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Abstract

For M-matrices a condition to satisfy the “maximum principle for inverse column entries”
is known. We generalize this result (concerning a more general maximum principle) for
M-operators on R”, ordered by some cone, as well as, to a certain extent, for M-operators
on infinite-dimensional ordered normed spaces.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper we study certain maximum principles for positive operators
on ordered normed spaces, in particular for the (positive) inverses of M-operators. In
the most of our results the underlying space is R” ordered by some convex cone K.
We define M-operators as some generalization of M-matrices. Recall that a matrix
A = (ajj)n,n is an M-matrix if A = sl — B, where I denotes the identity, B is a
positive matrix and s > r(B). ' The last inequality ensures the invertibility of A,
onehas A~ = s 11 +s 2B+ ...+ s *B¥! 4 ... where the series converges in
the operator norm, and A~! is positive. A matrix A is an M-matrix iff A has a positive
inverse and a;; < 0 fori # j (see e.g. [2]). In an arbitrary normed space, ordered by
some cone, for operators the “negative-off-diagonal” property is known (see Defini-
tion 4.1). We call an operator A on some ordered normed space an M-operator if A is

E-mail address: kalauch@math.tu-dresden.de (A. Kalauch).
' Here r(B) denotes the spectral radius of the operator B. We consider only nonsingular M -matrices.
Singular M-matrices, i.e. matrices of the form A = r(B)I — B, are not relevant for our topic.
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negative-off-diagonal and has a positive inverse. Note that any operator A = sI — B,
where B is positive and s > r(B), is an M-operator. >

The considered maximum principles for a given linear operator equation in some
real 3 vector space X can roughly be described as follows: A positive input causes
a positive output, and the maximum response takes place in that part of the system
where the influence is nonzero. Notice the following examples:

1. In connection with the study of discrete approximations for differential equations
in [10] the following maximum principle for an n x n-matrix A = (g;;) is in-
troduced: For any y = (y1, ..., y4) € R" with Ax = y from y > 0, y # O there
follows x > 0 and, moreover,

maxx; = max x;, (D
ieN ieN*(y)
where N = {1,...,n}and N*(y) = {i € N:y; > 0}. In[11] the following prop-
osition is shown: If A is an M-matrix and Ae € R’i, where e = (1, 1, ..., l)T,

then A satisfies (1).

In [15, Definition 3.31] the above maximum principle is called the maximum prin-
ciple for inverse column entries. For y = ¢ the ith unit vector, the preimage
x = A !y is the ith column of A~! = (; i), and if A is positively invertible and
satisfies (1) then A~! is weakly diagonally dominant of its column entries, i.e.
aj; = ajj foralli, j € N.

2. Let X = C(T) be the space of all continuous functions on some compact topolog-
ical Hausdorff space T ordered by the cone of all nonnegative functions of C (7).
Let A : C(T) — C(T) be alinear operator which possesses a positive continuous
inverse. Then for a positive nonzero function y the question arises, whether there
exists a point t € T at which the function x = A~!y attains its maximum and
y(t) > 0 holds as well.

One approach to obtain a maximum principle that covers both examples is to
replace the values of the “components” of a vector x in (1) by the values of certain
“extreme functionals” on an element x of X. In [7] the maximum principle (1) is gen-
eralized to linear positively invertible operators A : R* — R”", where R" is equipped
with a finitely generated cone or a circular cone, respectively. In [5] a generalization
is considered for linear positively invertible operators on a normed space (X, || - |)
ordered by a closed cone K which has a nonempty interior. This covers the both
examples above. To avoid the positive inverse of some operator, in [4] the maximum
principle M P is formulated for positive operators (see Definition 3.4).

In the present paper we generalize the statement on M -matrices and the maximum
principle (1) in the first example to a certain extent for M-operators, concerning M P

2 In the numerical analysis the notion M-operator is sometimes used for an operator A = s/ — B on
some ordered normed space, where B is positive and s > r(B). Our notion “M-operator” is more general.
3 Throughout only real vector spaces are considered.
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with respect to some interior point of the given cone. It turns out that the facial struc-
ture of the cone is crucial. Furthermore, we consider special M-operators, namely
operators of the form A = I — B, where B is positive and ||B|| < 1, and provide
sufficient conditions for A~! to satisfy M P.

2. Preliminaries

Let X be a real vector space and M a nonempty subset of X. The linear, posi-
tive-linear, affine, convex hull of M is denoted by lin(M), c(M), aff(M), co(M),
respectively. For x € X \ {0} let r(x) = {Ax: A > O} be the ray generated by x. The
set of extreme points of a nonempty convex set C C X is denoted by ext(C) (where
x € C is an extreme point of C if x = Ay 4+ (1 — 1)z implies x = y = z whenever
v,ze Cand X € (0,1)). Aset K C X is awedge in X if K = ¢(K). K is a called
a cone in X if in addition one has K N (—K) = {0}. For a cone K in X we use
the notations x € K and x > 0 synonymously and write x > 0 instead of x > 0,
x # 0. A cone K is generating if each x € X can be represented as x = y — z with
v,z € K. Asubset D of acone K is a base of K if D is a nonempty convex set such
that every x > 0 has a unique representation x = Ay with y € D and A > O.

If (X, 7) is a real locally convex Hausdorff space and C an arbitrary subset of
X, then by int(C) and 0C we denote the sets of all interior and boundary points of
C, respectively. The Krein—-Milman Theorem guarantees for any nonempty convex
compact subset C € X both the condition ext(C) # @ and the representation

C =o' (ext(C)), (2)

where co’ (M) denotes the T-closure of the convex hull of M C X.

In the following let (X, K, || - ||) be a normed space ordered by a cone K. The
norm || - || is semi-monotone if there exists a constant N such that for every 0 <
x < yone has ||x|| < N|y|l. As usual, X’ denotes the space of all continuous linear
functionals on X. On X’ the weak* topology o (X', X) is considered. The subset

K'={feX:f(x)>0 foreveryx e K}

is always a wedge in X’. If K’ turns out to be a cone in X’, then we call it the dual
cone to K and introduce an order in X’ by means of f > 0 iff f € K'. Note that
K’ is a cone in X’ if and only if X is the norm closure of K — K. The condition
int(K) # @ implies that K is generating, hence, in this case, K’ is a cone. Further-
more, if int(K) # @, then x € int(K) if and only if for each f € K’, f # 0 one has
f(x) > 0 (see [13, Theorem I1.2.2]). If K is a closed cone, then for any x > O there
exists a functional f € K’ such that f(x) > 0 (see [13, Theorem I1.4.1]).

A face of a cone K is a (proper) nonempty subcone H # {0} of K such that
x € Hand 0 < y < x imply y € H. Note that H C 0K. An element x € K is an
extremal of K if r(x) is a face of K (i.e. r(x) is an extreme ray). If K has a base
D with extreme points, then every x € ext(D) is an extremal of K. A (nonempty)
subset H # {0} of a cone K is exposed if there exists a functional f € K’ such that
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H = f~1(0) N K. Note that every exposed subset is a face, but not vice versa (cf.
Example 4.2). If an exposed subset is a ray, we will call it an exposed ray.

Forsomex € Xandr > Olet B(x,r) ={v e X:|lx —v| <r}and By = B(0, 1).
Let M C X be a convex set; an element x € M is a relative interior point of M,
written x € ri(M), if x is an interior point of M in aff(M), i.e. if there exists a number
r > 0 such that B(x, r) Naff(M) C M. For a subset S C X and an element x € X
let dist(S, x) = inf{||lx — v|:v € S}.

Note that a cone K in R" is generating if and only if int(K) # #J. We call a cone
K in R" finitely generated if there exists a nonempty finite set S € R" such that
K = c(S) (for more details see [7]). A finitely generated cone is the intersection of a
finite number of closed halfspaces and therefore itself is closed. A subset K € R" is
called a circular cone if there exists an element 7 € R" with ||z|| = 1 and a number
r > 0 such that

K={Ax:x€[R§”,(x,z)=1,||x—z||<r,k>0}. 3)
As usual, a linear operator A : X — X on an ordered vector space (X, K) is positive

if AK C K. In this case we write A > 0. Denote the set of all continuous linear
operators on a normed space (X, | - ||) by Z(X).

3. Maximum principles: definition and examples

We define the maximum principles for an operator in an arbitrary ordered normed
space (X, K, || - ||), although operators in such a general space only appear occa-
sionally in the following. In the most of our results operators in (R”, K, || - ||) are
considered. Let (X, K, || - ||) be an ordered normed space, where K is a closed cone
with a nonempty interior. The following investigations essentially depend on a fixed
element of int(K). The relationship between the maximum principles for different
fixed interior points of K are presented in [5] and for a special case in [7]. First we
recall some definitions and basic consequences of the condition int(K) # @; for an
extended version see [4]. Let u be a fixed element of int(K'). Then the set

F=F,={fcK: flu)=1} 4

isao (X', X)-compact base of K’ (see [14, Theorem I1.3.2]) and because of (2) one
has ext(F) # @ and

F = co® XY (ext(F)).

Consider the situation in R", equipped with the standard cone:

Example 3.1. Let X =R", K =R/, (hence K'=R})and e = (1,1,..., DT e
K. The corresponding base is

n
Fi=Fo={@....x)TeR ) x=1
i=1
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and the set ext(F') consists of the unit vectors
e =(0,...,0,1,0,...,07T

with 1 at the ith position, i = 1, ..., n. The value of the functional e® ata point
x=0p, ..., x) e R corresponds to the component x; of the vector x.

Example 3.2. In X = C[0, 1]let K = C+[0, 1] be the cone of all nonnegative func-
tions and for u take the function 1 € int(K). Then F is the set of all normalized
Borel measures on [0, 1], and the set ext(F) is the collection of the evaluation maps
&; determined by the points ¢ € [0, 1], where &;(x) = x(¢) for each x € C[0, 1] (see
e.g. [6, Section 10.3]).

In (X, K, || - ||) for each x € X the number
a(x) =max{f(x): f € F}

is correctly defined since F is o (X', X)-compact and the function % : X’ — R de-
fined by means of f — f(x) is o(X’, X)-continuous. X attains its maximum on F
at an extreme point of F' (according to the Bauer maximum principle), hence
a(x) = max{f(x): f € ext(F)}. (®)]
Since K is closed, for any x > O there is a functional f € K’ such that f(x) > 0,
and therefore x > 0 yields a(x) > 0. Note that «(u) = 1. For x € X the set

F™(x) ={f € F: f(x) = a(x)}
is a nonempty o (X’, X)-compact extreme convex subset of F containing extreme
points of F. In [4] the representation

F™(x) = 6 XX (ext(F) N F™™(x)) (6)
is shown. Note that f € F™X(x), g € F imply g(x) < f(x). Furthermore
F"™(y) =F.

For H C K let FO(H) = {feF:f(x)=0forall x € H}. For x € K we will
abbreviate FO({x}) by F?(x). We denote F*(x) = F \ F%(x). Note that for x > 0
we have

F™ (x) € F*(x). (N

We will make use of the following statement.

Proposition 3.3. Forevery x € K there exists a representation x = a(x)u — z where
z € K and F™ (x) = FO(z).

Proof. Fix x € K and consider z = a(x)u — x. Assume z ¢ K. Since K is closed,
the sets K and {z} can be separated by a hyperplane, i.e. there exists a functional
g € F with g(z) < 0. In particular one has g(x) > 0. Due to

g(x) = a(x)gu) — g(z) = a(x) — g(z) > a(x)
a contradiction is obtained. [J
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Definition 3.4. Let (X, K, || - ||) be an ordered normed space with a closed cone K
that has a nonempty interior, let u be a fixed interior point of K and let A € Z(X)
be positive. A is said to satisfy

e the maximum principle M P with respect to u, if for every x > 0 one has
F™(Ax)N Ft(x) # 0;
e the (strong) maximum principle s M P with respect to u, if for every x > 0 one
has
FMX(Ax) C F1T(x).
A positive continuous linear operator on an ordered normed space that satisfies
M P with respect to u € int(K) is called an M P-operator with respect to u.

Remark. Let A € £ (X) be positive. If A satisfies s M P with respect to u, then {x €
K:Ax = u} Cint(K),since x € K with Ax = u impliesx # 0, and F = F™*(u) =
FMX(Ax) C FT(x) yields x € int(K).

The maximum principle M P generalizes the maximum principles 1 and 2 dis-
cussed in Section 1. Indeed, consider X = R", K = IR’}r and an n X n-matrix A that
possesses a positive inverse A~!. Using the description of the extreme points of F
in Example 3.1, A satisfies the maximum principle 1 of Section 1 if and only if A~!
satisfies M P with respecttou = (1,1, ..., DT e R". Furthermore, considering an
operator A : C(T) — C(T) that has a positive inverse A~!, then A satisfies the max-
imum principle 2 of Section 1 if and only if A~! satisfies M P with respect to the
function u = 1.

To illustrate the dependence of M P on the fixed interior point of K consider
X =R? K =R% and

2 1
A (1 2) |

Then A satisfies sM P with respect to u = (1, 1)T, but A does not satisfy even
MP, e.g. with respect to v = (1, 3)T, since ext(F,) = {(1,0)T; (0, %)T}, and e.g.
x = (0,3)T yields Ax = (3,6)T, a(Ax) = 3 and F"™(Ax) = {(1,0)T} € FO(x).

Due to (7) the identity operator / in an ordered normed space (X, K, | - ||) always
satisfies s M P (and hence M P) with respect to an arbitrary element u# € int(K). For
an M P-operator A with respect to u the operator AA for some A > 0 is an M P-
operator with respect to u as well. The sum and the composition of M P-opera-

tors need not be M P-operators even in a finite-dimensional space equipped with the
standard cone, as the following example shows.

3 3
Example 3.5. Let X = R’, K =Ry,

_—— O

0
and B=|1 2
0
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We consider the maximum principles M P and sM P with respect to the element
u=(1,1,1)T (cf. Example 3.1). Both matrices A and B satisfy M P, but neither
A nor B satisfies sM P. For x = (1,0, 1)T one has Ft(x) Next(F) = {eV, e®}.
Since (A + B)x = (3, 4, 3)T yields F™#*((3, 4, 3)T) Next(F) = {e®}, the operator
A + B does not satisfy M P. This also points out that a convex combination of M P-
operators, e.g. %A + %B, in general is not an M P-operator. Furthermore, a simple
calculation shows that for any k € N, k > 2, one has F™* (A*x) Next(F) = {¢@},
hence no power of A satisfies M P. Finally, the matrix

1 0 O
c=|1 2 1
0 0 1

satisfies I < C < A, i.e. C is bounded from both sides by M P-operators. However,
C is not an M P-operator since Cx = (1,2, 1)T implies that F™>*{Cx} = {@}.

4. M -operators
In the following let (X, K, || - ||) again be an ordered normed space.

Definition 4.1. An operator A € £ (X) is called negative-off-diagonal (nod) if x €
K and f € K’ with f(x) = 0 imply f(Ax) < 0. A nod operator A that possesses a
positive inverse A~! is called an M-operator.

Obviously, an operator A = sI — B, where B is positive and s > 0, is a nod op-
erator, and it is an M-operator if s > r(B). In general, a nod operator can not be
represented as s/ — B, where B is a positive operator (see e.g. [9]). For an example
of an M -operator that is not representable see e.g. [1, 4(1.6)].

If the cone K is closed and satisfies int(K) # ¢, then we fix an arbitrary element
u € int(K) and define a base F of the cone K’ corresponding (4). In Definition 4.1
we can restrict ourselves to elements x € 0K and to functionals of the set FO(x) N
ext(F), since

FOr) = X 0L FO(x) Next(F)) (8)

(see e.g. [4]). Hence A is a nod operator if and only if x € 0K and f € ext(F) with
f() = 0imply f(Ax) <0,

If we consider the space (R", R}, || - ||), then a matrix A = (a;;),,» is a nod 4
operator if and only if a;; < 0 for i # j. Indeed, let A be a nod operator and sup-
pose a;j > 0 for some pair (i, j) such that i # j. Then the jth unit vector x = el

4 In the matrix theory sometimes the notion cross-positive for a matrix A is used provided (—A) is
negative-off-diagonal.
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yields x; = 0 and y; = (Ax); = a;; > 0, a contradiction. Vice versa, let a;; < 0 for
i#+jand x € R’j_ with x; = 0 for some fixed i. Then y; = (Ax); = Zj ajjxj =
> j+i @ijxj < 0 shows that A is a nod operator.

In (R, R, || - II) a matrix A is an M-operator if and only if A is a (nonsingular)
M -matrix.

In analogy to the Example 1 from Section 1 we examine the following question:

(Q) Let (X, K, || - |I) be an ordered normed space, u € int(K) a fixed element and
A € L(X) an M-operator. Is A~' an M P-operator with respect to u provided
Au € K?

In the space X = R" equipped with the standard cone K = R’ a confirmative
answer for (Q) is given in [12]. It turns out that the stronger condition Au € int(K)
yields a confirmative answer for arbitrary ordered normed spaces, as follows from
Theorem 4.3. It remains to examine the condition Au € 0K . In this case (Q) can in
general not be answered confirmatively (even if X is finite dimensional; see Exam-
ple 4.2). A confirmative answer is obtained in X = R" if the cone K has a special
facial structure (see Theorem 4.8). In the case of an infinite dimensional space X no
satisfactory results are known.

The next example shows that there exists an M-operator A, satisfying Au € K
for some u € int(K'), which is not an M P-operator with respect to u.

Example 4.2. In the ordered normed space (R3, K, | - | let || - || be the Euclidean
norm on R3 and K = K U K;, where

Ki={t(x1, %0, DT:xf +x3 < 1,1 > 0}
is a circular cone and

Ky = {t(x1,x, D10 <x1 < 1,0< v < 1, >0}

is finitely generated. We illustrate the following considerations in Fig. 1 where we
use v = (0,0, 1)T € int(K) and the corresponding bases D, = {x € K: (x, v) = 1}
of K and F, = {x € K’: {x,v) = 1} of K’, i.e. the intersections of K and K’ with
the plane x3 = 1 for elements (x1, x3, xg)T € R3. The operator

1 2 =2
A=|-2 1 0
-2 0 1
is an M-operator in the space (R3, K, | - |, since

(i) A is a nod operator with respect to K. Indeed, consider the following cases of
extreme points of F, and elements x = (xp, x2, DT ek:
1. Let f = (wy, wa, DT with w% + w% =1 and at least one w; > 0. Then
(x, f) =0 iff x| = —w; and xp = —w>. This yields f(Ax) = f((—wl —
2wy — 2, 2wy — wy, 2wy + D) = —(wl+w3) =-1<0.
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2. For fl =(-1,0, 1)T we get (x, fl) =0iff x; =1 and 0 < x < 1. Hence
fi(Ax) = fi(@x2 — 1,xp =2, —DT) = —2x; < 0.
3. Finally, let f> = (0, —1, 1)T. Then (x, ) =0 iff x; = 1 and 0 < x; < 1.
We conclude f>(Ax) = fr((x1, 1 —2x1, 1 —2x)T) = 0.
(ii) the operator

1 -2 2
ATl=12 -3 4
2 —4 5

is positive with respect to K (see Fig. 1, where the base G, of the cone A~'K
is illustrated).

We consider the element u = (3,6,7)T € int(K) and show that A~ does not
satisfy M P with respect to u, although Au € K. Observe that z = Au = (1,0, )T €
0K and that the ray r(z) is a face of K which is not an exposed subset of K. (The
elements i = %u € D, and z € D, are illustrated in Fig. 1.) The base F, of K’
possesses the following set of extreme points:

1

t(Fy)={————
ext(Fu) {3w1—|—6w2+7

(wy, wy, l)T:w% + w% =1, w; =20o0rw; > 0}.
In particular, f; = % fl and f>, = fz are extreme points of F,. Note that Az = (—1,
—2,—DTand f1(z) = fi(Az) =0.Nowputx :==u —z = (2,6,6)T € K, then y :=
Ax = (1,1, )T € K. (The elements ¥ = %x € Dy and y € D, are illustrated in Fig.
1.) Because of Proposition 3.3 one has F™¥*(x) = { f1}, furthermore fi(y) = 0.
Hence A~! does not satisfy M P with respect to u.

The next theorem answers (Q) in the case Au € int(K).
Theorem 4.3. Let (X, K, || - ||) be an ordered normed space with a closed cone

K that has a nonempty interior and let u € int(K) be fixed. If A € L (X) is an
M-operator that satisfies Au € int(K), then A~ satisfies s M P with respect to u.

To 2
1 z y=Ax 1

D, _) N F,
Gv ¢ z = Au K\
\/ 1 T fl \/ 1 T
f2

Fig. 1. Illustration of Example 4.2.
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Proof. For an element y > 0 we get x = A~™'y > 0 and hence a(x) > 0. Fix an
arbitrary functional f € F™*(x), then Proposition 3.3 yields x = a(x)u — z where
z € K and f(z) = 0. The assumption Au € int(K) ensures f(Au) > 0, furthermore
f(Az) < Osince A is anod operator. Hence f(Ax) = a(x) f(Au) — f(Az) > Oand
A~ satisfies sMP. O

Now we examine (Q) if Au € 0K. Example 4.2 already showed that in general
(Q) can be answered negatively in this case. To get a confirmative answer for (Q)
we need some more assumptions on the structure of 0K. We confine ourselves to
X = R", equipped with a closed generating cone K (i.e. K has nonempty interior).
As above, fix some element u € int(K) and the base F of K’ corresponding (4). For
aset H C K put

Ey = ﬁ {710 f e FO(H)).
Note that Eg is a closed linear subspace of X. For an element z € K we will ab-
breviate E;) by E,. If z € H, then FO(H) € Fz) and E, C Epg. If H is a face of

K, then the inclusions H € K N Ey and H — H € Ey are obvious. As an example
such that H — H # Ey see Example 4.2 with H := r(2).

Lemma 4.4. Let K be a closed generating cone in R" and let H be a face of K with
H — H = Ey. Then H is an exposed subset of K.

Proof. First notice that H = (H — H) N K. Indeed, if x = x; — xp > 0 with x,
xp € H,then x; > x > 0 and, since H is a face, x € H.

For ¢ > 0 put S; = {x € R*:dist(Ey, x) < ¢}. For the closed unit ball By in R"
one has

By =(BiNEy)U Bl\ N 'O

feFO(H)
cBnsHu | (B\r0)
feFO(H)
which provides an open covering for B in the induced topology. Since Bj is compact
we get a finite covering, i.e. there exist functionals f; € FO(H),i =1,...,k, such
that

k

k
BicBinS)UlJBi\ () =B NS)U (Bl\ N ﬁ1(0)> :
i=1

i=1
This implies
k

Bn(f'®cBins
i=1
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for every ¢ > 0. Hence ﬂle fi_l(O) C Ep and, since Ey is closed,

k
Eq=()f0.

i=1

Put g = % Zle fi and observe that g~1(0) N K = Eyx N K. Now, by assumption,
H=(H-H)NK =EyNK =g '(0)NK,hence H is exposed. []

Recall that for a face H of K and an element z € H one has z € ri(H) if and only
if there is a number ¢ > 0 such that B(z,¢) N (H — H) € H. The smallest face G
of K that contains z is the set

G = {x € X:there is a number A > O such that 0 < x < Az}.
This implies F(z) = F°(G) and hence

E. = Eg. ©)

Lemma 4.5. Let K be a closed generating cone in R", H a face of K and z € H.
Then the properties

() z eri(H),
(i1) H is the smallest face of K that contains z

are equivalent. If, in addition, every face of K is an exposed subset of K, then (i)
and (i) are equivalent to the property

(iii) H=KNE,.

Proof. For the equivalence of (i) and (ii) see [3, Theorem 5.6].

(ii) = (iii): Because of (9) we immediately get H € K N Eyg = K N E,. Vice
versa, since H is exposed, there exists a functional g € K’ such that H = g’l(O)
N K. From g(z) =0 we get g € FO(z) and E; € g~!(0). Hence K NE, C K N
g 1(0) = H.

(iii)) = (ii): Let H = K N E; and let G be the smallest face of K that contains z.
The inclusion G C H is obvious. G is exposed, i.e. there exists a functional g € K’
such that G = g~ 1(0) N K. Since z € G we getg € F%(z) and E, C g~1(0), hence
HCcKng l0=G. O

Note that for a face H of K with dim(H) = n — 1 the set FO(H) contains only
one element, say f, and f_l(O) = H — H. Furthermore, f_l(O) N K = H, hence
H is exposed. For example, if K is a closed generating cone in R® and every extreme
ray of K is exposed, then K has the property required in Lemma 4.5 that every face
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of K is an exposed subset of K. If K is a circular cone in R", one easily shows that
every face H of K is an exposed ray.

Lemma 4.6. Let K be a finitely generated cone in R" that is generating. Then every
face H of K is exposedand H — H = Eg.

Proof. The cone K has a base D with ext(D) = {x1, x2, ..., x,}, and K’ pos-
sesses a base F with ext(F) = {f1, fa, ..., fs} (for details see e.g. [7]). If G is a
face of K,onehas G = c{x;, ..., x; ) forsome {iy, ..., ix} S {I,..., 7}, Fo%G) =
co{fj,... fj} for some {ji,..., i} S {l,...,s} and G =f_1(0)ﬂK for f =
% an:l fj. € F.Hence every face of K is an exposed subset of K.

Now let H be a face of K, z eri(H) and v € Ey \ {0}, we show v e H — H.
Observe that FO(z) = FO(H) C FO(v). Since F*(z) Next(F) is a finite set one has
b(z) := min{g(z):g € F*(z) Next(F)} > 0.Puta(v) := max{| f(v)|: f € F}, then
a(v) > 0 since K is generating and closed. We get 1 > g(v)/a(v) > —1 for each
g € F.Put ¢ :=b(z)/[2a(v)] and w := z + e¢v and note that ¢ > 0. For every g €
F1(z) Next(F) one has

bz) gW)

b
gw) = g(0) + 28 8W oy B

== >0.
2 a() 2

If g € FO(z) then g € FO(v) and we get g(w) = 0. Consequently, g(w) > 0 for
every g € F and, since K is closed, w € K. We conclude w € K N Ey and apply
Lemma 4.5 and (9). Since every face of K is exposed we get w € K NE, = H.
This yields

w oz

v=——-€H-—-H,
£ £

andhence Ey = H — H. O

Before we come to the main theorem notice the following simple statement (with-
out proof).

Proposition 4.7. Let E be a linear subspace of R" and A : R" — R" a regular
matrix such that A(E) C E. Then A|g : E — E is surjective.

Theorem 4.8. Let K be a closed generating cone in R". Let every extreme ray
of K be exposed, and for every face H of K with dim(H) > 1 let H — H = Ey.
Furthermore, let u € int(K) be fixed and let A : R* — R" be an M-operator in
(R", K, |- I). If Au € K, then A~ is an M P-operator with respect to u.

Proof. Let A be an M-operator with Au € K and suppose that A~! does not satisfy
M P with respect to u. Then there exists an element y > 0 such that for every func-
tional f € F™*(A~'y) one has f(y) = 0. Now the idea is to find a linear subspace
E of R" that is invariant with respect to A, i.e. A(E) C E, such that u ¢ E and
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Au € E. Then Proposition 4.7 implies that there exists an element e € E such that
Ae = Au. Since A is injective we get a contradiction.

Put x = A~!y. Hence a(x) > 0. Due to Proposition 3.3 there exists an element
z € K such that x = a(x)u — z and F°(z) = F™*(x). Note that z # 0, otherwise
F = FO(z) = F™*(x) c FO(y) which contradicts y # 0. Let f € F%(z). Since A
is a nod operator, we get f(Az) < 0. The condition Au € K implies f(Au) > 0.
Since 0 = f(y) = a(x)f(Au) — f(Az), f(Au) >0 and —f(Az) > 0 one has
f(Au) = f(Az) =O0forevery f € FO(z). The set H := K N E. is a face of K with
r(z) € H and Au € H. Consider the following cases:

(i) H =r(z). Since y € H one has Az = «(x)Au —y € H — H. If v is an arbi-
trary element of H — H, then v = Az for some X € R and Av = LAz, ie. Av
belongs to H — H. Hence the linear subspace E := H — H of R”" is invariant
with respect to A, furthermore Au € E and, obviously, u ¢ E.

(i) H # r(z). Lemma 4.4 and the assumption ensure that every face of K is ex-
posed. Hence, due to Lemma 4.5, the element z is a relative interior point of
H, i.e. there exists a number & > 0 such that B(z,e) N (H — H) € H. Fur-
thermore E, = Ep, and, by assumption, £, = H — H. Consider an element
ve E;with |lv|| <e.Wegetz+ve B(z,e) NE, =B(z,e)N(H—-H)C H
and, in particular, f(z & v) = 0 for every f € F(z). Since A is a nod operator
one has 0 > f(A(z£v)) = f(Az) £ f(Av) = = f(Av) and hence f(Av) =
0 for each f € FY(z). This yields Av € E,. Hence E := E, is an invariant lin-
ear subspace of R" with respect to the operator A with Au € E andu ¢ E. [

Due to Lemma 4.6 and the remarks on the facial structure of a circular cone in R"
we get the following.

Corollary 4.9. Let K be a circular or a finitely generated cone in R" that is gen-
erating, let u € int(K) and A: R" — R" an M-operator. If Au € K then A~ is an
M P-operator with respect to u.

5. Operators I — B with positive B

In this section we examine the above maximum principles for a special class of
M -operators on an arbitrary ordered normed space (X, K, || - ||) (where the cone K
is closed and has a nonempty interior), namely operators A = I — B where B > 0
and ||B|| < 1.

We start with a simple consequence of Theorem 4.3. Let # € int(K) and

y :sup{t € Ry:B(u,t) C K} (10)

Then y > 0, and y is finite due to K N (—K) = {0}. For x € K \ {0} one has

uty->0 (11)
x|
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and, in particular, u — y Bu/||Bu|| > 0. If
y > |Bul| (12)

then Au = u — Bu € int(K). Consequently, due to Theorem 4.3, the condition (12)
ensures that A~! satisfies s M P with respect to u.

For fixed u € int(K) let F be the base of K’ corresponding (4), and for x € K
let a(x) be defined corresponding (5). Due to (11) for every x € K \ {0} and every
f € F one has

O<f<uiyj;>:1iyﬂ2
[lx 1l flx 1l

which implies | f (x)]| < $||x|| and a(x) < %||x|| (which also holds for x = 0). Put

1
M=—.
14

Then M > 0 and a(x) < M||x| forevery x € K. If, in addition, we have an estimate
m|x|]| < a(x) forevery x € K and some constant m > 0, then the following theorem
provides a condition for an operator I + C, C > 0, to satisfy sM P.

Theorem 5.1. Let (X, K, || - ||) be an ordered normed space, where K is a closed
cone that has a nonempty interior, and let u € int(K) be fixed. Let C € £ (X) be a
positive operator. If there exists a constant m > 0 such that m||x|| < «(x) for each
x € K and ||C|| < m/M, then the operator I + C satisfies s M P with respect to u.

Proof. We fix x > 0 and have to show f(x) > 0 foreach f € F™*(x + Cx). First
note that for some g € F™*(x) one has

0 < x| < ax) _ g(x) < gx) n g(Cx) _ glx+Cx)
m m m m m

Fix f € F™*(x 4+ Cx) and suppose f(x) =0. Then g(x + Cx) < f(x + Cx) =
f(Cx), and from (13) we conclude

f(Cx) a(Cx) M| Cx|| M
< < - < EIICIIIIXII < |lxl,

(13)

0 <xll <

which is a contradiction. Hence I + C satisfies sM P. [

For A =1 — B, where B > 0 and || B|| < 1, the inverse operator
I-B) '=I1+B+B>+-..

is positive and can be represented as (/ — B) ™! =1 + C,where C = B+ B> + - --
and
Bl

||C||=||B+Bz+-~-||<||B||+||B||2+---=1_—”BH. (14)

Corollary 5.2. Let (X, K, || - ||) be an ordered normed space that satisfies all as-
sumptions of Theorem 5.1 and let B € £ (X) be a positive operator with
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1Bl <

m
m+M
Then (I — B)~! satisfies sM P with respect to u.

Proof. By assumption,
I Bl m

—_— < —.
1—Bl M
If we apply (14) and Theorem 5.1, then the result is immediate. [

Now we show how the constant m can be determined, where we are guided by the
following simple.

Example 5.3. Let X = CJ[O0, 1] be equipped with the maximum norm and the cone
K = C4[0, 1]. Assume u € int(K) and define F corresponding (4), then ext(F) is
the set of maps &;, determined by the points # € [0, 1], with &;(x) = x(¢)/u(t) for
each x € C[O 1], and @ (x) = max{e;(x):t € [0, 1]}. For every x € K one has

x(®) x(1)
xll = max a(x),
||u|| reloo1) ||u|| o0 ult)
hence we get m = 1/||u||. Note that y = min{u(¢): ¢ € [0, 1]} and, obviously,
t 1
a(x) < max ﬁz—||x||. O
t€[0,1] Y

The constant m can be ascertained if in addition to the assumptions of Theorem

5.1 the norm | - || is assumed to be semi-monotone. >
Proposition 5.4. Let (X, K, || - ||) be an ordered normed space, where K is a closed
cone with a nonempty interior, and fix u € int(K). Let the norm || - || be semi-mono-

tone with the constant N. Then for each x € K one has

lx] < a(x).
N lul]

Proof. Fix x € K \ {0} and consider z = a(x)u — x. Due to Proposition 3.3 one
has z € K and therefore x + z > x. The semi-monotony of the norm yields

IIMII—H—( +2) ? wIx

hence

lxll < o). i
Null

5 If the interval [0, u] is norm bounded, then the norm is semi-monotone (see e.g. [13, Theorem
1v.2.3)).
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Remark. If (X, K) is a vector lattice equipped with a lattice norm, i.e. |x| < |y|

implies |

x| < |lyll,then N =1and m = 1/|u].

Summarizing the above results, we get the following conclusion: If the ordered
normed space (X, K, || - ||) satisfies all assumptions of Proposition 5.4 and if B €
Z(X) is a positive operator with

I1B1 < 5

Y

then by Corollary 5.2 the operator (I — B)~! satisfies s M P with respect to u.
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