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Abstract

ForM-matrices a condition to satisfy the “maximum principle for inverse column entries”
is known. We generalize this result (concerning a more general maximum principle) for
M-operators on Rn, ordered by some cone, as well as, to a certain extent, for M-operators
on infinite-dimensional ordered normed spaces.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper we study certain maximum principles for positive operators
on ordered normed spaces, in particular for the (positive) inverses ofM-operators. In
the most of our results the underlying space is Rn ordered by some convex cone K .
We define M-operators as some generalization of M-matrices. Recall that a matrix
A = (aij )n,n is an M-matrix if A = sI − B, where I denotes the identity, B is a
positive matrix and s > r(B). 1 The last inequality ensures the invertibility of A,
one has A−1 = s−1I + s−2B + · · · + s−kBk−1 + · · ·, where the series converges in
the operator norm, andA−1 is positive. A matrixA is an M-matrix iffA has a positive
inverse and aij � 0 for i /= j (see e.g. [2]). In an arbitrary normed space, ordered by
some cone, for operators the “negative-off-diagonal” property is known (see Defini-
tion 4.1). We call an operatorA on some ordered normed space anM-operator ifA is

E-mail address: kalauch@math.tu-dresden.de (A. Kalauch).
1 Here r(B) denotes the spectral radius of the operator B. We consider only nonsingularM-matrices.

SingularM-matrices, i.e. matrices of the form A = r(B)I − B, are not relevant for our topic.
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negative-off-diagonal and has a positive inverse. Note that any operatorA = sI − B,
where B is positive and s > r(B), is anM-operator. 2

The considered maximum principles for a given linear operator equation in some
real 3 vector space X can roughly be described as follows: A positive input causes
a positive output, and the maximum response takes place in that part of the system
where the influence is nonzero. Notice the following examples:

1. In connection with the study of discrete approximations for differential equations
in [10] the following maximum principle for an n× n-matrix A = (aij ) is in-
troduced: For any y = (y1, . . . , yn) ∈ Rn with Ax = y from y � 0, y /= 0 there
follows x � 0 and, moreover,

max
i∈N xi = max

i∈N+(y)
xi, (1)

where N = {1, . . . , n} and N+(y) = {i ∈ N : yi > 0}. In [11] the following prop-
osition is shown: If A is an M-matrix and Ae ∈ Rn+, where e = (1, 1, . . . , 1)T,
then A satisfies (1).
In [15, Definition 3.31] the above maximum principle is called the maximum prin-
ciple for inverse column entries. For y = e(i), the ith unit vector, the preimage
x = A−1y is the ith column of A−1 = (āij ), and if A is positively invertible and
satisfies (1) then A−1 is weakly diagonally dominant of its column entries, i.e.
āii � āj i for all i, j ∈ N .

2. LetX = C(T ) be the space of all continuous functions on some compact topolog-
ical Hausdorff space T ordered by the cone of all nonnegative functions of C(T ).
Let A : C(T )→ C(T ) be a linear operator which possesses a positive continuous
inverse. Then for a positive nonzero function y the question arises, whether there
exists a point t ∈ T at which the function x = A−1y attains its maximum and
y(t) > 0 holds as well.

One approach to obtain a maximum principle that covers both examples is to
replace the values of the “components” of a vector x in (1) by the values of certain
“extreme functionals” on an element x ofX. In [7] the maximum principle (1) is gen-
eralized to linear positively invertible operatorsA : Rn→ Rn, where Rn is equipped
with a finitely generated cone or a circular cone, respectively. In [5] a generalization
is considered for linear positively invertible operators on a normed space (X, ‖ · ‖)
ordered by a closed cone K which has a nonempty interior. This covers the both
examples above. To avoid the positive inverse of some operator, in [4] the maximum
principleMP is formulated for positive operators (see Definition 3.4).

In the present paper we generalize the statement onM-matrices and the maximum
principle (1) in the first example to a certain extent forM-operators, concerningMP

2 In the numerical analysis the notionM-operator is sometimes used for an operator A = sI − B on
some ordered normed space, where B is positive and s > r(B). Our notion “M-operator” is more general.

3 Throughout only real vector spaces are considered.
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with respect to some interior point of the given cone. It turns out that the facial struc-
ture of the cone is crucial. Furthermore, we consider special M-operators, namely
operators of the form A = I − B, where B is positive and ‖B‖ < 1, and provide
sufficient conditions for A−1 to satisfyMP .

2. Preliminaries

Let X be a real vector space and M a nonempty subset of X. The linear, posi-
tive-linear, affine, convex hull of M is denoted by lin(M), c(M), aff(M), co(M),
respectively. For x ∈ X \ {0} let r(x) = {λx: λ � 0} be the ray generated by x. The
set of extreme points of a nonempty convex set C ⊂ X is denoted by ext(C) (where
x ∈ C is an extreme point of C if x = λy + (1− λ)z implies x = y = z whenever
y, z ∈ C and λ ∈ (0, 1)). A set K ⊂ X is a wedge in X if K = c(K). K is a called
a cone in X if in addition one has K ∩ (−K) = {0}. For a cone K in X we use
the notations x ∈ K and x � 0 synonymously and write x > 0 instead of x � 0,
x /= 0. A cone K is generating if each x ∈ X can be represented as x = y − z with
y, z ∈ K . A subsetD of a coneK is a base ofK ifD is a nonempty convex set such
that every x > 0 has a unique representation x = λy with y ∈ D and λ > 0.

If (X, τ) is a real locally convex Hausdorff space and C an arbitrary subset of
X, then by int(C) and �C we denote the sets of all interior and boundary points of
C, respectively. The Krein–Milman Theorem guarantees for any nonempty convex
compact subset C ⊆ X both the condition ext(C) /= ∅ and the representation

C = coτ (ext(C)), (2)

where coτ (M) denotes the τ -closure of the convex hull ofM ⊆ X.
In the following let (X,K, ‖ · ‖) be a normed space ordered by a cone K . The

norm ‖ · ‖ is semi-monotone if there exists a constant N such that for every 0 �
x � y one has ‖x‖ � N‖y‖. As usual, X′ denotes the space of all continuous linear
functionals on X. On X′ the weak* topology σ(X′, X) is considered. The subset

K ′ = {f ∈ X′: f (x) � 0 for every x ∈ K}
is always a wedge in X′. If K ′ turns out to be a cone in X′, then we call it the dual
cone to K and introduce an order in X′ by means of f � 0 iff f ∈ K ′. Note that
K ′ is a cone in X′ if and only if X is the norm closure of K −K . The condition
int(K) /= ∅ implies that K is generating, hence, in this case, K ′ is a cone. Further-
more, if int(K) /= ∅, then x ∈ int(K) if and only if for each f ∈ K ′, f /= 0 one has
f (x) > 0 (see [13, Theorem II.2.2]). If K is a closed cone, then for any x > 0 there
exists a functional f ∈ K ′ such that f (x) > 0 (see [13, Theorem II.4.1]).

A face of a cone K is a (proper) nonempty subcone H /= {0} of K such that
x ∈ H and 0 � y � x imply y ∈ H . Note that H ⊂ �K . An element x ∈ K is an
extremal of K if r(x) is a face of K (i.e. r(x) is an extreme ray). If K has a base
D with extreme points, then every x ∈ ext(D) is an extremal of K . A (nonempty)
subset H /= {0} of a cone K is exposed if there exists a functional f ∈ K ′ such that
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H = f−1(0) ∩K . Note that every exposed subset is a face, but not vice versa (cf.
Example 4.2). If an exposed subset is a ray, we will call it an exposed ray.

For some x ∈ X and r > 0 letB(x, r) = {v ∈ X: ‖x − v‖ � r} andB1 = B(0, 1).
Let M ⊆ X be a convex set; an element x ∈ M is a relative interior point of M ,
written x ∈ ri(M), if x is an interior point ofM in aff(M), i.e. if there exists a number
r > 0 such that B(x, r) ∩ aff(M) ⊆ M . For a subset S ⊆ X and an element x ∈ X
let dist(S, x) = inf{‖x − v‖: v ∈ S}.

Note that a cone K in Rn is generating if and only if int(K) /= ∅. We call a cone
K in Rn finitely generated if there exists a nonempty finite set S ⊆ Rn such that
K = c(S) (for more details see [7]). A finitely generated cone is the intersection of a
finite number of closed halfspaces and therefore itself is closed. A subset K ∈ Rn is
called a circular cone if there exists an element z ∈ Rn with ‖z‖ = 1 and a number
r > 0 such that

K = {λx: x ∈ Rn, 〈x, z〉 = 1, ‖x − z‖ � r, λ � 0
}
. (3)

As usual, a linear operator A : X→ X on an ordered vector space (X,K) is positive
if AK ⊆ K . In this case we write A � 0. Denote the set of all continuous linear
operators on a normed space (X, ‖ · ‖) by L(X).

3. Maximum principles: definition and examples

We define the maximum principles for an operator in an arbitrary ordered normed
space (X,K, ‖ · ‖), although operators in such a general space only appear occa-
sionally in the following. In the most of our results operators in (Rn,K, ‖ · ‖) are
considered. Let (X,K, ‖ · ‖) be an ordered normed space, where K is a closed cone
with a nonempty interior. The following investigations essentially depend on a fixed
element of int(K). The relationship between the maximum principles for different
fixed interior points of K are presented in [5] and for a special case in [7]. First we
recall some definitions and basic consequences of the condition int(K) /= ∅; for an
extended version see [4]. Let u be a fixed element of int(K). Then the set

F := Fu := {f ∈ K ′: f (u) = 1} (4)

is a σ(X′, X)-compact base of K ′ (see [14, Theorem II.3.2]) and because of (2) one
has ext(F ) /= ∅ and

F = coσ(X
′,X)(ext(F )).

Consider the situation in Rn, equipped with the standard cone:

Example 3.1. Let X = Rn, K = Rn+ (hence K ′ = Rn+) and e = (1, 1, . . . , 1)T ∈
K . The corresponding base is

F := Fe =
{
(x1, . . . , xn)

T ∈ Rn+ :
n∑
i=1

xi = 1

}
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and the set ext(F ) consists of the unit vectors

e(i) = (0, . . . , 0, 1, 0, . . . , 0)T
with 1 at the ith position, i = 1, . . . , n. The value of the functional e(i) at a point
x = (x1, . . . , xn)

T ∈ Rn corresponds to the component xi of the vector x.

Example 3.2. InX = C[0, 1] letK = C+[0, 1] be the cone of all nonnegative func-
tions and for u take the function 1 ∈ int(K). Then F is the set of all normalized
Borel measures on [0, 1], and the set ext(F ) is the collection of the evaluation maps
εt determined by the points t ∈ [0, 1], where εt (x) = x(t) for each x ∈ C[0, 1] (see
e.g. [6, Section 10.3]).

In (X,K, ‖ · ‖) for each x ∈ X the number

α(x) = max{f (x): f ∈ F }
is correctly defined since F is σ(X′, X)-compact and the function x̂ : X′ → R de-
fined by means of f �→ f (x) is σ(X′, X)-continuous. x̂ attains its maximum on F
at an extreme point of F (according to the Bauer maximum principle), hence

α(x) = max{f (x): f ∈ ext(F )}. (5)

SinceK is closed, for any x > 0 there is a functional f ∈ K ′ such that f (x) > 0,
and therefore x > 0 yields α(x) > 0. Note that α(u) = 1. For x ∈ X the set

Fmax(x) = {f ∈ F : f (x) = α(x)}
is a nonempty σ(X′, X)-compact extreme convex subset of F containing extreme
points of F . In [4] the representation

Fmax(x) = coσ(X
′,X)(ext(F ) ∩ Fmax(x)

)
(6)

is shown. Note that f ∈ Fmax(x), g ∈ F imply g(x) � f (x). Furthermore
Fmax(u) = F .

For H ⊆ K let F 0(H) = {f ∈ F : f (x) = 0 for all x ∈ H }. For x ∈ K we will
abbreviate F 0({x}) by F 0(x). We denote F+(x) = F \ F 0(x). Note that for x > 0
we have

Fmax(x) ⊆ F+(x). (7)

We will make use of the following statement.

Proposition 3.3. For every x ∈ K there exists a representation x = α(x)u− zwhere
z ∈ K and Fmax(x) = F 0(z).

Proof. Fix x ∈ K and consider z = α(x)u− x. Assume z /∈ K . Since K is closed,
the sets K and {z} can be separated by a hyperplane, i.e. there exists a functional
g ∈ F with g(z) < 0. In particular one has g(x) � 0. Due to

g(x) = α(x)g(u)− g(z) = α(x)− g(z) > α(x)
a contradiction is obtained. �
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Definition 3.4. Let (X,K, ‖ · ‖) be an ordered normed space with a closed cone K
that has a nonempty interior, let u be a fixed interior point of K and let A ∈L(X)
be positive. A is said to satisfy

• the maximum principleMP with respect to u, if for every x > 0 one has
Fmax(Ax) ∩ F+(x) /= ∅;

• the (strong) maximum principle sMP with respect to u, if for every x > 0 one
has
Fmax(Ax) ⊆ F+(x).

A positive continuous linear operator on an ordered normed space that satisfies
MP with respect to u ∈ int(K) is called anMP -operator with respect to u.

Remark. LetA ∈L(X) be positive. IfA satisfies sMP with respect to u, then {x ∈
K:Ax = u} ⊆ int(K), since x ∈ K withAx = u implies x /= 0, and F =Fmax(u)=
Fmax(Ax) ⊆ F+(x) yields x ∈ int(K).

The maximum principle MP generalizes the maximum principles 1 and 2 dis-
cussed in Section 1. Indeed, consider X = Rn, K = Rn+ and an n× n-matrix A that
possesses a positive inverse A−1. Using the description of the extreme points of F
in Example 3.1, A satisfies the maximum principle 1 of Section 1 if and only if A−1

satisfies MP with respect to u = (1, 1, . . . , 1)T ∈ Rn. Furthermore, considering an
operatorA : C(T )→ C(T ) that has a positive inverseA−1, thenA satisfies the max-
imum principle 2 of Section 1 if and only if A−1 satisfies MP with respect to the
function u ≡ 1.

To illustrate the dependence of MP on the fixed interior point of K consider
X = R2, K = R2+ and

A =
(

2 1
1 2

)
.

Then A satisfies sMP with respect to u = (1, 1)T, but A does not satisfy even
MP , e.g. with respect to v = (1, 3)T, since ext(Fv) = {(1, 0)T; (0, 1

3 )
T}, and e.g.

x = (0, 3)T yields Ax = (3, 6)T, α(Ax) = 3 and Fmax
v (Ax) = {(1, 0)T} ⊆ F 0

v (x).
Due to (7) the identity operator I in an ordered normed space (X,K, ‖ · ‖) always

satisfies sMP (and henceMP ) with respect to an arbitrary element u ∈ int(K). For
an MP -operator A with respect to u the operator λA for some λ > 0 is an MP -
operator with respect to u as well. The sum and the composition of MP -opera-
tors need not beMP -operators even in a finite-dimensional space equipped with the
standard cone, as the following example shows.

Example 3.5. Let X = R3, K = R3+,

A =

1 0 1

1 2 1
0 0 1


 and B =


1 0 0

1 2 1
1 0 1


 .
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We consider the maximum principles MP and sMP with respect to the element
u = (1, 1, 1)T (cf. Example 3.1). Both matrices A and B satisfy MP , but neither
A nor B satisfies sMP . For x = (1, 0, 1)T one has F+(x) ∩ ext(F ) = {e(1), e(3)}.
Since (A+ B)x = (3, 4, 3)T yields Fmax((3, 4, 3)T) ∩ ext(F ) = {e(2)}, the operator
A+ B does not satisfyMP . This also points out that a convex combination ofMP -
operators, e.g. 1

2A+ 1
2B, in general is not an MP -operator. Furthermore, a simple

calculation shows that for any k ∈ N, k � 2, one has Fmax(Akx) ∩ ext(F ) = {e(2)},
hence no power of A satisfiesMP . Finally, the matrix

C =

1 0 0

1 2 1
0 0 1




satisfies I � C � A, i.e. C is bounded from both sides byMP -operators. However,
C is not anMP -operator since Cx = (1, 2, 1)T implies that Fmax{Cx} = {e(2)}.

4. M-operators

In the following let (X,K, ‖ · ‖) again be an ordered normed space.

Definition 4.1. An operator A ∈L(X) is called negative-off-diagonal (nod) if x ∈
K and f ∈ K ′ with f (x) = 0 imply f (Ax) � 0. A nod operator A that possesses a
positive inverse A−1 is called anM-operator.

Obviously, an operator A = sI − B, where B is positive and s � 0, is a nod op-
erator, and it is an M-operator if s > r(B). In general, a nod operator can not be
represented as sI − B, where B is a positive operator (see e.g. [9]). For an example
of anM-operator that is not representable see e.g. [1, 4(1.6)].

If the cone K is closed and satisfies int(K) /= ∅, then we fix an arbitrary element
u ∈ int(K) and define a base F of the cone K ′ corresponding (4). In Definition 4.1
we can restrict ourselves to elements x ∈ �K and to functionals of the set F 0(x) ∩
ext(F ), since

F 0(x) = coσ(X
′,X){F 0(x) ∩ ext(F )

}
(8)

(see e.g. [4]). Hence A is a nod operator if and only if x ∈ �K and f ∈ ext(F ) with
f (x) = 0 imply f (Ax) � 0.

If we consider the space (Rn,Rn+, ‖ · ‖), then a matrix A = (aij )n,n is a nod 4

operator if and only if aij � 0 for i /= j . Indeed, let A be a nod operator and sup-
pose aij > 0 for some pair (i, j) such that i /= j . Then the j th unit vector x = e(j)

4 In the matrix theory sometimes the notion cross-positive for a matrix A is used provided (−A) is
negative-off-diagonal.
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yields xi = 0 and yi = (Ax)i = aij > 0, a contradiction. Vice versa, let aij � 0 for
i /= j and x ∈ Rn+ with xi = 0 for some fixed i. Then yi = (Ax)i =∑j aij xj =∑
j /=i aij xj � 0 shows that A is a nod operator.
In (Rn,Rn+, ‖ · ‖) a matrix A is anM-operator if and only if A is a (nonsingular)

M-matrix.
In analogy to the Example 1 from Section 1 we examine the following question:

(Q) Let (X,K, ‖ · ‖) be an ordered normed space, u ∈ int(K) a fixed element and
A ∈L(X) anM-operator. Is A−1 anMP -operator with respect to u provided
Au ∈ K?

In the space X = Rn equipped with the standard cone K = Rn+ a confirmative
answer for (Q) is given in [12]. It turns out that the stronger condition Au ∈ int(K)
yields a confirmative answer for arbitrary ordered normed spaces, as follows from
Theorem 4.3. It remains to examine the condition Au ∈ �K . In this case (Q) can in
general not be answered confirmatively (even if X is finite dimensional; see Exam-
ple 4.2). A confirmative answer is obtained in X = Rn if the cone K has a special
facial structure (see Theorem 4.8). In the case of an infinite dimensional space X no
satisfactory results are known.

The next example shows that there exists an M-operator A, satisfying Au ∈ K
for some u ∈ int(K), which is not anMP -operator with respect to u.

Example 4.2. In the ordered normed space (R3,K, ‖ · ‖) let ‖ · ‖ be the Euclidean
norm on R3 and K = K1 ∪K2, where

K1 =
{
t (x1, x2, 1)

T: x2
1 + x2

2 � 1, t � 0
}

is a circular cone and

K2 =
{
t (x1, x2, 1)

T: 0 � x1 � 1, 0 � x2 � 1, t � 0
}

is finitely generated. We illustrate the following considerations in Fig. 1 where we
use v = (0, 0, 1)T ∈ int(K) and the corresponding bases Dv = {x ∈ K: 〈x, v〉 = 1}
of K and Fv = {x ∈ K ′: 〈x, v〉 = 1} of K ′, i.e. the intersections of K and K ′ with
the plane x3 = 1 for elements (x1, x2, x3)

T ∈ R3. The operator

A =

 1 2 −2
−2 1 0
−2 0 1




is anM-operator in the space (R3,K, ‖ · ‖), since

(i) A is a nod operator with respect to K . Indeed, consider the following cases of
extreme points of Fv and elements x = (x1, x2, 1)T ∈ K:
1. Let f̃ = (w1, w2, 1)T with w2

1 + w2
2 = 1 and at least one wi > 0. Then

〈x, f̃ 〉 = 0 iff x1 = −w1 and x2 = −w2. This yields f̃ (Ax) = f̃ ((−w1 −
2w2 − 2, 2w1 − w2, 2w1 + 1)T) = −(w2

1 + w2
2) = −1 � 0.
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2. For f̃1 = (−1, 0, 1)T we get 〈x, f̃1〉 = 0 iff x1 = 1 and 0 � x2 � 1. Hence
f̃1(Ax) = f̃1((2x2 − 1, x2 − 2,−1)T) = −2x2 � 0.

3. Finally, let f̃2 = (0,−1, 1)T. Then 〈x, f̃2〉 = 0 iff x2 = 1 and 0 � x1 � 1.
We conclude f̃2(Ax) = f̃2((x1, 1− 2x1, 1− 2x1)

T) = 0.
(ii) the operator

A−1 =

1 −2 2

2 −3 4
2 −4 5




is positive with respect to K (see Fig. 1, where the base Gv of the cone A−1K

is illustrated).

We consider the element u = (3, 6, 7)T ∈ int(K) and show that A−1 does not
satisfyMP with respect to u, althoughAu ∈ K . Observe that z = Au = (1, 0, 1)T ∈
�K and that the ray r(z) is a face of K which is not an exposed subset of K . (The
elements ũ = 1

7u ∈ Dv and z ∈ Dv are illustrated in Fig. 1.) The base Fu of K ′
possesses the following set of extreme points:

ext(Fu) =
{

1

3w1 + 6w2 + 7
(w1, w2, 1)

T:w2
1 + w2

2 = 1, w1 � 0 or w2 � 0

}
.

In particular, f1 = 1
4 f̃1 and f2 = f̃2 are extreme points of Fu. Note that Az = (−1,

−2,−1)T and f1(z)= f1(Az)= 0. Now put x := u− z = (2, 6, 6)T ∈ K , then y :=
Ax = (1, 1, 1)T ∈ K . (The elements x̃ = 1

6x ∈ Dv and y ∈ Dv are illustrated in Fig.
1.) Because of Proposition 3.3 one has Fmax(x) = {f1}, furthermore f1(y) = 0.
Hence A−1 does not satisfyMP with respect to u.

The next theorem answers (Q) in the case Au ∈ int(K).

Theorem 4.3. Let (X,K, ‖ · ‖) be an ordered normed space with a closed cone
K that has a nonempty interior and let u ∈ int(K) be fixed. If A ∈L(X) is an
M-operator that satisfies Au ∈ int(K), then A−1 satisfies sMP with respect to u.

Fig. 1. Illustration of Example 4.2.
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Proof. For an element y > 0 we get x = A−1y > 0 and hence α(x) > 0. Fix an
arbitrary functional f ∈ Fmax(x), then Proposition 3.3 yields x = α(x)u− z where
z ∈ K and f (z) = 0. The assumption Au ∈ int(K) ensures f (Au) > 0, furthermore
f (Az) � 0 sinceA is a nod operator. Hence f (Ax) = α(x)f (Au)− f (Az) > 0 and
A−1 satisfies sMP. �

Now we examine (Q) if Au ∈ �K . Example 4.2 already showed that in general
(Q) can be answered negatively in this case. To get a confirmative answer for (Q)
we need some more assumptions on the structure of �K . We confine ourselves to
X = Rn, equipped with a closed generating cone K (i.e. K has nonempty interior).
As above, fix some element u ∈ int(K) and the base F of K ′ corresponding (4). For
a set H ⊆ K put

EH =
⋂{

f−1(0): f ∈ F 0(H)
}
.

Note that EH is a closed linear subspace of X. For an element z ∈ K we will ab-
breviate E{z} by Ez. If z ∈ H , then F 0(H) ⊆ F 0(z) and Ez ⊆ EH . If H is a face of
K , then the inclusionsH ⊆ K ∩ EH andH −H ⊆ EH are obvious. As an example
such that H −H /= EH see Example 4.2 with H := r(z).

Lemma 4.4. LetK be a closed generating cone in Rn and letH be a face ofK with
H −H = EH . Then H is an exposed subset of K .

Proof. First notice that H = (H −H) ∩K . Indeed, if x = x1 − x2 � 0 with x1,

x2 ∈ H , then x1 � x � 0 and, since H is a face, x ∈ H .
For ε > 0 put Sε = {x ∈ Rn: dist(EH , x) < ε}. For the closed unit ball B1 in Rn

one has

B1 = (B1 ∩ EH) ∪

B1

∖ ⋂
f∈F 0(H)

f−1(0)




⊆ (B1 ∩ Sε) ∪
⋃

f∈F 0(H)

(
B1 \ f−1(0)

)

which provides an open covering forB1 in the induced topology. SinceB1 is compact
we get a finite covering, i.e. there exist functionals fi ∈ F 0(H), i = 1, . . . , k, such
that

B1 ⊆ (B1 ∩ Sε) ∪
k⋃
i=1

(
B1 \ f−1

i (0)
) = (B1 ∩ Sε) ∪

(
B1

∖ k⋂
i=1

f−1
i (0)

)
.

This implies

B1 ∩
k⋂
i=1

f−1
i (0) ⊆ B1 ∩ Sε
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for every ε > 0. Hence
⋂k
i=1 f

−1
i (0) ⊆ EH and, since EH is closed,

EH =
k⋂
i=1

f−1
i (0).

Put g = 1
k

∑k
i=1 fi and observe that g−1(0) ∩K = EH ∩K . Now, by assumption,

H = (H −H) ∩K = EH ∩K = g−1(0) ∩K , hence H is exposed. �

Recall that for a faceH ofK and an element z ∈ H one has z ∈ ri(H) if and only
if there is a number ε > 0 such that B(z, ε) ∩ (H −H) ⊆ H . The smallest face G
of K that contains z is the set

G = {x ∈ X: there is a number λ � 0 such that 0 � x � λz}.
This implies F 0(z) = F 0(G) and hence

Ez = EG. (9)

Lemma 4.5. Let K be a closed generating cone in Rn, H a face of K and z ∈ H .
Then the properties

(i) z ∈ ri(H),
(ii) H is the smallest face of K that contains z

are equivalent. If, in addition, every face of K is an exposed subset of K, then (i)
and (ii) are equivalent to the property

(iii) H = K ∩ Ez.

Proof. For the equivalence of (i) and (ii) see [3, Theorem 5.6].
(ii)⇒ (iii): Because of (9) we immediately get H ⊆ K ∩ EH = K ∩ Ez. Vice

versa, since H is exposed, there exists a functional g ∈ K ′ such that H = g−1(0)
∩K . From g(z) = 0 we get g ∈ F 0(z) and Ez ⊆ g−1(0). Hence K ∩ Ez ⊆ K ∩
g−1(0) = H .

(iii)⇒ (ii): Let H = K ∩ Ez and let G be the smallest face of K that contains z.
The inclusion G ⊆ H is obvious. G is exposed, i.e. there exists a functional g ∈ K ′
such that G = g−1(0) ∩K . Since z ∈ G we get g ∈ F 0(z) and Ez ⊆ g−1(0), hence
H ⊆ K ∩ g−1(0) = G. �

Note that for a face H of K with dim(H) = n− 1 the set F 0(H) contains only
one element, say f , and f−1(0) = H −H . Furthermore, f−1(0) ∩K = H , hence
H is exposed. For example, ifK is a closed generating cone in R3 and every extreme
ray of K is exposed, then K has the property required in Lemma 4.5 that every face
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of K is an exposed subset of K . If K is a circular cone in Rn, one easily shows that
every face H of K is an exposed ray.

Lemma 4.6. LetK be a finitely generated cone in Rn that is generating. Then every
face H of K is exposed and H −H = EH .

Proof. The cone K has a base D with ext(D) = {x1, x2, . . . , xr}, and K ′ pos-
sesses a base F with ext(F ) = {f1, f2, . . . , fs} (for details see e.g. [7]). If G is a
face ofK , one hasG = c{xi1 , . . . , xik } for some {i1, . . . , ik} ⊆ {1, . . . , r}, F 0(G) =
co{fj1 , . . . fjl } for some {j1, . . . , jl} ⊆ {1, . . . , s} and G = f−1(0) ∩K for f =
1
l

∑l
m=1 fjm ∈ F . Hence every face of K is an exposed subset of K .

Now let H be a face of K , z ∈ ri(H) and v ∈ EH \ {0}, we show v ∈ H −H .
Observe that F 0(z) = F 0(H) ⊆ F 0(v). Since F+(z) ∩ ext(F ) is a finite set one has
b(z) := min{g(z): g ∈ F+(z) ∩ ext(F )} > 0. Put a(v) := max{|f (v)|: f ∈ F }, then
a(v) > 0 since K is generating and closed. We get 1 � g(v)/a(v) � −1 for each
g ∈ F . Put ε := b(z)/[2a(v)] and w := z+ εv and note that ε > 0. For every g ∈
F+(z) ∩ ext(F ) one has

g(w) = g(z)+ b(z)
2
· g(v)
a(v)

� b(z)− b(z)
2
> 0.

If g ∈ F 0(z) then g ∈ F 0(v) and we get g(w) = 0. Consequently, g(w) � 0 for
every g ∈ F and, since K is closed, w ∈ K . We conclude w ∈ K ∩ EH and apply
Lemma 4.5 and (9). Since every face of K is exposed we get w ∈ K ∩ Ez = H .
This yields

v = w
ε
− z
ε
∈ H −H,

and hence EH = H −H. �

Before we come to the main theorem notice the following simple statement (with-
out proof).

Proposition 4.7. Let E be a linear subspace of Rn and A : Rn→ Rn a regular
matrix such that A(E) ⊆ E. Then A|E : E→ E is surjective.

Theorem 4.8. Let K be a closed generating cone in Rn. Let every extreme ray
of K be exposed, and for every face H of K with dim(H) > 1 let H −H = EH .
Furthermore, let u ∈ int(K) be fixed and let A : Rn→ Rn be an M-operator in
(Rn,K, ‖ · ‖). If Au ∈ K, then A−1 is anMP -operator with respect to u.

Proof. Let A be anM-operator with Au ∈ K and suppose that A−1 does not satisfy
MP with respect to u. Then there exists an element y > 0 such that for every func-
tional f ∈ Fmax(A−1y) one has f (y) = 0. Now the idea is to find a linear subspace
E of Rn that is invariant with respect to A, i.e. A(E) ⊆ E, such that u /∈ E and
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Au ∈ E. Then Proposition 4.7 implies that there exists an element e ∈ E such that
Ae = Au. Since A is injective we get a contradiction.

Put x = A−1y. Hence α(x) > 0. Due to Proposition 3.3 there exists an element
z ∈ K such that x = α(x)u− z and F 0(z) = Fmax(x). Note that z /= 0, otherwise
F = F 0(z) = Fmax(x) ⊆ F 0(y) which contradicts y /= 0. Let f ∈ F 0(z). Since A
is a nod operator, we get f (Az) � 0. The condition Au ∈ K implies f (Au) � 0.
Since 0 = f (y) = α(x)f (Au)− f (Az), f (Au) � 0 and −f (Az) � 0 one has
f (Au) = f (Az) = 0 for every f ∈ F 0(z). The setH := K ∩ Ez is a face ofK with
r(z) ⊆ H and Au ∈ H . Consider the following cases:

(i) H = r(z). Since y ∈ H one has Az = α(x)Au− y ∈ H −H . If v is an arbi-
trary element of H −H , then v = λz for some λ ∈ R and Av = λAz, i.e. Av
belongs to H −H . Hence the linear subspace E := H −H of Rn is invariant
with respect to A, furthermore Au ∈ E and, obviously, u /∈ E.

(ii) H /= r(z). Lemma 4.4 and the assumption ensure that every face of K is ex-
posed. Hence, due to Lemma 4.5, the element z is a relative interior point of
H , i.e. there exists a number ε > 0 such that B(z, ε) ∩ (H −H) ⊆ H . Fur-
thermore Ez = EH , and, by assumption, Ez = H −H . Consider an element
v ∈ Ez with ‖v‖ � ε. We get z± v ∈ B(z, ε) ∩ Ez = B(z, ε) ∩ (H −H) ⊆ H
and, in particular, f (z± v) = 0 for every f ∈ F 0(z). Since A is a nod operator
one has 0 � f (A(z± v)) = f (Az)± f (Av) = ±f (Av) and hence f (Av) =
0 for each f ∈ F 0(z). This yields Av ∈ Ez. Hence E := Ez is an invariant lin-
ear subspace of Rn with respect to the operator A with Au ∈ E and u /∈ E. �

Due to Lemma 4.6 and the remarks on the facial structure of a circular cone in Rn

we get the following.

Corollary 4.9. Let K be a circular or a finitely generated cone in Rn that is gen-
erating, let u ∈ int(K) and A: Rn→ Rn an M-operator. If Au ∈ K then A−1 is an
MP -operator with respect to u.

5. Operators I − B with positive B

In this section we examine the above maximum principles for a special class of
M-operators on an arbitrary ordered normed space (X,K, ‖ · ‖) (where the cone K
is closed and has a nonempty interior), namely operators A = I − B where B � 0
and ‖B‖ < 1.

We start with a simple consequence of Theorem 4.3. Let u ∈ int(K) and

γ = sup
{
t ∈ R+:B(u, t) ⊂ K}. (10)

Then γ > 0, and γ is finite due to K ∩ (−K) = {0}. For x ∈ K \ {0} one has

u± γ x

‖x‖ � 0 (11)
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and, in particular, u− γBu/‖Bu‖ � 0. If

γ > ‖Bu‖ (12)

then Au = u− Bu ∈ int(K). Consequently, due to Theorem 4.3, the condition (12)
ensures that A−1 satisfies sMP with respect to u.

For fixed u ∈ int(K) let F be the base of K ′ corresponding (4), and for x ∈ K
let α(x) be defined corresponding (5). Due to (11) for every x ∈ K \ {0} and every
f ∈ F one has

0 � f
(
u± γ x

‖x‖
)
= 1± γ f (x)‖x‖

which implies |f (x)| � 1
γ
‖x‖ and α(x) � 1

γ
‖x‖ (which also holds for x = 0). Put

M = 1

γ
.

ThenM > 0 and α(x) � M‖x‖ for every x ∈ K . If, in addition, we have an estimate
m‖x‖ � α(x) for every x ∈ K and some constantm > 0, then the following theorem
provides a condition for an operator I + C, C � 0, to satisfy sMP .

Theorem 5.1. Let (X,K, ‖ · ‖) be an ordered normed space, where K is a closed
cone that has a nonempty interior, and let u ∈ int(K) be fixed. Let C ∈L(X) be a
positive operator. If there exists a constant m > 0 such that m‖x‖ � α(x) for each
x ∈ K and ‖C‖ < m/M, then the operator I + C satisfies sMP with respect to u.

Proof. We fix x > 0 and have to show f (x) > 0 for each f ∈ Fmax(x + Cx). First
note that for some g ∈ Fmax(x) one has

0 < ‖x‖ � α(x)

m
= g(x)

m
� g(x)

m
+ g(Cx)

m
= g(x + Cx)

m
. (13)

Fix f ∈ Fmax(x + Cx) and suppose f (x) = 0. Then g(x + Cx) � f (x + Cx) =
f (Cx), and from (13) we conclude

0 < ‖x‖ � f (Cx)

m
� α(Cx)

m
� M‖Cx‖

m
� M

m
‖C‖‖x‖ < ‖x‖,

which is a contradiction. Hence I + C satisfies sMP. �

For A = I − B, where B � 0 and ‖B‖ < 1, the inverse operator

(I − B)−1 = I + B + B2 + · · ·
is positive and can be represented as (I − B)−1 = I + C, where C = B + B2 + · · ·
and

‖C‖ = ‖B + B2 + · · · ‖ � ‖B‖ + ‖B‖2 + · · · = ‖B‖
1− ‖B‖ . (14)

Corollary 5.2. Let (X,K, ‖ · ‖) be an ordered normed space that satisfies all as-
sumptions of Theorem 5.1 and let B ∈L(X) be a positive operator with
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‖B‖ < m

m+M .
Then (I − B)−1 satisfies sMP with respect to u.

Proof. By assumption,

‖B‖
1− ‖B‖ <

m

M
.

If we apply (14) and Theorem 5.1, then the result is immediate. �

Now we show how the constantm can be determined, where we are guided by the
following simple.

Example 5.3. Let X = C[0, 1] be equipped with the maximum norm and the cone
K = C+[0, 1]. Assume u ∈ int(K) and define F corresponding (4), then ext(F ) is
the set of maps εt , determined by the points t ∈ [0, 1], with εt (x) = x(t)/u(t) for
each x ∈ C[0, 1], and α(x) = max{εt (x): t ∈ [0, 1]}. For every x ∈ K one has

1

‖u‖‖x‖ = max
t∈[0,1]

x(t)

‖u‖ � max
t∈[0,1]

x(t)

u(t)
= α(x),

hence we get m = 1/‖u‖. Note that γ = min{u(t): t ∈ [0, 1]} and, obviously,

α(x) � max
t∈[0,1]

x(t)

γ
= 1

γ
‖x‖. �

The constant m can be ascertained if in addition to the assumptions of Theorem
5.1 the norm ‖ · ‖ is assumed to be semi-monotone. 5

Proposition 5.4. Let (X,K, ‖ · ‖) be an ordered normed space, whereK is a closed
cone with a nonempty interior, and fix u ∈ int(K). Let the norm ‖ · ‖ be semi-mono-
tone with the constant N . Then for each x ∈ K one has

1

N‖u‖‖x‖ � α(x).

Proof. Fix x ∈ K \ {0} and consider z = α(x)u− x. Due to Proposition 3.3 one
has z ∈ K and therefore x + z � x. The semi-monotony of the norm yields

‖u‖ =
∥∥∥∥ 1

α(x)
(x + z)

∥∥∥∥ � 1

α(x)
· 1

N
‖x‖,

hence
1

N‖u‖‖x‖ � α(x). �

5 If the interval [0, u] is norm bounded, then the norm is semi-monotone (see e.g. [13, Theorem
IV.2.3]).
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Remark. If (X,K) is a vector lattice equipped with a lattice norm, i.e. |x| � |y|
implies ‖x‖ � ‖y‖, then N = 1 and m = 1/‖u‖.

Summarizing the above results, we get the following conclusion: If the ordered
normed space (X,K, ‖ · ‖) satisfies all assumptions of Proposition 5.4 and if B ∈
L(X) is a positive operator with

‖B‖ < 1

1+ N ·‖u‖
γ

,

then by Corollary 5.2 the operator (I − B)−1 satisfies sMP with respect to u.
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