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Abstract
Understanding and manipulation of the band structure are important in designing high-performance thermoelectric (TE) materials. Our recent
work has involved the utilization of band structure in various topics of TE research, i.e., the band convergence, the conductive network,
dimensionality reduction by quantum effects, and high throughput material screening. In non-cubic chalcopyrite compounds, we revealed the
relations between structural factors and band degeneracy, and a simple unity-h rule was proposed for selecting high performance diamond-like
TE materials. Based on the deep understanding of the electrical and thermal transport, we identified the conductive network in filled skutterudites
with the “phonon glass-electron crystal” (PGEC) paradigm, and extended this concept to caged-free Cu-based diamond-like compounds. By
combining the band structure calculations and the Boltzmann transport theory, we conducted a high-throughput material screening in half-
Heusler (HH) systems, and several promising compositions with high power factors were proposed out of a large composition collection. At
last, we introduced the Rashba spin-splitting effect into thermoelectrics, and its influence on the electrical transport properties was discussed.
This review demonstrated the importance of the microscopic perspectives for the optimization and design of novel TE materials.
© 2016 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, thermoelectrics has made a remarkable
progress for its potentially broad applications in refrigeration,
waste heat recovery, solar energy conversion, etc [1e7]. These
solid state devices have no moving parts, are environmentally
friendly, and are extremely reliable. The shortcoming of the
existing thermoelectric (TE) materials is their relatively low
energy conversion efficiency. The efficiency of TE materials
depends on the dimensionless figure of merit zT ¼ S2sT/
(ke þ kL), where S is the Seebeck coefficient, s is the electrical
conductivity, T is the absolute temperature, and the thermal
conductivity in denominator which can be divided to the
electronic part ke and lattice part kL. Among those quantities,
S, s, and ke are related to the electronic structure of the ma-
terial and kL is related to its phonon vibration. One possible
way to optimize zT is to reduce the lattice thermal conductivity
without significantly altering the electronic transport proper-
ties of the material. This strategy has been explored exten-
sively by alloying, doping, and nano-composition [1,4,5] for
the enhancement of phonon scattering. Another strategy is to
maximize the power factor (S2s). This can be achieved by the
band engineering and scattering engineering [8].

The band structures of materials describe the available
energy levels for electrons, which are usually presented in the
reciprocal space due to the periodicity of the lattice. The band
structure is one of the basic characteristics of materials, as
well as the vital tool in understanding, optimizing, and even
designing novel functional materials. Since the electrical
transport properties are directly determined by the band
structures near the Fermi levels, the study of TE materials
from the band structure perspective demonstrates as a model
case which bridges the macroscopic electrical transport and
the microscopic extremes of the materials. Explicitly, the
power factor of the TE materials can be enhanced if one can
manipulate the electronic density of states (DOS). This can be
achieved by either band convergence as commonly accepted,
or introducing new physical phenomena which alter the elec-
tronic structure [9e12]. In TE materials with complex struc-
tures, the electrical transport properties can be safely tuned if
one can identify the conductive network as well as the out-of-
network atoms of the materials, by electronic structure cal-
culations. Combining with the Boltzmann transport theory, we
can also use the band structures as the screening tools for
predicting new TE materials with high power factors.

The three quantities like the Seebeck coefficient, electrical
conductivity and electronic thermal conductivity are para-
doxical, and the optimal power factor depends on the carrier
concentrations. In degenerate semiconductors, the Seebeck
coefficient under parabolic band approximation can be written
as [13]:

S¼ 8p2k2bT

3qh2
m*

d

� p

3n

�2=3

; ð1Þ

where m*
d is the DOS effective mass, q the carrier charge, n the

carrier concentration. Based on equation (1), a high S needs a
high DOS (or m*
d) at given Fermi level (carrier concentration).

Since m*
d ¼ N2=3

v m*
b, where Nv is the band degeneracy and m*

b

is the band effective mass. There are two methods to increase
the m*

d, including increasing the effective mass of the single
pocket m*

b or the band degeneracy [14,15]. However, a high m
*
b

always leads to a low carrier mobility due to their inversion
relation. Band engineering, increasing the factor Nv without
changing much of m*

b, can effectively solve the paradox be-
tween the DOS effective mass and carrier mobility, and has
been treated as an efficient strategy to improve TE perfor-
mance [8,13,15,16]. Some excellent TE performance has been
obtained by the band structure engineering. Through a
distortion of the electronic DOS by doping Tl in PbTe, a
doubling of zT in PbTe above 1.5 was obtained in 2008 [13].
By introducing multiple valley degeneracy, Pei et al. realized a
high zT of 1.8 in doped PbTe1�xSex [15]. By solid solutions,
band convergence was realized in Mg2Si0.35Sn0.65, and a 65%
improvement of power factor was obtained [17]. Tan et al.
investigated the transport properties of Mn doped SnTe, and
the results showed a high thermoelectric figure of merit of 1.3
at 900 K by the band modification [18]. Similar results were
obtained by Pei et al. [19]. The band structure engineering
mentioned above were caused by doping impurities in the
framework. Besides these experiment results, some theoretical
work also showed improved electrical transport properties by
band convergence [9e12]. Recently, by tuning the structural
parameters, Zhang et al. demonstrated a new strategy to ach-
ieve large band degeneracy that can predict and design high-
performance non-cubic diamond-like TE materials, and the
method can be used in layered compounds, such as Zintl
compounds [20,21]. Besides, the Rashba spin splitting effect
that can lead to lower-dimensional DOS and increase the S has
been reported, which offers a new direction for electrical
transport optimization [22e29].

It is critical for the improvement of TE materials to
develop the corresponding novel concept and mechanism.
Since the introduction of “Phonon glass-electron crystal”
(PGEC) by Slack in 1995 [30], many TE materials with
complex structures have been discovered, such as clathrates
[31], skutterudites [32e36], zintl phases [37], diamond-like
compounds [20], and liquid-like Cu2Se or similar com-
pounds etc [38]. Due to the various types of chemical bonds
in complex compounds, and the fact that the electrical
transport is determined by the band structures in a very small
energy range, it is possible that only the fractions of the
compounds dominate the electrical transport. This directly
leads to the concept of the conductive network, with the in-
network atoms constructing the “framework” and contrib-
uting to s, and the out-of-network atoms acting as the carrier
reservoirs. In some of the complex compounds, the out-of-
network atoms, due to their loose bonding to the frame-
work, their localized atomic motions can cause rattling
modes in phonon spectra and reduce the kL. Our recent work
on skutterudites and diamond-like compounds show that the
TE performance can be improved by utilizing the conductive
network, and this concept can be extended to other complex
compounds [33,39e42].
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The process of discovering new TE materials has been
limited by the high cost and the time-consuming procedures of
experiments. Recently, the computer-aided material design,
especially the high-throughput material screening, brings up
an avenue of material discovery. These work usually focus on
the electrical transport properties, which are accomplished by
the combination of band structure calculations and the
Boltzmann transport theory under the relaxation time
approximation. Yang et al. studied over 100 kinds of half-
Heusler (HH) compounds based on high throughput calcula-
tions, and the work predicted a few HH compounds with po-
tential high TE performance [43]. Their results are confirmed
by recent experiments. By using high-throughput ab initio
calculations, Wang et al. investigated more than 2500 sintered
compounds from the Inorganic Crystal Structure Database
(ICSD), and guided rules for searching for better TE materials,
which are that sintered TE compounds with expected large
power factors might have large band gaps, heavy carrier
effective masses, and many atoms per primitive cell [44].
Carrete et al. investigated the TE performance of 75 nano-
grained compounds out of 79,057 half-Heusler entries, and
predicted that 15% of them might have high TE performance
with zT > 2 at high temperatures [45]. Based on the high
throughput computations from the Materials Project infra-
structure, Zhu et al. screened 9000 materials and identified a
new group of TE materials, i.e., trigonal and tetragonal
TmAgTe2, and a correlation between band degeneracy and
maximum zT values was found [46]. Zhang et al. reported the
orbital engineering strategy by solid solution map and biaxial
strain engineering, which opens a new high-throughput
computational screening in TE that can design high-
performance TE materials from a myriad of non-cubic com-
pounds [21]. The high-performance TE materials will be
further discovered by the high-throughput methods.

In this paper, we summarize our theoretical work, regarding
the electronic band structures and their applications in un-
derstanding, optimization, and design of TE materials. Some
aspects deal with the band engineering, conductive network,
and high-throughput calculation. The conclusion and further
remarks are given at the end of the text.

2. Methods

All the calculations were carried out in projector
augmented wave (PAW) method, as implemented in the
Vienna ab initio Simulation Package (VASP). The Perdew-
Burke-Ernzerhof generalized gradient approximation (GGA)
for the exchange-correlation potential was used for most of the
calculations [47e49]. The shortcoming of density functional
theory (DFT) calculations is the underestimation of semi-
conductors' band gaps. However, for most TE materials, the
band shape plays an important role in transport properties, and
therefore localized density approximation (LDA) or GGAwill
be accurate enough when the temperature is below the onset of
bipolar effects. The crystal structures of chalcopyrite semi-
conductors are relaxed using HSE06 functional [50]. The
difficulty in treating these materials by ab initio calculations is
the accurate description of d electron orbitals of copper,
because the d orbitals of Cu are very close to the valence band
maximum (VBM), and DFT þ U methods have been widely
used because they are simple yet powerful methods for cor-
recting to some extent the problems with insufficient locali-
zation of d electrons. The value of the parameter U are used by
a combined Wannier orbitals and constrained random phase
approximation (cRPA) method that can refer to Y. B. Zhang's
work [54]. So U ¼ 4 eV was applied on Cu 3d states, Ag 4d
states, Zn 3d states, and Cd 4d states [51e55]. Lattice con-
stants were optimized by fitting the BircheMurnaghan equa-
tion of state and ion positions are relaxed until the Hellmann-
Feynman forces acting on each atom is less than 10�2 eV/Å.
The details for other computation can be found elsewhere
[20,43].

The Boltzmann transport theory can be used for studying
electrical transport properties, including the Seebeck co-
efficients, electrical conductivity, and power factors. Under the
relaxation time approximation, the time-evolution of distri-

bution function follows

�
vf
vt

�
s

¼ �f�f0
t
, where f0 and f are the

equilibrium and perturbed carrier distribution functions,
respectively, and t is the relaxation time [56,57]. Based on this
approximation, the electrical conductivity and the Seebeck
coefficient tensors of a material can be written as [58,59].

sabðT ;mÞ ¼ 1

U

Z
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�
� vf0ðT ; ε;mÞ

vε

�
dε; ð2Þ
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where sabðT ;mÞ,sabðεÞ and SabðT;mÞ are tensor indices, U, m,
and f0 are the volume of unit cell, Fermi level of carriers, and
the carrier FermieDirac distribution function, respectively,
and e is the electron charge. The essential part of s and S is the
transport distribution function (TD) tensor defined as

sab ¼ e2

N

X
i;k

ti;k$na$nb$
dðε� εi;kÞ

dε
; ð4Þ

where k and i are the wave vector and band index, respec-
tively, and N is the number of k points sampled. The group
velocity can be derived directly from the band structure by
vi;k ¼ 1

ZVkεi;k, where the εi;k is the band energy of indexed
band i at k point, and the other method via the momentum
matrix elements is defined as vi;k ¼ 1

me
Ji;kjbpjJi;k, where me

is the mass of electron, and Ji; k is the wave function. The
methods both are suitable for structures with small unit cells,
such as half-Heusler compounds [43,59e66]. However, the
direct method based on the gradients of the band energy is not
applicable to systems with large unit cells due to the band-
crossing problems [57,59]. The electrical transport proper-
ties of some materials were reviewed [20,42,43], since the
complex unit cells needed for cases such as doping, are
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evaluated by the momentum matrix method with the code
Transoptic [67].

The relaxation time is affected by many scattering mech-
anisms, most of which are difficult to calculate. Fortunately,
for TE materials without extremely sharp band structure fea-
tures [68], constant relaxation time approximation can provide
the Seebeck coefficients that are close to the experimental
values. The constant relaxation time approximation has been
employed by several groups when evaluating the electrical
transport properties of thermoelectric compounds [57e63].
For the study of series of TE compounds with the same crystal
structures and the similar chemical compositions, the relative
magnitude of s/t and S2s/t and their temperature dependence
are also useful for the related experiments. In this paper, we
mainly deal with on the band structure-oriented work.

3. High-performance materials by band engineering
3.1. Manipulating the structureeproperty
relationdband degeneracy of pseudocubic structure
materials
Band degeneracy is one of widely used approaches of band
engineering, which include the orbital degeneracy (band de-
generacy at one extrema point) and valley degeneracy (sepa-
rate pockets at the same or similar energy). Highly
degenerated bands indicate enhancement of m*

d through
increasing Nv, and therefore the Seebeck coefficient without
significantly decreasing the electrical conductivity. In most of
the work, however, the dopants or compositions favorable to
large band degeneracies are found more or less by luck. So far,
there is no systematic work that is able to provide criteria
leading to the band convergence. In this subsection, we
demonstrate the approach of rationally tuning crystal struc-
tures to design pseudocubic or cubic-like structural blocks in
non-cubic diamond-like materials that can cause cubic-like
Fig. 1. Pseudocubic approach to realize highly degenerate electronic bands that yiel

zT in non-cubic chalcopyrites. (a) Crystal structure and electronic bands of cubic

chalcopyrites. (c) zT values [34,71e78] at 700 K in non-cubic tetragonal chalcopy
degenerate valence band [20]. A simple unity-h rule was
then proposed to design high PF and zT values for pseudocubic
diamond-like compounds, and the details can be found else-
where [20].

The diamond-like ternary and quaternary chalcopyrite
compounds always have the distorted tetragonal structure. The
cation sublattice can be tuned to show cubic or nearly cubic
framework, while the anion sublattice shows a locally dis-
torted non-cubic framework with two types of irregular
tetrahedra in ternary chalcopyrites, leading to a periodic
supercell with a cubic framework (see Fig. 1(a)). They actually
have a doubled unit cell in the z-direction. In contrast to the
zinc blende lattice, the triply degenerate valence band G5v in
tetragonal chalcopyrites will split into a non-degenerate band
G4v and a doubly degenerate band G5v (see Fig. 1(b)), due to
the crystal field effect [69,70]. The energy difference between
G5v and G4v is defined as the crystal field splitting energy
DCF ¼ E(G5v) � E(G4v), which is positive when G5v is above
G4v and negative in the opposite case. By systematically
studying the connection between transport properties and
electronic structures, we found that TE performance is closely
related to the band degeneracy. zT values [34,71e77] at 700 K
in non-cubic tetragonal chalcopyrites with calculated DCF

values are shown in Fig 1(c). High TE performance with the zT
values enhances (see below for details) in noncubic tetragonal
chalcopyrites [34,71e77] for DCF ¼ 0. The absolute value of
DCF (jDCFj) could thus be considered as a parameter indicating
the deviation from pseudocubic or cubic-like degenerate
electronic bands of tetragonal chalcopyrite compounds.

The results of our study indicates that the DCF has a strong
dependence with the structural parameter h defined as h ¼ c/
2a, where a and c are lattice parameters (see Fig. 1(b)).
DCF z 0 corresponds to an ideal value of h z 1. The above
results present a simple but insightful knowledge that TE
transport properties should show the same trend as a function
of h as they do as a function of DCF. Hence, promising TE
d good electronic-transport properties and a high thermoelectric figure of merit

zinc blende structure. (b) Crystal structure and electronic bands of ternary

rites with calculated DCF values [20].
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materials, chalcopyrites should have a tetragonal distortion
parameter around unityethe unity-h rule.

The unity-h rule provides a strategy of guiding the evalu-
ation and optimization for TE chalcopyrites. Since the
parameter h can be easily obtained from lattice parameters a
and c, the unity-h rule can be straightforwardly applied to the
evaluation of TE performance of all tetragonal chalcopyrites.
The unity-h rule can be also extended to the design of novel
pseudocubic multinary high-performance TE chalcopyrites.
Fig. 2(a) shows that the cubic-like cation framework can be
maintained in solid solutions or mixed multinary chalcopy-
rites, although the simulation indicates that there are a variety
of tetrahedra with arbitrary deformation and different anion
displacements due to nearly random distribution of the anions.
Similarly, cubic-like valence band edges are observed as a
result of symmetry operations on the cubic framework in
supercells (see Fig. 2(b)). Taking Cu0.875Ag0.125InTe2 as an
example, the valence bands at ~A point are highly degenerated,
implying an ideal character of pseudocubic structures (see
Fig. 1). Fig. 2(c) shows the h vs. a dependence for chalcopyrite
compounds where a is the lattice constant. Only the systems
with bandgaps <1.7 eV are shown out of a myriad of chal-
copyrite compounds. The pseudocubic approach with the aid
of the unity-h rule, is very effective in screening prospective
solid solutions and mixtures of chalcopyrite compounds. As
the overall objective is to maintain an ideal value of h ¼ 1,
Fig. 2. Crystal structure and electronic bands, h vs. a compound map for designing

for selected multinary chalcopyrite TE materials. (a) Calculated projected plane rep

(b) Electronic bands of Cu0.875Ag0.125InTe2. (c) Calculated tetragonal distortion

Eg < 1.7 eV. (d) Temperature dependent zT values of CuInTe2, CuGaTe2 [78] (Ag
one may select a few compounds with higher (>1) and lower
(<1) h values and reasonable lattice mismatch and attempt to
form a solid solution or mixed state with hz 1 by appropri-
ately varying the molar ratio of the two constituent compounds
(see Fig. 2(c)). Experimentally, the CuIn1�xGaxTe2 and
Cu1�xAgxInTe2 were synthetized and the performance are
shown in Fig. 2(d). From the Ref. [15], Fig. S4, S5 and S6, we
can see that the enhanced zT value are mainly due to the power
factor improvement other than the thermal conductivity
reduction by solid solutions [20]. So the much enhanced zT
values than single chalcopyrite compounds are consistent with
the theoretical predictions.

In this subsection, we demonstrate a new strategy to design
high-performance non-cubic TE materials through the utili-
zation of a rational pseudocubic structure that results in cubic-
like degenerate electronic bands. We identify a simple yet
powerful selection rule based on maintaining the distortion
parameter h near unity, and which is shown to be equivalent to
minimizing the energy-splitting parameter €ACF. Using this
approach, we predicted a series of highly efficient chalcopyrite
TE materials and, on a selected subset of them, we verify
experimentally that they indeed possess significantly enhanced
zT values. The approach can be further applied to other
tetragonal semiconductors as well as other non-cubic materials
in order to achieve cubic-like degenerate electronic bands.
This work thus addresses the interest of researchers to broaden
high-performance multinary chalcopyrites, and temperature dependence of zT

resentation of the crystal structure on the (010) plane for Cu0.875Ag0.125InTe2.

parameter h as a function of the lattice constant a in chalcopyrites with

InTe2) and their solid solutions [20].
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the scope of prospective TE materials especially among non-
cubic semiconductors, such as zintl phases.
3.2. Conductive networks in TE materials d filled
skutterudites and diamond-like Cu2SnS(Se)3
The paradigm of PGEC, introduced by Slack in the 1995
[30], requires the simultaneous occurrence of both crystal-like
electron transport and glass-like phonon transport in one ma-
terial, and plays an important role in designing and optimizing
high-performance TE materials. Afterwards, the narrow band
gap semiconductors with open structures, i.e., the caged and
layered structures, become research aspect. These compounds
are distinctly different from the convertional TE compounds
such as PbTe, Bi2Te3 and so on [1,2,13,15], in which all the
components contribute to the electrical transport. In these
complex TE compounds only part of the framework atoms is
responsible for the electrical transport, i.e., the conductive
network. This gives a new approach for TE performance
designing. Recent researches indicate that the PGEC concept
can be realized in caged-free Cu-based diamond-like com-
pounds because there is CueX (X]S, Se) bond network in
these compounds [29,30]. In this subsection, we present two
kinds of special materials, i.e., caged skutterudites and the
caged-free Cu2SnSe3 diamond-like semiconductors. The
conductive networks in the two types of compounds have been
identified, based on which the electrical and thermal transport
properties have been optimized.
Fig. 3. Band structure of (a) pure CoSb3 and (b) K fil

Fig. 4. The Seebeck coefficients (a) and power factors (b) for various n-type filled

for comparison. Only the power factor results at 850 K are given in (b) [92].
Skutterudite compounds have the body-centered cubic
structure with the space group Im3. The binary skutterudite
can be written as MX3 (M]Co, Rh, Ir, and X]P, As, Sb).
There are 32 atoms and two large voids in one conventional
cell. The structure of CoSb3 is similar to that of the Perovskite
structure (ACoSb3) with its A sites unoccupied. The valence
band maximum (VBM) is mainly composed of Sb p electrons,
and only a little contribution of Co d electrons. The bands at
conduction band minimum (CBM) have three-fold degeneracy,
coming from the hybridization of Sb p and Co d states. The
CoSb3 has large carrier mobility and good electric transport
properties [30,32], which makes the CoSb3 compounds to be
potential excellent TE materials. The large voids in the crystal
structures can be filled with impurity atoms, such as alkali
metals (AM) [78e81], alkaline earth elements (AE) [82e84],
rare earth elements (RE) [85e88], and their combination
[89,90]. The filler atoms form weak chemical bonding with the
surrounding Sb atoms, and show little effect on the conduction
band bottom and transport properties, except tuning the carrier
concentrations (See Fig. 3). Fig. 3 indicates that the filler
atoms, usually very metallic cations, form ionic bonds with the
surrounding Sb atoms, and do not affect the CBM of CoSb3
except for shifting the Fermi level position. Other results [8]
show that in real space there are SbeSb and CoeSb
bonding network at the same energy windows near CBM, and
the filler atom K is totally isolated. The origin comes from the
weak interaction between fillers and Sb atoms due to the
relatively large crystal voids. There thus exists a conductive
led CoSb3 around their Fermi levels (set as zero).

skutterudites investigated. The RBA results for unfilled Co4Sb12 are also given
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transport network derived from SbeSb and CoeSb covalent
bonding in n-type CoSb3. This is the distinguishing feature for
CoSb3 to be likely “electron crystal” materials.

Fig. 4(a) shows the Seebeck coefficients of single-, double-,
and multiple-filled CoSb3 as a function of donated electron
numbers at 300 K and 850 K, respectively. Fig. 4(b) shows the
power factors as a function of donated electron numbers only
at 850 K. The theoretical Seebeck coefficients of different
fillers (see Fig. 4(a)) follow the same trend predicted by the
rigid band approximation (RBA) calculation based on unfilled
Co4Sb12 [91,92]. In the experiments, a very similar trend is
observed for single-, double-, and even multiple-filled CoSb3
[33]. These results indicate the existence of conductive
network in n-type filled CoSb3, and the difference among
fillers in terms of electrical transport is only reflected by their
different numbers of valence electrons. Interestingly, the
power factor reaches the maximum when filling levels reach
~0.5 electrons in the unit of Co4Sb12. The results agree well
with many earlier reports and experimental measurements
[33].

The filler atoms introduce the low frequency optic phonons
and reduce lattice thermal conductivities. For different filler
atoms, the frequencies are different and can be classified into
three types, i.e., the low frequencies of RE atoms, the middle
ones of AE atoms, and the high ones of AM [93e95]. Com-
binations of filler atoms with different vibration frequencies
can scatter acoustic phonons in a broad frequency range, thus
minimizing the lattice thermal conductivities. Combining the
optimal rule for electrical transport properties, the independent
controlling transport of electrons and phonons can be realized
in n-type filled skutterudites. Based on the mentioned theory,
high-performance materials can be predicted, such as dual-
filled CoSb3, BaeCe, BaeYb, SreYb, NaeYb, and
multiple-filled NaeBa-Yb, BaeLaeYb etc. The high perfor-
mance materials are indeed obtained via the related experi-
ments on BaeLaeYb filled skutterudites [21,33,39,93].

For n-type filled skutterudites, the Co-d and Sb-p electrons
compose the band edge structures of CBM, which supply the
channels for electronic transport properties. The atoms in filled
skutterudites can be classified into two categories, i.e., Co and
Sb, forming the strong chemical bonding framework and the
Fig. 5. (a)Total and atom-projected density of states for Cu2SnSe3. The Fermi lev

windows �0.2~�0.3 eV (indicated in the figures) for Cu2SnSe3 on CueSeeSn pl

energy range of �0.2 eV to �0.3 eV for Cu2SnSe3 on the close packed SeeSeeSe

contour levels are from �3.3 to 0 with the interval of 0.15 [40].
conductive network for electrons, and filler atoms, forming
only the relatively weak bonding with neighboring Sb atoms.
The filler atoms locate out of the conductive network, and they
only modulate carrier concentrations. The concept of
conductive network is not limited to the caged structures. As
long as the material has a strong chemical bonding to stabilize
the framework, while the other weak chemical bond can
introduce low-frequency vibration modes and optimize the
electrical and thermal transport properties, then the PGEC
feature may be achieved. It is thus concluded that the PGEC
concept can be extended into caged-free compounds.

Cu-based diamond-like compounds are kinds of potential
TE materials due to their low thermal conductivity and rela-
tively high mobility [94e97]. Some Cu-based compounds
were studied in experiment and show good TE performance,
such as Cu2Zn(Cd)SnSe4, CuInTe2, Cu3As(Sb)Se4 etc, the
figures of merit zT have reached 0.6e0.7 at 700 K
[73,98e104]. Recently, our work showed that the character of
PGEC could be possibly achieved in Cu2SnSe3 [41,42]. We
investigated the electronic structures, chemical bonding, and
transport properties of ternary Cu2SnSe3, and the results
indicated that TE performance could be enhanced by using the
optimization method mentioned above.

Cu2SnSe3 is monoclinic with Cc symmetry below 700 K
[105e107]. There are 24 atoms in the unit cell which has the
structure of Cu2SiS3. Based on the electronic structure results
shown in Fig. 5(a), we found that the upper VBs are mainly
composed of Cu d and Se p orbitals and contained no obvious
contribution from Sn atoms. Therefore, we expected that p-
type doping on Sn sites has little influence on the upper VB
shape and only denoted holes. This is expected to be rather
important for the TE performance because it provides a site for
alloying and doping, while maintaining reasonable mobility.
The CBs are composed mainly of Sn s and Se p states. The CB
structure consisting of a single relatively light band is much
less favorable for TE performance than the VB structure.

For further charge density distribution analysis, we found
that there is a distribution of electronic states on the three-
dimensional (3D) [-Cu-Se-Cu-] network in Cu2SnSe3, form-
ing an anti-bonding conductive network for hole transport
[42]. With Sn-site doping, the band structures closing to VBM
els are set to zero. (b) Contour plots of the partial charge density in energy

ane. (c) Contour plots of the partial charge density for the states falling in the

plane The contours are logarithmically spaced. The VBM is set to be 0 eV. The
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change slightly except for the shifting of the Fermi levels into
upper VB. Based on electron counting, for a doping level of
near 10% In substituting for Sn (i.e. near 0.1 holes/cell
doping), the Fermi level is the range of �0.2 to �0.3 eV, and
thus the corresponding charge density distributions (see
Fig. 5(b)) are responsible for hole transport. Clearly these are
anti-bonding Cu d e Se p hybridized states [42]. The Cu2SnS3
system shows the similar results as Cu2SnSe3 [42]. Further-
more, the closely packed Se framework (the distances between
the nearest chalcogen atoms on the planes are only 3.9 Å for
SeeSe) may also contributes to hole transport. This is
consistent with a recent observation that a relatively rigid Se
sublattice is considered to be responsible for hole transport in
Cu2�xSe with completely disordering Cu atoms [38]. The
overlap of the delocalized p states of Se in space (see Fig. 5(c))
forms a delocalized SeeSe conductive path, and contribute to
the channel for hole transport [30]. This also favors the large
DOS in the upper VB and consequently large Seebeck co-
efficients in these compounds. These conductive networks give
the optimization approach in electronic transport properties
[41,42].

The electronic transport properties were studied using the
Boltzmann transport theory. Fig. 6(a) shows the calculated
Seebeck coefficients as a function of holes in Cu2SnX3 (X]S,
Se) at 300 K and 700 K by RBA and supercell structures. The
solid (red) and dashed (black) lines indicate the results for
Cu2SnSe3 and Cu2SnS3 in RBA, while the symbols show the
calculated Seebeck coefficients for the Ga-, In-, and Tl-doped
Cu2SnSe3 (solid) and Cu2SnS3 (open) as obtained by using
supercell structures. The supercell approach, as long as the
doping level is kept the same, reproduces the RBA results of
the Seebeck coefficients very well for Cu2SnSe3 at an elevated
temperature, indicating the validity of RBA. Fig. 6(b) shows
the power factor (S2s/t) as a function of carrier concentration
at 700 K for Cu2SnX3 (X]Se, S) using the RBA approach.
The number of holes for achieving the maximum power fac-
tors of these compounds can be estimated to be 0.1 per
Cu2SnX3 formula unit. Experimentally, the 0.1 In substitution
for Sn in Cu2SnSe3 was carried out, showing the optimized
power factor and good TE performance, which agree well with
the theoretical results [41,42].
Fig. 6. The Seebeck coefficient (S ) and power factor (S2s/t) as a function of numb

results for Cu2SnSe3 and Cu2SnS3, respectively. The symbols (a) are the calculated

approach [40].
In this subsection, we optimized the TE performance by
using the conductive network in caged skutterudites and caged
free Cu-based diamond-like compounds. For skutterduites and
Cu2SnSe3 systems, the SbeSb, CoeSb, and CueSe, SeeSe
conduction network forming relatively strong chemical
bonding and stabilize framework structure, and the position of
crystal void in skutterudites and Sn in Cu2SnSe3 systems is out
of the network. Doping at voids and Sn sites can optimize
carrier concentration, and simultaneously reduce the lattice
thermal conductivity due to the filler scattering and mass
fluctuation respectively, making these two kinds of TE mate-
rials exhibit the behavior of PGEC. This work profounds the
understanding of PGEC concept, and extends the concept from
caged structures to caged free compounds. Compounds with
three-dimensional bond network and at least one more selec-
tive occupied sites that can be doping are expected as potential
candidates for TEs.

Based on the studies above, the concept of conductive
network was not limited to the two types of compounds. It
could be realized in compounds with hierarchical chemical
bonding, that the strong chemical bonding builds up the
conductive network and maintain the excellent electrical
transport properties. The atoms on the weak bonding, which
reduces the lattice thermal conductivity, can be manipulated to
tune the carrier concentrations without destroying the
conductive network. This concept can be also realized in
Cu2Se, liquid-like Cu3SbSe3 etc [38,108]. The SeeSe bonding
composites the electron conductive network, while the Cu
atoms have the liquid-like behavior that leads to the low
thermal conductivity. These workimprove the understanding of
the microscopic physical mechanism of transport, which is
important in designing novel TE materials.
3.3. High-throughput material screening e thermoelectric
half-Heusler as an example
Band engineering and conductive network have been
widely adopted to study electrical transport, and the challenge
of the theoretical perspective is how to use these band struc-
ture engineering to predict and design high-performance TE
materials in a large scale. High-throughput computational
er of holes in Cu2SnSe3 and Cu2SnS3. The solid and dashed lines show RBA

the Seebeck coefficients for the Ga-, In-, and Tl- doped Cu2SnX3 in a supercell
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materials design is an emerging area in materials science, and
have been used in energy conversion materials, such as
lithium ion battery and TE materials [43e46,109]. By
combining first principles and Boltzmann transport theory, we
systematically investigated the electronic structures and TE
performance for over 30 HH compositions, and some prom-
ising compounds are predicted and several of them are
confirmed recently.

Half-Heusler compounds have the general formula ABX,
where A and X form a simple rock salt structure with B filled
with one of the two body diagonal positions [43]. Ternary HH
compounds of the MgAgAs structure type exhibit a variety of
interesting physical properties. When the total valence elec-
tron counts (VEC) in a primitive HH unit cell is 18, all the
constituent atoms complete their electronic shells, and the HH
becomes a semiconductor. Fig. 7 shows the crystal structure of
Fig. 7. The crystallographic and primitive unit cell of a typical HH compound

ABX.

Table 1

TE transport properties of VEC ¼ 18 HHs. The maximum power factor is in unit of

in the unit of (electron/unit cell).

Type IVB-(Ni, Pd)

Name TiNiSn ZrNiSn HfNiSn ZrPdSn HfPdS

Gap (eV) 0.451 0.515 0.396 0.495 0.401

Max PF(p) 25.13 21.93 22.03 19.62 19.83

Max PF(n) 14.45 14.43 14.44 12.52 12.78

p doping �0.028 �0.019 �0.014 �0.017 �0.01

n doping þ0.013 þ0.009 þ0.009 þ0.009 þ0.00

Type IIIB-(Ni, Pd)

Name ScNiSb ScNiBi YNiSb YNiBi LaPdB

gap (eV) 0.281 0.191 0.311 0.219 0.310

Max PF(p) 15.82 14.54 13.18 11.98 8.54

Max PF(n) 20.64 21.63 22.83 23.44 25.14

p doping �0.006 �0.006 �0.005 �0.004 �0.00

n doping þ0.016 þ0.016 þ0.017 þ0.015 þ0.01

Type IVB-(Co, Rh)

Name TiCoSb ZrCoBi TiRhSb ZrRhSb HfRh

Gap (eV) 1.05 0.992 0.773 1.215 1.145

Max PF(p) 65.95 52.88 21.92 18.51 18.42

Max PF(n) 22.57 23.58 10.86 22.51 22.26

p doping �0.157 �0.152 �0.021 �0.012 �0.01

n doping þ0.195 þ0.038 þ0.008 þ0.121 þ0.03
a typical HH compound. There are 3 atomic positions, A, B,
and X in one primitive unit cell. For thermoelectric HHs, A is
usually an early transition (IIIB or IVB) or rare-earth metal, X
is a main group element (IVA or VA), and B is normally a
transition metal between A and X in the periodic table. Over
the years, there have been a few semiconducting HHs inves-
tigated as potential thermoelectric materials, with the focus
especially on MNiSn, MCoSb (M]Ti, Zr, and Hf) and related
isoelectronic alloys [65,110e118]. This is only a very small
fraction of compounds that crystallize in HH structure. In fact
there are more than 100 HHs that could be found in the
Inorganic Crystal Structure Database (ICSD) [119]. Even
using the criterion of VEC ¼ 18 for semiconductors, there are
still more than 30 HHs left. Using the DFT-based transport
calculations discussed above and high throughput screening,
the electrical transport properties could be evaluated in order
to find new HHs with promising properties. We use the
following rules to screen HHs for further detailed investigation
[119]. a) VEC equals to 18. Chemical bonding analysis shows
that only HHs with 18 valence electrons may be semi-
conductors, which are suitable for TE purpose. b) The HH
compounds with lanthanides, except La, are excluded. Lan-
thanides contained HHs usually have no gaps, which behave as
metals, and therefore possess poor TE properties. Besides,
unfilled f electrons usually need to be treated by ab initio
method with strong-correlation effects included. Applying
these two rules leads to those HH compounds, which list in
Table 1. All the HHs in Table 1 have transition metals on their
A, B sites, and thus d states are expected to become dominant
at VBM and CBM. A-site elements vary from IIIB-VB group,
while B-site elements are from Fe subgroup to IB group.
Transition metals with different numbers of d electrons
possess different atomic energy levels at CBM and VBM, and
t � 1014 W cm�1 K�2 s�1 and the corresponding p- or n-type doping levels are

IVB-Pt

n TiPtSn ZrPtSn HfPtSn

0.830 1.020 0.936

24.91 21.11 21.46

18.99 12.36 12.34

3 �0.033 �0.019 �0.014

8 þ0.118 þ0.014 þ0.013

IIIB-Pt IIIB-IB

i YPtSb ScPtSb YAuPb ScAuSn

0.411 0.685 0.000 0.145

12.56 15.90 10.52 18.53

21.02 18.58 12.96 13.50

3 �0.004 �0.007 �0.016 �0.011

3 þ0.034 þ0.026 þ0.016 þ0.009

VB-(Co, Rh) VB-(Fe, Ru)

Sb NbCoSn NbRhSn VFeSb NbFeSb TaRuSb

0.987 0.665 0.324 0.529 0.655

67.10 56.12 38.03 35.49 28.79

24.12 7.85 9.35 7.59 7.08

0 �0.084 �0.202 �0.052 �0.040 �0.025

7 þ0.045 þ0.002 þ0.007 þ0.003 þ0.003



Table 2

Comparisons of theoretical and experimental optimal doping levels, as well as

the corresponding Seebeck coefficients at 300 K.

Systems Experimental doping levels

Seebeck (mV/K)

Theoretical doping levels

Seebeck (mV/K)

ZrNiSn

n-type

1% Sb for Sn [111]

�103

0.9%

�138

HfPtSn

p-type

1% Co or Ir for Pt [114]

120(Co)/130(Ir)

1.4%

150

TiCoSb

p-type

15e30% Fe for Co [117]

153.6

15.7%

111

NbCoSn

n-type

6e10% Sb for Sn [119]

�90

4.5%

�113

ZrCoSb

p-type

10e15% Sn for Sb [118]

150

7%

129
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consequently, determine the band gaps. HHs in Table 1 are
classified by their A and B site elements. Band gaps are
0.8e1.2 eV for (IVB, VB)-(Co, Rh)-containing HHs,
0.2e0.3 eV for IIIB-(Ni, Pd), 0.4e0.5 eV for IVB-(Ni, Pd),
0.3e0.7 eV for VB-(Fe, Ru), and 0e0.2 eV for IIIB-IB.
Usually cross substitution between elements in the same col-
umn at the B sites does not affect the gap value substantially,
except for Pt substituting for Ni or Pd (from ZrNiSn, ZrPdSn
to ZrPtSn), which gives an enlarged band gap by several tenths
of electron volt. Elements at the X sites can be approximately
considered as accommodators for the donated valence elec-
trons from atoms at A and B positions, leading to the forma-
tion of band gaps, and they themselves do not substantially
affect the gap values.

Similar to other TE semiconductors, semiconducting HHs
with VEC ¼ 18 need some levels of doping to reach their
maximum p-type or n-type power factors. Due to the wide
range of dopants and their small amounts in the whole sys-
tems, it is very difficult to calculate doped HHs and compare
their electrical properties directly. Instead, we adopt the so-
called RBA. It is a reasonably good approximation if the
doping level is not rather high, and has been widely used for
theoretical study of TE materials [43]. The optimal doping
level is defined as the integral of DOS from band edge to the
energy level position corresponding to the maximum or the
peak of power factor (see Fig. 8). For instance, the optimal n-
type doping level for ZrNiSn is estimated to be þ0.009 e/u.c.
This indicates that ZrNiSn reaches its maximum n-type power
factor after 0.009 electrons are added per unit cell, which
could be achieved by substituting 0.9% Sb for Sn. In Table 1,
optimal doping levels and related power factors for every HH
are listed. However, we should check the agreements between
our calculated data and existing experimental ones before
further analysis. Table 2 shows the results. We gave the dop-
ants and the corresponding doping levels for HHs, and for
comparison, the optimal doping levels and the corresponding
Seebeck coefficients were calculated. For the approximations
used above, and the uncertainties in experiment data, the
agreement is reasonably and acceptable.

Table 1 shows the information about how to select good
HHs from calculations. For p-type materials, the HHs with
Fig. 8. Procedure of evaluating p- or n-type optimal doping levels [43].
relatively high power factors usually contain Co, Fe, and Rh.
Other IVB and IIIB containing compounds, usually having Ni
subgroup and IB group as B-site atoms, are less promising
p-type materials. Based on the estimated n-type power factors,
IIIB-(Ni, Pd) HHs are expected to have better performance
than the IVB-Ni-containing ones (i.e., ZrNiSn) which have
been extensively studied in recent years. LaPdBi has the
highest n-type power factor. Furthermore, some Co-containing
HHs also show reasonable n-type performance. Fig. 9 shows
the relationship between the maximum power factor and the
corresponding carrier concentration for both p- and n-type
HHs. Notice that the best n-type HHs fall in the range of 1020-
1021 cm�3 and the best p-type over 1021 cm�3, both corre-
spond to heavily doped semiconductors. These results calcu-
lated from realistic and complicated band structures are in
reasonable agreement with the optimal carrier concentration
estimated based on a simple two-band semiconductor model
[120]. Fig. 9 also shows the information that in p-type, high
power factors require high carrier concentrations. However,
some IIIB-(Ni, Pd) compounds stand out for their n-type
power factors, with relatively low carrier concentrations
required. Band character analysis shows that p states from X-
site elements are unneglectable at the CBM of these com-
pounds, which enhances the group velocities of carriers due to
the high TDs and good power factors.

A systematical investigation of the electronic structures
and electrical transport properties for over 30 well selected
HHs is quite interesting. Our work provides an overall picture
of the electrical performance of the series compounds [43].
Theoretically, there are still many issues to be solved in pre-
dicting the exact values of electrical transport quantities.
However, for the compounds with the similar structures, the
calculated results are expected to be comparable with each
other, and therefore provide a systematic evaluation about
their relative performance even with some uncertainties.
Through the evaluations of optimal doping levels and corre-
sponding power factors, several HH systems with promising
performance are predicted. For p-type, VFeSb, NbFeSb, and
the HHs with Co, Fe, and Rh behave relatively high power
factors. Recently, Fu et al. investigated the TE performance of
Nb(V)FeSb based HH, and they optimized the band effective
mass and mobility via a band engineering approach through



Fig. 9. Maximum power factors vs the corresponding carrier concentrations for (a) p-type and (b) n-type cases. Compound names are indicated in the plots [43].
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changing the content of Nb [121,122]. As a result, the highest
zT values can reach 1.5 when fully optimized, which are
greater than the values of ZrNiSn- and TiCoSb-based HHs,
and revoke the research interest on this type of materials.
These results verify the theoretical methods shown in the
study, which can be easily adopted to large scale high-
throughput material screening on electrical transport proper-
ties with the help of crystal database.
3.4. Novel thermoelectric transport from spin-orbit-
coupling and Rashba effect
As is mentioned above, it is very beneficial for materials
with high band degeneracies because it will give the enhanced
Seebeck coefficient. In this subsection, we demonstrated a new
spin effect that can lead to the alteration of the electronic
structuresdthe Rashba spin splitting. The Rashba effect exists
in materials with strong spin-orbit coupling and inversion
asymmetry [22e29]. The degeneracy of spin-up and spin-
down bands is lifted and the band extrema are shifted aside
from the high-symmetric axis, as shown in Fig. 10(a) and (c).
The spin-split strength of Rashba effect can be determined by
the Rashba parameter aR, which is associated with Rashba
energy, E0 and momentum shift k0 by aR ¼ 2E0=k0. Due to the
structural inversion asymmetry in low-dimensional systems,
the nontrivial spin-split phenomena have been investigated in
Bi/Ag surface alloy [123], Bi monolayer/quantum film
[124,125], and Pt/Si nanowire [126]. More recently, bulk
systems with strong Rashba effect have been discovered,
including BiTeX (X ¼ I, Br, Cl) [127e129], a-GeTe [130], a-
SnTe [131], LaOBiS2 [131,132], and AMX3 (A]CH3NH3,
M]Pb, Sn, X]I, Br) [133]. The influence of Rashba effect
on the transport properties is fundamentally significant for
both spintronics and thermoelectrics.

Dimensionality reduction in DOS has been found in the
Rashba systems, originating from the topological change of
Fermi surface in low charge density regime [134]. In
Fig. 10(b) and (d), DOS is altered across the Dirac point (i.e.,
Rashba energy E0), which is one- and two-dimensional-like
for quantum wells and bulk materials with the Fermi energy
below E0. The corresponding Fermi surface is an annulus and
elliptic torus in the low energy region. The area of the Fermi
surface changes with the shifted Fermi energy, leading to the
dimensionality reduction in the Rashba systems. This unusual
nature reminds us of the low dimensional theory in thermo-
electrics. The TE performance of low-dimensional systems
should be better than that of the bulk materials, because of the
unique DOS [135e137]. We would speculate that the Rashba
spin-split systems might have higher TE performance than the
usual spin-degenerate systems.

By utilizing the Boltzmann transport theory and relaxation
time approximation (relaxation time tðEÞ ¼ t0E

r, t0 is a
constant and r is the scattering parameter) [138], we can
analytically obtian the Seebeck coefficient S and carrier con-
centration n in the Rashba systems. In two-dimensional
Rashba-split quantum wells, due to the one-dimensional
DOS, under parabolic band approximation, the S and n have
the forms as [139].

S2DRSB ¼ ±
k

e

�
h� ðrþ 3=2ÞFrþ1=2ðhÞ

ðrþ 1=2ÞFr�1=2ðhÞ
�
; ð5Þ

n2DRSB ¼
m*

abðkTE0Þ1=2
pZ2Lz

F�1=2ðhÞ; ð6Þ

For the bulk Rashba materials, because of the constant
DOS, the S and carrier concentration can be expressed as
[140].

S3DRSB ¼ ±
k

e

�
h� ðrþ 2ÞFrþ1ðhÞ

ðrþ 1ÞFrðhÞ
�
; ð7Þ

n3DRSB ¼
kTðm*Þ3=2E1=2

0

21=2pZ3
F0ðhÞ: ð8Þ

where h ¼ EF=kT denotes the reduced Fermi energy, k is the
Boltzmann constant, e is the electron charge, m* is the effective
mass, m*

ab is the in-plane effective mass, and Fn (h) is the nth
Fermi-Dirac integral FnðhÞ ¼

R∞
0 xn=½expðx� hÞ þ 1�dx.

BiTeI is a bulk material with a giant Rashba effect, which
has a Rashba energy E0 ¼ 0.11 eV, momentum shift



Fig. 10. The band structure and density of states for Rashba spin-split (a, b) quantum wells, (c, d) bulk materials. Insets in (c, d) show the topologies of cor-

responding Fermi surfaces (E < E0).
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k0 ¼ 0.05 Å�1, and Rashba parameter aR ¼ 4.3 eV Å
[140,141]. The in-plane and total effective mass are 0.09 and
0.19 me, where me is the free electron mass [141]. Using a
constant relaxation time (r ¼ 0), we can numerically calculate
the TE properties in Rashba 2D quantum wells and 3D bulk
materials through Eqs. (5)e(8), respectively. Fig. 11 shows the
carrier concentration dependent S and electrical term S2n at
300 K, where results for Rashba spin-split band (RSB) and
spin-degenerate SPB both are given. For the 2D quantum
wells, we take BiTeI (in ab-plane) as the well material and
assume the thickness of 2 nm in both RSB and SPB models.
As the Fermi energy is shifted from the band bottom up to the
Dirac point, it turns out that 2D and 3D systems with RSB
have a greater S in the low energy region. The maximum
electrical term S2n can be twice greater than that with SPB,
which is a significant enhancement of TE performance.
Comparing 2D and 3D systems with the same kind of band
model, we found that 2D systems tend to have better S and
electrical term at lower carrier concentrations. We also find
that a 2.67 nm thick 2D quantum well with SPB and 0.19 me
effective mass has the same S versus n curve of 3D bulk BiTeI
[139]. This is due to the 2D-like constant DOS in bulk Rashba
systems. The numerically calculated results for 3D RSB are
consistent with the experimental data of bulk BiTeI [140].
Meanwhile, the S of 2D Rashba quantum wells is similar to
that in quantum wires [139].

In this subsection, general models of TE calculation have
been introduced for Rashba spin-split quantum wells and bulk
materials. The substantial enhancement of S and electrical
term has been found in the 2D and 3D Rashba systems. The
Fermi energy can be lowered in these systems for given carrier
concentrations due to the unique low-dimensional DOS. Thus,
the transport distribution function can be strengthened, leading
to higher S. Our work may stimulate more efforts on exploring
TE properties in the Rashba spin-split systems.

4. Conclusions and outlook

This paper presented several methods for TE performance
optimization and designing in some materials from band



Fig. 11. Carrier concentration dependent S and electrical term S2n in 2D quantum wells and 3D bulk systems. RSB and SPB denote the Rashba spin-split band and

spin-degenerate single parabolic band, respectively.
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engineering. For non-cubic compounds, we introduced a
unity-h rule to select high-performance non-cubic TE ma-
terials. This strategy could make cubic-like degenerate
electronic bands through the utilization of a rational pseu-
docubic structure and broaden the scope of prospective TE
materials. By individually controlling the transport proper-
ties of electrons and phonons, filled skutterudites presented
features of PGEC and good TE performance. For Cu-based
diamond-like compounds, we proposed the 3D bond
network to stabilize the framework, and one more selective
sites, Sn sites, which donated electrons to complete the
electron shells, reside in the framework formed by CueSe
bond in Cu2SnSe3. This work could makes an extension to the
PGEC family and pave an effective way for the further study
of these diamond-like compounds with different bond
network. In high-throughput calculations, we applied 18
VEC rule to filter good candidates from a large database HH
compounds, using the combination of electronic structures
and the Boltzmann transport theory. Some of the top-ranked
candidates were confirmed by recent experiments. At last, we
enhanced electrical transport by a new effect, i.e., the Rashba
spin splitting effect. For materials with the Rashba effect,
which required strong spin-orbit coupling and inversion
asymmetry, the degeneracy of spin-up and spin-down bands
was split and the band extreme were shifted aside from the
high-symmetric axis.

Focusing on the above mentioned TE materials, including
HH, caged skutterudite CoSb3, and diamond-like semi-
conductors, we developed several rules for structure modifi-
cation and performance optimization. Based on that, we could
have a deeper understanding of the mechanism of the collec-
tive electrical and thermal transport, identify the scientific
fundamentals of the PGEC concept, and provide guidance for
TE performance optimization as well as novel TE materials
designing. These are the important parts of TE materials and
physics, the TE performance is closely related to electrical and
thermal transport properties. There are still many problems in
completely controlling the electrical and thermal transport
mechanisms, which need further study.

For electrical transport, by studying the electronic structures
and transport properties, we could have the basic understanding
on the relationship between macro-structure symmetry and
microscope band degeneracy. The simple rule applies to the
pseudocubic structure compounds, and give the direction to
search for high-performance TEmaterials. For compounds with
other structure, such as layered structures, this simple rule is
inappropriate and a more universal parameter is needed to
modify the electronic structures and then the transport proper-
ties. Recently, a simple yet successful strategy has been adopted
to discover and design high-performance layered TE materials
through minimizing the crystal field splitting energy of orbitals
to realize high orbital degeneracy, and the approach could be
extended to several other non-cubic materials [21]. Besides the
band degeneracy, the spin split in electronic structures also has
an effect on the transport properties, such as the Rashba effect
[139,140]. The Rashba effect will lead to the dimensionality
reduction, which enhances the DOSs and S in the 2D and 3D
Rashba systems. The other spin-entropy enhancement could be
widespread in the transition-metal oxides [142,143], such as
NaCoO2, the spin state of Co could be changed as the content of
oxygen. Even the controlling mechanism is not clear, the S is
likely to be dominated by spin entropy terms, indicating that this
could be a promising class of materials to search for the
improved TE materials.

Development of new mechanism for band engineering is
urgent for optimizing and designing novel high-performance
TE materials. The concept of conductive network provides a
new approach for the enhancement of TE performance. We
used this concept to optimize TE performance in filled skut-
terudites and Cu-based diamond-like compounds. Several
qualitative descriptions have already been provided in
‘conductive network’ [8,41,42]. At the present, we examine
and identify the conductive network mainly based on the
density of states or charge density at the energy window
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responsible for the electrical transport. These could not be
sufficient to quantify the contributions to the electrical trans-
port. A more accurate and definitive of the contribution to
electrical transport properties is needed. The type of work is
interesting but challenging, and will be investigated in the
future work.

High-throughput computational screening of TE materials
will accelerate the screening and designing of new high-
performance TE materials. So far, most high-throughput work
focus on simple structure compounds, such as HHs, by using the
Boltzmann transport theory for electrical transport or anhar-
monic interatomic force constant for thermal transport. For more
complex TE materials, in additional to the direct transport cal-
culations, the implementations of simple yet powerful selection
rule, i.e., the unity h rule, are crucial. Generally speaking, using
the advanced selection rule relating to the properties is more
efficient, and can even speed up the high-throughput screening
for functional materials [20,21]. The other direction for the
improvement of high-throughput work can be the implementa-
tion of the scattering term in the algorithm. The high-throughput
work usually neglects the influence from the carrier or phonon
scattering on the transport properties for the simplicity reason.
In fact, the relaxation times for both carriers and phonons are
able to calculate explicitly. In order to improve the accuracy of
high-throughput work, the development of simplified algorithm
regarding the scattering terms is necessary.

Thermal transport properties are also complicated because
the mechanism of phonon scattering is diversified. Recently
some compounds with part-crystalline part-liquid have
attracted great attention because of their ultralow thermal
conductivities and unique lattice dynamic behaviors, such as
Cu3SbSe3 [144], Cu2Se [38], etc. Recent work well described
the variation law of lattice thermal conductivity for part-
crystalline system by introducing local vibration similar like
that of disorder atoms, and the results agree well with the
existing experiments [108]. This work demonstrates the
theoretical challenge of correctly describing phonon and
thermal transports in complex materials, and the models can
be used in materials with chemical-bond hierarchy. These re-
sults imply the complexity of phonon scattering mechanisms
in compounds with chemical bond hierarchy. More advanced
theoretical models counting for the large structural fluctuations
in these compounds are needed in the future.

Finally, we reviewed several topics regarding the band
engineering in TE materials, and pointed out several directions
for the future theoretical work. More efforts need to be paid to
dig through these directions, as well as other theoretical topics,
which could favor the TE research.
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