1 and v− = 0 are an ordered pair of super-
and subsolutions of (1.1) on [0,∞). Notice that F : [0,1]C → X is globally Lipschitz continuous.
We further claim that F is quasi-monotone on [0,1]C in the sense that

lim
h→0+

1

h
dist

(
ψ(0) − φ(0) + h

[
F(ψ) − F(φ)

];X+) = 0

for all ψ,φ ∈ [0,1]C with ψ � φ. In fact, it follows from (H1) that

F(ψ) − F(φ) = g

(
ψ(·,0),

0∫
−τ

∞∫
−∞

h(· − y,−s)S
(
ψ(y, s)

)
dy ds

)

− g

(
φ(·,0),

0∫
−τ

∞∫
−∞

h(· − y,−s)S
(
φ(y, s)

)
dy ds

)

� g

(
ψ(·,0),

0∫
−τ

∞∫
−∞

h(· − y,−s)S
(
φ(y, s)

)
dy ds

)

− g

(
φ(·,0),

0∫
−τ

∞∫
−∞

h(· − y,−s)S
(
φ(y, s)

)
dy ds

)

� −L1
(
ψ(0) − φ(0)

)
in X. (2.6)

Hence, for any μ > 0 such that L1μ < 1,

ψ(0) − φ(0) + μ
[
F(ψ) − F(φ)

]
� (1 − L1μ)

(
ψ(0) − φ(0)

)
� 0 in X.

Then when B = 0, the existence and uniqueness of u(x, t, ϕ) follows from [35, Corollary 5] with
S(t, s) = T (t, s), t � s � 0, and B(t, ϕ) = F(ϕ). Moreover, by a semigroup theory argument
given in the proof of [35, Theorem 1], it follows that u(x, t, ϕ) is a classical solution for t > τ .

Assume B = 0 and ϕ+(x, t) and ϕ−(x, t) are a pair of super- and subsolutions of (1.1). For
simplicity, let ψ(x, s) = ϕ+(x, s), φ(x, s) = ϕ−(x, s), x ∈ R, s ∈ [−τ,0]. Then ψ,φ ∈ [0,1]C
and ψ � φ in C. Again by [35, Corollary 5], we have

0 � u(x, t, φ) � u(x, t,ψ) � 1, x ∈ R, b > t � 0. (2.7)
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Applying [35, Corollary 5] with v+(x, t) = 1 and v−(x, t) = w(x, t), v+(x, t) = u(x, t) and
v−(x, t) = 0, respectively, we have

ϕ−(x, t) � u(x, t, φ) � 1, x ∈ R, b > t � 0, (2.8)

and

0 � u(x, t,ψ) � ϕ+(x, t), x ∈ R, b > t � 0. (2.9)

Combining (2.7), (2.8) and (2.9), we obtain ϕ+(x, t) � ϕ−(x, t) for all x ∈ R and b > t � 0
when B = 0.

Now we consider the case B 
= 0. Define h̄(y, s) = h(y − Bs, s) for y ∈ R and s ∈ [0, τ ].
Consider the initial value problem⎧⎨

⎩
∂v

∂t
= d�v + g

(
v(x, t),

(
h̄ ∗ S(v)

)
(x, t)

)
, x ∈ R, t > 0,

v0 = ϕ ∈ [0,1]C.

(2.10)

By a direct verification, we can show that if u(x, t) is a (wild) solution of (1.1) with ini-
tial value ϕ ∈ [0,1]C , then v(x, t) = u(x − Bt, t) is a (wild) solution of (2.10). Inversely, if
v(x, t) is a (wild) solution of (2.10), then u(x, t) = v(x + Bt, t) is a solution of (1.1) with
initial value ϕ ∈ [0,1]C . Moreover, if u(x, t) is a supersolution (subsolution) of (1.1), then
v(x, t) = u(x − Bt, t) is a supersolution (subsolution) of (2.10). Inversely, if v(x, t) is a su-
persolution (subsolution) of (2.10), then u(x, t) = v(x + Bt, t) is a supersolution (subsolution)
of (1.1). Applying the results for the case B = 0 to (2.10), we can show that the conclusions hold
for B 
= 0 except the last inequality in the theorem.

It remains to prove the last inequality in the theorem. Let v(x, t) = ϕ+(x, t)−ϕ−(x, t), x ∈ R,
t ∈ [−τ,∞). Then v(x, t) � 0, x ∈ R, t ∈ [−τ, b). Clearly, ϕ+

t , ϕ−
t ∈ [0,1]C and ϕ+

t � ϕ−
t in C

for all b > t � 0. For any given t0 � 0, by Definition 2.1 and (2.6), for any b > t � t0, it follows
that

v(t) � U(t − t0)v(t0) +
t∫

t0

U(t − θ)
(
F

(
ϕ+

θ

) − F
(
ϕ−

θ

))
dθ

� U(t − t0)v(t0) − L1

t∫
t0

U(t − θ)v(θ) dθ.

Let

z(t) = e−L1(t−t0)U(t − t0)v(t0), b > t � t0.

Then z(t) satisfies

z(t) = U(t − t0)z(t0) − L1

t∫
U(t − θ)z(θ) dθ, b > t � t0.
t0
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Using [35, Proposition 3] with v− ≡ z(t), v+ = +∞, S(t, s) = S−(t, s) = U(t, s) = U(t − s),
b > t � s � 0, and B(t,ϕ) ≡ B−(t, ϕ) ≡ −L1ϕ(0), we have v(t) � z(t) for all b > t � t0. Thus
it follows that

ϕ+(t) − ϕ−(t) � e−L1(t−t0)U(t − t0)
(
ϕ+(t0) − ϕ−(t0)

)
, b > t � t0. (2.11)

Combining (2.3), (2.11) and the definition of Θ ∈ C([0,∞) × (0, b),R), we then have

ϕ+(x, t) − ϕ−(x, t) � Θ(J, t − t0)

z+1∫
z

(
ϕ+(y, t0) − ϕ−(y, t0)

)
dy

for all x ∈ R with |x − z| � J and b > t > t0 � 0. The proof is complete. �
Remark 2.4. By Theorem 2.3, it follows that if ϕ+(x, t) and ϕ−(x, t) are the pair of super-
solution and subsolution of (1.1) given in Theorem 2.3 and ϕ+(x,0) 
≡ ϕ−(x,0), then for any
b > t > 0,

ϕ+(x, t) − ϕ−(x, t) � Θ(J, t)

z+1∫
z

(
ϕ+(y,0) − ϕ−(y,0)

)
dy > 0.

In particular, if u(x, t, ϕ) is a solution of (1.1) with the initial value ϕ ∈ [0,1]C and ϕ(x,0)

( 
≡ constant) is nondecreasing on R, then for any t > τ and x ∈ R, ∂
∂x

u(x, t) > 0.

Lemma 2.5. Assume that (H1) and (H2) hold. Let U(x − ct) be a nondecreasing traveling wave
front of (1.1). Then U ′(ξ) > 0 for ξ ∈ R.

Remark 2.6. For τ = 0, that is, for the equation without delay, Theorem 2.3, Remark 2.4 and
Lemma 2.5 still hold.

3. Uniqueness of traveling wave fronts

In this section, we will consider the uniqueness of traveling wave fronts of (1.1). To prove our
results, we need the following two lemmas.

Lemma 3.1. Assume that (H1) and (H2) hold. For any travelling wave front U(x − ct) of (1.1)
with 0 � U(ξ) � 1, ξ ∈ R, we have limξ→±∞ U ′(ξ) = 0.

In fact, noting that

lim
ξ→−∞

0∫ +∞∫
h(y,−s)U(ξ − y + cs) dy ds = 0
−τ −∞
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and

lim
ξ→+∞

0∫
−τ

+∞∫
−∞

h(y,−s)U(ξ − y + cs) dy ds = 1,

we can prove Lemma 3.1 by an argument similar to that of [42].

Lemma 3.2. Assume that (H1) and (H2) hold and let U(x − ct) be an increasing traveling wave
front of (1.1). Then there exist three positive numbers β0 (which is independent of U ), σ0 and δ̄

such that for any δ ∈ (0, δ̄] and every ξ0 ∈ R, the functions w+ and w− defined by

w+(x, t) := min
{
U

(
x − ct + ξ0 + σ0δ

(
1 − e−β0t

)) + δe−β0t ,1
}
,

w−(x, t) := max
{
U

(
x − ct + ξ0 − σ0δ

(
1 − e−β0t

)) − δe−β0t ,0
}

are a supersolution and a subsolution of (1.1) on [0,∞), respectively.

Proof. Clearly, 0 < U(ξ) < 1. Hence, 0 < U(x − ct) < 1, x ∈ R, t ∈ R. By Theorem 2.3 and the
monotonicity of U(·), it follows that U(·) ∈ C1(R) and U ′(ξ) > 0, ξ ∈ R. Since

lim
(u,v,r,s,�,β)→(0+,S(0),0+,S(0),S′(0),0)

[
∂1g(u, v) + �eβτ ∂2g(r, s) + β

]
= ∂1g

(
0, S(0)

) + S′(0)∂2g
(
0, S(0)

)
< 0

and

lim
(u,v,r,s,�,β)→(1−,S(1),1−,S(1),S′(1),0)

[
∂1g(u, v) + �eβτ ∂2g(r, s) + β

]
= ∂1g

(
1, S(1)

) + S′(1)∂2g
(
1, S(1)

)
< 0,

we can fix β0 > 0 and δ∗ > 0 such that

∂1g(u, v) + �eβ0τ ∂2g(r, s) < −β0 (3.1)

for all

(u, v, r, s,�) ∈ [0, δ∗] × [
S(0) − δ∗, S(0) + δ∗] × [0, δ∗]

× [
S(0) − δ∗, S(0) + δ∗] × [

S′(0) − δ∗, S′(0) + δ∗]
and

(u, v, r, s,�) ∈ [1 − δ∗,1] × [
S(1) − δ∗, S(1) + δ∗] × [1 − δ∗,1]

× [
S(1) − δ∗, S(1) + δ∗] × [

S′(1) − δ∗, S′(1) + δ∗].
By (1.2) and the following results:
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lim
(ξ,δ)→(∞,0)

τ∫
0

∞∫
−∞

h(y, s)S
(
U(ξ − y + cs) + δ

)
dy ds = S(1),

lim
(ξ,δ)→(−∞,0)

τ∫
0

∞∫
−∞

h(y, s)S
(
U(ξ − y + cs) + δ

)
dy ds = S(0),

lim
(ξ,δ)→(∞,0)

τ∫
0

∞∫
−∞

h(y, s)S′(U(ξ − y + cs) + δ
)
dy ds = S′(1),

lim
(ξ,δ)→(−∞,0)

τ∫
0

∞∫
−∞

h(y, s)S′(U(ξ − y + cs) + δ
)
dy ds = S′(0),

there exist M0 = M0(U,β0, δ
∗) > 0 and δ̂ = δ̂(U,β0, δ

∗) ∈ (0, δ∗) such that for all ξ � M0 and
δ ∈ [0, δ̂],

U(ξ) � 1 − δ∗, S(1) + δ∗ �
τ∫

0

∞∫
−∞

h(y, s)S
(
U(ξ − y + cs) + δ

)
dy ds � S(1) − δ∗,

S′(1) + δ∗ �
τ∫

0

∞∫
−∞

h(y, s)S′(U(ξ − y + cs) + δ
)
dy ds � S′(1) − δ∗ (3.2)

and for all ξ � −M0 and δ ∈ [0, δ̂],

U(ξ) � δ∗, S(0) − δ∗ �
τ∫

0

∞∫
−∞

h(y, s)S
(
U(ξ − y + cs) − δ

)
dy ds � S(0) + δ∗,

S′(0) − δ∗ �
τ∫

0

∞∫
−∞

h(y, s)S′(U(ξ − y + cs) − δ
)
dy ds � S′(0) + δ∗. (3.3)

Set

c1 = c1
(
β0, δ

∗)
= max

{∣∣∂1g(u, v)
∣∣ + κeβ0τ

∣∣∂2g(r, s)
∣∣: u, r ∈ [0,1], v, s ∈ [

S(0), S(1 + δ∗)
]}

and

m0 = m0
(
U,β0, δ

∗) = min
{
U ′(ξ): |ξ | � M0

}
> 0,

where κ = max{S′(u): u ∈ [0,1 + δ∗]} > 0, and define

σ0 = σ0
(
U,β0, δ

∗) = β0 + c1
, δ̄ = δ̂e−β0τ .
m0β0
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We only prove that w+(x, t) is a supersolution of (1.1) since a similar argument can be used
for w−(x, t). For any given δ ∈ (0, δ̄), let ξ(x, t) = x − ct + ξ0 + σ0δ[1 − e−β0t ]. Define

A+ = {
(x, t): U

(
ξ(x, t)

) + δe−β0t > 1
}

and A− = {
(x, t): U

(
ξ(x, t)

) + δe−β0t < 1
}
.

Then it is easy to show that for (x, t) ∈ A+,

∂w+(x, t)

∂t
− d�w+(x, t) − B

∂w+(x, t)

∂x
− g

(
w+(x, t),

(
h ∗ S

(
w+))

(x, t)
)
� 0. (3.4)

In the following, we show that (3.4) holds for (x, t) ∈ A−. Let (x, t) ∈ A−. Then w+(x, t) =
U(ξ(x, t)) + δe−β0t < 1. It follows that, for any t � 0,

∂w+(x, t)

∂t
− d�w+(x, t) − B

∂w+(x, t)

∂x
− g

(
w+(x, t),

(
h ∗ S

(
w+))

(x, t)
)

= U ′(ξ(x, t)
)(−c + σ0δβ0e

−β0t
) − β0δe

−β0t − dU ′′(ξ(x, t)
) − BU ′(ξ(x, t)

)
− g

(
U

(
ξ(x, t)

) + δe−β0t ,
(
h ∗ S

(
w+))

(x, t)
)

= (
σ0U

′(ξ(x, t)
) − 1

)
β0δe

−β0t + g

(
U

(
ξ(x, t)

)
,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

))
dy ds

)

− g
(
U

(
ξ(x, t)

) + δe−β0t ,
(
h ∗ S

(
w+))

(x, t)
)

= (
σ0U

′(ξ(x, t)
) − 1

)
β0δe

−β0t + g

(
U

(
ξ(x, t)

)
,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

))
dy ds

)

− g

(
U

(
ξ(x, t)

) + δe−β0t ,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s) − σ0δ

[
eβ0s − 1

]
e−β0t

) + δe−β0(t−s)
)
dy ds

)

�
(
σ0U

′(ξ(x, t)
) − 1

)
β0δe

−β0t + g

(
U

(
ξ(x, t)

)
,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

))
dy ds

)

− g

(
U

(
ξ(x, t)

) + δe−β0t ,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

) + δe−β0(t−s)
)
dy ds

)

� δe−β0t

{
σ0β0U

′(ξ(x, t)
) − β0

−
1∫
∂1g

(
U

(
ξ(x, t)

) + θδe−β0t ,

τ∫ +∞∫
h(y, s)S

(
U

(
η(y, s)

))
dy ds

)
dθ
0 0 −∞
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−
1∫

0

[
∂2ĝ

(
U

(
ξ(x, t)

) + δe−β0t ,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

) + θδe−β0(t−s)
)
dy ds

)

× eβ0τ

τ∫
0

+∞∫
−∞

h(y, s)S′(U(
η(y, s)

) + θδe−β0(t−s)
)
dy ds

]
dθ

}
, (3.5)

where η(y, s) = ξ(x, t) − y + cs, s ∈ [0, τ ]. We need to consider three cases.
Case (i): |ξ(x, t)| � M0. Since

0 � U
(
η(y, s)

) + θδe−β0(t−s) � 1 + δ∗,

S(0) �
τ∫

0

∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

) + θδe−β0(t−s)
)
dy ds � S(1 + δ∗),

and

∣∣∣∣∣
τ∫

0

∞∫
−∞

h(y, s)S′(U(
η(y, s)

) + δe−β0(t−s)
)
dy ds

∣∣∣∣∣ � κ,

by the choice of c1, we have

1∫
0

∣∣∣∣∣∂1g

(
U

(
ξ(x, t)

) + θδe−β0t ,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

))
dy ds

)∣∣∣∣∣dθ

+
1∫

0

{∣∣∣∣∣∂2g

(
U

(
ξ(x, t)

) + δe−β0t ,

τ∫
0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

) + θδe−β0(t−s)
)
dy ds

)∣∣∣∣∣

× eβ0τ

∣∣∣∣∣
+∞∫

−∞
h(y, s)S′(U(

η(y, s)
) + θδe−β0(t−s)

)
dy ds

∣∣∣∣∣
}

dθ

� c1.

Then, by the choice of m0 and σ0, we have

∂w+(x, t)

∂t
− d�w+(x, t) − B

∂w+(x, t)

∂x
− g

(
w+(x, t),

(
h ∗ S

(
w+))

(x, t)
)

� [σ0β0m0 − β0 − c1]δe−β0t = 0.

Case (ii): ξ(x, t) � M0. By (3.2) we have
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S(1) − δ∗ �
τ∫

0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

))
dy ds � S(1),

S(1) − δ∗ �
τ∫

0

+∞∫
−∞

h(y, s)S
(
U

(
η(y, s)

) + θδe−β0(t−s)
)
dy ds � S(1) + δ∗,

and

S′(1) − δ∗ �
τ∫

0

+∞∫
−∞

h(y, s)S′(U(
η(y, s)

) + θδe−β0(t−s)
)
dy ds � S′(1) + δ∗.

Therefore, by (3.1) and (3.5), it follows that

∂w+(x, t)

∂t
− d�w+(x, t) − B

∂w+(x, t)

∂x
− g

(
w+(x, t),

(
h ∗ S

(
w+))

(x, t)
)

� δe−β0t
[
σ0β0U

′(ξ(x, t)
) − β0 + β0

]
� 0.

Case (iii): ξ(x, t) � −M0. The proof is similar to that for the case (ii) and is omitted.
Thus, we have shown that (3.4) holds for any (x, t) ∈ A+ ∪ A−. Now we further show that

(2.4) holds for w+. Define w̃+(x, t) = w+(x − Bt, t). To complete the proof, we only need to
show that w̃+(x, t) is a supersolution of (2.10), namely, the following inequality

w̃+(t) � T (t − s)w̃+(s) +
t∫

s

T (t − r)F̃
(
w̃+

r

)
dr (3.6)

holds, where

F̃ (ϕ)(x) = g

(
ϕ(x,0),

0∫
−τ

∞∫
−∞

h̄(x − y,−s)S
(
ϕ(y, s)

)
dy ds

)
.

Define Ã+ = {(x, t): (x − Bt, t) ∈ A+}, Ã− = {(x, t): (x − Bt, t) ∈ A−}. By (3.3), then for
any (x, t) ∈ Ã+ ∪ Ã−,

∂w̃+(x, t)

∂t
− d�w̃+(x, t) − g

(
w̃+(x, t),

(
h̄ ∗ S

(
w̃+))

(x, t)
)
� 0.

Since ∂
∂x

{U(ξ(x − Bt, t)) + δe−β0t } = U ′(ξ(x − Bt, t)) > 0, then for every t0 ∈ [0,∞), there

exists a unique x+(t0) ∈ R such that U(ξ(x+(t0) − Bt0, t0)) + δe−β0t0 = 1, (x, t0) ∈ Ã+ for
x > x+(t0), (x, t0) ∈ Ã− for x < x+(t0) and

∂w̃+(x+(t0) − 0, t)

∂x
= lim+ U ′(ξ(x − Bt0, t)

)
> 0.
x→x (t0)−0
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Define

Φ
(
w̃+)

(x, t, r) = 1√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r) w̃+(y, r) dy, t > r � 0,

and

H
(
w̃+)

(x, t) = −∂w̃+(x, t)

∂t
+ d�w̃+(x, t) + g

(
w̃+(x, t),

(
h̄ ∗ S

(
w̃+))

(x, t)
)
� 0.

Set F̃ (w̃+
t )(x) = g(w̃+(x, t), (h̄ ∗ S(w̃+))(x, t)), then a direct calculation implies

∂

∂r
Φ

(
w̃+)

(x, t, r) = 1

2(t − r)
√

4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r) w̃+(y, r) dy

− 1√
4πd(t − r)

∞∫
−∞

(x − y)2

4d(t − r)2
e

−(x−y)2

4d(t−r) w̃+(y, r) dy

+ d√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r)
∂2w̃+(y, r)

∂y2
dy

+ 1√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r)
[
F

(
w̃+

r

)
(y) − H

(
w̃+)

(y, r)
]
dy.

Furthermore, integration by parts gives

d√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r)
∂2w̃+(y, r)

∂y2
dy

= d√
4πd(t − r)

x+(r)∫
−∞

e
−(x−y)2

4d(t−r)
∂2w̃+(y, r)

∂y2
dy

= d√
4πd(t − r)

e
−(x−x+(r))2

4d(t−r)
∂w̃+(x+(r) − 0, r)

∂x

− 1√
4πd(t − r)

x − x+(r)

2(t − r)
e

−(x−x+(r))2

4d(t−r)

− 1√
4πd(t − r)

x+(r)∫
1

2(t − r)
e

−(x−y)2

4d(t−r) w̃+(y, r) dy
−∞
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+ 1√
4πd(t − r)

x+(r)∫
−∞

(x − y)2

4d(t − r)2
e

−(x−y)2

4d(t−r) w̃+(y, r) dy

and

1√
4πd(t − r)

∞∫
x+(r)

(x − y)2

4d(t − r)2
e

−(x−y)2

4d(t−r) dy

= − x − x+(r)

2(t − r)
√

4πd(t − r)
e

−(x−x+(r))2

4d(t−r) + 1

2(t − r)
√

4πd(t − r)

∞∫
x+(r)

e
−(x−y)2

4d(t−r) dy.

Hence, it follows that

∂

∂r
Φ

(
w̃+)

(x, t, r)

= d√
4πd(t − r)

e
−(x−x+(r))2

4d(t−r)
∂w̃+(x+(r) − 0, r)

∂x

+ 1√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r)
[
F̃

(
w̃+

r

)
(y) − H

(
w̃+)

(y, r)
]
dy.

Since

d√
4πd(t − r)

exp

{−(x − x+(r))2

4d(t − r)

}
∂w̃+(x+(r) − 0, r)

∂x

is integrable in r ∈ [0, t), ∂
∂r

Φ(w̃+)(x, t, r) is continuous in r ∈ [0, t), and

lim
r→t−0

1√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r) w̃+(y, r) dy = w̃+(x, t),

it follows that for 0 � s < t ,

w̃+(x, t) = lim
η→0+0

Φ
(
w̃+)

(x, t, t − η)

= Φ
(
w̃+)

(x, t, s) + lim
η→0+0

t−η∫
s

∂

∂r
Φ

(
w̃+)

(x, t, r) dr

= 1√
4πd(t − r)

∞∫
e

−(x−y)2

4d(t−r) w̃+(y, s) dy
−∞



Z.-C. Wang et al. / J. Differential Equations 238 (2007) 153–200 171
+
t∫

s

d√
4πd(t − r)

e
−(x−x+(r))2

4d(t−r)
∂w̃+(x+(r) − 0, r)

∂x
dr

+
t∫

s

1√
4πd(t − r)

∞∫
−∞

e
−(x−y)2

4d(t−r)
[
F̃

(
w̃+

r

)
(y) − H

(
w̃+)

(y, r)
]
dy dr.

In view of ∂w̃+(x+(r) − 0, r)/∂x > 0 and H(w̃+)(y, r) � 0, we see that (3.6) holds, which
implies that w+(x, t) is a supersolution of (1.1). This completes the proof. �
Theorem 3.3. Assume that (H1) and (H2) hold. Assume further that (1.1) has a monotone trav-
eling wave solution U(x − ct). Then the traveling wave solutions of (1.1) are unique up to
a translation in the sense that for any traveling wave solution Ū (x − c̄t) with 0 � Ū (ξ) � 1,
ξ ∈ R, we have c̄ = c and Ū (·) = U(ξ0 + ·) for some ξ0 = ξ0(Ū) ∈ R.

Proof. Since Ū (ξ) and U(ξ) have the same limits as ξ → ±∞, there exist ξ1 ∈ R and a suffi-
ciently large number p > 0 such that for every s ∈ [−τ,0] and x ∈ R,

U(x − cs + ξ1) − δ̄ < Ū(x − c̄s) < U(x − cs + ξ1 + p) + δ̄.

Hence,

min
{
U

(
x − cs + ξ1 + p + σ0δ̄

(
eβ0τ − 1

) + σ0δ̄
(
1 − e−β0s

)) + δ̄e−β0s ,1
}

> Ū(x − c̄s) > max
{
U

(
x − cs + ξ1 − σ0δ̄

(
eβ0τ − 1

) − σ0δ̄
(
1 − e−β0s

)) − δ̄e−β0s ,0
}
,

where β0, σ0 and δ̄ are given in Lemma 3.2. By comparison, we obtain that for all t � 0 and
x ∈ R,

min
{
U

(
x − ct + ξ1 + p + σ0δ̄

(
eβ0τ − 1

) + σ0δ̄
(
1 − e−β0t

)) + δ̄e−β0t ,1
}

> Ū(x − c̄t) > max
{
U

(
x − ct + ξ1 − σ0δ̄

(
eβ0τ − 1

) − σ0δ̄
(
1 − e−β0t

)) − δ̄e−β0t ,0
}
.

Keeping ξ = x − ct fixed and letting t → ∞, from the first and second inequalities we see that
c = c̄. In addition,

U
(
ξ + ξ1 − σ0δ̄e

β0τ
)
< Ū(ξ) < U

(
ξ + ξ1 + p + σ0δ̄e

β0τ
)

for ξ ∈ R. (3.7)

Define

ξ∗ := inf
{
ξ : Ū(·) � U(· + ξ)

}
and ξ∗ := sup

{
ξ : Ū (·) � U(· + ξ)

}
.

Then from (3.7), both ξ∗ and ξ∗ are well defined. Since U(· + ξ∗) � Ū (·) � U(· + ξ∗), we have
ξ∗ � ξ∗.
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To complete the proof, it suffices to show that ξ∗ = ξ∗. For the sake of contradiction, as-
sume that ξ∗ < ξ∗ and Ū (·) 
≡ U(· + ξ∗). Since lim|ξ |→∞ U ′(ξ) = 0, there exists a large positive
constant M1 = M1(U) > 0 such that

2σ0e
β0τU ′(ξ) � 1 if |ξ | � M1.

Note that Ū (·) � U(· + ξ∗) and Ū (·) 
≡ U(· + ξ∗), by Theorem 2.3, it follows that Ū (·) <

U(· + ξ∗) on R. Consequently, by the continuity of Ū and U , there exists a small constant
ρ ∈ (0, δ̄] with ρ � 1

2σ0
e−β0τ , such that

Ū (ξ) < U
(
ξ + ξ∗ − 2σ0ρeβ0τ

)
if ξ ∈ [−M1 − 1 − ξ∗,M1 + 1 − ξ∗]. (3.8)

When |ξ + ξ∗| � M1 + 1, we have

U
(
ξ + ξ∗ − 2σ0ρeβ0τ

) − Ū (ξ) > U
(
ξ + ξ∗ − 2σ0ρeβ0τ

) − U(ξ + ξ∗)

= −2σ0ρeβ0τU ′(ξ + ξ∗ − 2θσ0ρeβ0τ
)
� −ρ,

which, together with (3.8), implies that for any s ∈ [−τ,0] and x ∈ R,

Ū (x − cs) < min
{
U

(
x − cs + ξ∗ − 2σ0ρeβ0τ + σ0ρ

(
eβ0τ − 1

)
+ σ0ρ

(
1 − e−β0s

)) + ρe−β0s ,1
}
.

Therefore, the comparison theorem and Lemma 3.2 imply that for any t � 0 and x ∈ R,

Ū(x − ct) < min
{
U

(
x − ct + ξ∗ − 2σ0ρeβ0τ + σ0ρ

(
eβ0τ − e−β0t

)) + ρe−β0t ,1
}
. (3.9)

In (3.9), keeping ξ = x −ct fixed and letting t → ∞, we obtain Ū (ξ) < U(ξ +ξ∗ −σ0ρeβ0τ ) for
all ξ ∈ R. This contradicts the definition of ξ∗. Hence, ξ∗ = ξ∗ and this completes the proof. �
4. Asymptotic stability of traveling wave fronts

In this section, we establish the asymptotic stability of traveling wave fronts by using the
squeezing technique, which has been used in Chen [13], Chen and Guo [14] and Smith and
Zhao [42].

Let δ0 = min{ a−
2 , 1−a+

2 } and let ζ(·) ∈ C∞(R,R) be a fixed function with the following prop-
erties:

ζ(s) = 0 if s � 0; ζ(s) = 1 if s � 4;
0 < ζ ′(s) < 1; ∣∣ζ ′′(s)

∣∣ � 1 if s ∈ (0,4). (4.1)

Lemma 4.1. Assume that (H1) and (H2) hold. Then, for any δ ∈ (0, δ0], there exist two positive
numbers ε = ε(δ) and C = C(δ) such that, for every ξ ∈ R, the functions v+ and v− defined by
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v+(x, t) := min
{
(1 + δ) − [

1 − (
a− − 2δ

)
e−εt

]
ζ
(−ε(x − ξ + Ct)

)
,1

}
,

v−(x, t) := max
{−δ + [

1 − (
1 − a+ − 2δ

)
e−εt

]
ζ
(
ε(x − ξ − Ct)

)
,0

}
are a supersolution and a subsolution of (1.1) on [0,∞), respectively.

Proof. We only prove that v+(x, t) is a supersolution of (1.1) since the proof for v−(x, t) is
analogous. Given δ ∈ (0, δ0], we define

m1 = m1(δ) = max
{
∂2g(u, v): (u, v) ∈ [δ,1] × [

S(δ), S(1 + δ)
]}

> 0,

m2 = m2(δ) = min
{
ζ ′(s): δ/2 � ζ(s) � 1 − δ/2

}
> 0,

κ1 = max
{
S′(u): u ∈ (δ,1 + δ)

}
.

Let h0 = ∫ τ

0

∫ ∞
−∞ h(y, s)|y|dy ds. Then there exists ε = ε(δ) > 0 such that

(
a− − 2δ

)
eετ < 1, (4.2)

max
{
g
(
u,S(u)

)
: u ∈ [

δ, a− − δ/2
]} + (

ε + dε2 + m1κ1ε(τ + h0)
)
< 0. (4.3)

We further choose C = C(δ) > |B| such that

(
C − |B|)ε(1 − a−)

m2 − max
{∣∣g(

u,S(u)
)∣∣: u ∈ [δ,1]} − (

ε + dε2 + m1κ1ε(τ + h0)
)
> 0.

(4.4)

Let

v̂+(x, t) = (1 + δ) − [
1 − (

a− − 2δ
)
e−εt

]
ζ
(−ε(x − ξ + Ct)

)
.

By a direct computation and (4.2), it follows that for all t � −τ ,

∂v̂+(x, t)

∂t
� −ε

(
a− − 2δ

)
eετ ζ

(−ε(x − ξ + Ct)
)
� −ε

and

∂v̂+(x, t)

∂x
= ε

[
1 − (

a− − 2δ
)
e−εt

]
ζ ′(−ε(x − ξ + Ct)

)
� ε.

Define

B+ = {
(x, t): v̂+(x, t) > 1

}
and B− = {

(x, t): v̂+(x, t) < 1
}
.

Then for any (x, t) ∈ B+, it is easy to show that

∂v+(x, t) − d�v+(x, t) − B
∂v+(x, t) − g

(
v+(x, t),

(
h ∗ S

(
v+))

(x, t)
)
� 0. (4.5)
∂t ∂x
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In the following, we show that (4.5) holds for any (x, t) ∈ B−. Let (x, t) ∈ B−. Then
v+(x, t) = v̂+(x, t) ∈ [δ,1]. Therefore, we have

g
(
v+(x, t),

(
h ∗ S

(
v+))

(x, t)
)

� g
(
v+(x, t), S

(
v+(x, t)

))
+ [

g
(
v+(x, t),

(
h ∗ S

(
v̂+))

(x, t)
) − g

(
v+(x, t), S

(
v+(x, t)

))]
= g

(
v+(x, t), S

(
v+(x, t)

)) + ∂2g
(
v+(x, t), S∗(x, t)

)

×
τ∫

0

∞∫
−∞

h(y, s)S′(v∗(x − y, t − s)
)(

v̂+(x − y, t − s) − v̂+(x, t)
)
dy ds

= g
(
v+(x, t), S

(
v+(x, t)

)) + ∂2g
(
v+(x, t), S∗(x, t)

) τ∫
0

∞∫
−∞

{
h(y, s)

× S′(v∗(x − y, t − s)
)[−y

∂v̂+(x − θ1y, t − s)

∂x
− s

∂v̂+(x, t − θ2s)

∂t

]}
dy ds

� g
(
v+(x, t), S

(
v+(x, t)

)) + m1κ1ε(τ + h0),

where S∗(x, t) is between S(v+(x, t)) and (h ∗ S(v̂+))(x, t), v∗(x − y, t − s) is between
v̂+(x − y, t − s) and v̂+(x, t). It then follows that

∂v+(x, t)

∂t
− d�v+(x, t) − B

∂v+(x, t)

∂x
− g

(
v+(x, t),

(
h ∗ S

(
v+))

(x, t)
)

= εC
[
1 − (

a− − 2δ
)
e−εt

]
ζ ′(−ε(x − ξ + Ct)

) − ε
(
a− − 2δ

)
e−εt ζ

(−ε(x − ξ + Ct)
)

+ dε2[1 − (
a− − 2δ

)
e−εt

]
ζ ′′(−ε(x − ξ + Ct)

)
− εB

[
1 − (

a− − 2δ
)
e−εt

]
ζ ′(−ε(x − ξ + Ct)

) − g
(
v+(x, t),

(
h ∗ S

(
v+))

(x, t)
)

� ε
(
C − |B|)(1 − a−)

ζ ′(−ε(x − ξ + Ct)
) − ε − dε2

− g
(
v+(x, t), S

(
v+(x, t)

)) − m1κ1ε(τ + h0)

= ε
(
C − |B|)(1 − a−)

ζ ′(−ε(x − ξ + Ct)
)

− [
g
(
v+(x, t), S

(
v+(x, t)

)) + (
ε + dε2 + m1κ1ε(τ + h0)

)]
. (4.6)

We distinguish between two cases:
Case (i): ζ(−ε(x − ξ + Ct)) > 1 − δ/2. It then follows that

δ < v+(x, t) = v̂+(x, t) < (1 + δ) − [
1 − (

a− − 2δ
)]

(1 − δ/2) < a− − δ/2.

Therefore, by (4.3) and (4.6), we have
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∂v+(x, t)

∂t
− d�v+(x, t) − B

∂v+(x, t)

∂x
− g

(
v+(x, t),

(
h ∗ S

(
v+))

(x, t)
)

� ε
(
C − |B|)(1 − a−)

ζ ′(−ε(x − ξ + Ct)
)

− [
g
(
v+(x, t), S

(
v+(x, t)

)) + (
ε + dε2 + m1κ1ε(τ + h0)

)]
� −[

max
{
g
(
u,S(u)

)
: u ∈ [

δ, a− − δ/2
]} + (

ε + dε2 + m1κ1ε(τ + h0)
)]

� 0.

Case (ii): ζ(−ε(x − ξ + Ct)) ∈ [δ/2,1 − δ/2]. By (4.4) and (4.6), we have

∂v+(x, t)

∂t
− d�v+(x, t) − B

∂v+(x, t)

∂x
− g

(
v+(x, t),

(
h ∗ S

(
v+)

(x, t)
))

� ε
(
C − |B|)(1 − a−)

ζ ′(−ε(x − ξ + Ct)
)

− [
g
(
v+(x, t), S

(
v+(x, t)

)) + (
ε + dε2 + m1κ1ε(τ + h0)

)]
� ε

(
C − |B|)(1 − a−)

m2

− [
max

{∣∣g(
u,S(u)

)∣∣: u ∈ [δ,1]} + (
ε + dε2 + m1κ1ε(τ + h0)

)]
� 0.

Now we conclude that (4.5) holds for all (x, t) ∈ B+ ∪ B−. The remainder is to show that
(2.4) holds for v+. Define ṽ+(x, t) = v+(x − Bt, t). To complete the proof, it is sufficient
to prove that ṽ+(x, t) is a supersolution of (2.10). Take B̃+ = {(x, t): (x − Bt, t) ∈ B+} and
B̃− = {(x, t): (x − Bt, t) ∈ B−}. Notice that for every t0 � 0, if v̂+(x − Bt0, t0) = 1, then
there must be 0 < ζ(−ε(x − Bt0 − ξ + Ct0)) < 1. Thus, there exists a unique x+(t0) such
that 0 < ζ(−ε(x+(t0) − Bt0 − ξ + Ct0)) < 1, v̂+(x+(t0) − Bt0, t0) = 1, (x, t0) ∈ B̃+ for any
x > x+(t0), (x, t0) ∈ B̃− for any x < x+(t0) and

∂ṽ+(x+(t0) − 0, t0)

∂x
= lim

x→x+(t0)−0
ε
[
1 − (

a− − 2δ
)
e−εt0

]
ζ ′(−ε(x − Bt0 − ξ + Ct0)

)
> 0.

Consequently, we can show that ṽ+(x, t) is a supersolution of (2.10) by a similar argument to
that of Lemma 3.2. The details are omitted. The proof is complete. �

Let U(x − ct) be a monotone traveling wave solution of (1.1). In view of Lemma 3.2, we
define the following two functions

w+(x, t, ξ0, δ) = min
{
U

(
x − ct + ξ0 + σ0δ

(
1 − e−β0t

)) + δe−β0t ,1
}
,

w−(x, t, ξ0, δ) = max
{
U

(
x − ct + ξ0 − σ0δ

(
1 − e−β0t

)) − δe−β0t ,0
}
,

x ∈ R, t ∈ [−τ,∞), ξ0 ∈ R, and δ ∈ [0,∞),

where σ0 and β0 are as in Lemma 3.2. By the proof of Lemma 3.2 we can choose β0 > 0 as small
as we wish. Thus we assume that β0 has been chosen such that 3eβ0τ < 4 throughout this section.

Remark 4.2. If u(x, s) satisfies 0 � u(x, s) � 1 for all x ∈ R and s ∈ [−τ,0], then for all x ∈ R

and s ∈ [−τ,0], w−(x, s, ξ0, δ) � u(x, s) is equivalent to
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U
(
x − cs + ξ0 − σ0δ

(
1 − e−β0s

)) − δe−β0s � u(x, s)

and w+(x, s, ξ0, δ) � u(x, s) is equivalent to

U
(
x − cs + ξ0 + σ0δ

(
1 − e−β0s

)) + δe−β0s � u(x, s).

Lemma 4.3. Let U(x − ct) be a monotone traveling wave solution of (1.1). Then there ex-
ists a positive number ε such that, if u(x, t) is a solution of (1.1) on [0,∞) with initial data
0 � u(x, s) � 1 for all x ∈ R and s ∈ [−τ,0], and for some ξ ∈ R, η > 0, 0 < δ < min(δ̄/2, 1

σ0
)

and T � 0, there holds

w−
0 (x,−cT + ξ, δ)(s) � uT (x)(s) � w+

0 (x,−cT + ξ + η, δ)(s), s ∈ [−τ,0], x ∈ R,

then for every t � T + τ + 1, there exist ξ̂ (t), δ̂(t) and η̂(t) such that

w−
0

(
x,−ct + ξ̂ (t), δ̂(t)

)
(s) � ut (x)(s) � w+

0

(
x,−ct + ξ̂ (t) + η̂(t), δ̂(t)

)
(s)

for s ∈ [−τ,0], x ∈ R, with ξ̂ (t), δ̂(t) and η̂(t) satisfying

ξ̂ (t) ∈ [
ξ − σ0δ − 2σ0

(
δ + ε min(η,1)

)
eβ0τ , ξ + η + σ0δ

]
,

δ̂(t) = (
δe−β0 + ε min(η,1)

)
e−β0((t−(T +τ+1)))

and

η̂(t) ∈ [
0, η + (

3eβ0τ − 4
)
σ0ε min(η,1) + 3eβ0τ σ0δ

]
.

Proof. By Lemma 3.2, w+(x, t,−cT + ξ + η, δ) and w−(x, t,−cT + ξ, δ) are super- and sub-
solutions of (1.1), respectively. Clearly, v(x, t) = u(x,T + t), t � 0, is also a solution of (1.1)
with v0(x)(s) = uT (x)(s), s ∈ [−τ,0], x ∈ R. Then, by Theorem 2.3, there holds

w−(x, t,−cT + ξ, δ) � u(x,T + t) � w+(x, t,−cT + ξ + η, δ),

x ∈ R, t ∈ [0,∞).

That is

max
{
U

(
x − c(T + t) + ξ − σ0δ

(
1 − e−β0t

)) − δe−β0t ,0
}

� u(x,T + t)

� min
{
U

(
x − c(T + t) + ξ + η + σ0δ

(
1 − e−β0t

)) + δe−β0t ,1
}

(4.7)

for all x ∈ R, t ∈ [0,∞). Let z = cT − ξ . Again by Theorem 2.3, we have that for any J � 0, all
x ∈ R with |x − z| � J and all t > 0,

u(x,T + t) − w−(x, t,−cT + ξ, δ) � Θ(J, t)

z+1∫
z

(
u(y,T ) − w−(y,0,−cT + ξ, δ)

)
dy.

(4.8)
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By Lemma 3.1, lim|r|→∞ U ′(r) = 0. Then we can fix a positive number M such that U ′(r) � 1
2σ0

for all |r| � M . Let J = M + |c|(1 + τ) + 1, η̄ = min(η,1), and

ε1 = 1

2
min

{
U ′(x): |x| � 2

}
> 0.

Since

w+(y,0,−cT + ξ + η̄, δ) > U(y − cT + ξ + η̄),

w−(y,0,−cT + ξ, δ) < U(y − cT + ξ),

we have

z+1∫
z

[
w+(y,0,−cT + ξ + η̄, δ) − w−(y,0,−cT + ξ, δ)

]
dy

>

z+1∫
z

[
U(y − cT + ξ + η̄) − U(y − cT + ξ)

]
dy

=
1∫

0

[
U(y + η̄) − U(y)

]
dy � 2ε1η̄.

Hence, at least one of the following is true:

(i)
∫ z+1
z

[u(y,T ) − w−(y,0,−cT + ξ, δ)]dy � ε1η̄;
(ii)

∫ z+1
z

[w+(y,0,−cT + ξ + η̄, δ) − u(y,T )]dy � ε1η̄.

In what follows, we consider only the case (i). The case (ii) is similar and thus omitted.
For any s ∈ [−τ,0], |x − z| � J , letting t = 1 + τ + s � 1 in (4.8), we have

u(x,T + 1 + τ + s)

� w−(x,1 + τ + s,−cT + ξ, δ) + Θ0(J )ε1η̄

� U
(
x − z − c(1 + τ + s) − σ0δ

(
1 − e−β0(1+τ+s)

)) − δe−β0(1+τ+s) + Θ0(J )ε1η̄,

where Θ0(J ) = mins∈[−τ,0] Θ(J,1 + τ + s). Let

J1 = J + |c|(1 + τ) + 3, ε = min

{
min|x|�J1

Θ0(J )ε1

2σ0U ′(x)
,

1

3σ0
, δ̄/2

}
.

By the mean value theorem, it then follows that for all |x − z| � J , s ∈ [−τ,0],
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U
(
x − z − c(1 + τ + s) + 2σ0εη̄ − σ0δ

(
1 − e−β0(1+τ+s)

))
− U

(
x − z − c(1 + τ + s) − σ0δ

(
1 − e−β0(1+τ+s)

))
= U ′(μ1)2σ0εη̄ � Θ0(J )ε1η̄.

Hence,

u(x,T + 1 + τ + s)

� U
(
x − c(T + 1 + τ + s) + ξ + 2σ0εη̄ − σ0δ

(
1 − e−β0(1+τ+s)

))
− δe−β0(1+τ+s). (4.9)

The remainder of proof is similar to that of [42, Lemma 3.1] and is omitted. We only need to
notice that δe−β0 + εη̄ < δ̄ and Remark 4.2. The proof is complete. �

By Remark 4.2 and Lemmas 3.2, 4.1 and 4.3, we can obtain the following Lemma 4.4 and
Theorem 4.5. Their proofs are only duplications of proofs of [42, Lemma 3.2, Theorem 3.3], so
we omit them.

Lemma 4.4. Let U(x − ct) be a monotone traveling wave solution of (1.1) and let ϕ ∈ [0,1]C
be such that

lim inf
x→∞ min

s∈[−τ,0]ϕ(x, s) > a+, lim sup
x→−∞

max
s∈[−τ,0]

ϕ(x, s) < a−.

Then, for any δ > 0, there exist T = T (ϕ, δ) > 0, ξ = ξ(ϕ, δ) ∈ R and η = η(ϕ, δ) > 0 such that

w−
0 (x,−cT + ξ, δ)(s) � uT (x,ϕ)(s) � w+

0 (x,−cT + ξ + η, δ)(s), s ∈ [−τ,0], x ∈ R.

Theorem 4.5. Assume that (H1) and (H2) hold. Assume further that (1.1) has a monotone trav-
eling wave solution U(x − ct). Then U(x − ct) is globally asymptotically stable with phase shift
in the sense that there exists k > 0 such that for any ϕ ∈ [0,1]C with

lim inf
x→∞ min

s∈[−τ,0]ϕ(x, s) > a+, lim sup
x→−∞

max
s∈[−τ,0]

ϕ(x, s) < a−,

the solution u(x, t, ϕ) of (1.1) with the initial value ϕ satisfies

∣∣u(x, t, ϕ) − U(x − ct + ξ)
∣∣ � Ke−kt , x ∈ R, t � 0,

for some K = K(ϕ) > 0 and ξ = ξ(ϕ) ∈ R.

Remark 4.6. Theorems 3.3 and 4.5 are still available for equation without delay.
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5. Existence of traveling wave fronts

In this section, we consider the case a+ = a−, namely, f0(u) = g(u,S(u)) has only three
zeros. For the case that f0(u) has more than three zeros, we refer to [20,44]. In the following, we
denote a = a+ = a−. Moreover, we list the following conditions:

(H3) g(u,S(u)) < 0 for u ∈ (0, a), g(u,S(u)) > 0 for u ∈ (a,1) and ∂1g(a,S(a)) +
∂2g(a,S(a))S′(a) > 0.

As discussed in Lemma 2.3, we can show that if U(x − ct) is a traveling wave front of (1.1)
with wave speed c, then U(x − (B + c)t) is a traveling wave front of (2.10) with wave speed
B + c. Inversely, if V (x − ct) is a traveling wave front of (2.10), then V (x + (B − c)t) is a
traveling wave front of (1.1) with wave speed −B + c. Following this fact, we only need to
consider the existence of traveling wave fronts of (2.10). Define hc(y) = ∫ τ

0 h̄(y + cs, s) ds,
where c is a real constant. In the first part of this section, we show the existence of traveling
wave fronts of the following equation

∂u(x, t)

∂t
= d�u(x, t) + g

(
u(x, t),

(
hc ∗ S(u)

)
(x, t)

)
, x ∈ R, t ∈ [0,∞), (5.1)

where

(
hc ∗ S(u)

)
(x, t) =

∞∫
−∞

hc(y)S
(
u(x − y, t)

)
dy.

Lemma 5.1. Assume that (H1) and (H2) hold. Then for any δ ∈ (0, δ̄0], δ̄0 = min{ a
2 , 1−a

2 }, there
exist two positive constants ε0 = ε0(δ) > 0 and C0 = C0(δ) > 0 such that

(i) the functions v+
0 (x, t) and v−

0 (x, t) defined by

v+
0 (x, t) = min

{
(1 + δ) − [

1 − (a − 2δ)e−ε0t
]
ζ
(−ε0(x − ξ + C0t)

)
,1

}
,

v−
0 (x, t) = max

{−δ + [
1 − (1 − a − 2δ)e−ε0t

]
ζ
(
ε0(x − ξ − C0t)

)
,0

}
are a supersolution of (5.1) for c � 0 and a subsolution of (5.1) for c � 0, respectively;

(ii) the functions v+
c (x, t) and v−

c (x, t) defined by

v+
c (x, t) = min

{
(1 + δ) − [

1 − (a − 2δ)e−εct
]
ζ
(−εc(x − ξ + Cct)

)
,1

}
,

v−
c (x, t) = max

{−δ + [
1 − (1 − a − 2δ)e−εct

]
ζ
(
εc(x − ξ − Cct)

)
,0

}
are a supersolution of (5.1) and a subsolution of (5.1) for any c ∈ R, respectively, where
εc = ε0 and Cc = (1 + |c|)C0.
1+|c|
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Proof. We only prove for v+
0 (x, t) and v+

c (x, t). Define

v̂+
0 (x, t) = (1 + δ) − [

1 − (a − 2δ)e−ε0t
]
ζ
(−ε0(x − ξ + C0t)

)
,

v̂+
c (x, t) = (1 + δ) − [

1 − (a − 2δ)e−εct
]
ζ
(−εc(x − ξ + Cct)

)
,

v̂−
c (x, t) = −δ + [

1 − (1 − a − 2δ)e−εct
]
ζ
(
εc(x − ξ − Cct)

)
.

By a similar argument to that of Lemma 4.1 for v+(x, t), it is sufficient to show that for all
(x, t) ∈ B+

i ∪ B−
i ,

∂v+
i (x, t)

∂t
− d�v+

i (x, t) − g
(
v+
i (x, t),

(
hc ∗ S

(
v+
i

))
(x, t)

)
� 0, (5.2)

respectively, where i = 0, c and B±
i are defined by

B+
i = {

(x, t): v̂+
i (x, t) > 1

}
, B−

i = {
(x, t): v̂+

i (x, t) < 1
}
.

Obviously, (5.2) holds for (x, t) ∈ B+
i . Thus we only need to show that (5.2) holds for

(x, t) ∈ B−
i .

For fixed δ ∈ (0, δ̄0], let

�1 = �1(δ) = max
{
∂2g(u, v): (u, v) ∈ [0,1] × [

S(−δ), S(1 + δ)
]}

,

�2 = �2(δ) = max
{
S′(u): u ∈ [δ,1 + δ]},

�0 = �0(δ) = �1�2,

m1 = m1(δ) = min

{
−f0(u): u ∈

[
δ, a − 1

2
δ

]}
> 0.

Then we can choose two positive constants ε∗ = ε∗(δ) > 0 and M0 = M0(δ) > 0, with ε∗ < δ

sufficiently small and M0 sufficiently large, such that

m1 − �0ε
∗ − 2�0

[ τ∫
0

∞∫
−∞

−
τ∫

0

M0∫
−M0

h̄(y, s) dy ds

]
> 0.

Take μ = μ(ε∗) ∈ (0,1) sufficiently small such that

0 � ζ(x) <
ε∗

2
if x < μ,

1 − ε∗

2
< ζ(x) � 1 if x > 4 − μ,

� = �(μ) > 0 sufficiently small such that

(1 − �)

(
4 − μ

)
> 4 − μ,
2
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and ε0 = ε0(δ) > 0 sufficiently small such that

ε0M0 � �(4 − μ), ε0τ < �

(
4 − μ

2

)
,

−ε0 − dε2
0 + m1 − �0ε

∗ − 2�0

[ τ∫
0

∞∫
−∞

−
τ∫

0

M0∫
−M0

h̄(y, s) dy ds

]
> 0.

Set

m0 = min

{
ζ ′(x):

μ

2
� x � 4 − μ

2

}
> 0.

Take C0 = C0(δ) > 0 such that

ε0C0(1 − a + 2δ)m0 − ε0 − dε2
0 − max

{∣∣g(
u,S(v)

)∣∣: (u, v) ∈ [δ,1]2} > 0.

Note that ε0 and C0 are independent of c.
Assume (x, t) ∈ B−

0 . Then we have that for all t � 0,

g
(
v+

0 (x, t),
(
hc ∗ S

(
v+

0

))
(x, t)

)
� g

(
v+

0 (x, t), S
(
v+

0 (x, t)
))

+ [
g
(
v+

0 (x, t),
(
hc ∗ S

(
v̂+

0

))
(x, t)

) − g
(
v+

0 (x, t), S
(
v+

0 (x, t)
))]

= g
(
v+

0 (x, t), S
(
v+

0 (x, t)
)) + ∂2g

(
v+

0 (x, t), S∗(x, t)
)

×
∞∫

−∞
hc(y)S′(v∗

0(y)
)(

v̂+
0 (x − y, t) − v+

0 (x, t)
)
dy

= g
(
v+

0 (x, t), S
(
v+

0 (x, t)
)) + ∂2g

(
v+

0 (x, t), S∗(x, t)
)

×
∞∫

−∞

τ∫
0

h̄(y + cs, s)S′(v∗
0(y)

)(
v̂+

0 (x − y, t) − v̂+
0 (x, t)

)
ds dy

= g
(
v+

0 (x, t), S
(
v+

0 (x, t)
)) + ∂2g

(
v+

0 (x, t), S∗(x, t)
)

×
τ∫

0

∞∫
−∞

h̄(y, s)S′(v∗
0(y − cs)

)(
v̂+

0 (x − y + cs, t) − v̂+
0 (x, t)

)
dy ds

� g
(
v+

0 (x, t), S
(
v+

0 (x, t)
))

+ �0

τ∫ ∞∫
h̄(y, s)

∣∣ζ (−ε0(x − y + cs + ξ + C0t)
) − ζ

(−ε0(x + ξ + C0t)
)∣∣dy ds,
0 −∞
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where v∗
0(y) is between v̂+

0 (x − y, t) and v̂+
0 (x, t), S∗(x, t) is between S(v+

0 (x, t)) and (hc ∗
S(v̂+

0 ))(x, t). It then follows that

∂v+
0 (x, t)

∂t
− d�v+

0 (x, t) − g
(
v+

0 (x, t),
(
hc ∗ S

(
v+

0

))
(x, t)

)
= ε0C0

[
1 − (a − 2δ)e−ε0t

]
ζ ′(−ε0(x − ξ + C0t)

) − ε0(a − 2δ)e−ε0t ζ
(−ε0(x − ξ + C0t)

)
+ dε2

0

[
1 − (a − 2δ)eε0t

]
ζ ′′(−ε0(x − ξ + C0t)

) − g
(
v+

0 (x, t),
(
hc ∗ S

(
v̂+

0

))
(x, t)

)
� −ε0 − dε2

0 − g
(
v+

0 (x, t), S
(
v+

0 (x, t)
)) − ∂2g

(
v+

0 (x, t), S∗(x, t)
)

×
τ∫

0

∞∫
−∞

h̄(y, s)S′(v∗
0(y − cs)

)(
v̂+

0 (x − y + cs, t) − v̂+
0 (x, t)

)
ds dy

� −ε0 − dε2
0 − g

(
v+

0 (x, t), S
(
v+

0 (x, t)
))

− �0

τ∫
0

∞∫
−∞

h̄(y, s)
∣∣ζ (−ε0(x − y + cs − ξ + C0t)

) − ζ
(−ε0(x − ξ + C0t)

)∣∣dy ds.

Let η = ε0(x − ξ + C0t), we consider two cases.
Case (i): η = ε0(x − ξ + C0t) < −4 + μ

2 . Then

ζ
(−ε0(x − ξ + C0t)

)
> ζ

(
4 − μ

2

)
> 1 − ε∗

2
,

so

δ � v+
0 (x, t) = v̂+

0 (x, t) � (1 + δ) − [
1 − (a − 2δ)

](
1 − ε∗

2

)

�
(

1 − ε∗

2

)
(a − δ) + ε∗

2
< a − 1

2
δ.

By the choice of ε0 and � , we see that

η�

ε0
= �(x − ξ + C0t) �

�(−4 + μ
2 )

ε0
<

�(−4 + μ)

ε0
� −M0.

Let y ∈ [�(x − ξ + C0t),−�(x − ξ + C0t)]. Then for c � 0,

ε0(x − y + cs − ξ + C0t) < ε0(1 − �)(x − ξ + C0t) + ε0cs

� (1 − �)

(
−4 + μ

)
< −4 + μ.
2
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Noting that η = ε0(x − ξ + C0t) < −4 + μ
2 < −4 + μ, we have

τ∫
0

− �η
ε0∫

�η
ε0

h̄(y, s)
∣∣ζ (−ε0(x − y + cs − ξ + C0t)

) − ζ
(−ε0(x − ξ + C0t)

)∣∣dy ds � ε∗.

Therefore,

∂v+
0 (x, t)

∂t
− d�v+

0 (x, t) − g

(
v+

0 (x, t),

∞∫
−∞

hc(y)S
(
v+

0 (x − y, t)
)
dy

)

� −ε0 − dε2
0 − g

(
v+

0 (x, t), S
(
v+

0 (x, t)
))

− �0

τ∫
0

∞∫
−∞

h̄(y, s)
∣∣ζ (−ε0(x − y + cs − ξ + C0t)

) − ζ
(−ε0(x − ξ + C0t)

)∣∣dy ds

� −ε0 − dε2
0 + m1 − 2�0

[ τ∫
0

∞∫
−∞

−
τ∫

0

− �η
ε0∫

�η
ε0

h̄(y, s) dy ds

]

− �0

τ∫
0

− �η
ε0∫

�η
ε0

h̄(y, s)
∣∣ζ (−ε0(x − y + cs − ξ + C0t)

) − ζ
(−ε0(x − ξ + C0t)

)∣∣dy ds

� −ε0 − dε2
0 + m1 − 2�0

[ τ∫
0

∞∫
−∞

−
τ∫

0

M0∫
−M0

h̄(y, s) dy ds

]
− �0ε

∗ � 0.

Case (ii): −μ
2 � ε0(x − ξ + C0t) � −4 + μ

2 . Then

∂v+
0 (x, t)

∂t
− d�v+

0 (x, t) − g

(
v+

0 (x, t),

∞∫
−∞

hc(y)S
(
v+

0 (x − y, t)
)
dy

)

� ε0C0(1 − a + 2δ)ζ ′(−ε0(x − ξ + C0t)
) − ε0 − dε2

0

− max
{∣∣g(

u,S(v)
)∣∣: (u, v) ∈ [δ,1]2} � 0.

Now, we conclude that for (x, t) ∈ B−
0 , if c � 0, then (5.2) holds for v+

0 (x, t).
Noting that εc � ε0, εcCc = ε0C0, we can prove that for any c ∈ R and any (x, t) ∈ B−

c , (5.2)
holds for v+

c (x, t).
The proof is complete. �
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Remark 5.2. One observes that the functions v̂+
c and v̂−

c have the following properties:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̂+
c (x,0) = 1 + δ if x � ξ, v̂+

c (x,0) � a − δ for all x ∈ R,

v̂+
c (x, t) � δ + (a − 2δ)e−εct for all t > 0, x � ξ − Cct − 4ε−1

c ,

v̂−
c (x,0) = −δ if x � ξ, v̂−

c (x,0) � a + δ for all x ∈ R,

v̂−
c (x, t) � 1 − δ − (1 − a − 2δ)e−εct for all t > 0, x � ξ + Cct + 4ε−1

c .

(5.3)

Remark 5.3. By the local regularity result of parabolic equations and the semigroup proposition
of solutions, if u0(x) ∈ C3(R) satisfies 0 � u0 � 1 and ‖u0(·)‖C3(R) < ∞, the solution u(x, t)

of (5.1) with initial value u(·,0) = u0(·) satisfies supt∈[0,∞) ‖u(·, t)‖C2(R) < ∞. See also the
condition (C4) and Theorem 5.1 of Chen [13].

Lemma 5.4. Assume that (H1)–(H3) hold. Let H(x) be a continuous function equal to 1 when
x > 1

k
, kx when 0 � x � 1

k
and 0 when x < 0, k > 1 is a sufficiently large constant.

(i) Let v1
I and v2

I be the solutions to the following linear evolution problems:

⎧⎨
⎩

∂v1
I (x, t)

∂t
= d�v1

I (x, t) + ∂1g
(
a,S(a)

)
v1
I (x, t) + ∂2g

(
a,S(a)

)
S′(a)

(
hc ∗ v1

I

)
(x, t),

v1
I (x,0) = H(x),

(5.4)

and⎧⎪⎪⎨
⎪⎪⎩

∂v2
I (x, t)

∂t
= d�v2

I (x, t) + ∂1g
(
a,S(a)

)
v2
I (x, t) + ∂2g

(
a,S(a)

)
S′(a)

(
hc ∗ v2

I

)
(x, t),

v2
I (x,0) = H(x) − H

(
−x + 1

k

)
= −1 + 2H(x).

Then there exist constants r1 > 0, which is independent of k and c, and xc ∈ R such that

v1
I (xc, r1) = 3, v2

I (xc, r1) = −3.

(ii) There exists a small positive constant δ1 > 0, which is independent of k and c, such that for
any δ ∈ (0, δ1), the solutions v1

II and v2
II to

⎧⎨
⎩

∂v1
II(x, t)

∂t
= d�v1

II(x, t) + g
(
v1

II(x, t),
(
hc ∗ S

(
v1

II

))
(x, t)

)
,

v1
II(x,0) = a + δH(x)

and ⎧⎪⎪⎨
⎪⎪⎩

∂v2
II(x, t)

∂t
= d�v2

II(x, t) + g
(
v2

II(x, t),
(
hc ∗ S

(
v2

II

))
(x, t)

)
,

v2
II(x,0) = a + δ

[
H(x) − H

(
−x + 1

)]

k
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satisfy

v1
II(xc, r1) � a + 2δ, v2

II(xc, r1) � a − 2δ.

(iii) For any δ ∈ (0, δ1), there exists a large positive constant r0, which is independent of k and c,
such that for rc = (1 + |c|)r0, the solutions v1

III and v2
III to

⎧⎨
⎩

∂v1
III(x, t)

∂t
= d�v1

III(x, t) + g
(
v1

III(x, t),
(
hc ∗ S

(
v1

III

))
(x, t)

)
,

v1
III(x,0) = a + δH(x) − aH(−rc − x)

and

⎧⎪⎪⎨
⎪⎪⎩

∂v2
III(x, t)

∂t
= d�v2

III(x, t) + g
(
v2

III(x, t),
(
hc ∗ S

(
v2

III

))
(x, t)

)
,

v2
III(x,0) = a + δ

[
H(x) − H

(
−x + 1

k

)]
+ (1 − a − δ)H(x − rc)

satisfy

v1
III(xc, r1) � a + δ, v2

III(xc, r1) � a − δ.

(iv) Let u(x, t) be the solution of (5.1) with initial data u0(x) ∈ C3(R) satisfying 0 � u0 � 1
and ‖u0(·)‖C3(R) < ∞. For any δ ∈ (0, δ1), assume that for some finite ξ−(0) and ξ+(0),

u0
(
ξ−(0)

)
� a − δ, u0

(
ξ+(0)

)
� a + δ,

then for every t > 0, there exist ξ−(t) and ξ+(t) such that

u
(
ξ−(t), t

) = a − δ, u
(
ξ+(t), t

) = a + δ,

ξ+(t) − ξ−(t) � max
{
ξ+(0) − ξ−(0) + 2

(
1 + |c|)(4ε−1

0 (δ) + C0(δ)r1
)
,2rc + 2

}
,

where ε0(δ) and C0(δ) are as in Lemma 5.1.

Proof. (i) Since ∂2g(a,S(a))S′(a) � 0, then the existence and uniqueness of (5.4) with initial
value ϕ(·,0) ∈ X follows from a similar argument to that in Theorem 2.3, and the solution is a
classical solution for all t > 0. Moreover, Eq. (5.4) satisfies the comparison principle.

Denote f ′
0(a) = ∂1g(a,S(a))+ ∂2g(a,S(a))S′(a) by γ . Then eγ t is an exact solution to (5.4)

with initial value 1. Further, since −H(−x + 1
k
) = −1 + H(x), by the existence and uniqueness

of the initial value problem, one has that v2
I (x, t) = −eγ t + 2v1

I (x, t) in R × [0,∞). Thus, we
need only study v1

I (x, t).
Since 0 � v1

I (·,0) � 1, comparing v1
I with 0 and eγ t then yields 0 � v1

I (·, t) � eγ t for all
t � 0. In addition, since for each η > 0, v1

I (·+η,0) � v1
I (·,0), we have v1

I (·+η, t) � v1
I (·, t) for

all t � 0. Namely, v1 is nondecreasing in x. Obviously, v1 is continuous in x, too.
I I
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Now, we show that limx→−∞ v1
I (x, t) = 0 and limx→∞ v1

I (x, t) = eγ t . Let L2 =
max{|∂2g(u, v)|: (u, v) ∈ [0,1] × [S(−9), S(10)]}, L3 = max{S′(u): u ∈ [−9,10]} and λ =
L1 + L2L3, where L1 is defined in Theorem 2.3. Let

ρ(ε0) = 1

γ

[
dε2

0 + L2L3ε0(h̄0 + τ)
]
<

1

81
, (5.5)

εc = ε0
1+|c| , w(x, t) = ρ(ε0)e

2γ t + ζ(εcx)eγ t and h̄0 = ∫ τ

0

∫ ∞
−∞ h̄(y, s)|y|dy ds. Then

∂w(x, t)

∂t
− d�w(x, t) − ∂1g

(
a,S(a)

)
w(x, t) − ∂2g

(
a,S(a)

)
S′(a)(hc ∗ w)(x, t)

= 2γρ(ε0)e
2γ t + γ ζ(εcx)eγ t − dε2

c ζ
′′(εcx)eγ t − ∂1g

(
a,S(a)

)[
ρ(ε0)e

2γ t + ζ(εcx)eγ t
]

− ∂2g
(
a,S(a)

)
S′(a)ρ(ε0)e

2γ t − ∂2g
(
a,S(a)

)
S′(a)eγ t

∞∫
−∞

hc(y)ζ
(
εc(x − y)

)
dy

� γρ(ε0)e
2γ t − dε2

0e
γ t − ∂2g

(
a,S(a)

)
S′(a)eγ t

∞∫
−∞

hc(y)
[
ζ
(
εc(x − y)

) − ζ(εcx)
]
dy

� γρ(ε0)e
2γ t − dε2

0e
γ t − ∂2g

(
a,S(a)

)
S′(a)eγ t

∞∫
−∞

εc|y|hc(y) dy

= γρ(ε0)e
2γ t − dε2

0e
γ t − ∂2g

(
a,S(a)

)
S′(a)εce

γ t

∞∫
−∞

τ∫
0

|y|h̄(y + cs, s) ds dy

� γρ(ε0)e
2γ t − dε2

0e
γ t − ∂2g

(
a,S(a)

)
S′(a)εce

γ t

τ∫
0

∞∫
−∞

|y|h̄(y, s) dy ds

− ∂2g
(
a,S(a)

)
S′(a)εc|c|eγ t

τ∫
0

∞∫
−∞

sh̄(y, s) dy ds

� γρ(ε0)e
2γ t − dε2

0e
γ t − ∂2g

(
a,S(a)

)
S′(a)ε0e

γ t (h̄0 + τ) � 0.

This implies that w is a supersolution of Eq. (5.4). Since v1
I (x,0) = H(x) � w(x + 4/εc,0),

the comparison yields v1
I (x, t) � w(x + 4/εc, t) in R × [0,∞), namely, v1

I (x, t) � ρ(ε0)e
2γ t +

ζ(εc(x + 4/εc))e
γ t . Consequently,

0 � v1
I (x, t) � ρ(ε0)e

2γ t for x � −4/εc. (5.6)

Similarly, we can show that eγ t − w(−x, t) is a subsolution. Since v1
I (x,0) = H(x) � 1 −

w(−(x − 1 − 4/εc),0), we have v1
I (x, t) � eγ t − w(−(x − 1 − 4/εc), t), that is, v1

I (x, t) �
eγ t − ρ(ε0)e

2γ t − ζ(−εc(x − 1 − 4/εc))e
γ t . We can conclude that

v1
I (x, t) � eγ t − ρ(ε0)e

2γ t for x � 1 + 4/εc. (5.7)
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Note that ε0 may be as small as we wish. Combining (5.6), (5.7) and 0 � v1
I (·, t) � eγ t , we have

lim
x→−∞v1

I (x, t) = 0 and lim
x→∞v1

I (x, t) = eγ t .

Set r1 such that eγ r1 = 9. Then by the choice of ε0, we have

0 � v1
I (x, r1) � 1 for x � 4/εc,

9 � v1
I (x, r1) � 10 for x � 1 + 4/εc.

Thus, by the monotonicity and continuity of v1
I (·, r1), there exists xc ∈ (−4/εc,1 + 4/εc) such

that

v1
I (xc, r1) = 3.

Consequently, v2
I (xc, r1) = −3.

(ii) Note that there exists K2 > 0, K2 is independent of c, such that for any u ∈ C0(R) with
0 � a + u � 1,∣∣g(

a + u,hc ∗ S(a + u)
) − ∂1g

(
a,S(a)

)
u − ∂2g

(
a,S(a)

)
S′(a)hc ∗ u

∣∣ � K2‖u‖2
C0(R)

. (5.8)

Then let K = 4K2e
2γ r1 and δ1 = min{ a

10 , 1−a
10 , 1

2Ke(γ+1)r1
, δ̄0}. For δ ∈ (0, δ1), consider the func-

tion w(x, t) = a + δv2
I (x, t) + Kδ2e(γ+1)t . Clearly, for any x ∈ R and t ∈ [0, r1], we have

0 � w(x, t) � 1. We can calculate, for t ∈ [0, r1], that

∂w(x, t)

∂t
− d�w(x, t) − g

(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)

= δ
∂v2

I (x, t)

∂t
+ (γ + 1)Kδ2e(γ+1)t − δd�v2

I (x, t) − g
(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)
= Kδ2e(γ+1)t − g

(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

) + ∂1g
(
a,S(a)

)[
δv2

I (x, t) + Kδ2e(γ+1)t
]

+ ∂2g
(
a,S(a)

)
S′(a)

∞∫
−∞

hc(y)
[
δv2

I (x − y, t) + Kδ2e(γ+1)t
]
dy

� Kδ2e(γ+1)t − K2
∥∥δv2

I (x, t) + Kδ2e(γ+1)t
∥∥2

C0(R)

� Kδ2 − K2
(
δeγ t + Kδ2e(γ+1)t

)2 � 0.

This implies that w(x, t) is a supersolution of (5.1) on [0, r1]. Thus, by comparison,

v2
II(xc, r1) � w(xc, r1) � a + δv2

I (xc, r1) + δ = a − 2δ.

In a similar manner, one can show that w(x, t) = a + δv1
I (x, t) − Kδ2e(γ+1)t is a subsolution

of (5.1) in R × [0, r1] so that v1
II(xc, r1) � a + 2δ.

(iii) For δ ∈ (0, δ1), let ε0 be a sufficiently small positive constant such that ρ(ε0)e
2λr1 < δ and

ε0 < 1 , where ρ(ε0) is defined by (5.5). Consider w(x, t) = max{ŵ(x, t),0}, where ŵ(x, t) =
2
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v1
II(x, t) + ψ(x, t), ψ(x, t) = −ρ(ε0)e

2λt − aeλt ζ(−εc(x − xc)). By Remarks 2.4 and 2.6,
∂
∂x

v1
II(x, t) > 0 for t > 0. In view of ∂

∂x
ψ(x, t) � 0, then for t > 0 and x ∈ R, ∂

∂x
ŵ(x, t) > 0.

Thus, for every t0 ∈ (0, r1], there exists a unique x−(t0) such that ŵ(x−(t0), t − 0) > 0,
(x, t0) ∈ B+ for x < x−(t0), (x, t0) ∈ B− for x > x−(t0), and

∂

∂x
ŵ

(
x−(t0) + 0, t0

) = lim
x→x−(t0)+0

∂

∂x
ŵ(x, t0) > 0,

where B+ = {(x, t) ∈ R × (0, r1]: ŵ(x, t) < 0}, B− = {(x, t) ∈ R × (0, r1]: ŵ(x, t) > 0}. Then
by the same argument as in Lemma 3.2, the inequality

∂w(x, t)

∂t
− d�w(x, t) − g

(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)
� 0 for (x, t) ∈ B+ ∪ B−

implies that w(x, t) is a subsolution of (5.1) in R × [0, r1]. Now we only prove that the above
inequality holds for (x, t) ∈ B−. If (x, t) ∈ B−, namely, w(x, t) = ŵ(x, t), then

∂w(x, t)

∂t
− d�w(x, t) − g

(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)

= ∂v1
II(x, t)

∂t
− d�v1

II(x, t) − 2λρ(ε0)e
2λt − λaeλt ζ

(−εc(x − xc)
)

+ daε2
c e

λt ζ
(−εc(x − xc)

) − g
(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)
� −2λρ(ε0)e

2λt + daε2
0e

λt − λaeλt ζ
(−εc(x − xc)

)
+ g

(
v1

II(x, t),
(
h ∗ S(v1

II)
)
(x, t)

) − g
(
w(x, t),

(
hc ∗ S(ŵ)

)
(x, t)

)
� −2λρ(ε0)e

2λt + daε2
0e

λt − λaeλt ζ
(−εc(x − xc)

)
+ L1

[
ρ(ε0)e

2λt + aeλt ζ
(−εc(x − xc)

)]

+ L2L3ρ(ε0)e
2λt + aL2L3e

λt

∞∫
−∞

hc(y)ζ
(−εc(x − y − xc)

)
dy

� −λρ(ε0)e
2λt + daε2

0e
λt

+ aL2L3e
λt

∞∫
−∞

hc(y)
∣∣ζ (−εc(x − y − xc)

) − ζ
(−εc(x − xc)

)∣∣dy

� −λρ(ε0)e
2λt + daε2

0e
λt + aL2L3εce

λt

∞∫
−∞

|y|hc(y) dy

�
[−λρ(ε0) + daε2

0 + aL2L3ε0(h0 + τ)
]
eλt � 0.

Thus, w(x, t) is a subsolution of (5.1) in R × [0, r1]. Let r0 = 9/ε0 and rc = (1 + |c|)r0. Then
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ŵ(x,0) = v1
II(x,0) − ρ(ε0) − aζ

(−εc(x − xc)
)

� v1
II(x,0) − aζ

(−εc(x − xc)
)

� v1
II(x,0) − aH(−rc − x)

= v1
III(x,0)

and w(x,0) � v1
III(x,0). By comparison, we have v1

III(x, t) � w(x, t) � v1
II(x, t) − ρ(ε0)e

2λt −
aeλt ζ(−εc(x − xc)). In particular,

v1
III(xc, r1) � v1

II(xc, r1) − ρ(ε0)e
2λr1 � a + 2δ − δ = a + δ.

Similarly, w(x, t) = min{v2
II(x, t) + ρ(ε0)e

2λt + (1 − a − δ)eλt ζ(εc(x − xc)),1} is a superso-
lution of (5.1) on R × [0, r1]. Since

v2
II(x,0) + ρ(ε0) + (1 − a − δ)ζ

(
εc(x − xc)

)
� v2

II(x,0) + (1 − a − δ)ζ
(
εc(x − xc)

)
� v2

II(x,0) + (1 − a − δ)H(x − rc)

= v2
III(x,0),

then v2
III(x, t) � w(x, t) � v2

II(x, t) + ρ(ε0)e
2λt + (1 − a − δ)eλt ζ(εc(x − xc)) on R × [0, r1].

Hence,

v2
III(xc, r1) � v2

II(xc, r1) + ρ(ε0)e
2λr1 � a − 2δ + δ = a − δ.

(iv) For δ ∈ (0, δ1), by Lemma 5.1 and (5.3),

(1 + δ) − [
1 − (a − 2δ)

]
ζ
(−εc

(
x − ξ−(0)

))
� u0(x,0) � −δ + [

1 − (1 − a − 2δ)
]
ζ
(
εc

(
x − ξ+(0)

))
.

Following the comparison, we have

(1 + δ) − [
1 − (a − 2δ)e−εct

]
ζ
(−εc

(
x − ξ−(0) + Cct

))
� min

{
(1 + δ) − [

1 − (a − 2δ)e−εct
]
ζ
(−εc

(
x − ξ−(0) + Cct

))
,1

}
� u(x, t) � max

{−δ + [
1 − (1 − a − 2δ)e−εct

]
ζ
(
εc

(
x − ξ+(0) − Cct

))
,0

}
� −δ + [

1 − (1 − a − 2δ)e−εct
]
ζ
(
εc

(
x − ξ+(0) − Cct

))
.

From (5.3), ξ+(t) � ξ+(0) + Cct + 4ε−1
c , ξ−(t) � ξ−(0) − Cct − 4ε−1

c . Hence,

ξ+(t) − ξ−(t) � ξ+(0) − ξ−(0) + 2Cct + 8ε−1
c

= ξ+(0) − ξ−(0) + 2
(
1 + |c|)(4ε−1 + C0t

)
.
0
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In particular, for all t ∈ [0, r1], we have

ξ+(t) − ξ−(t) � ξ+(0) − ξ−(0) + 2
(
1 + |c|)(4ε−1

0 + C0r1
)
.

To finish the proof, we need to prove the following: for every t1 � 0,

ξ+(t1 + r1) − ξ−(t1 + r1) � max
{
ξ+(t1) − ξ−(t1),2rc + 2

}
.

By translation, we can assume that u(0, t1) = a so that ξ+(t1) > 0 > ξ−(t1). By symmetry, we
need only consider the case ξ+(t1) � |ξ−(t1)|. Noting that r1, δ1 and r0 are independent of k, we
take k > 1

δ
supt∈[0,∞) ‖ ∂

∂x
u(·, t)‖C0(R) for H(x) in the following.

Set r+ = max{ξ+(t1), rc + 1}. Then, u(· + r+, t1) � v1
III(·,0) in R, so that, by comparison,

u(xc + r+, t1 + r1) � v1
III(xc, r1) � a + δ,

which implies that ξ+(t1 + r1) � xc + r+.
Set r− = max{ξ+(t1) − ξ−(t1), rc + 1}. Then u(· + ξ+(t1) − r−, t1) � v2

III(·,0) in R. By com-
parison, we have

u
(
xc + ξ+(t1) − r−, t1 + r1

)
� v2

III(xc, r1) � a − δ,

which implies that ξ−(t1 + r1) � xc + ξ+(t1) − r−.
Combining the two estimates for ξ+(t1 + r1) and ξ−(t1 + r1), we have

ξ+(t1 + r1) − ξ−(t1 + r1) � r+ − ξ+(t1) + r− � max
{
ξ+(t1) − ξ−(t1),2rc + 2

}
.

This completes the proof. �
Theorem 5.5. Assume that (H1)–(H3) hold, then for every c ∈ R, Eq. (5.1) admits a unique
monotonic traveling wave front (Uc,C(c)) satisfying (1.3).

Proof. Let v(x, t) be the solution of⎧⎨
⎩

∂v(x, t)

∂t
= d�v(x, t) + g

(
v(x, t),

(
hc ∗ S(v)

)
(x, t)

)
, (x, t) ∈ R × [0,∞),

v(x,0) = ζ(x), x ∈ R.

(5.9)

Here and in the sequel, ζ(·) always refers to the function ζ satisfying (4.1). First of all, by
comparison, we have 0 � v(x, t) � 1 on R × [0,∞).

For all t > 0, s � 0, x ∈ R, and z ∈ R, by Remark 2.4,

vx(x, t + s) � Θ
(|x − z|, t)

z+1∫
z

vx(y, s) dy. (5.10)

In particular, taking s = z = 0, we have vx(x, t) � Θ(|x|, t)ζ(1) > 0 in R×[0,∞). Observe that
Lemma 5.1 implies

lim v(x, t) = 1 and lim v(x, t) = 0

x→∞ x→−∞
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for all t > 0. It then follows that there exists a unique function z(α, t) defined on (0,1) × [0,∞)

such that v(z(α, t), t) = α, α ∈ (0,1), t ∈ [0,∞). Note that ∂z(α, t)/∂α = 1/
∂v(z(α,t),t)

∂x
> 0.

We claim that for every T � 0, v(·, T ) is Lipschitz continuous in R. In fact, for any positive ε

such that εeλT � 9, consider w(x, t) = min{v(x, t) + εeλt ,1}, λ is defined as in Lemma 5.4. For
any (x, t) ∈ R × (0, T ] such that v(x, t) + εeλt < 1, there is

∂w(x, t)

∂t
− d�w(x, t) − g

(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)
= ελeλt + g

(
v(x, t),

(
hc ∗ S(v)

)
(x, t)

) − g
(
w(x, t),

(
hc ∗ S(w)

)
(x, t)

)
� ελeλt − εL1e

λt − εL2L3e
λt � 0,

which implies that w(x, t) is a supersolution of (5.1) in (x, t) ∈ R× (0, T ] by the same argument
as in Lemma 3.2. Now since v(·,0) � v(· + ε,0) � min{v(·,0) + ε,1}, it follows by comparison
that v(·, t) � v(·+ε, t) � min{v(·, t)+εeλt ,1} for all t ∈ [0, T ]. Hence, v(·, T ) is nondecreasing
and is Lipschitz continuous in R.

From (5.3), one sees that for every small positive δ > 0, there exist ε0 = ε0(δ) and C0 = C0(δ)

such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z(a + δ, t) � z(a + δ, r) + 4ε−1
c + Cc(t − r) ∀0 � r < t < ∞,

z(a − δ, t) � z(a − δ, r) − 4ε−1
c − Cc(t − r) ∀0 � r < t < ∞,

z(1 − 2δ, t) � z(a + δ, r) + 4ε−1
c + Cc(t − r) ∀r � 0, t − r � ε−1

c | ln δ|,
z(2δ, t) � z(a − δ, r) − 4ε−1

c − Cc(t − r) ∀r � 0, t − r � ε−1
c | ln δ|,

(5.11)

where εc = ε0
1+|c| , Cc = (1 + |c|)C0. Here we prove (5.11). We only prove the first inequality.

Since v(·, r) is increasing in x for every fixed r , let μ = z(a + δ, r), then

{
v(x, r) � a + δ for x � μ,

v(x, r) < a + δ for x < μ.

But there are

⎧⎨
⎩

v−
c (x,0) = −δ for x � μ,

−δ < v−
c (x,0) < a + δ for μ < x < μ + 4ε−1

c ,

v−
c (x,0) = a + δ for x � μ + 4ε−1

c .

Hence, v̂−
c (x, t − r) < v(x, t) for all t > r � 0 and x ∈ R. Now, if x0 = z(a + δ, t) >

z(a + δ, r) + 4ε−1
c + Cc(t − r), then by (5.3),

v−
c (x0, t − r) � 1 − δ − (1 − a − 2δ)e−εc(t−r) � 1 − δ − (1 − a − 2δ) = a + δ.

This contradicts to v−
c (x0, t − r) < v(x0, t) = v(z(a + δ, t), t) = a + δ, which implies that the

first inequality of (5.11) holds.
For u(·,0) = ζ(·), there are 0 � ξ−(0) < ξ+(0) � 4. Then by using Lemma 5.4 and (5.11), we

can derive the following:
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(a) For every δ ∈ (0, δ1/2], there exist M∗ = M∗(δ) > 0 and L∗ = L∗(δ) > 0, independent
of c, such that

z(1 − δ, t) − z(δ, t) � M∗ + L∗(δ)|c| ∀t � 0. (5.12)

(b) For every M > 0, there exists a constant Θ̂(M,c) > 0 such that

∂

∂x
v
(
x + z(a, t), t

)
� Θ̂(M,c) ∀t � 1, x ∈ [−M,M]. (5.13)

The detailed proofs of (a) and (b) are similar to that of [13, (a), (b), p. 144].
Note the comparison functions W+(x, t) and W−(x, t) are defined by (5.15) in Lemma 5.6.

Since the family {v(· + z(a, t), t)} consists of monotonic bounded functions, there exist a se-
quence {tj }∞j=1 and a nondecreasing function Uc(·) such that j → ∞, tj → ∞ and v(ξ +
z(a, tj ), tj ) → Uc(ξ) for all ξ ∈ R. Clearly, Uc(0) = a and 0 � Uc � 1. In addition, from (5.12)
we know that for all small δ > 0,

Uc

(
M∗ + L∗|c|) � 1 − δ and Uc

(−M∗ − L∗|c|) � δ. (5.14)

This implies that limξ→∞ U(ξ) = 1 and limξ→−∞ U(ξ) = 0. Furthermore, by virtue of the con-
dition (C4) and Remark 5.2(2) of Chen [13], we can show that Uc is the profile of a traveling
wave front and there exists C(c) ∈ R such that (Uc,C(c)) is a traveling wave front to (5.1). The
remainder of the proof is analogous to Steps 3 and 4 of Chen [13, Theorem 4.1], so we omit
them.

So far, we complete the proof of the existence. In view of Remark 4.2, the uniqueness of
traveling wave fronts is obvious. �
Lemma 5.6. Assume that (H1)–(H3) hold, and let v(x, t) be a solution of (5.9). Then there exist
three positive numbers β1 (which is independent of v), σ1 and δ̄1 such that for any δ ∈ (0, δ̄1]
and every ξ0 ∈ R, the functions W+ and W− defined by

W+(x, t) := min
{
v
(
x + ξ0 + σ1δ

(
1 − e−β1t

)
, t + 1

) + δe−β1t ,1
}
,

W−(x, t) := max
{
v
(
x + ξ0 − σ1δ

(
1 − e−β1t

)
, t + 1

) − δe−β1t ,0
}
, (5.15)

are a supersolution and a subsolution of (5.1) on [0,∞), respectively.

Proof. We prove only that W+(x, t) is a supersolution of (5.1) on [0,∞). Since ∂
∂x

v(x, t) > 0
for all (x, t) ∈ R × (0,∞), then we only need to show that for all (x, t) ∈ R × (0,∞) satisfying
Ŵ+(x, t) < 1, the inequality

∂W+(x, t)

∂t
− d�W+(x, t) − g

(
W+(x, t),

(
hc ∗ S

(
W+))

(x, t)
)
� 0 (5.16)

holds, where Ŵ+(x, t) = v(x + ξ0 +σ1δ(1−e−β1t ), t +1)+δe−β1t . In the following, we always
assume (x, t) ∈ R × (0,∞) satisfying Ŵ+(x, t) < 1.

In Lemma 3.2, by setting τ = 0, we can fix β1 > 0 and δ∗
1 > 0 such that

∂1g(u, v) + �∂2g(r, s) < −β1 (5.17)
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for all (u, v, r, s,�) ∈ [0, δ∗
1 ] × [S(0) − δ∗

1 , S(0) + δ∗
1 ] × [0, δ∗

1 ] × [S(0) − δ∗
1 , S(0) + δ∗

1 ] ×
[S′(0) − δ∗

1 , S′(0) + δ∗
1 ] and (u, v, r, s,�) ∈ [1 − δ∗

1 ,1] × [S(1) − δ∗
1 , S(1) + δ∗

1 ] × [1 − δ∗
1 ,1] ×

[S(1)−δ∗
1 , S(1)+δ∗

1 ]×[S′(1)−δ∗
1 , S′(1)+δ∗

1 ]. By the continuity of S(v) and S′(v), there exists
δ̂1 ∈ (0, δ∗

1 ] such that for any δ ∈ [−δ̂1, δ̂1],

∣∣S(1 + δ) − S(1)
∣∣ <

δ∗
1

3
,

∣∣S(δ) − S(0)
∣∣ <

δ∗
1

3
,

∣∣S′(1 + δ) − S′(1)
∣∣ <

δ∗
1

3
,

∣∣S′(δ) − S′(0)
∣∣ <

δ∗
1

3
.

Further, there exists M0 = M0(v,β0, δ
∗
1) > 0 such that for any ξ ∈ [−δ̂1,1 + δ̂1],

∣∣∣∣∣S(ξ)

[ ∞∫
M0

+
−M0∫

−∞
hc(y) dy

]∣∣∣∣∣ <
δ∗

1

3
,

∣∣∣∣∣S′(ξ)

[ ∞∫
M0

+
−M0∫

−∞
hc(y) dy

]∣∣∣∣∣ <
δ∗

1

3
.

Let δ̄1 = min{δ̂1,
δ1
2 }. Take

ρ1 = max
{∣∣∂1g(u, v)

∣∣ + κ2
∣∣∂2g(r, s)

∣∣: u, r ∈ [0,1], v ∈ [
S(0), S(1)

]
, s ∈ [

S(0), S
(
1 + δ∗

1

)]}
,

where κ1 = max{S′(u): u ∈ [0,1 + δ∗
1 ]}, and define

σ1 = β1 + ρ1

Θ̂(M0 + M∗ + L∗|c|)β1
,

where Θ̂(M0 +M∗ +L∗|c|) is defined by the previous (b). For any given δ ∈ (0, δ̄1), let ξ(x, t) =
x + ξ0 + σ0δ[1 − e−β0t ]. It then follows that, for any t > 0,

∂W+(x, t)

∂t
− d�W+(x, t) − g

(
W+(x, t),

(
hc ∗ S

(
W+))

(x, t)
)

= σ1δβ1e
−β1t

∂

∂x
v
(
ξ(x, t), t + 1

) + ∂

∂t
v
(
ξ(x, t), t + 1

) − β1δe
−β1t − d�v

(
ξ(x, t), t + 1

)
− g

(
W+(x, t),

(
hc ∗ S

(
W+))

(x, t)
)

� σ1δβ1e
−β1t

∂

∂x
v
(
ξ(x, t), t + 1

) − β1δe
−β1t

− g

(
v
(
ξ(x, t), t + 1

)
,

+∞∫
−∞

hc(y)S
(
v
(
ξ(x − y, t), t + 1

))
dy

)

− g
(
W+(x, t),

(
hc ∗ S

(
Ŵ+))

(x, t)
)

� δe−β1t

{
σ1β1

∂

∂x
v
(
ξ(x, t), t + 1

) − β1
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− ∂1g

(
v
(
ξ(x, t), t + 1

) + θ1δe
−β0t ,

+∞∫
−∞

hc(y)S
(
v
(
ξ(x − y, t), t + 1

))
dy

)

− ∂2ĝ

(
v
(
ξ(x, t), t + 1

) + δe−β0t ,

+∞∫
−∞

hc(y)S
(
v
(
ξ(x − y, t), t + 1

) + θ2δe
−β1t

)
dy

)

×
+∞∫

−∞
hc(y)S′(v(

ξ(x − y, t), t + 1
) + θ2δe

−β0t
)
dy

}
. (5.18)

Let η(x, t) = x + ξ0 + σ0δ[1 − e−β0t ] − z(a, t + 1). We consider three cases.
Case (i): η(x, t) > M0 + M∗ + L∗|c|. Then by the previous (a),

v
(
ξ(x, t), t + 1

) = v
(
η(x, t) + z(a, t + 1), t + 1

)
� v

(
z(1 − δ, t + 1), t + 1

) = 1 − δ.

For y ∈ [−M0,M0],

v
(
ξ(x − y, t), t + 1

)
� v

(
η(x, t) − M0 + z(a, t + 1), t + 1

)
� v

(
z(1 − δ, t + 1), t + 1

) = 1 − δ.

Therefore,

+∞∫
−∞

hc(y)S
(
v
(
ξ(x − y, t), t + 1

))
dy

=
( −M0∫

−∞
+

+∞∫
M0

)
hc(y)S

(
v
(
ξ(x − y, t), t + 1

))
dy

+
M0∫

−M0

hc(y)S
(
v
(
ξ(x − y, t), t + 1

))
dy

� −δ∗
1

3
+

M0∫
−M0

hc(y)S(1 − δ) dy � S(1) − δ∗
1 .

Similarly,

S(1) + δ∗
1 �

+∞∫
−∞

hc(y)S
(
v
(
ξ(x − y, t), t + 1

) + θ2δe
−β1t

)
dy � S(1) − δ∗

1 ,

S′(1) + δ∗
1 �

+∞∫
hc(y)S′(v(

ξ(x − y, t), t + 1
) + θ2δe

−β0t
)
dy � S′(1) − δ∗

1 .
−∞
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Thus, by (5.17), we have that (5.16) holds.
Case (ii): |η(x, t)| � M0 + M∗ + L∗|c|. Then, by the choice of σ1 and (5.18),

∂W+(x, t)

∂t
− d�W+(x, t) − g

(
W+(x, t),

(
hc ∗ S

(
W+))

(x, t)
)

� δe−β1t
[
σ1β1Θ̂

(
M0 + M∗ + L∗|c|) − β1 − ρ1

]
� 0.

Case (iii): η(x, t) � −(M0 + M∗ + L∗|c|). The proof is similar to that for the case (i) and is
omitted.

This completes the proof. �
Lemma 5.7. Assume that (H1)–(H3) hold. Then the wave speed C(c) of the traveling wave front
(Uc,C(c)) in Eq. (5.1) is a continuous function of c ∈ R.

Proof. Without loss of generality, we assume that Uc(0) = a for each c ∈ R. Then Uc(x −C(c)t)

satisfies

−C(c)U ′
c(ξ) = dU ′′

c (ξ) + g

(
Uc(ξ),

τ∫
0

∞∫
−∞

h̄(y, s)S
(
Uc(ξ − y + cs)

)
dy ds

)
,

where ξ = x − C(c)t . Hence,

Uc(ξ) = 1

d(λ2(C(c)) − λ1(C(c)))

[ ξ∫
−∞

eλ1(C(c))(ξ−s)H(Uc)(s) ds

+
∞∫

ξ

eλ2(C(c))(ξ−s)H(Uc)(s) ds

]
, (5.19)

where

λ1
(
C(c)

) = −C(c) − √
C2(c) + 4dL1

2d
, λ2

(
C(c)

) = −C(c) + √
C2(c) + 4dL1

2d

and

H(Uc)(ξ) = L1Uc(ξ) + g

(
Uc(ξ),

τ∫
0

∞∫
−∞

h̄(y, s)S
(
Uc(ξ − y + cs)

)
dy ds

)
.

Since 0 � Uc(ξ) � 1 and λ2(C(c)) − λ1(C(c)) = √
C2(c) + 4dL1/d � 2

√
L1/d , it is easy to

show that

∣∣U ′
c(ξ)

∣∣ � G

2
√

dL1
for every c ∈ R and ξ ∈ R,

where G = 2L1 + 2 max{|g(u, v)|: (u, v) ∈ [0,1] × [S(0), S(1)]}.
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Here we first show that for any bounded c ∈ R, the speed C(c) is also bounded. In fact,
consider functions Uc(x) and v−

c (x,0) defined in Lemma 5.1 with δ = δ̄0, and there exists x0 ∈ R

such that v−
c (x −x0,0) < Uc(x) for all x ∈ R. Then by comparison, we have that v−

c (x −x0, t) <

Uc(x − C(c)t) for all x ∈ R and t ∈ [0,∞), that is,

−δ + [
1 − (1 − a − 2δ)e−εct

]
ζ
(
εc(x − x0 − Cct)

)
< Uc

(
x − C(c)t

)
. (5.20)

Now we claim that C(c) � Cc . If not, namely, C(c) > Cc, then we fix x − x0 − Cct = ξ∗ with
ζ(εcξ

∗) = 2δ, hence, Uc(x − C(c)t) = Uc(ξ
∗ + x0 + (Cc − C(c))t). Letting t → ∞ in (5.20),

then we have δ � Uc(−∞), which is a contradiction to Uc(−∞) = 0. Thus, we have C(c) �
Cc = (1 + |c|)C0. Similarly, comparing functions Uc(x) and v+

c (x,0), we obtain C(c) � −Cc =
−(1 + |c|)C0.

Suppose cn → c, but C(cn) does not converge to C(c), then there exists a subsequence
cnk

→ c so that C(cnk
) → b 
= C(c). Let H ∗ = sup{|cn|}. Since Ucnk

(·) is nondecreasing,
Ucnk

(0) = a, and by (a) and (b) in Theorem 5.5, Ucnk
(·) also satisfies, for sufficiently small

δ > 0,

Ucnk
(x) � δ, if x � −M∗ − L∗H ∗ � −M∗ − L∗|cnk

|,
Ucnk

(x) � 1 − δ, if x � M∗ + L∗H ∗ � M∗ + L∗|cnk
|.

By the Arzela–Ascoli theorem and the above inequalities, we can choose a subsequence of {cnk
},

such that Ucnk
(·) converges uniformly to a continuous function U(·) in R. We still denote this

subsequence by cnk
. Obviously, U(·) is nondecreasing, 0 � U(·) � 1, and

lim
x→−∞U(x) = 0 and lim

x→∞U(x) = 1.

In Eq. (5.19) with c being replaced by cnk
, we let k → ∞ and apply the dominant convergence

theorem to get

U(ξ) = 1

d(λ2(b) − λ1(b))

[ ξ∫
−∞

eλ1(b)(ξ−s)H(U)(s) ds +
∞∫

ξ

eλ2(b)(ξ−s)H(U)(s) ds

]
.

Hence U(x−bt) is a solution of (5.1). Furthermore, by virtue of Theorem 3.3, we have C(c) = b,
which is a contradiction. This completes the proof. �
Theorem 5.8. Assume that (H1)–(H3) hold. Then (1.1) admits a strictly monotonic traveling
wave front U(x − (−B + c∗)t) with |c∗| � C0, where C0 = C0(δ̄0) is given in Lemma 5.1.

Proof. It is easy to see that if there exists c∗ ∈ R such that C(c∗) = c∗, and U(x − c∗t) is a
monotonic traveling wave front of (5.1), then U(x − c∗t) is also a monotonic traveling wave
front of (2.10) and U(x − (−B + c∗)t) is also a monotonic traveling wave front of (1.1) with
wave speed −B + c∗. Therefore, it suffices to show that the curves y = −c and y = −C(c) have
at least one common point in the (c, y) phase.



Z.-C. Wang et al. / J. Differential Equations 238 (2007) 153–200 197
For c � 0, let v−
0 (x, t) be the subsolution of (5.1) given in Lemma 5.1 with δ = δ̄0. Then

there exists a large constant x0 such that Uc(·) � v−
1 (· − x0,0). Therefore, by the comparison, it

follows that Uc(x − C(c)t) � v−
1 (x − x0, t) for all t � 0 and x ∈ R. Thus, we have

−δ + [
1 − (1 − a − 2δ)e−ε0t

]
ζ
(
ε0(x − x0 − C0t)

)
< Uc

(
x − C(c)t

)
.

By a similar argument to that for (5.20), we have C(c) � C0. Similarly, we can show that C(c) �
−C0 for c � 0 by comparing Uc(x − C(c)t) with v+

0 (x, t). Thus, we can find a common point
of the curves y = −c and y = −C(c) in c ∈ [−C0,C0]. The proof is complete. �

Now we consider the influence of advection on the propagation of fronts in Eq. (1.1).

Remark 5.9. Assume that (1.1) has a traveling wave front connecting equilibria 0 and 1 when
the advection term is absent, namely, B = 0, then when B 
= 0, the advection term may cause a
shift of the unique wave speed. Moreover, if the wave speed is positive (negative) when B = 0,
then when B 
= 0, the wave speed can be null or negative (positive or null), which is dependent
of B . As showed in the beginning of this section, for Eq. (1.1) with h(y, s) = h(y)δ(s), if the
wave speed is c when B = 0, then when B 
= 0, the wave speed is −B + c. But for general
kernel h(y, s), the change of the wave speed due to the advection term becomes very complicated
because of the effect of the time delay.

6. Applications

In the previous sections, we have studied the existence, uniqueness and asymptotic stability
of traveling wave fronts of nonlocal reaction advection diffusion equation (1.1) with distributed
delay. This equation is more general than the versions studied by Schaaf [38], Chen [13], Smith
and Zhao [42] and Ma and Wu [28]. Obviously, our main results include those in these papers.
In particular, our results can be applied to Eqs. (1.8) and (1.10). Note that though we only con-
sider the existence for the case f ′

0(a) > 0, we can get a similar result for the case f ′
0(a) = 0 by

a perturbation fε of f0 so that f ′
ε(a) > 0, see also Remark 5.2(5) in [13]. Note that twice differ-

entiability of g and S in (H1) is only used for determining the inequality (5.8), otherwise, g and
S only need to be continuously differentiable. Furthermore, our results are easily extended to the
following equation with multi-delay

∂u

∂t
= d�u + B

∂u

∂x
+ g

(
u(x, t),

(
h1 ∗ S1(u)

)
(x, t), . . . ,

(
hm ∗ Sm(u)

)
(x, t)

)
,

where kernels h1, . . . , hm are required as h in (1.1), m ∈ N.
Now we consider Eqs. (1.8) and (1.10).

Example 6.1. Assume that Eq. (1.8) satisfies the following conditions:

(C1) There exist 0 � a1 < a2 < a3 such that εb(ai)−dmai = 0, i = 1,2,3; εb(u)−dmu < 0 for
u ∈ (a1, a2); εb(u) − dmu > 0 for u ∈ (a2, a3).

(C2) b(·) ∈ C2([a1, a3]), b′(·) � 0, εb′(a1) < dm, εb′(a2) > dm, εb′(a3) < dm.
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We refer to b(u) = pu2e−βu which is widely used in the literature and satisfies (C1) and (C2),
where p > 0 and β > 0 are appropriate constants, see also Ma and Zhao [30]. Now set ũ(x, t) =

1
a3−a1

(u(x, t) − a1) and denote ũ still by u, then Eq. (1.8) reduces to the following equation

∂u

∂t
= ∂

∂x

(
Dm

∂u

∂x
+ Bu

)
− dmu(x, t) − dma1

a3 − a1

+ ε

a3 − a1

∞∫
−∞

Jα(x + Bτ − y)b
(
(a3 − a1)u(y, t − τ) + a1

)
dy. (6.1)

Thus, we only need to consider Eq. (6.1). In particular, (H1)–(H3) hold for Eq. (6.1). By The-
orems 3.3, 4.5 and 5.8, Eq. (6.1) admits a unique monotonic traveling wave front, and hence,
Eq. (1.8) admits a unique monotonic traveling wave front U(x − ct) (up to translation) which is
asymptotically stable and satisfies limξ→−∞ U(ξ) = a1 and limξ→+∞ U(ξ) = a3.

Example 6.2. Assume that Eq. (1.10) satisfies the following conditions:

(C3) There exist 0 � a1 < a2 < a3 such that εb(ai) − d(ai) = 0, i = 1,2,3; εb(u) − d(u) < 0
for u ∈ (a1, a2); εb(u) − d(u) > 0 for u ∈ (a2, a3), where ε = ∫ τ

0 f (s)e−γ s ds.
(C4) b(·), d(·) ∈ C2([a1, a3]), b′(·) � 0, εb′(a1) < d ′(a1), εb′(a2) > d ′(a2), εb′(a3) < d ′(a3).

Then by a same argument as that for Eq. (1.8) and by Theorems 3.3, 4.5 and 5.8, we obtain
the existence, uniqueness and asymptotic stability of traveling wave fronts of (1.10) connecting
equilibria u ≡ a1 and u ≡ a3.
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