A differentiable manifold with noncoinciding dimensions

V.V. Fedorchuk

Chair of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University, Moscow 119899, Russia

Received 27 December 1992

Abstract
Fedorchuk, V.V., A differentiable manifold with noncoinciding dimensions, Topology and its Applications 54 (1993) 221-239.

A differentiable n-manifold M^n_m, $4 \leq n < m$, with dimensions $n = \text{ind } M^n_m < m = \dim M^n_m < \text{Ind } M^n_m = m + n - 2$ is constructed under Jensen's principle \Diamond. The space M^n_m is perfectly normal, countably compact and hereditarily separable.

Keywords: Differentiable manifold; Dimension; Large inductive dimension; Jensen’s principle.

AMS (MOS) Subj. Class: Primary 54F; secondary 57R.

Introduction

The main result of this paper is

Theorem 0.1 (\Diamond). For any integers m and n such that $4 \leq n < m$, there exists a differentiable, countably compact, perfectly normal, hereditarily separable n-manifold M^n_m with dimensions

\[n = \text{ind } M^n_m < m = \dim M^n_m < m + n - 2 = \text{Ind } M^n_m. \]

Recall that \Diamond is a set-theoretical principle introduced by Jensen [11]. We use the following variant of \Diamond:

There is a sequence $\{J_\alpha : \alpha < \omega_1\}$, where $J_\alpha \subset \alpha$, such that $\{\alpha : J_\alpha = K \cap \alpha\}$ is stationary for any $K \subset \omega_1$. A set $A \subset \omega_1$ is said to be **stationary** if $A \cap B \neq \emptyset$ for each closed unbounded $B \subset \omega_1$.

Correspondence to: Professor V.V. Fedorchuk, Chair of General Topology and Geometry, Mechanics and Mathematical Faculty, Moscow State University, 119899 Moscow, Russia.
Let us remind that \Diamond follows from the constructibility axiom ($V = L$), and the continuum hypothesis follows from \Diamond.

It should be mentioned that recently Filippov and the author [10], using the continuum hypothesis, for any $n \geq 3$ constructed an example of a normal, countably compact topological n-manifold M^n with:

$$\dim M^n = n < 2n - 2 = \text{Ind} M^n.$$

And before that the author constructed [8] a "real" example of a normal, countably compact topological 2-manifold M^2, which has nowhere dense closed subset N with $\text{Ind} N = \text{Ind} M^2 = 2$.

We use the technique of continuous spectra. Recall that an inverse spectrum $S = \{X_\alpha, \pi^\alpha_\beta: \alpha < \tau\}$, where τ is an ordinal, is said to be continuous if for any limit ordinal $\alpha < \tau$ the space X_α is naturally homeomorphic to $\lim(S \upharpoonright \alpha)$.

We will need also a notion of fully closed map which was introduced in [5] (see also [6]).

Definition. A continuous map $f : X \to Y$ is said to be fully closed if for each point $y \in Y$ the set $\{y\} \cup f^* U_1 \cup f^* U_2$ is open in Y for any two open subsets $U_1, U_2 \subset X$ such that $f^{-1}(y) \subset U_1 \cup U_2$.

Here for an arbitrary map $f : X \to Y$ and for an arbitrary set $A \subset X$ by $f^* A$ we denote the small image of A, i.e.,

$$f^* A = \{y \in Y: f^{-1} y \subset A\} = Y \setminus f(X \setminus A).$$

For a map $f : X \to Y$ we set $\text{supp} f = \{y \in Y: |f^{-1} y| > 2\}$, where by $|A|$ we denote the cardinality of A. This set $\text{supp} f$ we will call a supporter of f. We will say that a family of maps $f_\alpha : X_\alpha \to Y$. $\alpha \in A$, is independent if the family $\{\text{supp} f_\alpha: \alpha \in A\}$ is disjoint. A proper map $f : X \to Y$ is said to be simple if its supporter is empty or consists of one point. For the definition of the fibre product of maps $f_\alpha : X_\alpha \to Y$, see [9].

Theorem A [7]. A proper map $f : X \to Y$ between Tychonoff spaces is fully closed iff it is a fibre product of some independent family of simple maps.

Theorem B [5]. If $f : X \to Y$ is a fully closed proper map between paracompact spaces, then

$$\dim Y \leq \max\{\dim X, \dim f\}.$$

Theorem C. Let $S = \{X_\alpha, \pi^\alpha_\beta: \alpha < \tau\}$ be a continuous spectrum, consisting of bicompress, and let all neighbouring projections $\pi^\alpha_{\alpha + 1}$ be fully closed with $\dim \pi^\alpha_{\alpha + 1} \leq n$. Then for $X = \lim S$ we have

$$\dim X \leq \max\{\dim X_0, n\}.$$
A differentiable manifold with noncoinciding dimensions

One can prove Theorem C by a transfinite induction on the length τ of the spectrum S using Theorem B.

1. Main lemma

Recall that a continuous map $f : X \to Y$ is said to be a near homeomorphism if for any open covering \mathcal{U} of Y there is a homeomorphism $g : X \to Y$, which is \mathcal{U}-close to f, i.e., for any $x \in X$ there is $U \in \mathcal{U}$ such that $f(x), g(x) \in U$.

Lemma 1.1. Let X be a bicompactum, and let K be a closed subset of X, and $x_0 \in K$. Let for any neighbourhoods Ox_0 and OK there is a homeomorphism $h : X \to X$ such that

1. $h(K) \subset Ox_0$;
2. $h|X\setminus OK = \text{id}$.

Then every map $f : X \to X$, having the only one nontrivial inverse image $f^{-1}(x_0) = K$, is a near homeomorphism.

Proof. By the Bing's shrinking criterium [3] it is sufficient for any open coverings \mathcal{U} and \mathcal{V} of X to find a homeomorphism $h : X \to X$ such that $h(f^{-1}x_0)$ is contained in some element of \mathcal{U}, and fh is \mathcal{V}-close to f. We denote by Ox_0 some element of \mathcal{U}, containing x_0, and let $Of^{-1}x_0 = f^{-1}V$, where $x_0 \in V \in \mathcal{V}$. Let us take a homeomorphism h, satisfying conditions (1) and (2) of the lemma. Then it is easy to check that h satisfies the Bing's shrinking criterion and the lemma is proved.

Lemma 1.2. Let B^n be a closed n-ball with the boundary S^{n-1}. Let $L \subset S^{n-1}$ be some nonempty compactum, and let $g : L \times [0, 1] \to B^n$ be an imbedding such that:

1. $g(l,0) = l$ for any $l \in L$;
2. $g(L \times (0, 1]) \subset B^n \setminus S^{n-1}$.

Let X be a quotient space of B^n with respect to the decomposition, the only nontrivial member of which is L, and let $q : B^n \to X$ be the corresponding quotient map, and $x_0 = q(L)$.

Then an arbitrary map $f : X \to X$ onto X, which is identical onto $q(S^{n-1})$ and has the only nontrivial inverse image $f^{-1}x_0 = qg(L \times [0, 1])$, is a near homeomorphism. Moreover, f is approximated by homeomorphisms, which are identical onto $q(S^{n-1})$.

Proof. We use the following trivial topological

Fact. For arbitrary neighbourhoods OL and $Og(L \times [0, 1])$ there is a homeomorphism $\overline{h} : B^n \to B^n$ such that:

1. $h(g(L \times [0, 1])) \subset OL$;
2. $\overline{h} | B^n \setminus Og(L \times [0, 1]) = \text{id}$;
3. $\overline{h} | S^{n-1} = \text{id}$.
This homeomorphism generates a homeomorphism $h : X \to X$, which satisfies the conditions of Lemma 1.1 for $K = qg(L \times [0, 1])$. To get the last property of f, we take an approximating homeomorphism from the proof of Lemma 1.1. The lemma is proved. □

Let A be a closed subset of a topological space X, and let $\varphi : A \to B$ be a quotient map onto some space B. We denote by X_{φ} the quotient space of X with respect to the decomposition, the elements of which are fibres $\varphi^{-1} b$ of the map φ and singletons from $X \setminus A$. The quotient map $X \to X_{\varphi}$ we denote by p_{φ}.

Let $f : X \to Y$ be a continuous map such that $f \mid A$ is a homeomorphism. The set $f(A)$ is mapped onto B by the map φf^{-1}. There is a unique map $f_{\varphi} : X_{\varphi} \to Y_{\varphi f^{-1}}$ such that $f_{\varphi} p_{\varphi} = p_{\varphi f} \circ f$. Indeed, for every point $x \in X_{\varphi}$, the set $p_{\varphi f^{-1}} f_{\varphi}^{-1} x$ consists of one point, which is the image $f_{\varphi}(x)$ of x.

Definition. A continuous map $f : X \to Y$ is called a near A-homeomorphism, where A is closed in X, if for any open covering \mathcal{U} of Y there is a homeomorphism $h : X \to Y$ such that h is \mathcal{U}-close to f and coincides with f onto A.

Lemma 1.3. If $f : X \to Y$ is a near A-homeomorphism between bicompacta, then for any quotient map $\varphi : A \to B$ the map $f_{\varphi} : X_{\varphi} \to Y_{\varphi f^{-1}}$ is a near B-homeomorphism.

Proof. Let \mathcal{U} be an open covering of $Y_{\varphi f^{-1}}$. For the covering $p_{\varphi f^{-1}}^{-1}(\mathcal{U})$ of Y we take a homeomorphism $h : X \to Y$ from the definition of a near A-homeomorphism. Then the map $g = p_{\varphi f^{-1}} h p_{\varphi}^{-1}$ is the desired homeomorphism between X_{φ} and $Y_{\varphi f^{-1}}$. □

Definition. We will say that a countable subset A of a topological space X converges to a set $F \subset X$ if for any neighbourhood OF the set $A \setminus OF$ is finite. We will say that the set F is enveloped by the countable set A if A converges to F and $F \subset \overline{A}$.

Main lemma. Let B^n be a closed n-ball, $n \geq 2$, and S^{n-1} be its boundary. Let A be a closed subset of S^{n-1}, and let $\varphi : A \to B$ be a continuous map onto some compactum B. Suppose that for some point $b_0 \in B$ the set $L = \varphi^{-1}(b_0)$ is connected and nowhere dense in S^{n-1}. Suppose further that $h : L \times [0, 1] \subset B^n$ is an imbedding, satisfying the following conditions:

1. $h(l, 0) = l$ for any $l \in L$;
2. $h(L \times (0, 1]) \subset B^n \setminus S^{n-1}$.

Then for an arbitrary countable family $\mathcal{C} = \{C_i : i \in \omega\}$ of countable sets $C_i \subset O^n = B^n \setminus S^{n-1}$ such that $y = p_{\varphi}^{-1} \varphi^{-1}(b_0)$ is a limit point of C_i for any i there exists a continuous map $g = g(y, \varphi) : B^n \to B^n$ with the following properties:

1. g is a near S^{n-1}_{φ}-homeomorphism;
2. g has the only nontrivial fibre $g^{-1}y = p_{\varphi} h(L \times [0, 1]) \equiv K$;
A differentiable manifold with noncoinciding dimensions

(5) \(g | S^n = \text{id} \);
(6) \(g : O^n \setminus K \to O^n \) is a diffeomorphism;
(7) \(K \subset [g^{-1}C_i] \) for any \(i \).

Proof. Since (3) and (5), it suffices to construct \(g \) for the case \(B = \{b_0\} \). Then applying Lemma 1.3 we get a general case from this particular one. We will construct the map \(g \) so that it will be identical outside some neighbourhood of \(K \). So, we assume that the halfspace \(\mathbb{R}^n_+ = \mathbb{R}^n \setminus [0, \infty) \) is imbedded into \(B^n \) with \(L \times \{0\} \subset \mathbb{R}^n \setminus \{0\} \subset S^{n-1} \). After this it is enough to construct a diffeomorphism

\[f : \mathbb{R}^n_+ \setminus L \times [0, 1] \to \mathbb{R}^n_+ \setminus L \times \{0\}, \]

which is identical onto \((\mathbb{R}^n_+ \setminus L) \times [0] \) and outside some neighbourhood \(O(L \times \{0\}) \), and satisfies the condition

(7') \(L \times [0, 1] \subset f^{-1}(C_i) \) for any \(i \in \omega \) (here \(C_i \subset \mathbb{R}^n \setminus \{0\} \) is a countable set such that \(\bigcap_i (L \times \{0\}) = \emptyset \)).

We will get a map \(g \) as an extension of the map \(p \circ f^{-1} \) such that \(g \) is identical onto \(B^n_+ \setminus (\mathbb{R}^n_+ \setminus L) \) and transfers the set \(K \) into the point \(y \). This map will satisfy the condition (3) of the Main lemma according to Lemma 1.2.

Construction of the map \(f \). Without lost of generality we can assume that the set \(C = \bigcup \{C_i : i \in \omega\} \) is a sequence, converging to the compactum \(L \times \{0\} \), and \(C_i \cap C_{i'} = \emptyset \) for \(i \neq i' \). There exists a fundamental sequence of neighbourhoods \(U_j \) of \(L \) in \(\mathbb{R}^n_+ \) satisfying for any \(j \in \omega \) the following conditions:

(a) \(U_{j+1} \subset U_j \);
(b) \(U_j \) is a connected \((n-1)\)-manifold with boundary;
(c) \((\text{Bd } U_j) \times \mathbb{R}^+ \cap C = \emptyset \).

Let \(V_j = U_j \times [0, 1 + 1/(j + 1)] \) and \(W_j = U_j \times [0, \epsilon_j] \), where positive numbers \(\epsilon_j \) will be defined later. The sequence \(\{\epsilon_j : j \in \omega\} \) will be strictly decreasing and converging to 0. So, \(\{V_j : j \in \omega\} \) and \(\{W_j : j \in \omega\} \) will be fundamental sequences of neighbourhoods of \(L \times [0, 1] \) and \(L \times \{0\} \) in \(\mathbb{R}^n_+ \). These neighbourhoods evidently satisfy the condition

(d) \(\bar{V}_{j+1} \subset V_j, \bar{W}_{j+1} \subset W_j \).

The following fact is trivial.

Statement. Let \(X \) and \(Y \) be connected spaces, and let \(X_0 \) and \(Y_0 \) be their proper subspaces. Then \(X \times Y \setminus X_0 \times Y_0 \) is connected.

This statement and condition (b) imply the condition

(e) the sets \(\bar{V}_j \setminus V_{j+1} \) and \(\bar{W}_j \setminus W_{j+1} \) are connected \(n \)-manifolds with boundary.

Since the set \(L \) is nowhere dense in \(\mathbb{R}^n_+ \), for each \(j \in \omega \) we fix a sequence

\[D_j \subset V_j \setminus L \times [0, 1] \cup \mathbb{R}^n \setminus \{0\}, \]

which envelopes \(L \times [0, 1] \) and meets no boundary \(\text{Bd } V_j, \ i \geq j \). Moreover, we suppose that \(D_j \cap D_{j'} = \emptyset \) for \(j \neq j' \).
We will construct the diffeomorphism \(f \) so that \(f(D_i) \subset C_j \). This will imply condition (7'). We begin with a definition of \(\varepsilon_j \). For a pair \((i, j)\) of integers, satisfying the condition \(0 \leq i \leq j \), we set

\[
N(i, j) = \left| D_i \cap \left(V_j \setminus \overline{V}_{j+1} \right) \right|.
\]

We will inductively define numbers \(\varepsilon_j \) such that for \(0 \leq i \leq j \):

\[
N(i, j) \leq \left| C_i \cap \left(W_j \setminus \overline{W}_{j+1} \right) \right|,
\]

\[
(i, j + 1)
\]

\[
C_i \cap \text{Bd} \ W_j = \emptyset.
\]

We can begin with \(\varepsilon_0 \). Since \(C_0 \) converges to \(L \times \{0\} \), we can assume, reducing \(C_0 \) if needed, that \(C_0 \cap (\mathbb{R}_+^{n-1} \times \{\varepsilon_0\}) = \emptyset \). Then \((c_0) \) implies \((0, 0)\).

Suppose we have \(\varepsilon_k \), \(k \leq j \), such that the conditions \((i, k)\) and \((i, k)\) are fulfilled for \(0 \leq i \leq k \leq j \). For positive \(\varepsilon < \varepsilon_j \) we set

\[
W_{j+1}^\varepsilon = U_{j+1} \times \{0, \varepsilon\},
\]

\[
L_{\varepsilon}(i, j) = \left| C_i \cap \left(W_j \setminus \overline{W}_{j+1}^\varepsilon \right) \right|.
\]

If \(\varepsilon \) converges to 0, then \(L_{\varepsilon}(i, j) \) converges to \(\infty \), since

\[
\bigcap \left\{ W_{j+1}^\varepsilon : 0 < \varepsilon < \varepsilon_j \right\} = U_{j+1} \times \{0\} \subset \mathbb{R}_+^{n-1} \setminus C_i.
\]

Hence, there is a positive number \(\varepsilon_{j+1} < \varepsilon_j \) such that the conditions \((i, j + 1), i \leq j\), are fulfilled. But then these conditions are fulfilled for all \(\varepsilon_{j+1} \) from some neighbourhood of \(\varepsilon_{j+1} \). So, we can get \((i, j + 1)\) by a small shift of \(\varepsilon_{j+1} \) and using \((c_{j+1}) \).

Now we are going to construct a diffeomorphism

\[
f_1 : \mathbb{R}_+^{n-1} \setminus L \times \{0, 1\} \rightarrow \mathbb{R}_+^{n-1} \setminus L \times \{0\},
\]

identical outside \(V_0 = W_0 \) and transforming the set \(\overline{V}_j \setminus V_{j+1} \) into the set \(\overline{W}_j \setminus W_{j+1}, j \in \omega \). For this we need some notations. Let \(U_{j-} \) and \(U_{j+1}^- \) be open subsets of \(\mathbb{R}_+^{n-1} \) such that

\[
U_{j+1}^- \subset U_{j+1}^+ \subset U_{j+1}^- \subset U_{j}^- \subset U_{j} \subset U_j
\]

for all \(j \in \omega \). Let

\[
\alpha_j : \left[1 + \frac{1}{j + 2}, 1 + \frac{1}{j + 1} \right] \rightarrow [\varepsilon_{j+1}, \varepsilon_j]
\]

be some diffeomorphism, which is linear on small neighbourhoods of the points \(1 + 1/(j + 2) \) and \(1 + 1/(j + 1) \) with the coefficients \(\varepsilon_{j+1}/(1 + 1/(j + 2)) \) and \(\varepsilon_{j}/(1 + 1/(j + 1)) \) accordingly. This diffeomorphism is extended to the diffeomorphism

\[
\tilde{\alpha}_j : \left[0, 1 + \frac{1}{j + 1} \right] \rightarrow [0, \varepsilon_j],
\]
which is linear on the interval \([0, 1 + 1/(j + 2)]\). Let

\[\beta_j : \left[0, 1 + \frac{1}{j+1} \right] \rightarrow [0, \epsilon_j] \]

be a linear map, and let \(\psi_j : \mathbb{R}^{n-1} \rightarrow [0, 1]\) be some smooth function such that
\(\psi_j(U^+_{j+1}) = 1\) and \(\psi_j(\mathbb{R}^{n-1} \setminus U^-_j) = 0\). Now for a point
\((r, t) \in \overline{V}_j \setminus V_{j+1} \subset \mathbb{R}^{n-1} \times [0, \infty)\)
we put

\[f_j(r, t) = \left(r, \psi_j(r) \alpha_j(t) + (1 - \psi_j(r)) \beta_j(t) \right). \]

Setting \(f_1|\mathbb{R}^n \setminus V_0 = \text{id}\), we obtain, easy to verify, the homeomorphism \(f_1\), with the
described above properties.

For \(0 \leq i \leq j\) we set

\[D_i = D_i \cap \left(V_j \setminus V_{j+1}\right). \]

Denote by \(C_i\) some subset of \(C_i \cap (W_j \setminus \overline{W}_{j+1})\), which consists of
\(N(i, j) = |D_i|\) points. Such a subset exists in view of \((i, j + 1)\).

Now we will construct a diffeomorphism

\[f_2 : \mathbb{R}^n_+ \times L \times \{0\} \rightarrow \mathbb{R}^n_+ \times L \times \{0\} \]

with the following properties:

1. \(f_2(W_j \setminus \overline{W}_{j+1}) = W_j \setminus \overline{W}_{j+1}\);
2. \(f_2(f_1(D_i)) = C_i\);
3. \(f_2(\mathbb{R}^{n-1}_+ \setminus L) \times \{0\} \cup (\mathbb{R}^n_+ \setminus W_0) = \text{id}\).

This is possible, because of the following evident property of the Euclidian space:

Let \(G\) be a domain of the Euclidean space \(\mathbb{R}^n\) with a boundary \(F\). Let \(A\) and \(B\) be some finite subsets of \(G\) such that \(|A| = |B|\). Then any bijection \(h_0 : A \rightarrow B\) can be extended to a diffeomorphism \(h : G \rightarrow G\), which is identical in a neighbourhood of \(F\).

During the construction of \(f_2\) the sets \(\text{Int}_{\mathbb{R}^n}(W_j \setminus \overline{W}_{j+1})\) will successively play the role of the domain \(G\), and the sets \(A_j = \bigcup\{f_i(D_i) : 0 \leq i \leq j\}\) and \(B_j = \bigcup\{C_i : 0 \leq i \leq j\}\) will play roles of the sets \(A\) and \(B\). The sets \(A_j\) and \(B_j\) have equal cardinalities, since the definition of \(C_i\) and the conditions \(C_i \cap C_{i'} = \emptyset\), \(D_i \cap D_{i'} = \emptyset\) for \(i \neq i'\).

Now we set \(f = f_2f_1\). Condition (9) will guarantee that \(f(D_i) \subset C_j\), and this
inclusion will imply the main property (7') of the diffeomorphism \(f\). The lemma is
proved. \(\Box\)
2. Manifold M^n_m

2.1. The space $Y^n_m, m > n \geq 4$

Let M_1 be the Menger curve. We imbed the product $M_1 \times I^{n-4}$ into the sphere S^{n-1}, which is the boundary of the closed ball B^n. Denote by $f_1 : M_1 \rightarrow Q$ an open map onto the Hilbert cube Q such that all fibres $f_1^{-1}(q)$ are homeomorphic to the Menger curve. Such map was constructed by Anderson [2]. For us only one thing is essential: f_1 is a monotone map with nontrivial fibres. By $f : M_1 \times I^{n-4} \rightarrow Q$ we denote the composition $f_1 \text{pr}$, where $\text{pr} : M_1 \times I^{n-4} \rightarrow M_1$ is the projection. For each $m = n + 1, n + 2, \ldots, \infty$ we fix some imbedding $I^m \subset Q$ (we can assume that $I^m \subset Q$). By \mathcal{D}_m^n we denote the following decomposition of B^n:

$$\mathcal{D}_m^n = \{f^{-1}_q : q \in I^m\} \cup \{\{b\} : b \in B^n \setminus f^{-1}_q I^m\}.$$

The quotient space $B^n \setminus \mathcal{D}_m^n$ we denote by Y_m^n, the quotient map $B^n \rightarrow Y_m^n$ we denote by φ. Let $H^n_m = \varphi(S^{n-1})$. A point $y \in H^n_m$ is called a point of the first genus if $\varphi^{-1}y$ consists of one point, and y is called a point of the second genus if $\varphi^{-1}y$ is homeomorphic to $M_1 \times I^{n-4}$.

Proposition 2.1. For an arbitrary homeomorphism $f : Y^n_m \rightarrow Y^n_m$ we have $f(O^n) = O^n$, $f(H^n_m) = H^n_m$.

Proof. If $y \in H^n_m$ is a point of the first genus, then near this point the space Y^n_m looks like the halfspace \mathbb{R}^+_n. If y is a point of the second genus, then $\dim Oy = m$ for an arbitrary neighbourhood Oy in Y^n_m. \(\square\)

2.2. Spectrum S

Let H^n_m, Z_0, $Z_{(\alpha, \beta)}$, where $\alpha \leq \beta < \omega_1$, β is an isolated ordinal, be disjoint sets of the cardinality of the continuum. For a countable ordinal $\gamma \geq 1$ we set

$$Z_\gamma = Z_0 \cup \left(\bigcup \{Z_{(\alpha, \beta)} : \alpha \leq \beta \leq \gamma \} \right).$$

Since β is isolated, for each limit ordinal γ we have $Z_\gamma = \cup \{Z_\delta : \delta < \gamma \}$. Now we set

$$X_\gamma = Z_\gamma \cup H^n_m$$

and define maps $\pi_\delta : X_\gamma \rightarrow X_\delta$ so that the system

$$S = \{X_\gamma, \pi_\delta : \delta \leq \gamma < \omega_1\}$$

is a continuous spectrum of sets. For that it suffices to define neighbouring projections $\pi_\gamma^{\gamma+1}$. Assuming the continuum hypothesis, fix some bijection $\xi : H^n_m \rightarrow \omega_1$. By a definition the map $\pi_\gamma^{\gamma+1}$ is identical onto X_γ and takes $Z_{(\alpha, \gamma+1)}$ into the point $\xi^{-1}\alpha$ for all $\alpha \leq \gamma + 1$.

Now we topologize the spectrum S. We set

$$Z_{\omega_1} = \cup \{ Z_\gamma: \gamma < \omega_1 \}$$

and fix some bijection $\eta: Z_{\omega_1} \to \omega_1$. Assuming \triangle, we take a sequence $\{ J_\alpha: \alpha < \omega_1 \}$ such that the set $\{ \alpha: J_\alpha = K \cap \alpha \}$ is stationary for any set $K \subseteq \omega_1$. A topology on X_γ we define inductively such that for all $\gamma < \omega_1$:

1. X_γ is homeomorphic to Y^n_m;
2. π_{γ}^{δ} is a near homeomorphism for $\gamma' < \gamma$.

We begin with X_0. Take some bijection $Z_0 \to O^n$. After this

$$X_0 = Z_0 \cup H^n_m = O^n \cup H^n_m = Y^n_m.$$

Suppose that we have X_δ and π_{δ}^{δ}, satisfying (1) and (2) for all $\delta' < \delta < \gamma < \omega_1$.

Case 1: γ is a limit ordinal. Let X_γ be the limit of the inverse spectrum $S_\gamma = (X_\delta, \pi_{\delta}^{\delta}: \delta < \gamma)$, and let $\pi_{\gamma}^{\delta}: X_\gamma \to X_\delta$ be the composite projection of the spectrum S_γ. Then π_{γ}^{δ} is a near homeomorphism by the approximation lemma of Brown [4]. Hence, X_γ is homeomorphic to Y^n_m.

Case 2: $\gamma = (\gamma - 1) + 1$. Our task is to topologize the map $\pi_{\gamma}^{\gamma - 1}$, which was defined above, as a map between the sets X_γ and $X_{\gamma - 1}$. Let $\pi_{\gamma}^{\gamma - 1}$ be a fibre product of maps ρ_{δ}^{δ}, $\alpha < \gamma$. Here ρ_{δ}^{δ} is a map $g - \xi_{(\delta, \gamma)}$ from Main lemma where $B_\delta^n = Y^n_m$, $S_\delta^n = H^n_\delta$, $y = \xi^{-1}_\delta$ and the family \mathcal{E} consists of all sets $\eta^{-1}J_\beta \cap Z_{\gamma - 1}$, $\beta < \gamma - 1$, and such that $\gamma \in \eta^{-1}J_\beta \cap Z_{\gamma - 1}$. As for the inverse image $(\rho_{\delta}^{\delta})^{-1}y = K$, it is homeomorphic to I or to the cone over $M_1 \times I^{n-4}$, depending on a genus of the point y.

Now we give another description of $\pi_{\gamma}^{\gamma - 1}$. By [7, Theorem 2] $\pi_{\gamma}^{\gamma - 1}$ can be represented as a limit of an inverse sequence of maps, which are homeomorphic to ρ_{δ}^{δ}, $\alpha < \gamma$. We describe this representation in detail. By a definition we have

$$Z_\gamma = Z_{\gamma - 1} \cup (\bigcup \{ Z_{(\alpha, \gamma)}: \alpha < \gamma \}).$$

Let us number the countable family $\{ Z_{(\alpha, \gamma)}: \alpha < \gamma \}$ by integers $i \in \omega$:

$$\{ Z_{(\alpha, \gamma)}: \alpha < \gamma \} = \{ Z^{(i, \gamma)}: i \in \omega \}.$$

We set

$$Z_i^\gamma = Z_{\gamma - 1} \cup \left(\bigcup \{ Z^{(k, \gamma)}: k < i - 1 \} \right), \quad X_i^\gamma = Z_i^\gamma \cup H^n_m.$$

Now for $i \geq 1$ we define a map $\pi_i^\gamma: X_i^\gamma \to X_{i - 1}^\gamma$ setting $\pi_i^\gamma(Z^{(i - 1, \gamma)}) = \xi^{-1}_\gamma(\alpha)$, where $Z^{(i - 1, \gamma)} = Z_{(\alpha, \gamma)}$, and π_i^γ is identical onto $X_{i - 1}^\gamma$. Applying Main lemma, we inductively define a topology on X_i^γ such that:

3. X_i^γ is homeomorphic to Y^n_m;
4. π_i^γ coincides with the map $g = g_{(\delta, \gamma)}$ from Main lemma, where $y = \xi^{-1}_\delta$ and \mathcal{E} consists of all sets $\eta^{-1}J_\beta$, $\beta < \gamma - 1$, lying in $Z_{\gamma - 1}$ and such that y is a limit point of $\eta^{-1}J_\beta$ in $X_{i - 1}^\gamma$.

Let us note that the limit point of $\eta^{-1}J_\beta$ in $X_{i - 1}^\gamma$ iff y is a limit point of $\eta^{-1}J_\beta$ in $X_{\gamma - 1}$, since we get $X_{i - 1}^\gamma$ from $X_{\gamma - 1}$ by a local changing of the space $X_{\gamma - 1}$ in finitely many points $y' \neq y$. The mentioned above [7, Theorem 2] implies
that $X_\gamma = \lim \{X^i_\gamma, \pi^i_\gamma; i \in \omega\}$ (π^0_γ is the identity map of $X^0_\gamma = X_{\gamma-1}$), and $\pi^{\gamma-1}_\gamma$ is the composite projection of the inverse sequence $\{X^i_\gamma, \pi^i_\gamma; i \in \omega\}$. Since all maps π^i_γ are near homeomorphisms, the map $\pi^{\gamma-1}_\gamma$ is a near homeomorphism by the approximation lemma of Brown.

Remark. Actually we need more than an existence of a homeomorphism between X_γ and $X_{\gamma-1}$. To provide an equality $\pi^{\gamma-1}_\gamma | H^n_m = \text{id}$ we need the unique representation $X_\gamma = O^n \cup \cap H^n_m$. But Proposition 2.1 gives us this uniqueness.

So, the map $\pi^{\gamma-1}_\gamma$ is constructed, the properties (1) and (2) are fulfilled, and the spectrum S is topologized.

Because all maps $\pi^{\gamma-1}_\gamma | H^n_m$ are identical, the bicomplex $X_\omega = \lim S$ is naturally represented as a disjoint union of Z_ω_i and H^n_m. Each $Z_\gamma = X_\gamma \setminus H^n_m$, $\gamma < \omega_1$, is homeomorphic to the open ball O^n by Proposition 2.1. So, each Z_γ is open in Z_δ for $\gamma < \delta$ by the Brouwer theorem on open subsets of the Euclidean space \mathbb{R}^n. Hence, Z_ω is a topological n-manifold, which we denote by M^n_m.

Proposition 2.2. The space M^n_m is a differentiable n-manifold.

In the proof we will use

Theorem of Kozlowski and Zenor [12]. *If a differentiable manifold M has an atlas $\{(U_i, \varphi_i): i \in \omega\}$ such that $U_i \subset U_{i+1}$ and $\varphi_i(U_i) = \mathbb{R}^n$ for all $i \in \omega$, then M is diffeomorphic to \mathbb{R}^n.*

As in the paper of Kozlowski and Zenor [12], we will inductively construct a differentiable structure \mathcal{D}_γ on Z_γ such that:

1. $\{Z_\gamma, \mathcal{D}_\gamma\}$ is diffeomorphic to \mathbb{R}^n: i.e., the atlas \mathcal{D}_γ contains a chart $(Z_\gamma, \varphi_\gamma)$ with $\varphi_\gamma(Z_\gamma) = \mathbb{R}^n$;
2. if $\beta < \gamma$, then $(Z_\beta, \varphi_\beta) \in \mathcal{D}_\gamma$.

Let \mathcal{D}_0 be the usual differentiable structure on $Z_0 = O^n$ generated by the atlas consisting of the single chart (Z_0, φ_0), where $\varphi_0: O^n \to \mathbb{R}^n$ is some diffeomorphism.

Suppose the \mathcal{D}_γ satisfying (1) and (2) are constructed for all $\gamma < \delta < \omega_1$. If δ is a limit ordinal, then let \mathcal{D}_δ be the differentiable structure generated by $\{(Z_\gamma, \varphi_\gamma): \gamma < \delta\}$. The manifold $(Z_\delta, \mathcal{D}_\delta)$ is diffeomorphic to \mathbb{R}^n by the theorem of Kozlowski and Zenor.

Now let $\delta = \gamma + 1$. We know that $Z^i_{\gamma+1} = \bigcup \{Z^i_{\gamma+1}; i \in \omega\}$, where $Z^0_{\gamma+1} = Z_\gamma$ and each $Z^i_{\gamma+1}$ is homeomorphic to \mathbb{R}^n. So, our task is to construct inductively a differentiable structure \mathcal{D}_i on $Z^i_{\gamma+1}$ such that $(Z^i_{\gamma+1}, \mathcal{D}_i)$ is diffeomorphic to \mathbb{R}^n and $\mathcal{D}_i \subset \mathcal{D}_i^{i+1}$. Then $\{Z^i_{\gamma+1}, \bigcup \{\mathcal{D}_i; i \in \omega\}\}$ will be diffeomorphic to \mathbb{R}^n by the theorem of Kozlowski and Zenor. If \mathcal{D}_i is already constructed and contains a chart $(Z^i_{\gamma+1}, \varphi^i_{\gamma+1})$ with $\varphi^i_{\gamma+1}(Z^i_{\gamma+1}) = \mathbb{R}^n$, then \mathcal{D}_i^{i+1} is generated by \mathcal{D}_i and the
A differentiable manifold with noncoinciding dimensions 231

single chart \((Z_{y+1}^i, \varphi_{y+1}^i)\), where \(\varphi_{y+1}^i = \varphi_{i+1}^j g_{i+1}^{-1}\) and \(g_{i+1} = \pi_{y+1}^i Z_{y+1}^i \setminus Z_{y+1}^i\). The family \(\mathcal{D}^i \cup \{(Z_{y+1}^i, \varphi_{y+1}^i)\}\) is an atlas, since the map \(g_{i+1} : Z_{y+1}^i \setminus Z_{y+1}^i \to Z_{y+1}^{i+1}\) is a diffeomorphism between \(Z_{y+1}^i\) and \(Z_{y+1}^{i+1}\).

So the atlases \(\mathcal{D}_y\) satisfying (1) and (2) are constructed for all \(y < \omega_1\). Hence, the differentiable structure \(\mathcal{D} = \cup \{\mathcal{D}_y : y < \omega_1\}\) onto \(Z_m = M_m^\alpha\) is defined. The proposition is proved. \(\square\)

In what follows we need

Main property of sets \(\eta^{-1} J\). If \(\beta < \alpha\), and \(x \in X_\alpha\) is a limit point of \(\eta^{-1} J \cap X_\alpha = H\), then for any \(\alpha' \geq \alpha\) every point \(y \in (\pi_\alpha)\eta^{-1} x\) is a limit point of \(H\) in \(X_\alpha\).

Proof. By transfinite induction: Assume that we proved our assertion for all \(\alpha' < \delta\). If \(\delta\) is a limit ordinal, then it follows from the continuity of \(S\) that for any neighbourhood \(O_y\) there is a neighbourhood \(U\) of \(\pi_\delta^\alpha(y)\) for some \(\alpha', \alpha < \alpha' < \delta\), such that \((\pi_\delta^\alpha)^{-1} U \subseteq O_y\). By the assumption we have \(H \cap U \neq \emptyset\). But \(H = (\pi_\delta^\alpha)^{-1} H\), since \(H \subseteq X_\alpha\) and \(\alpha < \alpha'\). Hence \(H \cap O_y \neq \emptyset\).

Now let \(\delta = (\delta - 1) + 1\). Then \(\beta < \alpha < \delta - 1\), and \(z = \pi_{\delta-1}^\delta(y)\) is a limit point of \(H\) by the inductive assumption. If \((\pi_\delta^\alpha)^{-1} z\) consists of one point \(y\), then \(y\) is a limit point of \(H\), since \(y\) is a limit point of any set \(A \subseteq X_\delta\) such that \(z\) is a limit point of \(\pi_{\delta-1}^\delta(A)\). If \((\pi_\delta^\alpha)^{-1} z\) consists of more than one point, then by the definition of \(\pi_{\delta-1}^\delta\) we have \(z \in H_m, \xi(z) < \delta\), and each point of \((\pi_{\delta-1}^\delta)^{-1} z\) is a limit point of the set \(H\). \(\square\)

Proposition 2.3. The space \(M_m^\alpha\) is normal and \(\beta M_m^\alpha = X_{\omega_1}\).

To prove Proposition 2.3 it suffices to check that if \(F_1\) and \(F_2\) are disjoint closed subsets of \(M_m^\alpha\), then their closures in \(X_{\omega_1}\) are disjoint as well. And for this it is enough to prove

Proposition 2.4. If \(F\) is an arbitrary subset of \(M_m^\alpha\) and \(y \in \overline{F}_{X_{\omega_1}}\), then \(\pi_\beta^{-1}\pi_\alpha(y) \subset \overline{F}_{X_{\omega_1}}\) for some \(\beta < \omega_1\), where \(\pi_\beta : X_{\omega_1} \to X_\beta\) is the composite projection of \(S\).

Lemma 2.5. The set \(I = \{y : \pi_\gamma(y) \in \overline{F \cap Z_\gamma^\alpha}\}\) is closed and unbounded in \(\omega_1\).

Proof. Let \(\{y_i : i \in \omega\}\) be an increasing sequence of elements from \(I\). We will show that \(y = \sup y_i \in I\). Take an arbitrary neighbourhood \(U\) of \(\pi_\gamma(y)\). Since \(S\) is a continuous spectrum, there is a neighbourhood \(V\) of \(\pi_i(y)\) for some \(i < \omega\) such that \((\pi_\gamma^i)^{-1} V \subseteq U\). By the definition of \(\gamma_i\), we have \(V \cap (F \cap Z_{\gamma_i}) \neq \emptyset\). On the other hand, \((\pi_\gamma^i)^{-1} Z_{\gamma_i} = Z_{\gamma_i}\). Hence, \(\emptyset \neq (\pi_\gamma^i)^{-1} (V \cap (F \cap Z_{\gamma_i})) = ((\pi_\gamma^i)^{-1} V) \cap (F \cap Z_{\gamma_i}) \subset U \cap (F \cap Z_{\gamma_i})\). Therefore, \(y \in I\).

Now we will prove that \(I \cap \{y_\gamma, \omega_1\} \neq \emptyset\) for an arbitrary \(\gamma_0 < \omega_1\). Let \(\{U_{\gamma_0}^i : i \in \omega\}\) be a fundamental sequence of neighbourhoods of \(\pi_{\gamma_0}(y)\) in the compactum
For each \(i \) we take a point \(y_{\gamma_i}^0 \in F \cap \pi_{\gamma_i}^{-1}(U_{\gamma_i}) \). Since \(F = \bigcup \{ F \cap Z_{\beta} : \beta < \omega_1 \} \), there is \(\gamma_i > \gamma_0 \) such that \(y_{\gamma_i}^0 \in F \cap Z_{\gamma_i} \) for all \(i \in \omega \). In the same way we inductively construct an increasing sequence of countable ordinals \(\gamma_k \) and sequences \(\{ y_{\gamma_i}^k : i \in \omega, \ k \in \omega \} \), with

\[
y_{\gamma_i}^{k-1} \in F \cap Z_{\gamma_k} \cap \pi_{\gamma_i}^{-1}(U_{\gamma_i}^{k-1}).
\]

where \(\{ U_{\gamma_i}^k : i \in \omega \} \) is a fundamental sequence of neighbourhoods of \(\pi_{\gamma_k}(y) \). Let \(\gamma = \sup \gamma_k \). It follows from the continuity of \(S \) that \(\{(\pi_{\gamma_k})^{-1}U_{\gamma_k} : i, \ k \in \omega \} \) is a fundamental sequence of neighbourhoods of \(\pi_{\gamma_k}(y) \). Since \(\pi_{\gamma_k}^{-1}(U_{\gamma_k}) = \{ \} \), we have \(y_{\gamma_k}^{\gamma_k} \in (\pi_{\gamma_k})^{-1}U_{\gamma_k} \). So, \(\pi_{\gamma_k}(y) \) is in the closure of \(\{ y_{\gamma_i}^k : i, \ k \in \omega \} \subset F \cap Z_y \). Hence, \(\gamma \in I \). The lemma is proved.

Proof of Proposition 2.4. If \(y \in Z_{\omega_1} \), then \(y \in Z_{\beta} \) for some \(\beta < \omega_1 \), consequently \(y = \pi_{\beta}^{-1}(\pi_{\beta}(y)) \). So \(\pi_{\beta}^{-1}(\pi_{\beta}(y)) = y \in \overline{F \times \omega_1} \). It remains to consider the case \(y \in H_m^n = X_{\omega_1} \setminus Z_{\omega_1} \).

In case it is needed we can change \(F \) for its dense subset. Hence, without loss of generality we can assume that \(F \cap Z_y \) is countable for each \(\gamma < \omega_1 \). Then by [13, Lemma 3.12] the set

\[
A = \{ \lambda : \eta^{-1}\lambda \cap F = F \cap Z_\lambda \}
\]

is closed and unbounded in \(\omega_1 \). It follows from \(\diamond \) that the set

\[
B = \Gamma \cap A \cap \{ \beta : J_{\beta} = \eta(F) \cap \beta \}
\]

is unbounded in \(\omega_1 \). Let \(\beta \in B \cap [\xi(y), \omega_1) \). Then

1. \(\pi_{\beta}(y) \in \overline{F \cap Z_{\beta}} \);
2. \(\overline{Z_{\beta} \cap \eta^{-1}J_{\beta}} = (\text{since } J_{\beta} = \eta(F) \cap \beta = Z_{\beta} \cap F \cap \eta^{-1}\beta = (\because \beta \in A) = Z_{\beta} \cap F). \)

It follows from (1), (2) and Main property of sets \(\eta^{-1}J \) that for \(\gamma > \beta \):

\[
(\pi_{\gamma}^{-\beta})^{-1}(\pi_{\beta}(y)) \subset \overline{Z_{\beta} \cap F_{\gamma}}. \tag{1,\gamma}
\]

Since \(y \in H_m^n \), we have \(y = \pi_{\gamma}(y) \) and

\[
(\pi_{\gamma}^{-\beta})^{-1}(\pi_{\beta}(y)) \setminus \{ \pi_{\gamma}(y) \} \subset Z_{\gamma}. \tag{2,\gamma}
\]

In what follows we need the following elementary fact.

Statement. If \(U \) is an open subset of a topological space \(X \) and \(A \subset U \), then \(\overline{A}^U = \overline{A} \cap U \).

It follows from (1,\gamma), (2,\gamma) and the Statement that

\[
(\pi_{\gamma}^{-\beta})^{-1}(\pi_{\beta}(y)) \setminus \{ \pi_{\gamma}(y) \} \subset \overline{Z_{\beta} \cap F_{\gamma}} \cap X_y. \tag{3,\gamma}
\]

By the definition of the spectrum \(S \) we have

\[
\pi_{\beta}^{-1}(\pi_{\beta}(y)) \setminus \{ y \} = U \{ (\pi_{\gamma}^{-\beta})^{-1}(\pi_{\beta}(y)) \setminus \{ \pi_{\gamma}(y) \} : \beta < \gamma < \omega_1 \}. \tag{1}
\]
Hence, (3,γ) implies
\[\pi_{\beta}^{-1}\pi_{\beta}(y) \setminus \{y\} \subset \bigcup \{ \mathbb{Z}_\beta \cap F^{\mathbb{Z}_\gamma}: \beta < \gamma < \omega_1 \}, \]
and, consequently,
\[\pi_{\beta}^{-1}\pi_{\beta}(y) \setminus \{y\} \subset \mathbb{Z}_\beta \cap F^{\omega_1} \subset F^{\omega_1}. \]
Thus, Propositions 2.4 and 2.3 are proved. □

Proposition 2.6. If \(|(\pi_{\gamma}^{\beta+1})^{-1}\pi_{\gamma}(y)| \geq 2\) for some \(y \in H^n_m\) and \(\gamma < \omega_1\), then \(|(\pi_{\delta}^{\beta})^{-1}\pi_{\delta}(y)| \geq 2\) for \(\gamma < \delta < \delta' < \omega_1\).

Proof. It suffices to show that \(|(\pi_{\delta}^{\gamma+1})^{-1}\pi_{\delta}(y)| \geq 2\) for any \(\delta \geq \gamma + 1\). By the definition of \(\pi_{\gamma}^{\gamma+1}\), the point \(y = \pi_{\gamma}(y)\) has nontrivial inverse image with respect to \(\pi_{\gamma}^{\gamma+1}\) if the following condition is fulfilled:
\[\xi(y) \leq \gamma + 1 \text{ and } \pi_{\gamma}(y) \text{ is a limit point of the set } \eta^{-1}J_\beta \cap Z_\gamma \text{ for } \beta \leq \gamma. \]
But since Main property of sets \(\eta^{-1}J\), this condition being fulfilled for \(\pi_{\gamma}(y)\) is fulfilled for \(\pi_{\gamma}(y)\) when \(\delta \geq \gamma\). The proposition is proved. □

Proposition 2.7. If \(F\) is an arbitrary closed subset of \(M^n_m\), then there is \(y < \omega_1\) such that
\[\pi_{\gamma}^{-1}\left(\pi_{\gamma}(F^{X_{\omega_1}}) \setminus F\right) \subset F^{X_{\omega_1}}. \]

Proof. In the closed subset \(\Phi = F^{X_{\omega_1}} \setminus F\) of the compactum \(H^n_m \subset X_{\omega_1}\), there is a countable dense subset \(\Phi_0 = \{y_i: i \in \omega\}\). In view of Proposition 2.4 for each \(i \in \omega\) there is \(\beta_i < \omega_1\) such that
\[\pi_{\gamma}^{-1}\pi_{\gamma}(y) \subset F^{X_{\omega_1}}. \]
Increasing \(\beta_i\), if necessary, we may assume that \(|(\pi_{\beta_i}^{\beta_i+1})^{-1}\pi_{\beta_i}(y_i)| \geq 2\). But the spectrum \(S\) has monotone projections. Hence, Proposition 2.6 implies that for \(\beta_i \leq \alpha < \alpha' < \omega_1\) we have
\[\pi_{\alpha}(y_i) \in (\pi_{\alpha'}^{\alpha'})^{-1}\pi_{\alpha}(y_i) \setminus \{\pi_{\alpha}(y_i)\} \in F^{X_{\omega_1}}. \]
Let \(\beta = \sup \beta_i\).

Lemma 2.8. For every \(\gamma \geq \beta\) there exists a countable set \(D_\gamma \subset Z_\gamma \cap F\) such that:
\[\pi_{\gamma}(\Phi_0) \subset D_\gamma \subset F_{\gamma}, \]
\[D_\gamma = Z_\gamma \cap D_\gamma \quad \text{for } \gamma' > \gamma. \]

Proof. We will construct \(D_\gamma\) inductively, starting with \(D_\beta\). Let us note that for any \(y \in H^n_m\) and \(\alpha < \alpha' < \omega_1\) we have
\[Z_{\alpha'} \cap \pi^{-1}_{\alpha'} \pi_{\alpha}(y) = (\pi_{\alpha'}^{\alpha'})^{-1}\pi_{\alpha}(y) \setminus \{\pi_{\alpha}(y)\}. \]
Hence, it follows from (2) that
\[(\pi_{\beta}^{-1})_{\gamma} \{ \pi_{\beta}(y_i) \} \subset Z_\beta \cap F. \]
The point \(\pi_{\beta}(y_i) \) is a limit point of \((\pi_{\beta}^{-1})_{\gamma} \{ \pi_{\beta}(y_i) \} \). Let \(C_i^\beta \) be a sequence, converging to \(\pi_{\beta}(y_i) \) and lying in \((\pi_{\beta}^{-1})_{\gamma} \{ \pi_{\beta}(y_i) \} \). The set \(D_\beta = \cup \{ C_i^\beta : \gamma \in \omega \} \) is in \(Z_\beta \cap F \) and, evidently, satisfies for \(\gamma = \beta \) the conditions (4) and (5) (the last of them means in this case that \(D_\beta \subset Z_\beta \)). An inductive step from \(\gamma \) to \(\gamma + 1 \) is realized in the same way by applying the condition (3) for \(\alpha = \gamma \) and \(\alpha' = \gamma + 1 \) (we add to \(D_\gamma \) countably many sets \(C_i^{\gamma+1} \subset (\pi_{\gamma}^{-1})_{\gamma+1} \{ \pi_{\gamma+1}(y_i) \} \)). For a limit ordinal \(\gamma' \) we put \(D_{\gamma'} = \cup \{ D_\gamma : \gamma < \gamma' \} \). The lemma is proved. \(\Box \)

Coming back to the proof of Proposition 2.7 we set \(D = \cup \{ D_\gamma : \beta \leq \gamma < \omega_1 \} \). By [13, Lemma 3.12] the set
\[\Lambda = \{ \lambda : \eta^{-1}\lambda \cap D = D \cap Z_\lambda \} \]
is closed and unbounded in \(\omega_1 \). Then by \(\Diamond \) the set
\[\Gamma = \Lambda \cap \{ \alpha : J_\alpha = \eta(D) \cap \alpha \} \]
is unbounded in \(\omega_1 \). We will show that any \(\gamma \in \Gamma \) is the desired (in Proposition 2.7) number.

Since \(J_\gamma = \eta(D) \cap \gamma \), we have \(\eta^{-1}J_\gamma = D \cap \eta^{-1}\gamma = (\text{since } \gamma \in \Lambda) \cap D \cap Z_\gamma = (\text{by (5)} \text{ and the definition of } D) = D_\gamma \).

Therefore, in view of (4) any point from \(\pi_\gamma(\Phi) \) is a limit point of the set \(\eta^{-1}J_\gamma \subset Z_\gamma \). From Main property of sets \(\eta^{-1}J \) it follows that for any \(\gamma' > \gamma \) we have
\[(\pi_\gamma)^{-1} \pi_{\gamma'}(\Phi) \subset \eta^{-1}J_{\gamma'}, \]
hence,
\[\pi_{\gamma - 1} \pi_{\gamma'}(\Phi) \subset \eta^{-1}J_{\gamma'} = \overline{D_{\gamma'}} \subset \overline{\overline{D_{\gamma'}}}. \]

The last inclusion according to \(D_{\gamma'} \subset Z_{\gamma'} \cap F \subset F \) proves Proposition 2.7. \(\Box \)

Proposition 2.9. If \(F \) is an arbitrary closed subset of \(M_m^n \), then there is \(\beta < \omega_1 \) such that
\[\pi_{\beta}^{-1} \pi_{\beta} F_{X_{\omega_1}} = F_{X_{\omega_1}}. \tag{7} \]

Proof. Since the inclusion \(\supset \) takes place for any spectrum of bicompacta, it suffices to check the inclusion \(\subset \). The open set \(Z_\beta \subset X_\beta \) is a set of one-to-one correspondence of the map \(\pi_{\beta} \). Thus, it is enough to find \(\beta \) such that
\[\pi_{\beta}^{-1}(\pi_{\beta} F_{X_{\omega_1}} \cap Z_\beta) \subset F_{X_{\omega_1}}. \]
And for it that suffices according to Proposition 2.7 to find \(\beta \geq \gamma \) such that

\[
\pi_\beta^{-1}\left(\pi_\beta \bar{F}^X_{\omega_1} \setminus Z_\beta\right) \subset \pi_\gamma^{-1}\pi_\gamma(\Phi),
\]

(8)

where \(\Phi = \bar{F}^X_{\omega_1} \setminus F \). Assume that the inclusion (8) does not take place for all \(\beta \geq \gamma \). Then for each \(\beta \geq \gamma \) there is a point.

\[
x_\beta \in \pi_\beta^{-1}\left(\pi_\beta \bar{F}^X_{\omega_1} \setminus Z_\beta\right) \setminus \pi_\gamma^{-1}\pi_\gamma(\Phi).
\]

Let \(\{U_i : i \in \omega\} \) be a fundamental sequence of neighbourhoods of \(\pi_\gamma^{-1}\pi_\gamma(\Phi) \). There is a number \(i \) such that \(B = \{\beta : x_\beta \notin U_i\} \) is uncountable. Let \(x \) be a condensation point of the set \(\{x_\beta : \beta \in B\} \). Clearly, \(x \notin U_i \). To get a contradiction, it remains to show that \(x \in \Phi \).

If \(\beta \geq \gamma \), then \(\pi_\beta^{-1}\pi_\beta \left(A \right) \subset \pi_\gamma^{-1}\pi_\gamma \left(A \right) \) for an arbitrary set \(A \subset X_{\omega_1} \). Consequently, \(x_\beta \notin \pi_\beta^{-1}\pi_\beta(\Phi) \) and, hence, \(x_\beta \in \pi_\beta^{-1}\pi_\beta(F) \). Therefore, for any \(\beta \geq \gamma \) there is a point \(y_\beta \in F \) such that:

\[
x_\beta \in \pi_\beta^{-1}\pi_\beta(y_\beta).
\]

(9)

Since \(x_\beta \notin \pi_\beta^{-1}Z_\beta = Z_\beta \) and \(x \) is a condensation point of the set \(\{x_\beta : \beta \in B\} \), we have \(x \notin \cup \{Z_\beta : \beta \in B\} = Z_\omega_1 \). Hence, \(x \notin F \). To check that \(x \in \bar{F}^X_{\omega_1} \), it suffices to find a point of the type \(y_\beta \) in any neighbourhood \(O_\alpha \). We can assume that \(O_\alpha = \pi_\alpha^{-1}V \), where \(V \) is open in \(X_{\omega_1} \). The set \(B_1 = \{\beta \in B : x_\beta \in O_\alpha\} \) is uncountable. Consequently, there is \(\beta \in B_1 \) such that \(\alpha \leq \beta \). Then for this \(\beta \) and for every point \(z \in O_\alpha \) we have \(\pi_\beta^{-1}\pi_\beta(z) \subset O_r \), in particular \(\pi_\beta^{-1}\pi_\beta(x_\beta) \subset O_r \). But from (9) it follows that \(y_\beta \in \pi_\beta^{-1}\pi_\beta(x_\beta) \). Hence, \(y_\beta \in O_\alpha \). The proposition is proved. \(\square \)

Lemma 2.10. If \(F \) is an arbitrary closed subset of \(M_m^n \), then the set

\[
\Gamma = \left\{ \gamma : \bar{F} \cap Z_{\gamma} = \pi_\gamma \bar{F}^X_{\omega_1} \right\}
\]

is closed and unbounded in \(\omega_1 \).

Proof. Let \(\{\gamma_i : i \in \omega\} \) be an increasing sequence of elements of \(\Gamma \). We will show that \(\gamma = \sup \gamma_i \in \Gamma \). It suffices to check that \(\pi_\gamma \bar{F}^X_{\omega_1} \subset \bar{F} \cap Z_{\gamma} \). Take an arbitrary point \(x \in \bar{F}^X_{\omega_1} \) and a neighbourhood \(O_{\pi_\gamma}(x) \). Since \(S \) is continuous, there is a neighbourhood \(U \) of some \(\pi_\gamma \) such that \((\pi_\gamma)^{-1}U \subset O_{\pi_\gamma}(x) \). By our assumption \(U \) meets the set \(F \cap Z_{\gamma} \). Therefore, the neighbourhood \(O_{\pi_\gamma}(x) \supset (\pi_\gamma)^{-1}U \) meets the set \((\pi_\gamma)^{-1}(F \cap Z_{\gamma}) = F \cap Z_{\gamma} \).

Now we will show that \(\Gamma \cap \{\gamma_0, \omega_1\} \neq \emptyset \) for an arbitrary \(\gamma_0 \geq \beta \), where \(\beta \) satisfies Proposition 2.9. Let us note that by Proposition 2.7 for all \(\gamma \geq \beta \) we have

\[
\pi_\gamma^{-1}\pi_\gamma \bar{F}^X_{\omega_1} = \bar{F}^X_{\omega_1}.
\]

(10)

Let \(A_0 \) be a countable dense subset of \(\pi_{\gamma_0} \bar{F}^X_{\omega_1} \setminus F \cap Z_{\gamma_0} \). By the definition of the spectrum \(S \) there is \(\gamma_1 > \gamma_0 \) such that \(|(\pi_{\gamma_0})^{-1}a| \geq 2 \) for any point \(a \in A_0 \). Now
we inductively construct an increasing sequence of ordinals \(\gamma_i \) and countable sets \(A_i \) such that:

\[
A_i \text{ is dense in } \pi_{\gamma_i} F_{X_1} \setminus F \cap Z_{\gamma_i}, \tag{11}
\]

\[
\left((\pi_{\gamma_i}^{-1}) a \right) \supset 2 \text{ for any } a \in A_i. \tag{12}
\]

Let us show that \(\gamma = \sup \gamma_i \in \Gamma \). From (11) it follows that \(A_i \cup (F \cap Z_{\gamma_i}) \) is dense in \(\pi_{\gamma_i} F_{X_{\omega_1}} \). In view of the continuity of \(S \) the set

\[
A = \bigcup \left\{ (\pi_{\gamma_i}^{-1})^{-1} \left(A_i \cup (F \cap Z_{\gamma_i}) \right) \colon i \in \omega \right\}
\]

is dense in \(\pi_{\gamma} F_{X_{\omega_1}} \). It remains to show that \(F \cap Z_{\gamma} \) is dense in \(A \). For that it suffices to verify that for an arbitrary \(a \in A \), we have

\[
\left((\pi_{\gamma_i}^{-1})^{-1} a \right) = F \cap Z_{\gamma}. \tag{13}
\]

Since \(S \) has monotone projections and \(\left(\pi_{\gamma_i}^{-1} \right)^a \) consists of more than one point (according to (12)), the point \(a = \pi_{\gamma}(a) \) is a limit point of \(\left(\pi_{\gamma_i}^{-1} a \right) \). Hence, to check (13), it suffices to prove that

\[
\left(\pi_{\gamma_i}^{-1} a \right) \setminus \{ a \} \subset F \cap Z_{\gamma}. \tag{14}
\]

But \(\pi_{\gamma_i}^{-1} a \subset F_{X_{\omega_1}} \) according to (10). Therefore,

\[
\pi_{\gamma_i}^{-1} a \setminus \{ a \} = \left(\pi_{\gamma_i}^{-1} a \right) \cap Z_{\omega_1} \subset F_{X_{\omega_1}} \cap Z_{\omega_1} = F.
\]

Consequently, by (6) we have

\[
\left(\pi_{\gamma_i}^{-1} a \setminus \{ a \} \right) \cap Z_{\gamma} \subset F \cap Z_{\gamma}.
\]

The inclusion (14) is checked. The lemma is proved. \(\square \)

Proposition 2.11. \(M_m^n \) is countably compact, perfectly normal and hereditarily separable.

Proof. Countable compactness of \(M_m^n \) follows from Proposition 2.4. Proposition 2.9 implies that \(M_m^n \) is perfectly normal. Indeed, let \(F \) be closed in \(M_m^n \), and let \(\beta \) satisfy (7). There is a countable sequence \(U_i, i \in \omega \), of open subsets of the compactum \(X_{\beta} \) such that \(\pi_{\beta} F_{X_{\omega_1}} = \bigcap \{ U_i \colon i \in \omega \} \). Then setting \(V_i = (\pi_{\beta}^{-1} U_i) \cap M_m^n \), we have that \(F = \bigcap \{ V_i \colon i \in \omega \} \).

So the manifold \(M_m^n \) is separable and perfectly normal, thus it is hereditarily separable (see (13), 2.18). \(\square \)

Proposition 2.12. \(\dim M_m^n = m \) and \(\operatorname{Ind} M_m^n = m + n - 2. \)
A differentiable manifold with noncoinciding dimensions

Proof. We have \(\dim X_{\omega_1} = m \), because \(X_{\omega_1} \) is the limit of the spectrum \(S \), consisting of \(m \)-dimensional compacta \(X_n = Y_n \), and \(X_{\omega_1} \supset H_m^m \) with \(\dim H_m^m = m \). On the other hand for an arbitrary normal \(X \) we have (see [1])

\[
\dim X = \dim \beta X, \quad \text{Ind} \ X = \text{Ind} \ \beta X.
\]

Hence, \(\dim M_m^m = m \) by Proposition 2.3.

For any closed set \(F \) of \(X_{\omega_1} \) we put \(F^0 = F \setminus H_n^m X_{\omega_1} \).

Lemma 2.13. Let \(F \) be a closed set in \(X_{\omega_1} \), and let \(A \) and \(B \) be disjoint closed subsets of \(F \). Then in \(F \) there is a partition \(C \) between \(A \) and \(B \) such that:

1. if \(\dim F > n - 1 \) or \(F \cap H_m^m = \emptyset \), then \(\dim C \leq \dim F - 1 \);
2. if \(F \cap H_m^m \neq \emptyset \), then \(\dim C \cap H_m^m \leq \dim F \cap H_m^m - 1 \).

Proof. If \(F \cap H_m^m = \emptyset \), then our assertion follows from the equality \(\dim F = \text{Ind} F \). Let now \(F \cap H_m^m \neq \emptyset \). Assume that \(F = F^0 \). By Proposition 2.9 there is \(\beta < \omega_1 \) such that \(F = \pi_{\beta}^{-1} \pi_{\beta}(F) \). Take \(\gamma > \beta \) such that \(\pi_{\gamma}(A) \cap \pi_{\gamma}(B) = \emptyset \). All fibres of all neighbouring projections of \(S \) are contractible, so \(\pi_{\gamma} \) is an acyclic map. Hence, we have [14] \(\dim \pi_{\gamma}(F) \leq \dim F \). There is a partition \(D \) in \(\pi_{\gamma}(F) \) between \(\pi_{\gamma}(A) \) and \(\pi_{\gamma}(B) \) such that \(\dim D \leq \dim \pi_{\gamma}(F) - 1 \) and \(\dim(D \cap H_m^m) \leq \dim \pi_{\gamma}(F) \cap H_m^m - 1 \). The set \(C = \pi_{\gamma}^{-1}D \) is a partition in \(F \) between \(A \) and \(B \).

Recall that \(H_m^m \supset I^m \) and every point \(y \in I^m \) is a point of the second genus. Hence, if \((\pi_n^{-1})^{-1}y \) consists of more than one point, then it is homeomorphic to the cone over \(M_1 \times I^{n-1} \), in particular \(\dim(\pi_n^{-1})^{-1}y = n - 2 \). On the other hand every map \(\pi_n \) is acyclic. Then it follows from (1), Proposition 2.6, Theorem C and [14] that

\[
\dim \pi_{\gamma}^{-1}y = n - 2 \quad \text{for any} \ y \in I^m \quad \text{and} \ \gamma < \omega_1.
\]

It follows from Theorem A that all neighbouring projections in the spectrum \(S \) are fully closed. Then by Theorem C we have \(\dim C \leq \max(\dim D, \dim \pi_{\gamma}(F)) \leq \max(\dim \pi_{\gamma}(F) + 1, n - 2) \). Since \(\dim \pi_{\gamma}(F) \leq \dim F \), we get \(\dim C \leq \dim F - 1 \) if \(\dim F > n - 1 \). On the other hand \(D \cap H_m^m \) is homeomorphic to \(C \cap H_m^m \), and \(\pi_{\gamma}(F) \cap H_m^m \) is homeomorphic to \(F \cap H_m^m \). Consequently, \(\dim(C \cap H_m^m) = \dim(D \cap H_m^m) \leq \dim(\pi_{\gamma}(F) \cap H_m^m) - 1 = \dim F \cap H_m^m - 1 \).

In the case \(F \neq F^0 \) we construct a partition \(C_0 \) in \(F^0 \) between \(A_0 = A \cap F^0 \) and \(B_0 = B \cap F^0 \) with the required property. After that, using a representation \(F = F^0 \cup (F \setminus F^0) \), we can extend the partition \(C_0 \) to a partition \(C \) in \(F \) between \(A \) and \(B \) such that \(\dim(C \setminus C_0) < \dim(F \setminus F^0) \). It is possible to do, because \(F \setminus F^0 \) is hereditarily normal and \(\dim(F \setminus F^0) = \text{ind}(F \setminus F^0) \). Since \(C \setminus C_0 \) is a countable sum of compacta, we have \(\dim C = \max(\dim C_0, \dim(C \setminus C_0)) \leq \max(\dim F^0 - 1, \dim(F \setminus F^0) - 1) = \dim F - 1 \). In the same way we get \(\dim C \cap H_m^m \leq \dim F \cap H_m^m - 1 \). The lemma is proved. \[\square \]
Now we can prove that \(\text{Ind } X_{\omega_1} \leq m + n - 2 \). According to Lemma 2.13 it suffices to show that if \(F \) is closed in \(X_{\omega_1} \) and \(\dim F \leq n - 2 \), then \(\text{Ind } F \leq 2n - 4 \). Applying Lemma 2.13 \(n - 2 \) times, we reduce our problem to the following one:

If \(\dim F \leq n - 2 \) and \(\dim F \cap H^m_n = 0 \), then \(\text{Ind } F \leq n - 2 \).

Let \(A \) and \(B \) be disjoint closed subsets of \(F \). Since \(F \cap H^m_n \) is zero-dimensional, we can find neighbourhoods \(OA \) and \(OB \) in \(F \) such that \(\overline{OA} \cap \overline{OB} = \emptyset \) and \(F \cap H^m_n \subset OA \cup OB = U \). Let \(\Phi = F \setminus U \), \(A_0 = \overline{OA} \cap \Phi \), \(B_0 = \overline{OB} \cap \Phi \). Then \(\Phi \) is a compact subset of \(M^m_n \). Hence, \(\text{Ind } \Phi \leq n - 2 \) and there are disjoint neighbourhoods \(OA_0 \) and \(OB_0 \) in \(\Phi \) such that \(\text{Ind } C \leq n - 3 \), where \(C = \Phi \setminus OA_0 \cup OB_0 \). Now, setting \(V = OA_0 \cup OA \), \(W = OB_0 \cup OB \), we get the disjoint neighbourhoods \(V \) and \(W \) of the sets \(A \) and \(B \) in \(F \). In fact, \(C \cup W = (C \cup OB_0) \cup (B_0 \cup OB) \) is closed, because \(C \cup OB_0 \) is closed in \(\Phi \) and \(B_0 \cup OB = \overline{OB} \). Thus, \(V = F \setminus C \cup W \) is open in \(F \). By the same argument \(W \) is open in \(F \). Consequently, \(C = F \setminus V \cup W \) is a partition in \(F \) between \(A \) and \(B \) with \(\text{Ind } C \leq n - 3 \). The inequality \(\text{Ind } X_{\omega_1} \leq m + n - 2 \) is proved.

Let \(E = \pi^{-1}_0 I^m \). We will say that a closed set \(F \subset E \) is long if \(F^0 \cap I^m \neq \emptyset \). A long set \(F \) is said to be clean, if \(F = F^0 \). Recall that a subset \(U \) of a topological space \(X \) is said to be canonically open in \(X \) if \(U = \text{Int}_X \overline{U} \).

Lemma 2.14. Let \(F \) be clean and \(U \) canonically open in \(F \) with \(U \cap I^m \neq \emptyset \neq I^m \setminus \overline{U} \). Then \(\text{Bd } U \) is clean.

Proof. First of all we will prove that \(\overline{U} \) is clean. Let \(y \in U \cap I^m \), and let \(Oy \) be a neighbourhood of \(y \) in \(X_{\omega_1} \) such that \(Oy \cap F \subset U \). Since \(F \) is clean, we have \(Oy \cap (F \setminus I^m) \neq \emptyset \). But \(Oy \cap (F \setminus I^m) = Oy \cap (U \setminus I^m) \). Hence, \(y \) is in the closure of \(U \setminus I^m \). Therefore, \(\overline{U} \) is long. By the same argument \(\overline{U} \) is clean.

Now we set \(V = F \setminus \overline{U} \). Then \(V \) is clean. Because \(U \) is canonically open, we have \(\text{Bd } U = \overline{U} \cap V \). If \(y \in \text{Bd } U \cap I^m \subset \overline{U} \cap I^m \), then since \(\overline{U} \) is clean, it follows from Proposition 2.4 that \(\pi^{-1}_{\alpha} \pi_\alpha(y) \subset \overline{U} \) for some \(\alpha < \omega_1 \). By the same reason \(\pi^{-1}_{\beta} \pi_\beta(y) \subset \overline{U} \cap V = \text{Bd } U \) for some \(\beta > \alpha \). But \(\pi^{-1}_{\beta} \pi_\beta(y) \) is connected and consists of more than one point. Hence, \(y \) is in the closure of \(\pi^{-1}_{\alpha} \pi_\alpha(y) \setminus \{y\} \subset \text{Bd } U \setminus I^m \). The lemma is proved. \(\square \)

Lemma 2.15. If \(F \) is clean and \(F \cap I^m \neq \emptyset \), then

\[
\text{Ind } F \geq \text{Ind } F \cap I^m + n - 2.
\]

Proof. By induction: We start with \(\text{Ind } F \cap I^m = 0 \). Because \(F \) is clean, \(F \supset \pi^{-1}_\alpha \pi_\alpha^{-1}(y) \) for any \(y \in F \cap I^m \) and some \(\alpha < \omega_1 \). Then

\[
\text{Ind } F \geq \text{Ind } \pi^{-1}_\alpha \pi_\alpha^{-1}(y) \geq \dim \pi^{-1}_\alpha \pi_\alpha^{-1}(y) = n - 2.
\]

The last equality takes place according to (15). Suppose that we proved our assertion for all clean \(F \) with \(\text{Ind } F \cap I^m \leq k \), \(k > 0 \), and let \(\text{Ind } F \cap I^m = k + 1 \).
There are disjoint closed subsets A and B in $F \cap I^m$ such that $\text{Ind } C \geq k$ for any
partition C in $F \cap I^m$ between A and B. Since $k \geq 0$, the sets A and B are nonempty. Let Φ be an arbitrary partition in F between A and B. Reducing Φ if necessary, we can assume that $\Phi = \text{Bd } U$, where U is a canonically open neigh-
bourhood of A in F. Because $A \neq \emptyset \neq B$, we can apply Lemma 2.14. Hence Φ is
clean. Since $\Phi \cap I^m$ is a partition in $F \cap I^m$ between A and B, we have
$\text{Ind } \Phi \cap I^m \geq k$. If $\text{Ind } \Phi \cap I^m = k$, then by the inductive assumption
$\text{Ind } \Phi \cap I^m + n - 2 = k + n - 2$. If $\text{Ind } \Phi \cap I^m = k + 1 = \text{Ind } F \cap I^m$ we
can find a clean set $D \subset \Phi$ such that $\text{Ind } D \cap I^m = k$. Indeed, $\Phi = \pi^{-1}_{\alpha}(\Phi)$ for
some $\alpha < \omega_1$ in view of Proposition 2.9. Then we take a closed subset $G \subset \Phi \cap I^m
with \text{Ind } G = k$ and set $D = \pi^{-1}_{\alpha}(G)$. Again by the inductive assumption we
have $\text{Ind } \Phi \geq \text{Ind } D \geq \text{Ind } D \cap I^m + n - 2 = k + n - 2$. Consequently, $\text{Ind } F \geq k + 1 + n - 2$. The lemma is proved. □

Applying Lemma 2.14 to the set $F = E$, we obtain $\text{Ind } E \geq m + n - 2$. So,
$\text{Ind } X_{as} = m + n - 2$ and Proposition 2.12 is proved.

Theorem 0.1 follows from Propositions 2.2, 2.11 and 2.12.

References

(in Russian).
[3] R.H. Bing, The cartesian product of a certain non-manifold and a line is E^4, Ann. of Math. 70
(1959) 399–412.
54–57 (in Russian).
Topology Appl. 10 (1979) 247–274.
[7] V.V. Fedorchuk, A method of scannable spectra and fully closed maps in general topology,
[9] V.V. Fedorchuk and V.V. Filippov, General Topology. Fundamental Constructions (Nauka,
[10] V.V. Fedorchuk and V.V. Flippov, Manifolds with non-coinciding inductive dimensions, Mat. Sb.