
 Procedia Computer Science 79 (2016) 127 – 134

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICCCV 2016
doi: 10.1016/j.procs.2016.03.017

ScienceDirect

7th International Conference on Communication, Computing and Virtualization 2016

Performance Evaluation of Distributed Association Rule Mining
Algorithms

Ms. Vinaya Sawanta*, Dr. Ketan Shahb

Assistant Professor, IT Department, D. J. Sanghvi College of Engineering, Mumbai, India
Professor, IT Department, MPSTME, Mumbai, India

Abstract

Association Rule Mining (ARM) is a popular and well researched method for discovering interesting relations between variables
in large databases. It is intended to identify strong rules discovered in databases using different measures of interestingness. Most
ARM algorithms focus on a sequential or centralized environment where no external communication is required. Distributed
ARM algorithms (DARM), aim to generate rules from different data sets spread over various geographical sites; hence, they
require external communications throughout the entire process. DARM algorithm efficiency is highly dependent on data
distribution. The Classical algorithms used in DARM are Count Distribution Algorithm (CDA), Fast Distributed Mining (FDM)
Algorithm and Optimized Distributed Association Mining (ODAM) Algorithm. This paper presents the implementation details
and experimental results of above mentioned algorithms. The paper also highlights the issues of message exchange size in a
distributed environment of current DARM algorithms that can affect the communication costs in a distributed environment.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Organizing Committee of ICCCV 2016.

Keywords: Association Rule Mining, Distributed Data Mining

1. Introduction

Distributed ARM algorithms aim to generate rules from different data sets spread over various geographical sites;
hence, they require external communications throughout the entire process. DARM algorithms must reduce

* Corresponding author. Tel.:91 9867248114

E-mail address: vinaya.sawant@djsce.ac.in

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICCCV 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82536091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.03.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.03.017&domain=pdf

128 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

communication costs so that generating global association rules costs less than combining the participating sites' data
sets into a centralized site. However, most DARM algorithms don't have an efficient message optimization
technique, so they exchange numerous messages during the mining process.

In this study, I assume that the database to be studied is a transaction database although the method can be easily
extended to relational databases as well. The database consists of a huge number of transaction records, each with a
transaction identifier (TID) and a set of data items. Further, I assume that the database is “horizontally” partitioned
(i.e., grouped by transactions) and allocated to the sites in a distributed system which communicate by message
passing. Based on these assumptions, we examine distributed mining of association rules. It has been well known
that the major cost of mining association rules is the computation of the set of large itemsets (i.e., frequently
occurring sets of items) in the database. Distributed computing of large itemsets encounters some new problems.
One may compute locally large itemsets easily, but a locally large itemset may not be globally large. Since it is very
expensive to broadcast the whole data set to other sites, one option is to broadcast all the counts of all the itemsets,
no matter locally large or small, to other sites.

However, a database may contain enormous combinations of itemsets, and it will involve passing a huge number
of messages. Based on our observation, there exist some interesting properties between locally large and globally
large itemsets. One should maximally take advantages of such properties to reduce the number of messages to be
passed and confine the substantial amount of processing to local sites.

DARM refers to the mining of association rules from distributed datasets. The datasets are stored in local
databases hosted by local computers which are connected through a computer network. Typical DARM algorithm
involves local data analysis from which a global knowledge can be extracted using knowledge integration techniques
[1].

2. DARM Algorithms

Most of the research efforts are focusing on the generation of frequent itemsets as compared to generation of
association rules. Following paragraph describes the experimental results of various Distributed Association Rule
Algorithms used in research work.

2.1. Count Distribution Algorithm (CDA)

One data parallelism algorithm is the count distribution algorithm (CDA). The database is divided into p
partitions, one for each processor. Each processor counts the candidates for its data and then broadcasts its counts to
all other processors. Each processor then determines the global counts. These then are used to determine the large
itemsets and to generate the candidates for the next scan [2].

2.2. Fast Distributed Mining Algorithm (FDM)

The generation of candidate sets is in the same spirit of Apriori. However, some interesting relationships between
locally large sets and globally large ones are explored to generate a smaller set of candidate sets at each iteration and
thus reduce the number of messages to be passed. After the candidate sets have been generated, two pruning
techniques, local pruning and global pruning, are developed to prune away some candidate sets at each individual
site [3].

2.3. Optimized Distributed Association Mining Algorithm (ODAM)

To efficiently generate candidate support counts of later passes, ODAM eliminates all infrequent items after the
first pass and places those new transactions into the main memory. This technique not only reduces the average
transaction length but also reduces the data set size significantly, so we can accumulate more transactions in the
main memory. The number of items in the data set might be large, but only a few will satisfy the support threshold.
Moreover, the number of infrequent itemsets increases proportionally for higher support thresholds [4].

129 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

3. Parameters for Evaluation

One of the parameters used for evaluation of the above mentioned algorithms is total number of frequent itemsets
generated in a given time period by an algorithm using varying values of support count in a distributed environment
using single node, two nodes and three nodes. Another parameter used for evaluation is the messages (size in bytes)
passed in a distributed environment between the nodes.

4. Experimental Setup

The algorithms were tested in a distributed environment developed using JAVA programming language. It was
implemented on one to three nodes and a server. The configuration of each workstation on the network was an Intel
Core i3-2100 CPU @3.10GHZ, 4GB RAM, 32-bit OS, and Windows 7. Remote Method Invocation Mechanism
(RMI) is used for communications between the nodes in the network.

The number of sites used in the distributed environment is decided first. The aim is to perform the comparison

with respect to support thresholds and database sizes. The datasets were horizontally partitioned depending upon the
number of processors in the distributed environment and the results are analyzed. The candidate itemsets that each
site generates will be based on global frequent itemsets of the previous pass, the dataset is divided equally among
the sites.

5. Datasets

The datasets from UCI Machine Learning Repository was used for testing the performance of CDA, FDM and
ODAM in a distributed environment [5]. The following are the different datasets used for testing the results.

A. Zoo Dataset
 17 items
 101 transactions (4KB)

B. Tic-Tac-Toe Dataset
 9 items
 958 transactions (18KB)

C. Plant Signaling Dataset
 43 items
 5456 transactions (469KB)

D. 10,000 x 8 Databases
 8 items
 10000 transactions(157 KB)

E. The USCensus1990 raw data set was obtained from the (U.S. Department of Commerce) Census Bureau
website using the Data Extraction System.
 69 items
 2458211 transactions (344 MB)

6. Experiments Performed

The CDA, FDM and ODAM algorithm were implemented according to the experimental setup given in Section
4. The Server and the nodes communicate in a network to generate the frequent itemsets after each pass. Initially,
the complete dataset at single node is used to find the frequent k-itemsets. The input to the algorithm consists of two
files: config file and transaction file. The config file contains the details about the number of items and the support
count and the transaction file contains all the transactions. The output is the time taken to generate the frequent k-

130 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

itemsets. For two nodes, the transaction file is horizontally fragmented into two files and assigned to two nodes for
finding the frequent k-itemsets. For three nodes, the transaction file is horizontally fragmented into three files and
assigned to three nodes for finding the frequent k-itemsets.

7. Experimental Results

7.1. Total number of Frequent Itemsets generated in a Time Period
The following results show the number of frequent itemsets generated in a given time period for Zoo and Tic Tac

Toe dataset on single node, two nodes and three nodes using CDA, FDM and ODAM Algorithms.
The Table 1 shows the comparison between CDA, FDM and ODAM execution time for Zoo Dataset on a single

node, Table 2 shows on 2 nodes and Table 3 shows on 3 nodes.

Table 1: CDA, FDM and ODAM for Zoo Dataset on Single Node

Table 2: CDA, FDM and ODAM on Zoo Dataset using 2nodes

Algorithms CDA FDM ODAM

Parameters
TIME
(sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets

TIME
(Sec)

No. of Frequent
Itemsets

Zoo
Dataset

Support 2 Nodes 2 Nodes 2 Nodes 2 Nodes 2 Nodes 2 Nodes

20% 1.571 356 1.207 380 1.082 373

10% 1.4455 688 1.393 749 1.2895 738

8% 1.721 779 1.637 782 1.5865 765

6% 1.625 956 1.784 962 1.679 952

4% 2.522 1387 2.303 1387 2.217 1374

Table 3: CDA, FDM and ODAM on Zoo Dataset using 3nodes

Algorithms CDA FDM ODAM

Parameters
TIME
(sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets

TIME
(Sec)

No. of Frequent
Itemsets

Zoo
Dataset

Support 3 Nodes 3 Nodes 3 Nodes 3 Nodes 3 Nodes 3 Nodes

20% 1.318 396 0.965 383 0.731 370

10% 1.541 696 1.3 695 1.253 682

8% 1.973 695 1.557 695 1.6253 681

6% 2.04 941 1.735 941 1.5424 939

4% 2.302 940 1.984 941 1.875 931

Algorithms CDA FDM ODAM

Parameters
TIME
(sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets

TIME
(Sec)

No. of Frequent
Itemsets

Zoo

Dataset

Support 1 Node 1 Node 1 Node 1 Node 1 Node 1 Node

20% 1.51 683 1.472 679 1.48 654

10% 1.491 1436 1.422 1521 1.45 1514

8% 1.823 1689 1.786 1688 1.79 1650

6% 1.456 1903 1.831 1968 1.76 1945

4% 2.411 2899 2.409 2899 2.4 2884

131 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

The Table 4 shows the comparison between CDA, FDM and ODAM execution time for Tic Tac Toe Dataset on a

single node, Table 5 shows on 2 nodes and Table 6 shows on 3 nodes.

Table 4: CDA, FDM and ODAM on Tic Tac Toe Dataset using 1 node

Algorithms CDA FDM ODAM

Parameters
TIME
(sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets

TIME
(Sec)

No. of Frequent
Itemsets

TTT
Dataset

Support 1 Node 1 Node 1 Node 1 Node 1 Node 1 Node

20% 0.203 9 0.23 9 0.27 9

10% 0.25 45 0.25 45 0.39 45

8% 0.281 53 0.29 53 0.44 53

6% 0.328 53 0.32 53 0.42 53

4% 0.391 89 0.4 89 0.45 89

Table 5: CDA, FDM and ODAM on Tic Tac Toe Dataset using 2 nodes

Algorithms CDA FDM ODAM

Parameters
TIME (sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets TIME (Sec)

No. of Frequent
Itemsets

TTT
Dataset

Support 2 Nodes 2 Nodes
2
Nodes 2 Nodes 2 Nodes 2 Nodes

20% 0.3285 14 0.316 21 0.2825 22

10% 0.219 39 0.331 46 0.311 45

8% 0.2895 41 0.305 53 0.356 54

6% 0.3205 62 0.363 62 0.375 62

4% 0.445 94 0.381 94 0.3775 95

Table 6: CDA, FDM and ODAM on Tic Tac Toe Dataset using 3 nodes

Algorithms CDA FDM ODAM

Parameters
TIME
(sec)

No. of Frequent
Itemsets

TIME
(sec)

No. of Frequent
Itemsets TIME (Sec)

No. of Frequent
Itemsets

TTT
Dataset

Support 3 Nodes 3 Nodes 3 Nodes 3 Nodes 3 Nodes 3 Nodes

20% 0.25 5 0.2803 21 0.2389 21

10% 0.265 42 0.3843 42 0.38 42

8% 0.307 56 0.298 56 0.2757 55

6% 0.344 71 0.3927 63 0.3267 73

4% 0.373 91 0.3283 91 0.354 95

All the algorithms require more time when generating longer candidate itemsets. Generating support counts of
candidate itemsets for each iteration takes approximately three times longer than it takes for the previous iteration.
This is identical for all algorithms. However, ODAM removes a significant number of infrequent 1-itemsets from
every transaction after the first pass, so it finds a significant number of identical transactions.

After eliminating infrequent items, ODAM doesn't enumerate candidate itemsets multiple times for any identical
transaction. Furthermore, it requires a minimal number of comparison and update operations to generate support
because it doesn't require comparison and update operations multiple times for similar transactions. In contrast,

132 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

CDA takes longer because each transaction contains all items, thus requiring numerous comparison and update
operations to candidate itemsets' generate support counts.

The Figure 1 represents the time taken by CDA, FDM and ODAM on Zoo Dataset using 3 nodes and Figure 2
represents total number of frequent itemsets generated on Zoo dataset using 3 nodes. The Figure 3 represents the
time taken by CDA, FDM and ODAM on Tic Tac Toe Dataset using 2 nodes and Figure 4 represents total number
of frequent itemsets generated on Tic Tac Toe dataset using 2 nodes.

Figure 1: CDA, FDM and ODAM Comparison on Zoo Dataset using 3
nodes

Figure 2: CDA, FDM and ODAM Comparison on Zoo Dataset using 3
nodes

Figure 3:CDA, FDM and ODAM Comparison on Tic Tac Toe Dataset
using 2 nodes

Figure 4:CDA, FDM and ODAM Comparison on Tic Tac Toe Dataset
using 2 nodes

7.2. Message Exchange Optimization

In the CDA algorithm, each local site generates support counts and broadcasts them to all other sites to let each

site calculate globally frequent itemsets for that pass. So, the total number of messages broadcast from each site
equals (n - 1 * |C|). We can calculate the total message size using

T=

Where n is the total number of sites and C is number of candidate itemsets.

In FDM, each site broadcasts locally large frequent large itemsets to all other sites. After receiving a request, each

0

0.5

1

1.5

2

2.5

20% 10% 8% 6% 4%

Ti
m

e
in

 se
c

Support %

ZOO DATASET

CDA 3
Nodes

FDM 3
Nodes

ODAM 3
Nodes 0

200

400

600

800

1000

20% 10% 8% 6% 4%To
ta

l N
o.

 o
f F

re
qu

en
t I

te
m

se
ts

Support %

ZOO DATASET

CDA 3
Nodes

FDM 3
Nodes

ODAM 3
Nodes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

20% 10% 8% 6% 4%

Ti
m

e
in

 se
c

Support %

TIC TAC TOE DATASET

CDA 2
Nodes

FDM 2
Nodes

ODAM2
Nodes

0
10
20
30
40
50
60
70
80
90

100

20% 10% 8% 6% 4%

TIC TAC TOE DATASET

CDA 2
Nodes

FDM 2
Nodes

ODAM 2
Nodes

133 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

polling site sends a polling request to all remote sites other than the originator site. Upon receiving the polling
request from all other sites, the polling site computes whether that candidate itemset is globally frequent and
broadcasts only globally frequent itemsets to all other sites. Hence, it exchanges more messages because each
polling site sends and receives support counts from remote sites. It also needs to send global support counts to all
participating sites when a candidate itemset is heavy and subsequently increases the communication cost.
Furthermore, each polling site receives polling requests only from one site.

 T=
Where n is the total number of sites and LL is the locally large items and FG is globally large frequent itemsets.

In contrast with CDA, ODAM sends support counts of candidate itemsets to a single site, which calculates the
globally frequent itemsets for that pass. We refer to the sites that send local support counts as the sender and the site
that generates the globally frequent itemsets is the receiver. For example, with three sites, two broadcast their local
support counts of candidate itemsets to the third site. The third site is responsible for generating that iteration's
globally frequent itemsets. The total number of messages broadcast from a sender site to a receiver site equals (1 *
|C|).

Once the receiver site generates globally frequent itemsets, it broadcasts them to all sender sites. The total number
of messages broadcast from the receiver is (n - 1 * |FG|). We can calculate the total message broadcasting size (the
aggregate of sender and receiver sites messages) using

T=

Where n is the number of sites, C is the candidate itemsets, and FG is the globally frequent itemsets.
To compare the number of messages that ODAM, FDM, and CDA exchange among various sites to generate the

globally frequent itemsets in a distributed environment, we partition the original data set into three partitions. Figure
5 and Figure 6 depicts the total size of messages (that is, number of bytes) that ODAM, FDM, and CDA transmit to
generate the globally frequent itemsets with different support values for two different datasets.

Figure 5:Total Message Size (bytes) for TTT dataset Figure 6:Total Message Size (bytes) for US Census dataset

As above figures shows, ODAM exchanges fewer messages among different sites to generate globally frequent

itemsets. In all cases, ODAM reduces the communication cost by 50 to 80 percent compared to CDA. In each site,
CDA exchanges messages with all other sites after every pass, and consequently the message exchange size
increases when we increase the number of sites. ODAM reduces communication cost by 20 to 45 percent compared
with FDM because FDM sends each support count to the polling site. After receiving a request, each polling site
sends a polling request to all remote sites other than the originator site. Upon receiving the polling request from all
other sites, the polling site computes whether that candidate itemset is globally frequent and broadcasts only

134 Vinaya Sawant and Ketan Shah / Procedia Computer Science 79 (2016) 127 – 134

globally frequent itemsets to all other sites. Hence, it exchanges more messages because each polling site sends and
receives support counts from remote sites. It also needs to send global support counts to all participating sites when
a candidate itemset is heavy and subsequently increases the communication cost. Furthermore, each polling site
receives polling requests only from one site. Therefore, without receiving the support counts of remote sites, we
can't presume whether an itemset is heavy.

8. Discussion of Results

Performance of the algorithm depends on the number of nodes and number of transactions. The algorithms will
take smaller execution time if we increase the number of nodes and also if the number of transactions are more.

Also, the algorithms will take longer execution time if we increase the number of nodes but the number of
transactions is less.

Scalability is relative to support factors for a larger datasets. Performance increases for a smaller support factor if
there is increase in the number of nodes for larger datasets.

Most DARM algorithms don't have an efficient message optimization technique, so they exchange numerous
messages during the mining process.

The communication cost in DARM can be determined by the number of messages exchanged. ODAM exchanges
fewer messages as compared to CDA and FDM. As we decrease the support count, the message size decreases as
there are fewer candidates generated for higher support counts as compared to the lower counts. Also, the execution
time taken by an algorithm increases if there more number of messages are passed in a distributed environment.
ODAM algorithm can be further modified to decrease the communication cost further in a dynamic distributed
environment and also can be extended to work on vertically partitioned datasets.
 Researchers in this area should also focus more on developing algorithms and architectures that will be work on
real data sets for Distributed Association Rule Mining. Future algorithms and methods should also consider the
development of fault-tolerant and easily extendable systems in the area of distributed association rule mining. Such
systems will greatly reduce communication and interpretation costs; improve efficiency and scalability of the
DARM system, all of which are common issues with existing systems.

References

1. Park, Byung-Hoon, and Hillol Kargupta. "Distributed Data Mining: Algorithms, systems, and applications" (2002).
2. Rakesh Agrawal, John C. Shafer, “Parallel Mining of Association Rules”, IEEE Transactions on Knowledge and Data Engineering, Volume

8, no.6, December 1996.
3. David W. Cheung, Jiawei Han, Vincent T. Ng, Ada W. Fu and Yongjian Fu, “A Fast Distributed Algorithm for Mining Association Rules”,

Fourth International Conference on Parallel and Distributed Information Systems, 1996.
4. Mafruz Zaman Ashrafi, David Taniar and Kate Smith, “ODAM: An Optimized Distributed Association Rule Mining”, IEEE Distributed

SYSTEMS ONLINE, Volume 5, No.3, March 2004.
5. Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,

School of Information and Computer Science.
6. Ogunde, A. O., et al. "A review of some issues and challenges in current agent based distributed association rule mining." Asian Journal of

Information Technology 10.2, 2011.

