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We present a gauge theory for a superalgebra that includes an internal gauge (G) and local Lorentz 
(so(1, D − 1)) algebras. These two symmetries are connected by fermionic supercharges. The field 
content of the system includes a (non-)abelian gauge potential A, a spin-1/2 Dirac spinor ψ , the Lorentz 
connection ωab , and the vielbein ea

μ. The connection one-form A is in the adjoint representation of G, 
while ψ is in the fundamental. In contrast to standard supersymmetry and supergravity, the metric is 
not a fundamental field and is in the center of the superalgebra: it is not only invariant under the 
internal gauge group, G, and under Lorentz transformations, SO(1,D − 1), but is also invariant under 
supersymmetry.
The distinctive features of this theory that mark the difference with standard supersymmetries are: i) the 
number of fermionic and bosonic states is not necessarily the same; ii) there are no superpartners with 
equal mass; iii) although this supersymmetry originates in a local gauge theory and gravity is included, 
there is no gravitino; iv) fermions acquire mass from their coupling to the background or from higher 
order self-couplings, while bosons remain massless. In odd dimensions, the Chern–Simons (CS) form 
provides an action that is (quasi-)invariant under the entire superalgebra. In even dimensions, the Yang–
Mills (YM) form is the only natural option and the symmetry breaks down to G ⊗ SO(1,D − 1). In four 
dimensions, the construction follows the Townsend–Mac Dowell–Mansouri approach, starting with an
osp(4|2) ∼ usp(2,2|1) connection. Due to the absence of osp(4|2)-invariant traces in four dimensions, 
the resulting Lagrangian is only invariant under u(1) ⊕ so(3,1), which includes a Nambu–Jona-Lasinio 
(NJL) term. In this case, the Lagrangian depends on a single dimensionful parameter that fixes Newton’s 
constant, the cosmological constant and the NJL coupling.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

After four decades of extensive search, no evidence of super-
symmetry (SUSY) has been found [1], at least in its simplest 
form [2]. A distinct signal of SUSY would be the existence of part-
ners that replicate the spectrum of observed particles [3]. In the 
minimal supersymmetric scenario (N = 1 SUSY), for every lep-
ton, quark and gauge quantum a corresponding particle/field with 
identical quantum numbers but differing by h̄/2 in intrinsic an-
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gular momentum would exist [4,5].1 In an unbroken supersym-
metric phase these SUSY partners would have degenerate masses 
and since no partners have been observed even approximately re-
flecting this degeneracy, SUSY is believed to be severely broken at 
current experimental energies.

The origin of the mass degeneracy can be traced back to the as-
sumption in standard (global) SUSY that all fundamental fields are 
in a vector representation of the supercharge Q, and that this gen-
erator commutes with the Hamiltonian. In addition, SUSY is usually 
expected to be defined in a globally flat Poincaré-invariant space-
time, which seems unrealistic in view of the fact that we live in an 

1 This would be the case for the N = 1 SUSYs; in more elaborate N ≥ 2 models, 
more partners would accompany every observed state.
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evolving spacetime that need not possess any particular symmetry
at any given time. If spacetime is not flat the supercharges need 
not commute with the Hamiltonian, lifting the mass degeneracy.2

In this sense, supersymmetry could be broken by contingent ef-
fects – spacetime not being maximally symmetric –, while the 
unbroken situation could be regarded as an unlikely accident, an 
ideal situation or an approximation to reality valid only in a small 
neighborhood at best.

Here we consider a theory that keeps the essence of the super-
symmetry paradigm – that fermions and bosons can be combined 
into a nontrivial representation of a supergroup –, but which dif-
fers in three important aspects from the standard SUSY construc-
tion. First, SUSY here is an extension of the symmetries of the 
tangent space. In fact, spinors, including the supercharges, are in 
a spin-1/2 representation of the Lorentz group, which is an ex-
act invariance of the tangent space. According to the equivalence 
principle, any theory consistent with general relativity is invariant 
under Lorentz transformations acting locally on the tangent bun-
dle, independently of the spacetime curvature [7]. This symmetry 
can be made manifest by projecting all spacetime tensors on the 
tangent space, allowing supersymmetry to be realized on the tan-
gent of any curved manifold as if in Minkowski spacetime. This 
scheme alone, however, would still give rise to a particle spectrum 
with boson–fermion mass degeneracy requiring a credible super-
symmetry breaking scheme.

The second point of departure from the standard global (rigid) 
SUSY is that we assume the fundamental fields in an adjoint rep-
resentation, as parts of a connection one-form for a superalgebra, 
and not in a vector representation of the supergroup. In this ap-
proach, bosons and fermions are parts of the same connection, 
an idea that has been exploited since the mid-70s to construct 
supergravities [8], and was extended to construct Chern–Simons 
gauge theories with local off-shell SUSY including gravity for all 
odd dimensions [9–12]. This approach is particularly suited for 
a theory with spin-3/2 fermions, which are naturally one-forms 
(ψα = ψα

μdxμ), but does not seem to work for ordinary SUSY with-
out gravitini.

The third element in the construction is the use of the viel-
bein to project the Clifford algebra of spinors from the tangent 
space onto the spacetime manifold, turning the Dirac matrices into 
matrix-valued one-forms. The consequence of this is that spin-3/2 
fermions (gravitini) are unnecessary. Conversely, this allows read-
ing the supersymmetry transformations as defined on the tangent 
space, which for all practical purposes can be taken as Minkowski 
spacetime.

This approach gives rise to a scenario where, as in the Standard 
Model, bosons are interaction carriers described by massless con-
nection fields in the adjoint representation of the gauge algebra, 
while fermions are vectors under the gauge group (sections in the 
gauge bundle) and their currents are sources for the bosonic fields. 
There are no Bose–Fermi pairs, particles of different spins need 
not have equal masses and all fields are coupled in the standard 
gauge-invariant way. The theory can be defined in an arbitrarily 
curved background and SUSY requires the inclusion of gravity, so 
this model could be seen as a hybrid between standard SUSY and 
SUGRA. In contrast to supergravity, however, all fermions are spin-
1/2 particles and no gravitini are included.

2 For example, if the spacetime had constant curvature with cosmological con-
stant Λ, the difference in mass between supersymmetrically related states would 
be �m/m ∼ G

√|Λ| which, for the best current estimate is extremely small, 
∼ M−2

Pl

√
10−120 M4

Pl ∼ 10−60 [6].
2. Spin-1/2 fields as part of the connection

Consider arranging bosonic and fermionic fields into a connec-
tion one-form as follows,

A∼ ArBr +QΓ ψ + ψΓQ, (1)

where Ar = Ar
μdxμ is a connection one-form, ψ is a Dirac or Ma-

jorana spinor and the generators Ba and Q span a superalgebra of 
the form

[B,B] ∼ B, {Q,Q} ∼B,

[B,Q] ∼ Q, [B,Q] ∼ −Q. (2)

In the fermionic terms in (1) the spinor representation of the viel-
bein is used

Γ = dxμΓμ = dxμea
μΓa (3)

where ea
μ are the components of the vielbein and Γa are the Dirac 

matrices defined on the tangent space, thus projecting the Clif-
ford algebra from the tangent onto the base manifold. Conversely, 
it allows to represent tensors and differential forms from the base 
manifold by tensors and differential forms on the tangent space. 
Thus, the vielbein does not play an active dynamical role, which 
is consistent if the vielbein is further assumed that it does not 
transform under supersymmetry. The resulting theory will be a 
gauge theory of the Lorentz group by construction, with Lorentz 
and supersymmetry transformations locally realized on the tangent 
bundle.

In this framework the presence of spinors has two effects: they 
force the inclusion of Lorentz symmetry in the SUSY algebra, and 
bring in a metric structure through the vielbein ea . These two 
ingredients make the incorporation of gravity practically unavoid-
able.

2.1. Symmetry

Under gauge transformations A behaves as a connection one-
form, A → A′ = g−1(A + d)g , where g(x) = expΛ(x) is an el-
ement of the gauge group and Λ is in the algebra G . For an 
infinitesimal transformation, δA = dΛ + [A, Λ]. In particular, for 
a local supersymmetry transformation generated by Λ(x) = Qε −
ε̄Q, the connection changes by

δA= (
δε Ar)Br +Q δε(Γ ψ) − δε(ψΓ )Q. (4)

This translates to the component fields as

δε Ar = −i
[
ε̄{Γ }rψ + ψ̄{Γ }rε

]
(5)

δε
(
ea
μΓaψ

) = −→∇με, δε
(
ψΓaea

μ

) = −ε̄
←−∇μ, (6)

where {Γ }r denotes a properly (anti-)symmetrized product of 
Dirac matrices, and ∇ is the covariant derivative for the connection 
in the spin-1/2 representation of the bosonic subalgebra. Finally, it 
can also be checked that successive gauge transformations of A
form a closed off-shell algebra, [δΛ, δ�]A = δ[Λ,�]A. There is no 
need of extra fields to close the algebra, a general feature of super-
symmetric theories based on super-connections [11].

2.2. Absence of gravitini

In ordinary gauge theories the metric is assumed to be invari-
ant under the internal gauge transformations. Analogously, in this 
case we assume the vielbein to be invariant under supersymmetry, 
δεea

μ = 0. This allows writing (6) as
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Γμδεψ = −→∇με, δε(ψ)Γμ = −ε̄
←−∇μ, (7)

which can be solved as

δεψ = 1

D
/∇ε δεψ = − 1

D
ε̄

←−
/∇, (8)

where D is the dimension of spacetime.
The condition δSUSY ea

μ = 0 means that the metric gμν , which is 
invariant under the internal gauge group and under Lorentz trans-
formations,3 is also invariant under supersymmetry. In particular, 
this means that there is no need here to introduce gravitini, in 
spite of this being a supersymmetric theory in a gravitational back-
ground.

Plugging δψ from (8) back into (6) yields the constraint(
δb

a − 1

D
ΓbΓ

a
)

∇aε = 0, (9)

where ∇a = Eμ
a ∇μ is the covariant derivative projected onto the 

tangent space, and Eμ
a is the inverse vielbein, Eμ

a eb
μ = δb

a . It is easy 
to see that Pb

a ≡ δb
a − 1

D ΓbΓ
a projects spinorial one-forms in the 

tangent space χα
a ∈ 1/2 ⊗ 1, onto the spin-3/2 subspace. Its or-

thogonal complement, δb
a − Pb

a = 1
D ΓbΓ

a projects onto the spin 
1/2 components. Consequently, (9) eliminates the spin-3/2 compo-
nent from ∇aε , which is consistent with the fact that no gravitini 
are included in the connection.

A further consistency check is that the projection operator itself 
is invariant under supersymmetry, both in the tangent space (Pa

b) 
and in the base manifold (Pν

μ).4

The projection (9) is the covariant version of the constraint 
found by Wess and Zumino in their seminal paper [13]. There, the 
spinorial parameter α(x) that defines a local SUSY transformation 
is expected to obey the constraint(

1

4
ΓaΓ

b − δb
a

)
∂bα = 0. (10)

The most general solution for this equation is ∂aα = Γaβ . The con-
sistency condition (integrability) for this relation implies ∂a∂bα =
∂b∂aα, which means that β must be a constant spinor, and α(x)
should be a linear function of the coordinates,

α(x) = α0 + xaΓaβ.

This has two important consequences. First, supersymmetry in the 
Wess–Zumino model is not a gauge symmetry, described by ar-
bitrary local functions, but it is a rigid transformation. The SUSY 
transformations are parametrized by two constant spinors α0 and 
β and therefore the mixing between fermions and bosons ev-
erywhere in spacetime depends on the values of these two con-
stant spinors. Second, the spacetime manifold must be flat (four-
dimensional) Minkowski space, because only in a flat manifold the 
combination xaΓa has an unambiguous meaning.

In our construction, the general solution of (9) is given by 
∇aε = Γaβ , for an arbitrary spinor β , and the consistency relation 
is

[∇a∇b − ∇b∇a]ε = [ΓbΓa − ΓaΓb]β. (11)

The left hand side is an algebraic expression involving the cur-
vature components of the bosonic gauge connections; (11) es-
tablishes an algebraic relation at each point of the background 

3 The vielbein ea , however, transforms as usual like a Lorentz vector.
4 Since ea

μ and its inverse, Eμ
a , are invariant under SUSY, the projector Pν

μ =
ea
ν Eμ

b Pa
b also commutes with supersymmetry.
between ε and some arbitrary β . The number of independent glob-
ally defined solutions of Eq. (9) depends on the gauge curvatures 
and on possible topological obstructions. In a typical experimen-
tal setting in accelerators, however, the curvatures are negligible 
in the region where the experiment are carried out. The rele-
vant regions in those cases are huge compared with the quan-
tum wavelength of the particles involved, but at the same time 
are extremely small compared with the local radius of curvature 
of spacetime and, to a good approximation the curvature can be 
safely assumed to vanish. Then β can be taken equal to zero and 
ε approximates a Killing spinor.

It is not so obvious how this equation is solved in backgrounds 
not continuously connected to the globally F = 0 configuration, 
which might lead to topological obstructions that break supersym-
metry. In this sense, this type of supersymmetry may be as fragile 
as standard one that assumes Minkowski spacetime. However, as 
we will see below, the vanishing gauge curvature (F = 0) is a 
generic property of the odd dimensional vacua, in which case the 
ground states can be expected to be supersymmetric. In even di-
mensions, however, this is no longer true: the “vacua” need not 
have vanishing gauge curvature, but in that case the action itself 
is not locally supersymmetric due to the nonexistence of a (super) 
gauge-invariant action in even dimensions.

In the construction outlined here the incorporation of super-
symmetry in the gauge algebra strongly restricts the field content 
of the theory. In particular, the resulting theory requires, the in-
clusion of a soldering form ea

μ invariant under supersymmetry, 
a Lorentz connection ωa

bμ , and an internal gauge connection AK
μ , 

apart from the spin-1/2 field, charged with respect to the internal 
gauge interaction. The dynamics of these fields and the way they 
couple with each other is dictated by the connection which de-
pends critically on the spacetime dimension, and the Lagrangian 
that is used. Here we consider using the CS form for odd dimen-
sions and the YM form in even dimensions, but of course other 
options exist.

3. Lagrangian D-forms

The dynamical features of a system described in terms of these 
fields should be obtained from a Lagrangian L(A) that is expected 
to be either an invariant or quasi-invariant5 polynomial in A and 
dA. The associated curvature F = dA +A ∧A (field strength) is a 
tensor under gauge transformations in the adjoint representation, 
F →F′ = g−1Fg .

The obvious invariant choice in even dimensions6

P2n = 〈F · · ·F〉, (12)

where 〈· · ·〉 is a (super) trace in the Lie algebra, is an invariant 
polynomial 2n-form. However, this is a topological invariant and 
not a suitable Lagrangian. In fact, the Chern–Weil theorem asserts 
that any invariant polynomial of this form is necessarily closed, 
dP2n = 0, and therefore it is locally an exact form: P2n = dC2n−1
[14]. This means that its variations – under appropriate bound-
ary conditions – identically vanish, or are just a boundary term, 
while the dynamics in the bulk remains arbitrary. Thus, in partic-
ular, there are no Lagrangians L(F) constructed using only exte-
rior products, invariant under the entire gauge group; the Euler–
Lagrange equations for such “invariant Lagrangians” would have 

5 A function f (A) is quasi-invariant if under a gauge transformation it changes 
by a locally exact form, δ f = dφ.

6 Exterior (wedge) products of differential forms will be implicitly assumed 
throughout.
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the trivial form 0 = 0. In order to have dynamics in even di-
mensions one must give up gauge invariance under the full gauge 
group.

This leaves essentially two possibilities for a viable Lagrangian: 
i) instead of being simply invariant, it can be quasi-invariant – 
that is, L(A) changes by a total derivative under gauge transfor-
mations; or ii) it can be invariant under a proper subgroup of the 
gauge group.

The first case corresponds to Lagrangians defined by CS forms7

that define dynamical theories in odd dimensions. For example, 
given a Lie algebra-valued connection A in 2n + 1 dimensions, the 
CS form is naturally defined,

LCS
2n+1 ≡ C(A) = 〈

AdAn + . . .
〉
, (13)

where the supertrace 〈· · ·〉 is invariant under the entire gauge 
group. Under gauge transformations continuously connected to the 
identity, the CS form changes by a boundary term by construction, 
δC = dΩ . Thus, in odd dimensions the problem reduces to find the 
invariant bracket 〈· · ·〉.

The second case occurs if the form (12) is constructed with a 
symmetric trace 〈· · ·〉 that is not invariant under the entire gauge 
symmetry group, but under a subgroup of it. This case is the only 
alternative in even dimensions and corresponds to the approach 
taken by Mac Dowell and Mansouri [33], and by Townsend [30] to 
construct a four-dimensional (super)gravity out of a superalgebra
for the (super-)AdS symmetry. Those authors found that although 
the fields could be described by an SO(3, 2) (AdS4) connection, 
the four-dimensional action could be at most invariant under the 
Lorentz group (SO(3, 1)-invariant).

In all dimensions, YM Lagrangians can be constructed, provided 
the spacetime is equipped with a metric structure with which the 
Hodge dual of F is defined. Thus, we tentatively define

LYM = −1

4
Str

[
F∧ �F

]
, (14)

where �F is the dual of F. The metric structure required by this 
construction is provided by the soldering form ea .

3.1. Three dimensions

In three dimensions, the construction outlined above leads to 
the model discussed in [19]. We summarize the results here to 
illustrate the idea, further details can be found in that reference. 
The connection (1) takes the form

A= AK+Qβ(Γ )βαψα + ψα(Γ )βαQ
β + ωaJa, (15)

where K, Q, Q, and J are the U (1) generators,8 supersymme-
try and Lorentz transformations in 2 + 1 dimensions, respectively. 
Here ωa

μ = 1
2 εa

bcω
bc
μ is the Lorentz connection. The Chern–Simons 

3-form provides a Lagrangian for the connection A without addi-
tional ingredients,

L =
〈
AdA+ 2

3
A3

〉
.

In the standard representation for Γ matrices and supertrace, the 
Lagrangian reads

7 CS theories have been extensively discussed in the physics literature, starting 
with the pioneering works of Cremmer, Julia and Sherk [15], Schonfeld [16], and 
Deser, Jackiw and Templeton [17]. For a recent review, see [18].

8 These results can be extended with very small modifications to include SU (2)

instead of U (1) [20].
L = 2AdA + 1

4

[
ωa

bdωb
a + 2

3
ωa

bω
b

cω
c

a

]
− 2ψψea Ta

+ 2ψ

(←−
/∂ − −→

/∂ + 2i/A + 1

2
γ a/ωabγ

b
)

ψ |e|d3x, (16)

where |e| = det[ea
μ] = √−g , and T a = dea + ωa

beb is the torsion 
2-form. This is a standard Lagrangian for a Dirac field minimally 
coupled to CS electrodynamics in a gravitational background [21]. 
The system is invariant under local U (1) and SO(2, 1) transforma-
tions. It may be surprising that this rather ordinary-looking system 
is obtained as a gauge theory for the osp(2|2) superalgebra. Al-
though this supersymmetry is local and contains 2 + 1 gravity, 
there is no gauging of local translations and hence, no gravitino 
is required.

The field equations for this system are

Fμν = εμνλ jλ (17)

Rab = 2ψψeaeb (18)[
/∂ − i/A + μ − 1

4
Γ a/ωabΓ

b + 1

2|e|∂μ

(|e|Eμ
a Γ a)]ψ = 0, (19)

where jλ = −iψΓ λψ |e|, is the electric current density of a charged 
spin 1/2 field, and |e|μd3x ≡ ea Ta . Since Rabeb = DT a and eaebeb ≡
0, (18) implies that the torsion is covariantly constant, DT a = 0
and therefore μ must be an (arbitrary) constant that can be iden-
tified with the fermion mass.

The matter-free configurations ψ = 0 imply F = 0 = Rab and, 
as shown in [19] this corresponds to manifold whose local geome-
try has constant torsion and constant negative Riemannian curva-
ture. These anti-de Sitter spaces include rotating and magnetically 
charged BTZ black holes and some naked conical singularities cor-
responding to rotating and charged point sources [22,23]. For some 
values of mass (M), angular momentum ( J ) and magnetic charge 
(q), these configurations are BPS states and therefore correspond 
to stable supersymmetric vacua. Moreover, for arbitrary values of 
M , J and q these configurations are locally AdS-flat and therefore 
satisfy the consistency conditions (11) for β = 0.

In addition to these formal properties, the Lagrangian (16) de-
scribes the propagation dynamics of carriers of electric charge in 
graphene in the long wavelength limit near the Dirac point [24,25]. 
In fact, one of the salient features of the graphene system seems to 
be its conformal symmetry ψ → Ωψ , ea → Ω−1ea [26,27], which 
in our model is a natural consequence of the construction.

3.2. Four dimensions

Let us now see how would this construction operate in four 
dimensions. The simplest SUSY in 4D containing U (1) × SO(3, 1)

includes the (A)dS4 generators Ja and Jab , the complex super-
charge Qα in a spin 1/2 representation, and the U (1) generator K. 
This is the usp(2, 2|1) superalgebra, whose essential anticommuta-
tor is [29]

{
Qα,Qβ

} = −i
(
Γ a)α

β
Ja + i

2

(
Γ ab)α

β
Jab − δα

βK, (20)

together with the trivial anticommutators {Qα,Qβ} = 0 =
{Qα, Qβ}. An explicit 6 × 6 representation for the supercharges is

(
Qα

)A
B = − i

s

(
δA

5 δα
B + CαAδ6

B

)
, (Qα)A

B = δA
α δ5

B + δA
6 CαB ,

(21)
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where s2 = −1 corresponds to de Sitter, and s2 = 1 to anti-de Sitter. 
Here Cαβ = −Cβα is the conjugation matrix, Cαβ is its inverse.9 In 
this representation, the U (1) and AdS generators are [28]

(K)A
B = i

(
δA

5 δ5
B − δA

6 δ6
B

)
, (Ja)

A
B = 1

2
(Γa)

α
βδA

α δ
β
B ,

(Jab)
A

B = 1

2
(Γab)

α
βδA

α δ
β
B (22)

The connection can be written as

A = AK+QΓ ψ + ψΓQ+ f aJa + 1

2
ωabJab, (23)

where A = Aμdxμ , Γ = Γaea
μdxμ , f a = f a

μdxμ and ωab = ωab
μ dxμ

are 1-form fields (spinorial indices omitted). The curvature F =
dA + AA takes the form F = F0K + QαFα + FαQ

α + F aJa +
1
2 F abJab , where

F0 = F − ψ/e/eψ, (24)

F = ∇(/eψ), (25)

F = −(ψ/e)
←−∇, (26)

F a = D f a − i

s
ψ/eΓ a/eψ, (27)

F ab = Rab + s2 f a f b + iψ/eΓ ab/eψ. (28)

Here F = dA, D f a = df a + ωa
b f b , and Ra

b = dωa
b + ωa

cω
c

b . 
We have also used the notation /f = Γa f a , /e = Γaea ≡ Γ , and 
/ω = 1

2 Γabω
ab . The operators ∇ ≡ [d − i A + s

2 /f + 1
2 /ω] and ←−∇ ≡

[←−d + i A − s
2 /f − 1

2 /ω] are usp(2, 2|1)-covariant derivatives in the spin-
1/2 representation.

Under a supersymmetry transformation generated by Λ = Qε−
εQ, the connection A changes by δA = dΛ + [A, Λ]. Using the 
(anti-)commutation relations of the superalgebra, one finds

δAμ = −(εΓμψ + ψΓμε) (29)

δ f a = − i

s

(
εΓ a/eψ + ψ/eΓ aε

)
(30)

δωab = i
(
εΓ ab/eψ + ψ/eΓ abε

)
(31)

δ[Γμψ] =
[
∂μ − i Aμ + s

2
f a
μΓa + 1

4
ωab

μ Γab

]
ε ≡ ∇με. (32)

As discussed above, using δea = 0 = δΓμ in (32) implies δψ =
1
4 Γ μ∇με , and the consistency condition [δμ

ν − 1
4 ΓνΓ μ]∇με = 0

eliminates the spin-3/2 part.

3.2.1. Invariant Hodge trace
Starting from the connection (23), one can construct an action 

of the YM type. The Lagrangian is a four-form quadratic in curva-
ture,

L = κ
〈
F�F

〉
, (33)

where �F stands for the dual of F with (�)2 = −1 in the 
Lorentzian signature. Here we take duality as the Hodge dual (∗)

in the spacetime, the Γ5-conjugate in spinor indices, and the dual 
in the AdS algebra, to wit,

9 The indices A, B = 1, . . . , 6 combine both spinor indices (α, β = 1, . . . , 4) and 
those of a two-dimensional representation (r = 5, 6) of U (1), i.e., A = (α, r).
�F= ∗F0K+ (Q)α(Γ5F)α + (F)α(Γ5Q)α

+ Υ

[
F aJa + 1

2
F abJab

]
. (34)

In the 6 × 6 representation, (Υ )A
B = (Γ5)

α
βδ

β
B δA

α , or

Υ =

⎡
⎢⎢⎢⎢⎣

Γ5

0
0
0
0

0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (35)

The three dualities square to minus the identity in their respective 
subspaces, (∗)2 = (Γ5)

2 = (Υ )2 = −1.10 Since Υ commutes with 
K and Jab , but not with Ja or Qα

i , the resulting quadratic form 
(33) is invariant under SO(3, 1) × U (1), the only remaining sym-
metry of the action out of the full AdS supersymmetry (20).

3.2.2. 4D Lagrangian
The nonvanishing supertraces, bilinear in the generators that 

appear in L, are

〈KK〉 = 2,
〈
QαQβ

〉 = 2iδβ
α = −〈

QαQ
β
〉
,

〈JabΥJcd〉 = εabcd, (36)

and therefore,

〈
F�F

〉 = 2F0 ∗ F0 + 4iFα(Γ5)
α
βFβ + 1

4
εabcd F ab F cd. (37)

From (25) and (26) it is clear that the covariant derivative acts 
on the components ξα

μ ≡ Γμψα which are in the kernel of the 
spin-3/2 projector, Pμ

νΓνψ = 0. The second term of the r.h.s. of 
(37) contains only covariant derivatives in the spin-1/2 represen-
tation, so we can safely assume that no dynamical channels are 
available to switch on a spin-3/2 excitation.

The Lagrangian can also be expressed as

L = −1

4

〈
F�F

〉 = LEM|e|d4x + LGrav(ω, f )

+ i

2
sψ[←−DΓ5/e/f /e + Γ5/e/f /e

−→
D]ψ

+ i

2
sψ

[
Γ5(/T /f /e − /e/f /T )

]
ψ − i

2
s2ψΓ5/e/f /f /eψ

+ 12
[
(ψΓ5ψ)2 − (ψψ)2]|e|d4x, (38)

where −→
Dψ ≡ (d − i A + 1

2 /ω)ψ , ψ̄
←−
D ≡ ψ̄(

←−
d + i A − 1

2 /ω), LEM =
− 1

4 Fμν F μν , and LGrav(ω, f ) = − 1
16 εabcd(Rab + s2 f a f b)(Rcd +

s2 f c f d).
The quartic fermionic expression is the Nambu–Jona-Lasinio 

(NJL) term, g[(ψψ)2 − (ψΓ5ψ)2].
The field f a is undifferentiated and therefore its equation could 

– in principle – be algebraically solved and substituted back in the 
action. Since f is a connection component, this means that the 
invariance of the theory under local AdS boosts is frozen, which 
is consistent with the fact that the action is not really invari-
ant under local AdS boosts. The same is true about the vierbein 
ea in the first order formulation of four-dimensional gravity [18]: 
in that case, the torsion equation can be algebraically solved for 
the spin connection, underscoring the fact that 4D gravity has lo-
cal SO(3, 1) invariance, and no SO(3, 2), SO(4, 1), or ISO(3, 1) local 
symmetry.

10 This choice of the dual operator � ensures that it produces the right kinetic 
terms for the Maxwell filed, the gravitational action and the spinor.
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The tensor character of f a and ea is the same, and it was sug-
gested in [30] that they should be proportional, f a = μea , where μ
is a constant with dimension of (length)−1. This choice eliminates 
parity-violating terms from the Lagrangian, so that in the absence 
of parity changing interactions, this sector remains self-contained, 
but it might be of interest to see the consequences of relaxing this 
condition and to explore, in particular, whether this could lead to 
new phenomena in conflict with observations. If one follows the 
proposal in [30] the Lagrangian becomes

L = LEM|e|d4x + LGrav(ω, e)

− i

2
sμ

[
(ψ

←−
D)Γ aψ − ψΓ a(

−→
Dψ)

]
εabcdebeced

+ 2isμψΓ5Γaψ
(
Tbeb)ea − i

2
s2μ2ψψεabcdeaebeced

+ 12
[
(ψΓ5ψ)2 − (ψψ)2]|e|d4x. (39)

In standard units, h̄ = c = 1, μ has units of mass. The spin-1/2
field with the right physical dimensions is ψphysical = √

6μψ , 
where we have included a factor 

√
6 for later convenience. Rewrit-

ing the Lagrangian in this convention, one obtains

L = [L F + LEM]√|g|d4x + LGrav(ω, e), (40)

where the fermionic Lagrangian is

L F = − i

2
s
[
ψ(

←−
/∇ − −→

/∇)ψ + 4μψψ
] − istμψΓ5Γμψ

− 1

3μ2

[
(ψψ)2 − (ψΓ5ψ)2]. (41)

Here −→
/∇ψ = (/∂ − i/A + 1

2 /ω)ψ , and ψ←−
/∇ = ψ(

←−
/∂ + i/A − 1

2 /ω), are the 
covariant derivatives for the connection of the [(anti-)de Sitter] ×
U (1) gauge group in the spinorial representation, and follow-
ing [31], we defined tμ ≡ − 1

3!ε
μνρτ ea

ν Taρτ |e|. The correct sign of 
Newton’s constant in (40) is obtained for s2 = −1, that is, for the 
de Sitter group only.

3.2.3. Field equations
Varying the action (39) with respect to the dynamical fields 

yields the following (we take the de Sitter signature):

δAν : ∂μF μν + iψΓ νψ = 0 (42)

δωab
μ: ψΓab

cψ Eμ
c + 3μ2[Eν

a Eλ
b Eμ

c + 2Eμ
a Eν

b Eλ
c

]
T c
νλ = 0 (43)

δψα : − −→
/∇ψ + 2iμψ + Γ5Γμψtμ

+ 2

3μ2

[
(ψ̄Γ5ψ)Γ5 − (ψ̄ψ)

]
ψ = 0 (44)

δea: εabcd
(

Rbc − μ2ebec)ed = τa, (45)

where τa is the stress-energy three-form, defined by δ(|e|[L F +
LEM]) = δea ∧τa . From the second equation it follows that T c

μν Eν
c =

0, which means that torsion is determined by the local presence of 
fermions.

T a
μν = −i

3sμ2
ψΓ a

bcψeb
μec

ν . (46)

Contracting the third equation with ψα and its conjugate with ψα , 
gives

ψα
δL

δψα

− δL

δψα
ψα = ∂μ

(
is

√|g|ψΓ μψ
)
d4x = 0, (47)

which expresses the conservation of electric charge and coincides 
with the current conservation condition obtained from (42).
4. Summary

The three- and four-dimensional models outlined above can be 
viewed as modeling the low energy limit of the standard model 
(QED), plus gravitation. The relation between these systems and 
supersymmetry is indirect and is reflected on the particular form 
of the field multiplets (ψ , Aμ , ωab

μ , ea
μ) required by the superalge-

bra, and the specific couplings among these fields. The construc-
tion is characterized by the following features:

• The representation is such that the fields are packaged into 
a connection one-form. Some features of standard supersymmetry 
are recovered – restricted multiplets of fields, reduced number of 
free parameter in the action, the need to include gravity in order 
to have the superalgebra acting locally. Other features of standard 
SUSY are not found: there is no matching of bosonic and fermionic 
degrees of freedom (no SUSY partners with equal quantum num-
ber except for the spin); no mass degeneracies: bosons remain 
massless, fermions acquire mass from couplings; bosons are gauge 
connections, fermions form conserved currents.

• Including s = 1/2 fermions in the superconnection requires 
the introduction of a metric structure (ea

μ), and the closure of 
the SUSY algebra requires the Lorentz group, which brings in the 
spin connection ωab . Consequently the theory incorporates grav-
ity in a natural manner: gravitation can be viewed a necessary 
consequence of having fermionic matter in nature. However, un-
like standard local SUSY (supergravity) this theory has no spin-3/2 
fields.

• The restriction to s = 1/2 requires projecting out the s = 3/2
components generated by supersymmetry, a condition satisfied on 
locally flat (F = 0) backgrounds. Local flatness is satisfied by classi-
cal vacua in odd dimensions, but is expected to hold only approxi-
mately in even dimensions. For D = 2n + 1, the SUSY parameter 
ε is a spinor field whose form – if it exists – depends on the 
background defined by the bosonic sector of the theory. Although 
the SUSY parameter ε is not constant, the symmetry does not cor-
respond to a gauge invariance independent of the bosonic gauge 
field configurations. For D = 2n, the AdS symmetry is broken at 
the level of the action by the fact that there are no SO(2n, 1)- (or 
SO(2n −1, 2))-invariant tensors. Since the AdS symmetry is broken, 
supersymmetry is also necessarily broken.11

4.1. Discussion

A. In four dimensions the kinetic terms have the right form – 
second order Maxwell and Einstein–Hilbert terms for bosons, and 
first order Dirac term for fermions –, and the couplings are also 
the right ones to guarantee the gauge invariance of the action. 
The symmetry algebra, however, is not that of the connection 
(osp(4|2)), but u(1) × so(3, 1) ⊆ osp(4|2). As we saw, the reduc-
tion of symmetry is due to the lack of an OSP(4|2)-invariant trace 
〈. . . , . . .〉, to define an invariant action [32]. As noted by Townsend 
[30] and Mac Dowell and Mansouri [33], there is not even an
SO(3, 2) ⊂ OSP(4|2)-invariant trace that could be used to build a 
local AdS-invariant gravity action in four dimensions.

The root of this obstruction can be found in the Chern–Weil 
theorem, which states that any locally G-invariant four-forms
constructed out of a G-connection must be a characteristic class 
[14]. Therefore, a nontrivial Lagrangian must necessarily break 
G-invariance down to a smaller group H ⊆ G . It can be seen 
that H is the isotropy (or stability) subgroup of the invariance 

11 There can be accidents in some dimensions where other options exist for par-

ticular choices of fermionic representations such that {Q,Q} does not contain gen-
erators of AdS boosts [11].
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group of the tangent manifold (G) [34]. In the case at hand, 
H = U (1) × SO(D − 1, 1).12

B. The fermionic Lagrangian L F describes an electrically charged 
spin-1/2 field, minimally coupled to the electromagnetic field and 
to the spacetime background, plus NJL couplings in the four-
dimensional case. The coupling to torsion is not a new feature of 
this model but, as noted long ago by H. Weyl [21], it is present 
whenever the Dirac equation is written in a curved spacetime with 
torsion. The NJL term in the four-dimensional theory is the main 
modification predicted by this model.13

C. A feature of supersymmetry obtained with this construction is 
the fact that the action has no fundamental dimensionful con-
stants, and that the theory is by construction invariant under local 
Weyl transformations ea → ρea and ψ → ρ−1ψ . However, if one 
wants to fit a vielbein ea with dimensions of length (�) and a 
fermion ψ with dimensions �(1−D)/2 in a dimensionless connec-
tion, it is necessary to bring in an arbitrary dimensionful constant 
(μ ∼ �−1). In three dimensions, this appears in the integration con-
stant for DT a = 0 (T a = μεabcebec); in four dimensions the scale 
comes with the identification between the vielbein and the part 
of the connection related to the symmetry that is explicitly broken 
by the Yang–Mills form (14), the AdS boosts ( f a = μea).

It is the dimensionful constant μ which fixes all remaining pa-
rameters of the theory. In three dimensions, the electric charge 
and Newton’s constant are e = 1 and G = 1, respectively; the cos-
mological constant is Λ = −μ2, and the fermion mass, m = μ. In 
four dimensions, the electric charge is e = 1, Newton’s constant is 
G = −s2(4πμ2)−1, the cosmological constant is Λ = −s2μ2, and 
the Nambu–Jona-Lasinio coupling g = (3μ)−2.

D. Both the four-fermion NJL coupling and the gravitational action 
are perturbatively non-renormalizable. This strongly suggests that 
the whole system should be considered as a low energy effective 
model and not as a fully consistent quantum theory. However, the 
parameters of the theory are so tightly constrained that it is con-
ceivable that the two evils may cancel each other. The exploration 
of this problem, however, lies well beyond the scope of this work.

The NJL term provides a mechanism for spontaneous symmetry 
breaking that gives mass to the fermionic excitations in supercon-
ductivity, originally proposed as a way to describe massive exci-
tations in strong interactions [37], and is important in the study 
finite temperature and density effects in QCD [38]. The value of 
the fermion mass m is produced through the gap equation for a 
cut-off M,

m2

M2
log

[
1 + M2

m2

]
= 1 − 2π2

gM2
. (48)

For m = me ≈ 0.5 MeV and M = MPlanck = G−1/2 ≈ 2.5 × 1022me , 
m2/M2 ≈ 10−45, so that the relation between the NJL coupling g
and the UV cut-off M must be extremely fine-tuned in the range 
1 < gM2/2π2 < 1 + 10−43, or g ∼ 2π2M−2, which can be safely 
neglected for current experimental limits.

E. In four dimensions, if the kinetic term in the gravitational ac-
tion (39) is positive, as in the standard convention, the spacetime 
geometry is described by the Einstein–Hilbert action with pos-
itive cosmological constant. However, depending on the vacuum 

12 One possibility is for this symmetry breaking to emerge from the dimensional 
reduction to D = 4 from a fully gauge-invariant CS theory, based on a transgression 
form in D ′ = 2n + 1 > 4 [35,36].
13 If instead of the U (1) gauge group, one had considered SU (2) or SU (3), NJL 

term would have been of the form Cabcd[(ψaψb)(ψcψd) − (ψaΓ5ψb)(ψcΓ5ψd)], 
where Cabcd is an invariant tensor in the algebra.
structure of the theory it might be worth considering the alterna-
tive where both G and Λ are negative, as in topologically massive 
gravity in three dimensions [39,40]. At any rate, the effective cos-
mological constant in the nontrivial vacuum should be given by 
ΛEff = Λ + 2iμ〈ψ̄ψ〉 + g2[〈(ψΓ5ψ)2〉 − 〈(ψψ)2〉]. It would be pre-
mature to claim something about the sign of ΛEff , especially in 
view of the fine tuning between g , G , Λ and the cut-off M.

F. The gravitational Lagrangian is a particular combination of the 
three Lovelock terms that occur in 4D that has the form of the 
Pfaffian of the (A)dS curvature. This combination can also be 
viewed as the gravitational analogue of Born–Infeld electrodynam-
ics [41], and although the Gauss–Bonnet term has no affect on 
the field equations and hence is usually ignored, it can give a sig-
nificant contribution to the global charges of the theory, and acts 
as a regulator that renders the charges well defined and finite in 
the presence of nontrivial asymptotics [42,43]. It is therefore an 
interesting bonus of the model that the gravitational action is reg-
ularized by construction and no ad hoc counterterms are necessary 
to correctly define its thermodynamics.

G. Even as an effective low energy model, a healthy theory should 
have a well defined (stable) ground state, a vacuum around which 
it would make sense to expand perturbatively to study the quan-
tum features of the theory (Killing spinors, BPS vacua). A vacuum 
without fermions (trivial vacuum, ψ = 0) would be invariant under 
supersymmetry provided δψ = ∇λ = 0, which means that λ must 
be a covariantly constant (Killing) spinor. The number of linearly 
independent, globally defined solutions of this equation charac-
terizes the residual supersymmetries of a particular background 
configuration. Such backgrounds have been studied in three and 
higher dimensions and a number of nontrivial BPS backgrounds 
are known [44–46]. In the recent article [47], the idea of replacing 
the Rarita–Schwinger field by a composite in an analogous manner 
to the one presented here, was also explored.

H. In 2n + 1 dimensions, the CS form is the natural generalization 
of the construction in Section 3.1. Clearly this is not the only op-
tion since a YM-term can always be included. However, the gauge 
symmetry of the action will be different if the Lagrangian is purely 
CS or YM. Restricting the analysis to CS forms only, the action can 
be expected to be invariant under the entire bosonic sector G of 
the super-gauge group. All CS theories have a sector of solutions 
that is locally flat (F = 0) and with the fermions switched off. This 
is a maximally symmetric background with no propagating degrees 
of freedom [18], which in D = 3 is all there is. Those configura-
tions enjoy full local supersymmetry as well, whereas a generic 
background in a different sector would not necessarily admit so-
lutions of the projection constraints (11), and would therefore not 
be SUSY-invariant in this sense.

I. The situation for D = 2n is similar to the D = 4 case, since the 
Chern–Weil theorem applies in general for 2n-forms constructed 
out of G-connections: all G-invariant 2n-forms are characteristic 
classes. The YM action can obviously be made to be invariant 
under G0×[Lorentz], but that means that it is not off-shell SUSY-
invariant. Moreover, in 2n dimensions it is unclear what kind of 
kinetic terms and couplings will be found for the gravitational and 
fermionic fields.
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[26] M. Cvetić, G.W. Gibbons, Ann. Phys. 327 (2012) 2617, arXiv:1202.2938 [hep-th].
[27] A. Iorio, G. Lambiase, Quantum field theory in curved graphene spacetimes, 

Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that, arXiv:
1308.0265 [hep-th].

[28] P.D. Alvarez, P. Pais, J. Zanelli, Local supersymmetry without SUSY partners, 
arXiv:1306.1247 [hep-th].

[29] P.G.O. Freund, Introduction to Supersymmetry, Cambridge University Press, 
Cambridge, UK, 1986.

[30] P.K. Townsend, Phys. Rev. D 15 (1977) 2795.
[31] S.M. Carroll, G.B. Field, Phys. Rev. D 50 (1994) 3867, arXiv:gr-qc/9403058.
[32] D.K. Wise, SIGMA 5 (2009) 080, arXiv:0904.1738 [math.DG];

D.K. Wise, Class. Quantum Gravity 27 (2010) 155010, arXiv:gr-qc/0611154.
[33] S.W. Mac Dowell, F. Mansouri, Phys. Rev. Lett. 38 (1977) 739, Erratum: Phys. 

Rev. Lett. 38 (1977) 1376.
[34] G. Catren, Stud. Hist. Philos. Mod. Phys. 39 (2008) 511.
[35] A. Anabalón, S. Willison, J. Zanelli, Phys. Rev. D 75 (2007) 024009, arXiv:hep-th/

0610136v3.
[36] P. Mora, P. Pais, S. Willison, Phys. Rev. D 84 (2011) 044058, arXiv:1107.0758.
[37] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122 (1961) 345;

Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124 (1961) 246;
See also, A ‘superconductor’ model of elementary particles and its conse-
quences, in: T. Eguchi, K. Nishijima (Eds.), Broken Symmetry, Collected Papers 
of Y. Nambu, in: World Scientific Series in 20th Century Physics, vol. 13, World 
Scientific, Singapore, 1995.

[38] M. Loewe, F. Marquez, C. Villavicencio, Phys. Rev. D 88 (2013) 056004, arXiv:
1307.6764 [hep-ph].

[39] S. Carlip, S. Deser, A. Waldron, D.K. Wise, Phys. Lett. B 666 (2008) 272, 
arXiv:0807.0486 [hep-th].

[40] S. Carlip, J. High Energy Phys. 0810 (2008) 078, arXiv:0807.4152 [hep-th].
[41] M. Bañados, C. Teitelboim, J. Zanelli, Lovelock–Born–Infeld theory of gravity, in: 

H. Falomir, et al. (Eds.), J.J. Giambiagi Festschrift, World Scientific, Singapore, 
1990.

[42] R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Phys. Rev. Lett. 84 (2000) 
1647, arXiv:gr-qc/9909015.

[43] R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Phys. Rev. D 62 (2000) 
044002, arXiv:hep-th/9912045.

[44] O. Coussaert, M. Henneaux, Phys. Rev. Lett. 72 (1994) 183, arXiv:hep-th/
9310194.

[45] L.J. Romans, Nucl. Phys. B 383 (1992) 395, arXiv:hep-th/9203018.
[46] M.M. Caldarelli, D. Klemm, Nucl. Phys. B 545 (1999) 434, arXiv:hep-th/9808097.
[47] A. Torres-Gomez, K. Krasnov, Fermions via spinor-valued one-forms, arXiv:

1212.3452 [hep-th].

http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4368617472636879616E3A323031317A79s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4368617472636879616E3A323031317A79s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib536869666D616Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib536869666D616Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib576573732D426167676572s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib576573732D426167676572s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D617274696Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D617274696Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D617274696Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D75726179616D61s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib6465576974s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4A61636B736F6E2D4F6B756Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4368616D73656464696E65s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4368616D73656464696E65s2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4368616D73656464696E65s3
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4254725As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4254725As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib54725A31s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib54725A32s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib54725A32s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4854725As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4854725As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib575As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616B6168617261s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616B6168617261s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib434A53s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib5363686F6E66656C64s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib444A54s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib444A54s2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib444A54s2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib526576696577s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib526576696577s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41565As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41565As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib5765796Cs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D69736B6F7669632D5As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib45474D5As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib45474D5As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib45474D5As2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib45474D5As2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib564B47s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib564B47s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D535As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D535As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4376657469632D476962626F6E73s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib496F72696Fs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib496F72696Fs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib496F72696Fs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41505As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41505As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib467265756E64s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib467265756E64s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib546F776E73656E64s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib436172726F6C6Cs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib57697365s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib57697365s2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D442D4Ds1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D442D4Ds1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib43617472656Es1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41575As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41575As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4D5057s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s2
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s3
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s3
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s3
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4E616D6275s3
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4C6F6577653A323031337A6161s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4C6F6577653A323031337A6161s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4361726C69702D4465736572s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4361726C69702D4465736572s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib4361726C69703A323030387168s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib42545As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib42545As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib42545As1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41434F545A2D31s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41434F545A2D31s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41434F545A2D32s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib41434F545A2D32s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib436F757373616572742D48656E6E65617578s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib436F757373616572742D48656E6E65617578s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib526F6D616E73s1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib43616C646172656C6C692D4B6C656D6Ds1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib54472D4Bs1
http://refhub.elsevier.com/S0370-2693(14)00434-1/bib54472D4Bs1

	Unconventional supersymmetry and its breaking
	1 Introduction
	2 Spin-1/2 ﬁelds as part of the connection
	2.1 Symmetry
	2.2 Absence of gravitini

	3 Lagrangian D-forms
	3.1 Three dimensions
	3.2 Four dimensions
	3.2.1 Invariant Hodge trace
	3.2.2 4D Lagrangian
	3.2.3 Field equations


	4 Summary
	4.1 Discussion

	Acknowledgements
	References


