JOURNAL OF APPROXIMATION THEORY 45, 122-128 (1985)

On Simultaneous Approximation by Modified Lupas Operators

ASHOK SAHAI AND GOVIND PRASAD

Department of Mathematics, University of Roorkee, Roorkee (U.P.), 247667, India

Communicated by R. Bojanic

Received March 12, 1984; revised October 25, 1984

1. Introduction

Lupas proposed a family of linear positive operators mapping $C[0, \infty)$ into $C[0, \infty)$, the class of all bounded and continuous functions on $[0, \infty)$, namely,

$$(L_n f)(x) = \sum_{k=0}^{\infty} {n+k-1 \choose k} \frac{x^k}{(1+x)^{n+k}} f(k/n),$$

where $x \in [0, \infty)$.

Motivated by Derriennic [1], we propose modified Lupas operators defined, for functions integrable on $[0, \infty)$, as

$$(M_n f)(x) = (n-1) \sum_{k=0}^{\infty} P_{n,k}(x) \int_0^{\infty} P_{n,k}(y) f(y) dy,$$

where

$$P_{n,k}(t) = {n+k-1 \choose k} \frac{t^k}{(1+t)^{n+k}}.$$

The object of the present paper is to study the problem of simultaneous approximation by these operators. Throughout this paper, the superscript (r) and $\|\cdot\|$ stand for the rth derivative of the function and the sup norm on [0, a], respectively. Also, \sum stands for $\sum_{k=0}^{\infty}$.

2. Preliminary Results

We shall need the following lemmas.

LEMMA 1. Let

$$T_{n,m} = (n-r-1) \sum_{i} P_{n+r,k}(x) \int_{0}^{\infty} P_{n-r,k+r}(y) (y-x)^{m} dy$$

then

$$T_{n,0} = 1$$
 (2.1)

$$T_{n,1} = \frac{(r+1)(1+2x)}{(n-r-2)}, \qquad n > r+2$$
 (2.2)

$$(n-m-r-2) T_{n,m+1} = x(1+x)(T_{n,m}^{(1)} + 2m T_{n,m-1}) + (m+r+1)(1+2x) T_{n,m},$$
(2.3)

where n > m + r + 2.

Proof. We can easily verify (2.1) and (2.2), while proof of (2.3) follows. We have

$$T_{n,m}^{(1)} = (n-r-1)\sum_{n=0}^{\infty} P_{n+r,k}^{(1)}(x) \int_{0}^{\infty} P_{n-r,k+r}(y)(y-x)^{m} dy - m \cdot T_{n,m-1}.$$

Using $t(1+t) P_{u,v}^{(1)}(t) = (v-ut) P_{u,v}(t)$ twice and integrating by parts, we get

$$x(1+x)(T_{n,m}^{(1)} + m \cdot T_{n,m-1})$$

$$= (n-r-1) \sum_{n=1}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} y(1+y) P_{n-r,k+r}^{(1)}(y)(y-x)^{m} dy$$

$$-r(1+2x) T_{n,m} + (n-r) \cdot T_{n,m+1}$$

or

$$\begin{split} x(1+x)(T_{n,m}^{(1)}+m\cdot T_{n,m-1})+r(1+2x)\cdot T_{n,m}-(n-r)\cdot T_{n,m+1}\\ &=(n-r-1)\sum P_{n+r,k}(x)\int_0^\infty \left((1+2x)(t-x)+(t-x)^2+x(1+x)\right)\\ &\times P_{n-r,k+r}^{(1)}(y)\cdot (y-x)^m\,dy\\ &=-(m+1)(1+2x)\cdot T_{n,m}-(m+2)\cdot T_{n,m+1}-mx\cdot (1+x)\cdot T_{n,m-1}. \end{split}$$

This leads to (2.3).

Remark. In particular (2.1) and (2.2) in (2.3) gives

$$T_{n,2} = \frac{2(n-1)\cdot x\cdot (1+x)}{(n-r-2)(n-r-3)} + \frac{(r+1)(r+2)(1+2x)^2}{(n-r-2)(n-r-3)},$$
 (2.4)

where n > r + 3. Also, (2.3) leads us to

$$T_{n,m} = O\left(\frac{1}{n\left[\frac{m+1}{2}\right]}\right) \tag{2.5}$$

where $[\lambda]$ stands for the maximum integer less than λ .

LEMMA 2. For r = 0, 1, 2,...

$$(M_n^{(r)}f)(x) = \frac{(n-r-1)!(n+r-1)!}{(n-1)!(n-2)!} \sum P_{n+r,k}(x)$$

$$\times \int_0^\infty P_{n-r,k+r}(y) f^{(r)}(y) dy. \tag{2.6}$$

Proof. By Leibnitz' theorem

$$(M_n^{(r)}f)(x) = \frac{(n+r-1)!}{(n-2)!} \sum_{i=0}^r \sum_{k=i}^{\infty} {r \choose i} (-1)^{r-i} P_{n+r,k-i}(x)$$

$$\times \int_0^{\infty} P_{n,k}(y) f(y) dy$$

$$= \frac{(n+r-1)!}{(n-2)!} \sum_{i=0}^r (-1)^{r-i} {r \choose i} \sum_{k=0}^{\infty} P_{n+r,k}(x)$$

$$\times \int_0^{\infty} P_{n,k+i}(y) f(y) dy$$

$$= \frac{(n+r-1)!}{(n-2)!} \sum_{k=0}^r P_{n+r,k}(x) \int_0^{\infty} \sum_{k=0}^r (-1)^{r-i} (-1)^{r-k} (-1)^$$

Again, by Leibnitz' theorem

$$P_{n-r,k+r}^{(r)}(y) = \frac{(n-1)!}{(n-r-1!)!} \sum_{i=0}^{r} (-1)^{i} {r \choose i} P_{n,k+i}(y).$$

Hence,

$$(M_n^{(r)} f)(x) = \frac{(n-r-1! (n+r-1)!}{(n-1)! (n-2)!} \sum P_{n+r,k}(x)$$
$$\times \int_0^\infty P_{n-r,k+r}^{(r)}(y) \cdot (-1)^r f(y) \, dy.$$

Further, integration by parts r times gets us to the desired result.

3. Main Results

THEOREM 1. If f is integrable in $[0, \infty)$, admits its (r+1)th and (r+2)th derivatives, which are bounded at a point $x \in [0, \infty)$, and $f^{(r)}(x) = O(x^{\alpha})$ (α is a positive integer ≥ 2) as $x \to \infty$, then

$$\lim_{n \to \infty} n((M_n^{(r)} f)(x) - f^{(r)}(x))$$

$$= (r+1)(1+2x) f^{(r+1)}(x) + x(1+x) f^{(r+2)}(x).$$

Proof. By the Taylor formula,

$$f^{(r)}(y) - f^{(r)}(x) = (y - x)f^{(r+1)}(x) + \frac{(y - x)^2}{2}f^{(r+2)}(x) + \frac{(y - x)^2}{2}\eta(y, x),$$
(3.1)

where

$$\eta(y, x) = \frac{f^{(r)}(y) - f^{(r)}(x) - (y - x) \cdot f^{(r+1)}(x) - (y - x)^2 / 2 f^{(r+2)}(x)}{(y - x)^2 / 2}$$
if $x \neq y$

$$= 0$$
if $x = y$.

Now, for arbitrary $\varepsilon > 0$, A > 0 there exists a $\delta > 0$ such that

$$|\eta(y, x)| \le \varepsilon$$
 for $|y - x| \le \delta, x \le A$. (3.2)

Use of (2.6) in (3.1) and further use of (2.2) and (2.4) leads to

$$\frac{(n-1)! (n-2)!}{(n-r-2)! (n+r-1)!} (M_n^{(r)} f)(x) - f^{(r)}(x)$$

$$= T_{n+1} \cdot f^{(r+1)}(x) + T_{n+2} \cdot f^{(r+2)}(x) + E_{n,r}(x),$$

where

$$E_{n,r}(x) = \frac{(n-r-1)}{2} \sum_{n=r,k} P_{n+r,k}(x) \int_{0}^{\infty} P_{n-r,k+r}(y) (y-x)^{2} \cdot \eta(y,x) \, dy.$$

We shall now show that $n \cdot E_{n,r}(x) \to 0$ as $n \to \infty$. Let

$$R_{n,r,1}(x) = \frac{n \cdot (n-r-1)}{2} \sum_{|y-x| \le \delta} P_{n-r,k+r}(y)$$
$$\cdot (y-x)^2 \cdot \eta(y,x) \, dy$$

and

$$R_{n,r,2}(x) = \frac{n \cdot (n-r-1)}{2} \sum_{k=1}^{\infty} P_{n-r,k}(x)$$

$$\times \int_{|x-x| > \delta} P_{n-r,k+r}(y) \cdot (y-x)^{2} \cdot \eta(y,x) \, dy,$$

so that

$$n \cdot E_{n,r}(x) = R_{n,r,1}(x) + R_{n,r,2}(x).$$

It follows from (3.2) and (2.4)

$$|R_{n,r,1}(x)| \le \varepsilon \cdot \frac{n \cdot (n-r-1)}{2} \sum_{x \in \mathbb{Z}} P_{n+r,k}(x)$$

$$\times \int_{|y-x| \le \delta} P_{n-r,k+r}(y) \cdot (y-x)^2 \cdot dy$$

$$\le \varepsilon \cdot x(1+x), \quad \text{as } n \to \infty. \tag{3.3}$$

Further, from the assumption of the theorem,

$$R_{n,r,2}(x) = O\left(\frac{n \cdot (n-r-1)}{2} \sum_{i=1}^{n} P_{n+r,k}(x)\right)$$

$$\times \int_{|y-x| > \delta} P_{n-r,k+r}(y) \cdot y^{\alpha} \cdot dy$$

$$= O\left(\frac{n \cdot (n-r-1)}{2} \sum_{i=1}^{n} P_{n+r,k}(x) \int_{|y-x| > \delta} P_{n-r,k+r}(y)\right)$$

$$\cdot \left(\sum_{i=0}^{\alpha} {\alpha \choose i} (y-x)^{i} \cdot x^{\alpha-i} \right) dy$$

$$= O\left(\frac{n \cdot (n-r-1)}{2} \sum P_{n+r,k}(x) \int_{|y-x| > \delta} P_{n-r,k+r}(y) \cdot \frac{(y-x)^3}{\delta^3} \left(\sum_{r=0}^{\alpha} {\alpha \choose i} (y-x)^i \cdot x^{\alpha-i} \right) dy\right)$$

$$= O\left(\frac{n \cdot (n-r-1)}{2\delta^3} \cdot \sum P_{n+r,k}(x) \int_0^{\infty} P_{n-r,k+r}(y) \cdot \left(\sum_{i=0}^{\alpha} {\alpha \choose i} (y-x)^{i+3} \cdot x^{\alpha-i} \right) dy\right)$$

$$= O\left(\frac{1}{n}\right), \quad \text{in view of (2.5)}. \tag{3.4}$$

Hence, from (3.3) and (3.4)

$$\lim_{n \to \infty} |n E_{n,r}(x)| \leq \varepsilon \cdot x(1+x).$$

However, as ε is arbitrary, $\lim_{n\to\infty} (n \cdot E_{n,r}(x)) = 0$. This completes the proof.

Remark. We may note here that

$$\frac{(n-1)! (n-2)!}{(n+r-1)! (n-r-2)!} \to 1, \quad \text{as } n \to \infty.$$

THEOREM 2. Let $f \in C^{(r+1)}[0, a]$. and let $\omega(f^{(r+1)}; \cdot)$ be the modulus of continuity of $f^{(r+1)}$. Then for r = 0, 1, 2, ...

$$||(M_n^{(r)}f)(x) - f^{(r)}(x)|| \le \frac{(r+1)(1+2a)}{(n-r-2)} \cdot ||f^{(r+1)}(x)|| + C(n,r) \cdot \left(\sqrt{\lambda} + \frac{\lambda}{2}\right) \cdot \omega(f^{(r+1)}; C(n,r)),$$

where $\lambda = 2(n-1) \cdot a(1+a) + (r+1)(r+2)(1+2a)^2$; $C(n,r) = 1/(n-r-2) \cdot (n-r-3)$.

Proof. We may write

$$f^{(r)}(y) - f^{(r)}(x) = (y - x)f^{(r+1)}(x) + \int_{x}^{y} (f^{(r+1)}(t) - f^{(r+1)}(x)) dt.$$

Hence.

$$\frac{(n-1)! (n-2)!}{(n-r-2)! (n+r-1)!} (M_n^{(r)} f)(x) - f^{(r)}(x)$$

$$= (n-r-1) \sum_{n=r,k} P_{n+r,k}(x) \int_0^\infty P_{n-r,k+r}(y) (f^{(r)}(y) - f^{(r)}(x)) dy$$

$$= (n-r-1) \sum_{n=r,k} P_{n+r,k}(x) \int_0^\infty P_{n-r,k+r}(y) \left((y-x) f^{(r+1)}(x) + \int_x^y (f^{(r+1)}(t) - f^{(r+1)}(x)) dt \right) dy.$$

Also,

$$|f^{(r+1)}(t) - f^{(r+1)}(x)| \le \left(1 + \frac{|t-x|}{\delta}\right) \cdot \omega(f^{(r+1)}; \delta).$$

Therefore,

$$\left| \frac{(n-1)!(n-2)!}{(n-r-2)!(n+r-1)!} (M_n^{(r)} f)(x) - f^{(r)}(x) \right|$$

$$\leq |T_{n,1}| \cdot |f^{(r+1)}(x)| + (|\sqrt{T_{n,2}}| + \frac{|T_{n,2}|}{2\delta}) \omega(f^{r+1}, \delta),$$

in view of Schwarz's inequality. Further, choosing $\delta = C(n, r)$ and using (2.2) and (2.4) we get the required result.

ACKNOWLEDGMENT

The authors are grateful to Professor R. Bojanic for his kind suggestions and comments.

REFERENCES

 M. M. DERRIENNIC, Sur l'approximation de fonctions integrables sur [0, 1] par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 325–343.