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Abstract 

This paper gives a generating function for unlabelled graphs of order n. The coefficient of 
each monomial in this function shows the number of unlabelled graphs with given size and the 
number of odd vertices. Furthermore, the numerical examples are given for 1 ~< n ~< 9. 

I. Introduction 

In this paper we consider enumeration problems of  finite undirected graphs without 

multiple edges or loops. In a graph, a vertex of  even degree is called an even vertex 

and a vertex o f  odd degree is called an odd vertex. A graph whose vertices are all 

even is said to be even. We refer to a graph with order n and size (the number 

o f  edges) N as an (n,N)-graph. I f  an (n, N )-graph is rooted at a specified vertex 

o f  degree d, it is referred to as a rooted (d)(n,N)-graph.  We shall first consider the 

enumeration of  unlabeUed even rooted (d)(n,  N)-graphs and then from this enumeration 

we shall derive a formula for the number o f  unlabelled (n,N)-graphs with d odd 

vertices. 

Tazawa [5] got a generating function which tells us the number of  graphs of  order 

n with d odd vertices. This was derived from Theorem 2 ([1, p. 858]). Read and 

Robinson [4] gave a generating function which tells us the number of  labelled ( n , N ) -  

graphs with d odd vertices and, Tazawa and Shirakura [6] gave an alternative counting 

formula o f  finding the number. If  we tried to resolve the problem treated in this paper, 

using a modified theorem obtained by adding any information on edges to Theorem 2 

in [1], it seems to be very difficult. So we will resolve this problem along Liskovec 

method [3]. The last section shows the numerical examples for 1 ~<n~<9. 
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2. Main theorem 

Let p be a positive integer. Then a p-tuple of  nonnegative integers, ( j ) =  
(jbj2, .,jp), satisfying P r '  • " Y'~r=l 7r = P is called a partition of  p. A partition 
( j)  = (jl,j2 . . . . .  jp) of  p may sometimes be written as ( j )  = (lJ~2 j2 . . .  pip). In this 
paper the following notations are used: For a partition ( j )  of  p, 

P p 

lJl = r j . (=p) ,  J! = I i j . ! ,  
r = l  r = l  

P P 

" ( J )  = 1- I  r j r '  s(j) = Z j  r. 
r = l  r = l  

Let ( j ) = ( j l  ,j2 . . . . .  jp) and (k)=(k l ,  k2 . . . . .  kq) be partitions of  p and q, respectively, 
and consider the following three functions: 

f l+ ( ( j ) ;x )  = 1--[ (1 "q-xV'm]) (:'m)jejm 
l ~ :  <m<~ p 

P 

× 1-'[(1 + x:):(/:(/'-l)12)+ff:-l)121/, 1--[( 1 + x:12) j:, 
:=I 21: 

P q 

f l+( ( j ) ,  (k); x) = 1"-[ 1-I( 1 + ( -  1 )v, mllmxV, m] )(:, m)jekm, 
:=1  m=l  

f l - ( (k);x)  = I-I (1 + (--1)((te"]le)+te'm]/m)xte'm])(e'm)k'km 
l <~: <m~q 

q 

X H ( 1 "t'- X m )m(km(k. -1 )f2)+[(m-1 )t2}k,,, I ' I (  1 - -  X m12 ) km , 

m=l 2ira 

(2.1) 

(2.2) 

( 2 . 3 )  

where [ : ,m] and ( : , m )  denote the 1.c.m. and g.c.d., respectively, and [r] is the greatest 
integer not exceeding r. Furthermore, in the case of  p = 0 or q = 0, the corresponding 
expressions are defined as 1. Then we have: 

Theorem 1. Let n be a positive integer. Then the generating function having the num- 
ber of unlabellled (nonisomorphic) even rooted (d)(n + 1,N)-graphs as the coefficient 
of :gV y d for a nonnegative even integer d is given by 

1 2 - s ( j )  2 -s(k) 
E ( n + l , x , y ) = ~  Z Z Z j ! r r ( j ) ~  Q(L+R)'  (2.4) 

p+q=n (j) (k) 
[Jl=P Ikl=q 
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where 

Q = fl+((j));x)f l+((j) ,(k);x)f l-((k);x),  
P q 

L = H ( 1  + (xy):)  j: H ( I  - (xy)m) k', 
f = l  m = l  

P q 

R = I-I(1 + ( -1) : (xy) : )  j: H ( 1  - (- l)m(xy)m) k'. 
: = 1  m = l  

(2.5) 

For example, we have 

E(4,x, y)  = 1 + x 3 + x3y 2 q- x4y 2. (2.6) 

The proof of  this theorem will be given in the next section. Now, for a nonnegative 
• (d) be the set of  labelled (n,N)-graphs with d odd vertices and even integer d let .a4n, N 

let r(d) be the set of  labelled even rooted (d)(n + 1,N + d)-graphs, where the ~n+l,N+d 
• (d) and root in ~n+l,N+d r(d) is V0. We shall establish a l-1 correspondence between jv~n, N 

AA(d) Next we add to G a new vertex v0. Finally, ~n+l,N+d" I'(d) Consider any graph G of ,-,n,N. 
we construct a graph G' from G and Vo by specifying that v0 is adjacent to each of 

(a) 
odd vertices of  G. Then G' is one which belongs to En+I,N+ d. It is easily seen that 

this correspondence is 1-1 and that every labelled (n,N)-graphs with d odd vertices 
can be obtained in this way from some graph in ,,(d) "Ld I f  twO labelled graphs of / ' n +  1, N T  " 

Aa(d) n,N are isomorphic, then the corresponding two labelled graphs of r(d) ~n+l,N+d are also 
isomorphic, and vice versa. Hence we have: 

Theorem 2. Let n be a positive integer. Then the number ,,(d) of  unlabelled (n,N)-  "n,N 
9raphs with d odd vertices is equal to the coefficient of  xN+dy d in the polynomial 
E(n + 1,x, y). 

(d) 
Let N,,(x, y) be the polynomial having an, N as the coefficient of xUy a. Then Nn(x, y) 

is a generating function for prescribed unlabelled graphs, as seen in the just above 
theorem. If  we consider n = 3 as an example, the coefficient of a term x4y 2 in (2.6) 

gives the number of  (3,2)-graphs with 2 odd vertices. That is, the generating function 
N3(x,y ) is 1 + X  3 + x y  2 +x2y 2. Note that if we set y = 0  in Nn(x,y), then Theorem 2 

is reduced to the result given by Liskovec [3]. 

3. The proof of Theorem 1 

We take the group A consisting of all permutations acting on a set V={vo, Vl . . . . .  vn} 
which fix v0. For 9 E A we denote by e(o,N,d) the number of  even rooted (d)(n+l ,N)-  
graphs which are fixed by 9, where v0 is the root vertex. Then Burnside's Lemma shows 
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that the number, E(n + 1,N,d), of even rooted (d)(n + 1,N)-graphs is given by 

1 
E(n + 1,N,d) = ~ Ze(g ,N ,d ) .  (3.1) 

gEA 

If we consider the generating function 

e(g, x, y) = Z E e(g,N, d)xN y d (3.2) 
d=0 N=0 

for even rooted graphs of order n + 1 which are fixed by g, E(n + 1,x,y) can be 
written as 

1 Z e ( g , x , y ) .  (3.3) E(n ÷ 1,x, y) = 
gEA 

Therefore, our goal is to find a formula for e(g,x,y). 
As seen in [3], we consider a graph in which the number +1 or - 1  is assigned to 

each vertex. We call such a graph a vertex-signed graph. Each vertex can be referred 
to as 'positive' or 'negative' depending on the sign assigned to the vertex. For g E A 
let F be a vertex-signed graph fixed by g. Note that in F the allocation of the numbers 
on the vertices is preserved under g. This implies that all vertices in each cycle of g 

have the same sign. 
Let Cl and c2 be cycles of g and let F~,,~ be the maximal bipartite subgraph of F 

such that its partite sets are Cl and c2. Then in Fc~,~2 we denote the degree of each 
vertex in cl and the degree of each vertex in cz by d~2(c1) and d~,(c2), respectively. 

We assign the number 

f ,S(cl)dc2(Cl)8(C2) dcl(c2) for C 1 # C2, 

8F(C1 ,C2)  

e(cl )d~ (~) for ci = c2 

(3.4) 

to the edge-set of Fc~,c2, where e(ci) is the sign of a vertex in ci(i = 1,2). Put 

e(r)= H ~r(cl, c2) (3.5) 

which is called the sign of F, where the product II is over all unordered pairs of cycles 
Cl,C2 in g (cl and c2 are not necessarily distinct). Then it is easily observed that the 
sign of F can be written as 

e(F) = H e(ci)d(c')' (3.6) 
ci 

where d(ci) is the degree of each vertex of ci in F, since d(c i )  = ~-'~cj dcj(Ci). Liskovec 
[3] gave the following lemma. 
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Lemma 3. 

2s(g) 

Z e ( F ) =  (3.7) 
{~(<)=±1} 0 

where the summation is over all possible allocations of +1 or -1  on the vertices 
which are preserved by g. 

if F is an even graph, 

otherwise, 

Let H(g,N,d) be the set of rooted (d)(n+ 1,N)-graphs which are fixed by g. It fol- 
lows from Lemma 3 that the following lemma holds. This is also a slight modification 
of the corresponding result in [3]. 

Lemma 4. 

e(g,N,d) = 2 -s(g) Z E e(F). (3.8) 
{~(c,)=t:l } F6H(g,N,d) 

Now consider a vertex-signed rooted (d)(n + 1,N)-graph F which is fixed by g E A. 
Let W be the set of positive vertices of F. Of course, g(W) = W. Put W1 = W and 
W2 = V -  W. We denote by f i  =gl IV, the permutation on Wi obtained by restricting g to 
Wi(i= 1,2). Then with respect to the subgraphs F[Wi] induced by Wi, fi(F[Wi])=F[Wi] 
holds for i = 1,2. Moreover, for the maximal bipartite subgraph Fw,,w2 of F such that 
its partite sets are W1 and W2, we have 

e( F ) = e( F v6,w2 )e( F[ Wz ] ). (3.9) 

Therefore, summing e(F) over all F 's  in H(g,N,d) with the positive vertex set W, we 
obtain 

E ~(F) = E 7+(fl,K, a)7~(f l , f2 ,L,b)~-( f2 ,M) 
FEH(g, N, d) K+L+M=N 

a+b=d 

+ Z + + ? ( f l ,K)y  2 ( f l , f2 ,L,b)?-( f2,M,a) ,  (3.10) 
K+L+M=N 

a+b=d 

where the first sum of the right-hand side is for the case that the root vertex v0 is in 
W1 and the second one is for the case that it is in We, and where 

7+(fl,K,a) " 

7+( f l , K)  " 
7~( f , , f z ,L ,b)"  

y-(f2,M,a): 
7 - ( f 2 , M )  " 

The number of rooted (a)([Wll,K)-graphs fixed by f l .  Here [Wll 
means the cardinality of W1. 

The number of ([Wll,K)-graphs fixed by f l .  
The sum of signs of rooted (b) bipartite graphs fixed by g in which 
the partite sets are W1 and W2 and in which the root vertex Vo is 
in Wi for i = 1,2. 
The sum of signs of rooted (a)( I W2l,M)-graphs fixed by f >  
The sum of signs of (IW2l,M)-graphs fixed by f2. 
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By applying (3.10) to Lemma 4, the equality 

e(o,N,d) = 2-s(°)(Q! + Q2) 

is obtained, where 

Q1 = Z (l) Z ?+( f l ,K ,a )7~( fb f2 ,L ,b )y - ( f2 ,M) ,  
K+L+M=N 

a+b=d 

(3.11) 

(3.12) 

Q2= Z (2) Z ~,+( f l ,K)y f ( fb f2 ,L ,b )y - ( f2 ,M,a)  
K+L+M=N 

a+b=d 

and the summations ~(1) and }-](2) are taken over all subsets W (sets of positive 

vertices) of V satisfying g(W)= W provided that the former is for v0 E W and the 
latter is for v0 ~ W. 

Now we introduce the generating functions Y+(fl,x, y), 7+(f l ,x) ,  ~,i:k(fi, f 2 , x ,  y )  

(i 1,2),~,-(fz,x,y) and 7 - ( f 2 , x )  for ?,+(fbK, a), + + = ?' (fl ,K),~' i ( f i , f2 ,L ,b) ,  
~,-(f2,M,a) and y - ( f 2 , M ) ,  respectively. Then e(o,x,y) in (3.3) becomes 

e(o,x,y) = 2-s(°){ .---.(1) + ~ ( f l , x , y )y~( f l , f 2 , x , y )~ ' - ( f~ ,x )  

+ Z (2) Y+( f l , x )7 f ( f l ,  f2,x, y )v- ( f2 ,x ,  y)}. (3.13) 

Let Cl and c2 be cycles of 9 whose lengths are ~ and m, respectively. We consider 
the 2-subsets which have one vertex in each of those cycles and we define 

K(cb c2)={size of Fc,,c2[F is a graph fixed by 0}. 

Then we have the following remark (see [2, p.116]). 
Remark: (1) The case Cl ¢ c2. Then cl and c2 induce (Y,m) cycles of length V,m] 

on those 2-subsets. Thus K(Cl,C2) = {k[l',m]Ik = 0, 1 ..... (g,m)}. Each vertex of Cl is 
in [f,m]/( of the 2-subsets of one such cycle of length [E,m]. So if the size of Fc~,~2 
is k[E, m], clearly d~ 2 (ci) = k[f, m]/• and tic, (c2) = k[E, m]/m. 

(2) The case cl = c2. Suppose ( is even. This cycle cl induces ( E -  2)/2 cycles 

of length Y and one cycle of length E/2 on those 2-subsets. Thus K(Cl,C2) = {kglk = 
0, 1 ..... (~ -2 ) /2}  U {E/2}. Each vertex of cl is in two of the 2-subsets of one such cycle 
of length f and also it is in exactly one of the 2-subsets of the cycle of length E/2. 
So dcl(c  I )= 2k or 2k + 1, depending on whether the size of Fcl.c2 is kf' or kf + (f/2). 
When f is odd, the cycle Cl induces ( g -  1)/2 cycles of length f on those 2-subsets. 
Thus K(Cl, c2) = {k~[k = 0, 1 ..... (E - 1)/2}. Each vertex of Cl is in two of the 2-subsets 
of one such cycle of length ~. So if the size of F~,,c2 is kg', clearly dc~ (Cl )=  2k. 

Let us come back to (3.13). For example, let Cl and c2 be cycles of f i  and f2,  
respectively, whose lengths are Y and m, where we assume that neither Cl nor c2 
contain the root vertex v0. Note here that each vertex of ci is positive while each 
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vertex of c 2 is negative. Then it is easy to see from remark that if there are k[F, m] 
edges that join vertices of Cl to vertices of c2, there are ((e)")) different ways. Thus, 

it follows that 

(E,m) 

(-~-l)k[~'m]/g(--1)k[F'm]/m((E'?))xk[g'm] = ( l  q-(--1)[t,m]/rnx[',m])(t,m) 

k = 0  

contributes to 7~( f l , f2 ,x ,  y) and 7i2(fl , f2,x,  y), as seen in (3.5). Considering simi- 
larly the other cycles of f l  and f2,  we have 

Lemma 5. Let p and q be the numbers of  vertices in f l and f 2, respectively, ex- 
cepting the root vertex Vo, and let ( j )  = ( j l , j 2 , . . . , j p )  and (k) = (kl,k2 . . . .  ,kq) be 
the cycle structures of  f l and f 2, respectively, where j t  is the number of  cycles of  
length E in f l not containing vo and km is the number of  cycles of  length m in f2  
not containing vo. Then the followings hold." 

P 
+ + • 

7 ( f l , x , y ) = f l  ( ( ] ) , x ) H ( 1  +(xy)t)  j', 
~=1 

q 

7~( f  l , f  2,x, y) =- fl+((j),(k),x) I-~(1 - (xy)m) kin, 
m= l 

~ +  + • ( f l , x ) = f l  ((]),x), 

7 - ( f 2 , x )  = fl-((k),x), 

P 

7i2 ( f  l, f 2,x, y) = fl+((j), (k ),x) H ( 1  + ( -  l / ( xy ) t )  j', 
F = I  

q 

])-(f  2,x,y) = fl-((k),x) I-I(1 - (-1)m(xy)m) k'. 
m = l  

By applying Lemma 5 to (3.13) it follows from (3.3) that Theorem 1 holds. This 
completes the proof of Theorem 1. 

4. Numerical examples 

The numerical examples of a~,a) N, the number of unlabelled (n,N)-graphs with d odd 
vertices, will be shown in this section for 1 ~<n ~<9. Each of nine numerical tables 
corresponds to each n = 1,2 . . . .  ,9. The row headings of such a table are the sizes of 

(a) is graphs and the column headings are the numbers of odd vertices. The entry an~ v 
made at the (N,d)th position of the table corresponding to the size N and the number 
d of odd vertices for each n. 
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n = 8  

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

0 2 4 6 8 
1 

1 
1 

1 1 
1 3 
1 7 

1 
2 1 
4 2 1 
8 7 1 

3 12 24 14 3 
4 27 51 29 4 
7 52 105 52 5 
9 102 187 96 8 
16 156 328 148 15 
18 234 480 232 16 
25 299 660 303 25 
24 365 774 368 26 
29 376 836 376 29 
26 368 774 365 24 
25 303 660 299 25 
16 232 480 234 18 
15 148 328 156 16 
8 96 187 102 9 
5 52 105 52 7 
4 29 51 27 4 
3 14 24 12 3 
1 7 
1 2 

1 

8 7 1 
4 3 1 
2 1 1 
1 1 

1 
1 

n = 9  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

0 2 4 6 8 

1 
1 
1 1 

1 1 2 1 
1 3 4 2 1 
1 7 8 7 2 
3 12 24 18 6 
4 27 58 45 14 
7 60 140 113 25 
13 130 329 253 46 
21 272 729 521 94 
36 533 1474 1038 171 
58 969 2740 1937 291 
83 1590 4697 3277 473 
118 2398 7310 5074 715 
156 3338 10296 7165 978 
189 4250 13 183 9141 1224 
213 4913 15319 10558 1400 
228 5150 16120 11076 1466 
213 4913 15319 10558 1400 
189 4250 13 183 9141 1224 
156 3338 10296 7165 978 
118 2398 7310 5074 715 
83 1590 4697 3277 473 
58 969 2740 1937 291 
36 533 1474 1038 171 
21 272 729 521 94 
13 130 329 253 46 
7 60 140 113 25 
4 27 58 45 14 
3 12 24 18 6 
1 7 8 7 2 
1 3 4 2 1 
1 1 2 1 

1 1 
1 

1 
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