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Abstract

In this paper we use the Klazar–Marcus–Tardos method (see [A. Marcus, G. Tardos, Excluded
permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107 (2004) 153–160])
to prove that, if a hereditary property of partitions P has super-exponential speed, then, for every k-
permutation π , P contains the partition of [2k] with parts {{i, π(i) + k} : i ∈ [k]}. We also prove a similar
jump, from exponential to factorial, in the possible speeds of monotone properties of ordered graphs, and of
hereditary properties of ordered graphs not containing large complete, or complete bipartite ordered graphs.

Our results generalize the Stanley–Wilf conjecture on the number of n-permutations avoiding a fixed
permutation, which was recently proved by the combined results of Klazar [M. Klazar, The Füredi–Hajnal
conjecture implies the Stanley–Wilf conjecture, in: D. Krob, A.A. Mikhalev, A.V. Mikhalev (Eds.), Formal
Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, pp. 250–255] and Marcus and Tardos
[A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley–Wilf conjecture, J. Combin. Theory
Ser. A 107 (2004) 153–160]. Our main results follow from a generalization to ordered hypergraphs of the
theorem of Marcus and Tardos.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we shall prove that a jump from exponential to factorial speed occurs for
properties of combinatorial structures of various types. We request the reader’s patience while
we make the various definitions necessary to state our results.
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An ordered hypergraph H = (V , E,<) is a hypergraph—a set of vertices V and edges
E ⊂ {A : A ⊂ V , |A| � 2}—together with a linear order < on its vertices. Note that we
do not allow edges to be repeated, and that we do not allow edges to consist of a single vertex.
An ordered hypergraph K = (U, F,<) is an induced sub-hypergraph of H if U ⊂ V (with the
induced ordering), and F = {e ∩ U : e ∈ E, |e| � 2}. K is a sub-hypergraph of H if U ⊂ V
(again with the induced ordering), and F ⊂ {e ∩ U : e ∈ E, |e| � 2}. Finally, K is contained in
H if there exists a sub-hypergraph L = (U, D,<) of H, with |D| = |F | = t , say, and fi ⊂ di

for each i ∈ [t] (where D = {d1, . . . , dt } and F = { f1, . . . , ft }).
A collection of ordered hypergraphs is called a property if it is closed under order-preserving

isomorphisms of the vertex set. A property of ordered hypergraphs P is called hereditary if it is
closed under taking induced sub-hypergraphs; it is called monotone if it is closed under taking
sub-hypergraphs; and it is called strongly monotone if it is closed under containment. Observe
that any strongly monotone property is monotone, and any monotone property is hereditary.

An ordered graph is a graph together with a linear order < on its vertices; equivalently, it is
an ordered hypergraph in which each edge has size exactly 2. The definitions of hereditary and
monotone properties are therefore inherited (note that in this case the definitions of monotone
and strongly monotone coincide).

A partition of the set [n] = {1, . . . , n} is an (unordered) collection of disjoint, non-empty sets
{A1, . . . , At } such that A1 ∪ · · · ∪ At = [n]. It is easy to see that a partition may be thought
of as an ordered graph in which each component is a clique, or as an ordered hypergraph in
which the edges are pairwise disjoint. Thus we obtain the definition of a hereditary property of
partitions. Since we have come some distance from the original definition, we remark that if
P = {A1, . . . , At } is a partition of [n], and S is a subset of [n] with elements s1 < · · · < sk ,
then the sub-partition of P induced by S is the following partition of [k]. First let {B1, . . . , Bt }
satisfy i ∈ B j if and only if si ∈ A j ; then delete the empty classes. A property of partitions is
hereditary if it is closed under taking sub-partitions.

Now, given a property P of ordered hypergraphs, we write Pn for the collection of distinct
(i.e. non-isomorphic) ordered hypergraphs on n vertices in P , and call the function n �→ |Pn| the
speed (or unlabelled speed) of P . An analogous definition can be made for other combinatorial
structures (e.g. graphs, posets, permutations).

We are interested in the (surprising) phenomenon that, for many such structures, only very
‘few’ speeds are possible. More precisely, there often exists a family F of functions f : N → N

and another function F : N → N with F(n) much larger than f (n) for every f ∈ F , such that
if, for each f ∈ F , the speed is infinitely often larger than f (n), then it is also larger than F(n)
for every n ∈ N. Put concisely: the speed jumps from F to F .

The study of the speeds of monotone properties of labelled graphs was introduced over 40
years ago by Erdős [11], and continued by Erdős et al. [13], Erdős et al. [12], Kolaitis et al. [21],
Kleitman and Winston [20], Hundack et al. [15] and, more recently, Balogh et al. [4]. A new
direction was initiated by Scheinerman and Zito [26], who were the first to study hereditary
properties of graphs with speeds below nn . A little later, considerably stronger results were
proved by Balogh et al. [5,6]. In the range |Pn| = 2cn2

, the main results were proved by
Alekseev [1], Bollobás and Thomason [8,9], and Prömel and Steger [23–25]. For a review of
the early results, see Bollobás [7]. Hereditary properties of other combinatorial structures have
not yet been studied in such great detail, but it is likely that many more beautiful theorems await
discovery.

In this paper we shall prove that a jump of this type, from exponential to factorial speed,
occurs for strongly monotone properties of ordered hypergraphs. As a result of this, we shall be
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able to prove similar jumps for hereditary properties of partitions, monotone properties of ordered
graphs, and hereditary properties of ordered graphs not containing arbitrarily large complete, or
complete bipartite ordered graphs. As we shall see, each of these theorems is a generalization of
the Stanley–Wilf conjecture (Theorem A), proved recently by the combined results of Klazar [16]
and Marcus and Tardos [22].

Before we begin, we should remark that our main theorem has been proved independently
(and at around the same time) by Klazar and Marcus [19]. Although we were unaware of their
work until after ours was completed, we should note also that many of the ideas in this paper
were inspired by the earlier work of Klazar [16] and of Marcus and Tardos [22]. The reader may
also wish to refer to some other papers of Klazar [17,18] which we later discovered contain some
of the ideas (though none of the results) below.

For each n ∈ N, let Πn denote the collection of all permutations of [n], and let Π = ⋃
n Πn .

Also, if P is a property of ordered hypergraphs, and k, � ∈ N ∪ {∞}, let

P (k,�) = {G ∈ P : �(G) � k and |e| � � for every e ∈ E(G)}
denote the sub-property consisting of the ordered hypergraphs in which each vertex is contained
in at most k edges, and each edge has size of at most �. Note that if P is hereditary, or monotone,
or strongly monotone, then so is P (k,�).

Finally, if π ∈ Πk , let H (π) denote the ordered hypergraph on vertex set [2k] and with edge
set {{i, π(i)+ k} : i ∈ [k]}. We shall also write H (π) for the ordered graph with the same vertex
and edge sets, and for the partition {{i, π(i)+ k} : i ∈ [k]} of [2k]. It will always be clear which
of these H (π) is.

We are now ready to state the main result of this paper, which was conjectured by Klazar in
[18] and has been proved independently by Klazar and Marcus [19].

Theorem 1. Let P be a strongly monotone property of ordered hypergraphs. If, for every
constant c > 0, there exists an N = N(c) ∈ N such that |PN | > cN , then P contains the
ordered hypergraph H (π) for every π ∈ Π , and hence

|Pn| � |P (1,2)n | �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)

for every n ∈ N. This lower bound is the best possible, and there is a unique strongly monotone
property of ordered hypergraphs with this speed.

We remark that Scheinerman and Zito [26] proved that a similar jump, from exponential to
factorial speed, exists for hereditary properties of labelled graphs. For more involved results,
see [5].

Our proof of Theorem 1 is based on the ideas of Klazar [16,18], and of Marcus and
Tardos [22]. Theorem A, below, was proved in two stages: first Klazar [16] showed that the
theorem was a consequence of a conjecture of Füredi and Hajnal [14]; then Marcus and
Tardos [22] proved that conjecture. In Theorem 2, we shall prove a generalization of the theorem
of Marcus and Tardos (Theorem B). We shall then deduce Theorem 1 using the method of Klazar
(see [16,18]).

We shall state Theorem 2 in terms of (0, 1)-matrices, though it can equally be thought of as a
theorem about ordered hypergraphs. To simplify the statement, we need a little notation.

Let k ∈ N. If A = (ai j ) and B = (bi j ) are k ×k matrices, we shall write (A, B) for the k ×2k
matrix obtained by putting A in front of B . Thus (A, B)i j is ai j if j � k and bi( j−k) if j � k +1.
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Call two matrices C and D equivalent (and write C ∼ D) if D is obtained from C by permuting
its rows. Let M(k) denote the set of equivalence classes (with respect to ∼) in the family of all
matrices of the form (K , L), where K and L are k × k permutation matrices. Note that every
such matrix (K , L) is equivalent to a unique matrix (I,M), where I = (δi j ) is the k × k identity
matrix, so |M(k)| = k!.

Finally, if P and Q are (0, 1)-matrices, then we say that Q is a sub-matrix of P if Q is
obtained from P by deleting rows and columns. We say that P contains Q = (qi j ) if there
exists a sub-matrix R = (ri j ) of P , the same size as Q, with ri j = 1 whenever qi j = 1. If we
associate an ordered hypergraphH with a (0, 1)-matrix whose rows are the indicator functions of
the edges of H, and consider two matrices to be the same if they are equivalent, then this concept
coincides with hypergraph containment defined above. If P does not contain Q, then we say that
P avoids Q.

The following theorem is a reformulation of Klazar’s conjecture C4 in [18]. It has also been
proved independently by Klazar and Marcus [19].

Theorem 2. Let k ∈ N. There exists a constant, ck , such that, if m, n ∈ N and A is an m × n
(0, 1)-matrix satisfying that

(i) at least ckn of the entries of A are 1, and
(ii) each of the rows of A are different,

then A contains some member of each class of M(k).

Notice that Theorem 2 still holds if condition (ii) is replaced by the condition

(ii′) each of the rows of A has at least 2k of its entries 1,

since, if A satisfies (ii
′
), and any row occurs at least k times in A, then A contains every

k × 2k (0, 1)-matrix.

Remark 1. Füredi and Hajnal [14] proved that the extremal number of 1s possible in an
n × n(0, 1)-matrix avoiding the matrix

S1 =
(

1 0 1 0
0 1 0 1

)

is (up to a constant) nα(n), where α(n) → ∞ extremely slowly. A simple corollary of Theorem 2
(with k = 2) is that the extremal number of 1s if we avoid both S1 and

S2 =
(

0 1 0 1
1 0 1 0

)

is O(n). For many more results along these lines, see Tardos [27].

We shall now note two important (and immediate) consequences of Theorem 1. The first of
them was conjectured by Klazar in [17], and the second was originally proved (although not
stated!) by Klazar in [16] as a consequence of the Füredi–Hajnal Conjecture.

Theorem 3. Let P be a hereditary property of partitions. If, for every constant c > 0, there
exists an N = N(c) ∈ N such that |PN | > cN , then P contains the partition H (π) for every
π ∈ Π , and hence

|Pn| � |P (1,2)n | �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)
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for every n ∈ N. This lower bound is best possible, and there is a unique hereditary property of
partitions with this speed.

Theorem 4. Let P be a monotone property of ordered graphs. If, for every constant c > 0, there
exists an N = N(c) ∈ N such that |PN | > cN , then P contains the ordered graph H (π) for
every π ∈ Π , and hence

|Pn| � |P (1,2)n | �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)

for every n ∈ N. This lower bound is best possible, and there is a unique monotone property of
ordered graphs with this speed.

For t ∈ N, let Kt denote the complete ordered graph on t vertices, and let Kt,t denote the
complete ordered bipartite graph on [2t] with edge set E(Kt,t ) = {{i, j} : i � t < j}. We shall
deduce the following theorem from Theorem 4.

Theorem 5. Let P be a hereditary property of ordered graphs such that, for some t ∈ N, neither
Kt nor Kt,t is in P . If, for every constant c > 0, there exists an N = N(c) ∈ N such that
|PN | > cN , then P contains the ordered graph H (π) for every π ∈ Π , and hence

|Pn| � |P (1,2)n | �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)

for every n ∈ N. This lower bound is best possible, and there is a unique hereditary property
containing neither Kt nor Kt,t with this speed.

We conjecture that Theorems 1 and 3–5 have the following common generalization.

Conjecture 1. Let P be a hereditary property of ordered hypergraphs. If, for every constant
c > 0, there exists an N = N(c) ∈ N such that |PN | > cN , then

|Pn| �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)

for every n ∈ N.

The following statement is a special case of Conjecture 1, but still generalizes Theorems 3–5
(since partitions can be represented by ordered graphs whose components are complete graphs),
and would be very interesting in its own right. It was in fact our main motivation for studying
ordered hypergraphs and partitions.

Conjecture 2. Let P be a hereditary property of ordered graphs. If, for every constant c > 0,
there exists an N = N(c) ∈ N such that |PN | > cN , then

|Pn| �

n/2�∑
k=0

( n

2k

)
k! = nn/2+o(n)

for every n ∈ N.
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Remark 2. Note that in both conjectures the lower bounds, if true, are the best possible (by
Lemma 6, below). However, it is not true that, under the conditions of the conjectures, P
must contain the ordered graph H (π) on [2k] with edge set {{i, π(i) + k} : i ∈ [k]} for
every k ∈ N and π ∈ Πk . To see this, call an ordered graph G on [n] co-matching if

{x1, y1}, {x2, y2} ∈
( [n]

2

)
\ E(G) implies that |{x1, y1} ∩ {x2, y2}| = 0 or 2, and call G star-

matching if (say) {x1, y1} ∈ E(G) implies that {x1, y2} ∈ E(G) for every y1 � y2 � n. The
collection of all co-matchings and the collection of all star-matchings are hereditary properties
of ordered graphs with super-exponential speeds, but neither contains all the graphs H (π).

For further details on the possible speeds of hereditary properties of ordered graphs, see [3],
which considers such properties with speed below 2n , and also those with speed above 2εn2

.
The rest of the paper is organized as follows. In Section 2 we shall state the

Klazar–Marcus–Tardos and Marcus–Tardos theorems, and show that the former is implied by
each of Theorems 3–5; in Section 3 we shall prove Theorem 2 using the Marcus–Tardos theorem;
in Section 4 we shall deduce Theorem 1 from Theorem 2; and in Section 5 we shall deduce
Theorems 3–5.

2. The Klazar–Marcus–Tardos and Marcus–Tardos theorems

We begin by recalling the theorems of Marcus and Tardos [22].
Given n ∈ N, we shall call a permutation of [n] an n-permutation. An n-permutation π

is said to contain a k-permutation σ if there are integers 1 � a(1) < · · · < a(k) � n
such that π(a(i)) < π(a( j)) if and only if σ(i) < σ( j). Otherwise π is said to avoid σ . A
property of permutations is a collection of permutations, closed under isomorphism. A property
of permutations is said to be hereditary if it is also closed under containment.

The following theorem was conjectured by Stanley and Wilf around 1992 (see [2,10,22]), and
proved by Marcus and Tardos in 2004 (Corollary 2 of [22]), using a theorem of Klazar [16].
This result is usually known as the Stanley–Wilf conjecture, but we shall refer to it as the
Klazar–Marcus–Tardos theorem, or simply as Theorem A.

Theorem A. Let P be a hereditary property of permutations. Either P is the set Π of all
permutations, so |Pn| = n! for every n ∈ N, or there exists a constant c = c(P) such that
|Pn| � cn for every n ∈ N.

We also state here the theorem of Marcus and Tardos (Theorem 1 of [22]), which was
originally conjectured by Füredi and Hajnal in [14]. In Section 3 we shall use it to prove
Theorem 2.

Theorem B. For every permutation matrix M, there exists a constant C = C(M) such that any
n × n (0, 1)-matrix with at least Cn of its entries 1 contains M.

In this section we shall show that the simplest case of Conjectures 1 and 2 (the case in which
every G ∈ P is an ordered graph with maximum degree of at most one) is equivalent to the
Klazar–Marcus–Tardos theorem, and deduce that our main results generalize that theorem. We
start, however, by proving the following lemma, which gives the final implication of Theorems 1
and 3–5.
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Lemma 6. Let P be a hereditary property of ordered hypergraphs. If H (π) ∈ P for every
π ∈ Π , then

|Pn| � |P (1,2)n | �

n/2�∑
k=0

( n

2k

)
k!

for every n ∈ N. Moreover, there is a unique hereditary property containing every H (π) with
this speed.

Proof. Given integers k, n ∈ N, a subset A ⊂ [n] of size 2k (with elements a(1) < · · · < a(2k)
say), and permutation π ∈ Πk , define G(n, A, π) to be the ordered hypergraph on vertex set
[n], and with edge set {{a(i), a(π(i)+ k)} : i ∈ [k]}. Let P be a hereditary property of ordered
hypergraphs with H (π) ∈ P for every π ∈ Π . We shall show that G(n, A, π) ∈ P for every
such n, A and π .

Indeed, let n, A and π be as described, let X be the set of isolated vertices in G = G(n, A, π),
let Y = {v ∈ X : v < ak} and let Z = X \ Y . Suppose that |Y | = r and |Z | = s, and consider an
ordered graph H on [−s + 1, n + r ] formed by adding to G an arbitrary matching between the
vertices {−s +1, . . . , 0} and Z , and an arbitrary matching between the vertices {n+1, . . . , n+r}
and X . It is easy to see that H is isomorphic to H (σ ) for some σ ∈ Πk+r+s , so H ∈ P , and that
G is an induced subgraph of H , so G ∈ P .

Thus P contains the ordered hypergraph G(n, A, π) for every k ∈ N, π ∈ Πk , n � 2k and
A ⊂ [n] with |A| = 2k, and hence

|Pn| � |P (1,2)n | � |{(k, π, A) : 2k � n, π ∈ Πk and A ⊂ [n](2k)}|

=

n/2�∑
k=0

( n

2k

)
k!.

Finally, note that the collection Q = {G(n, π, A) : π ∈ Πk and A ⊂ [n](2k) for some k �
n/2} forms a hereditary property of ordered hypergraphs, and H (π) ∈ Q for every π ∈ Π .
By the argument above, if H (π) ∈ P for every π ∈ Π then Q ⊂ P , so Q is the unique such
hereditary property of ordered hypergraphs with this speed. �

We shall now show that the simplest case of Conjecture 1 follows from the
Klazar–Marcus–Tardos theorem. We shall not need this to prove our main results, but the proof
is short and has some independent value. Here we use G to denote a property of ordered graphs,
to distinguish it from a property P of permutations.

Theorem 7. Let G be a hereditary property of ordered graphs of maximal degree at most 1. If,
for every constant c > 0, there exists an N = N(c) ∈ N such that |GN | > cN , then G contains
the ordered graph H (π) for every π ∈ Πk , and hence

|Gn | � |G(1,2)n | �

n/2�∑
k=0

( n

2k

)
k!

for every n ∈ N.

Proof. Let G be a hereditary property of ordered graphs of maximal degree at most one, and
suppose that, for every constant c1 > 0, there exists an N = N(c1) ∈ N such that |GN | > cN

1 .
Given an ordered graph G ∈ G, we define a permutation φ(G). Suppose that G has k edges,
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e1 = {a1, b1}, . . . , ek = {ak, bk} (where ai < bi for each i ∈ [k]), ordered by their left-
endpoints, i.e. ai < a j , if and only if i < j (recall that Δ(G) � 1). Let π be the k-permutation
such that bπ(1) < · · · < bπ(k), and define φ(G) = π−1.

Let P = {φ(G) : G ∈ G}. Since G is hereditary, so is P , since removing a vertex from a
permutation corresponds to removing one of the endpoints of the corresponding edge. By the
Klazar–Marcus–Tardos theorem, either P = Π or there exists a constant c such that |Pn| � cn

for every n ∈ N.
Suppose the latter, so |Pn| � cn for every n ∈ N. Assuming c > 2, we claim that in this case

|Gn | �

n/2�∑
k=0

(n

k

)(
n − k

k

)
ck < n

(
n


n/2�
)2

c
n/2� < (4
√

c)n .

To see this, simply note that any ordered graph G of maximal degree at most one is determined
by its order, its left-endpoint set, its right-endpoint set, and the permutation φ(G). Hence, setting
c1 = 4

√
c, we have a contradiction to our assumption that |GN | > cN

1 for some N ∈ N.
Next, suppose that P = Π . We want to show that G contains H (π) for every π ∈ Π , so let us

fix k ∈ N and π ∈ Πk . Let π ′ be the (k + 1)-permutation defined as follows: π ′(i) = π(i)+ 1
for each i ∈ [k], and π ′(k + 1) = 1. Since P = Π , we have π ′ ∈ P , so for some G ∈ G we have
π ′ = φ(G).

Now notice that in G, all left-endpoints occur to the left of all right-endpoints, since
π ′(k + 1) = 1. Therefore, letting G′ be a subgraph of G induced by the first k left-endpoints and
last k right-endpoints, we have G′ = H (π). �

Remark 3. In fact, for any permutation π ∈ Πk , the number of ordered graphs G of order n and

maximal degree at most one with φ(G) = π is at most
( n

k

)
Cat(k), where Cat(k) = 1

k+1

(
2k
k

)
is

the kth Catalan number. To see this, we use the fact that there are exactly Cat(k) legal sequences
of k left- and k right-brackets (i.e. in any initial segment of the sequence there are at least as many
left-brackets as right-brackets). Given any ordered graph G ∈ G, we can define a corresponding
sequence of brackets, ψ(G), by taking a left-bracket for every vertex which is the left-endpoint
of an edge, and a right-bracket for every right-endpoint.

Now, given n, φ = φ(G), ψ = ψ(G) and the (even-sized) subset A = {v ∈ [n] : dG(v) = 1},
it is simple to reconstruct G: if the elements of A are a(1) < · · · < a(2k), the left-brackets
of ψ lie in positions 1 � s(1) < · · · < s(k) � 2k and the right-brackets lie in positions
1 � t (1) < · · · < t (k) � 2k (so {s(1), · · · , s(k), t (1), · · · , t (k)} = [2k]), then the edge set is
{{a(s(i)), a(t (φ(i)))} : i ∈ [k]}. Note that, although for many permutation—bracket sequence
pairs (φ,ψ) no ordered graph G has φ(G) = φ and ψ(G) = ψ (for example, φ = 21 and ψ =
[() ()]), for the identity permutation all Cat(k) bracket pairs are realised.

We proved Theorem 7 using Theorem A; we now prove the reverse implication. It will follow
almost immediately that Theorem i implies Theorem A for i = 3 and 4 and 5.

Lemma 8. Theorem 7 implies Theorem A.

Proof. Let P be a non-trivial hereditary property of permutations (i.e. different from Π ), and
assume that Theorem 7 holds. Let the ordered graphs G(n, A, π) be as defined above, and let

G = {G(n, A, π) : n ∈ N, A ⊂ [n], π ∈ P, |A| = 2|π |}.
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Because P is hereditary, G is also hereditary, since removing an isolated vertex from G(n, A, π)
gives G(n − 1, A′, π) (for some A′ ⊂ [n − 1]), and removing a non-isolated vertex corresponds
to removing an element from π .

Since P �= Π , there exists some π �∈ P , and, by definition, G does not contain H (π). Hence,
by Theorem 7, there exists a constant c > 0 such that |Gn | � cn for every n ∈ N. But |G2n| � |Pn|
for every n ∈ N, so |Pn| � c2n for every n ∈ N. �

We can now deduce that our main theorems do indeed generalize the Klazar–Marcus–Tardos
theorem.

Corollary 9. Each of the Theorems 3–5 implies Theorem A.

Proof. To show that Theorems 3 and 5 imply Theorem A, it suffices to observe that any
hereditary property of ordered graphs of maximal degree at most one may be viewed as a
hereditary property of partitions (with part sizes of at most 2) or as a hereditary property of
ordered graphs containing no K3 and no K2,2. The result then follows by Lemma 8.

To show that Theorem 4 implies Theorem A, let P be a hereditary property of ordered graphs
of maximal degree one, and consider the minimal monotone property of ordered graphs P ′
containing P . If P ′ contains the ordered graph H (π) (for some π ∈ Π ) then so does P .
Otherwise |P ′

n| � cn for some c > 0 and every n ∈ N by Theorem 4, and hence |Pn| � |P ′
n| � cn

for every n ∈ N. The result again follows by Lemma 8. �

3. Proof of the generalized Marcus–Tardos theorem

In this section we shall prove Theorem 2. Recall that, by Theorem B, for each permutation
matrix M , there exists a constant C(M) such that any n × n(0, 1)-matrix with at least C(M)n
of its entries 1 contains M . For each k ∈ N, let C(k) be the constant obtained in the Theorem B
for k × k matrices, i.e. C(k) = max{C(M) : M a k × k permutation matrix}. We shall give our
bounds on ck in terms of C(k).

To obtain Theorem 2, we use Theorem B to prove it in the case that the rows each have a
bounded number of 1s, and then use this result and the method of Marcus and Tardos [22] to
prove the general case. First, however, we need to show that Theorem B implies Theorem 2 in
the case that each row has exactly two 1s; in fact, these statements are equivalent.

Lemma 10. Let f : N → N be any function. The following statements satisfy (i) ⇒ (ii) ⇒ (iii).

(i) For each k,m, n ∈ N, any m × n (0, 1)-matrix with at least f (k)n of its entries 1, and at
most two 1s in each row, and with each row different, contains a member of each class of
M(k).

(ii) Theorem B holds with C(Mk) = f (k) for each k × k permutation matrix Mk.
(iii) For each k,m, n ∈ N, any m ×n (0, 1)-matrix with at least (2 f (k +1)+1)n of its entries 1,

and at most two 1s in each row, and with each row different, contains a member of each
class of M(k).

Proof. First we shall prove that (i) implies (ii). Let k,m, n ∈ N, M = (mij ) be a k × k
permutation matrix, and A = (ai j ) be an n × n(0, 1)-matrix with at least f (k)n 1s, with f (k)
given by (i). We wish to show that A contains M . Suppose, without loss of generality, that there
are more 1s above the top-left/bottom-right diagonal than below it (otherwise, replace A and M
by AT and MT ). Let the number of pairs (i, j) for which i � j and ai j = 1 be m, and label them
e1, . . . , em arbitrarily. We define an m × n(0, 1)-matrix B = (bi j ) with at most two 1s in each
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row, and with each row different, by letting bi j = 1 if and only if vertex j is an endpoint of ei .
Note that at least f (k)n of the entries of B are 1.

Applying (i) to B , we see that B must contain a matrix (K , L) ∼ (I,M), where (I,M) is
the k × 2k matrix obtained by putting the identity matrix in front of M (so (I,M)i j = δi j and
(I,M)i( j+k) = mij for each j ∈ [k]). Suppose that (K , L) occurs in columns a1 < · · · < ak <

b1 < · · · < bk of B . Then M occurs in the intersection of the rows a1, . . . , ak and the columns
b1, . . . , bk of A, and so we are done.

The proof that (ii) implies (iii) is similar. Again, let k,m, n ∈ N, M = (mij ) be a k × k
permutation matrix, and let B = (bi j ) be an m × n(0, 1)-matrix with at most two 1s in each row,
with each row different, and at least (2 f (k + 1)+ 1)n of its entries 1. It will suffice to show that
B contains some matrix (K , L) ∼ (I,M).

We produce from B an n × n(0, 1)-matrix A = (ai j ) by letting ai j = 1 if and only if i < j
and bri = br j = 1 for some r ∈ [m]. Note that at least f (k + 1)n of the entries of A are
1. Applying (ii) to A, we see that A must contain the (k + 1) × (k + 1) matrix M ′, formed
by putting M in the top right-hand corner and a single 1 in the bottom left-hand corner. Thus
M ′

i( j+1) = mij for i, j ∈ [k], M ′
(k+1)1 = 1, and M ′

i j = 0 otherwise. Suppose that M ′ occurs
in rows a1 < · · · < ak+1 and columns b1 < · · · < bk+1 of A, and that the 1s corresponding
to 1-entries of M correspond to rows r1 < · · · < rk of B . Since Aak+1b1 = 1 and A is upper
triangular, ak+1 < b1. Therefore some (K , L) ∼ (I,M) occurs in the intersection of the rows
r1, . . . , rk and the columns a1, . . . , ak, b2, . . . , bk+1 of B , and again we are done. �

Since Theorem B holds with C(M) = C(k), we have the following immediate corollary.

Corollary 11. Let k ∈ N. Any m × n (0, 1)-matrix with at least (2C(k + 1)+ 1)n of its entries
1, at most two 1s in each row, and with each row different, contains a member of each class of
M(k).

To prove the case where the rows have a bounded number of 1s, we shall use the following
trivial observation.

Lemma 12. Let G be a bipartite graph with parts A and B. Suppose that d(v) � 1 for each
v ∈ A and d(v) � m for each v ∈ B. Then there exists a matching in G of size of at least |A|/m.

Proof. If d(v) > 1 for any v ∈ A, then remove all but one of the edges joined to v. We now have
a family of stars, each centred in B and of order at most m + 1. Take one edge from each. �

For each D ∈ N, define gD : N → N by gD(x) = ∑D−1
i=0 (i + 1)

( x
i

)
. Note that

gD(x) < 2D
(

x
D−1

)
if x > 3D. Let H be an ordered hypergraph on [n] in which every edge

has size of at most D. For each vertex v ∈ [n], the 2-degree of v in H is d(2)H (v) = |{u ∈ [n] :
{u, v} ⊂ E for some E ∈ E(H)}|. Suppose that a vertex of 2-degree x is removed from H; by
how much can ‖H‖ = ∑

E∈E(H) |E | decrease? For each 0 � i � D − 1, v is contained in at
most

( x
i

)
edges E of H of size i + 1, and each of these must be removed entirely if E \ v is also

an edge. Hence the maximum possible decrease in ‖H‖ is gD(x).
For each k ∈ N, let C1(k) = 2C(k + 1)+ 1.

Lemma 13. Let k,m, n, D ∈ N, with D � 2, and let gD : N → N be as defined above. Any
m × n (0, 1)-matrix with at least gD(D(D − 1)C1(k))n of its entries 1, at most D of the entries
of each row 1, and with each row different, contains a member of each class of M(k).



J. Balogh et al. / European Journal of Combinatorics 27 (2006) 1263–1281 1273

Proof. We shall use Corollary 11. Let k,m, n, D ∈ N, M = (mij ) be a k ×k permutation matrix,
and A = (ai j ) be an m × n(0, 1)-matrix with at least gD(D(D − 1)C1(k))n of its entries 1, at
most D of the entries in each row 1, and each row different. We shall show that A contains a
matrix in the equivalence class of (I,M).

Consider the ordered hypergraph H on vertex set [n] with edge set {Ei : i ∈ [m] and ai j =
1 ⇔ j ∈ Ei }, so the rows of A are the indicator functions of the edges. Note that ‖H‖ =∑

i |Ei | � gD(D(D − 1)C1(k))n. We first wish to find a subset S of [n] in which there are

at least
(

D
2

)
C1(k)|S| distinct pairs {i, j}, each contained in some edge of H. If d(2)H (v) <

D(D − 1)C1(k) for some vertex v then, by the comments above, removing v from the ordered
hypergraph causes ‖H‖ to decrease by at most gD(D(D −1)C1(k)−1) < gD(D(D −1)C1(k)).
Thus removing v causes the density of edges in the ordered hypergraph to increase.

Thus, if we repeatedly remove vertices of minimal 2-degree from H, we must eventually
produce an ordered hypergraph H′ on vertex set S in which every vertex v has d(2)H′ (v) �
D(D − 1)C1(k). By counting degrees, there are at least

(
D
2

)
C1(k)|S| distinct pairs {i, j} ⊂ S,

each contained in some edge of H′, and hence of H.
Let T = {{i, j} ⊂ S : i, j ∈ E for some E ∈ H} be the set of such pairs. Let B be the

bipartite graph on sets T and E(H) with edges corresponding to containment (i.e. ({i, j}, E)
is an edge of B iff {i, j} ⊂ E). By Lemma 12, there exists a matching W in B of size t , with

t � |T |/
(

D
2

)
� C1(k)|S|, since each edge has order at most D. Let T1 be the set of endpoints

of W lying in T .
Let s = |S|, and define P to be the t × s(0, 1)-matrix in which the columns correspond to

elements of S, and the rows are the indicator functions of the edges in T1. In P , all rows have
exactly two 1s, all rows are different, and 2t � 2C1(k)s of its entries are 1, so, by Corollary 11,
P contains some matrix (K , L) equivalent to (I,M).

Fix a copy of (K , L) in P , and let the columns of P containing this (K , L) be those
corresponding to the vertices b(1) < · · · < b(2k) of H (note that here b(i) is the original
labelling of the vertex in [n]). We claim that the corresponding columns of A contain a matrix
equivalent to (K , L). To see this, let the rows of P containing the same copy of (K , L) be
a(1) < · · · < a(k), and let p(i) be the pair in T1 corresponding to row a(i) for 1 � i � k.
For each of these pairs p(i), choose the edge e(i) ∈ E(H) it was matched to by W . We have
thus found k distinct edges e(1), . . . , e(k), for which p(i) ⊂ e(i). It follows immediately that the
columns b(1), . . . , b(2k) of A contain some matrix (K ′, L ′) ∼ (K , L) ∼ (I,M). This completes
the proof. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. For each n, k ∈ N, let f (n, k) be the largest number of 1s possible in an
m × n(0, 1)-matrix A (where m ∈ N is arbitrary), with each row different, not containing any
member of some class of M(k). We wish to show that f (n, k) = O(n), where k is fixed and
n → ∞. The proof (that f (n, k) < ckn, where ck will be determined later) will be by induction
on n. Note that, since each row of A is different, at most n2n of the entries of A can be 1s. We
shall choose ck > 28k3

, so the statement f (n, k) < ckn is (trivially) true for n � 8k3.
Let k,m, n ∈ N with n � 8k3, M = (mij ) be a k × k permutation matrix, and A be an

m × n(0, 1)-matrix, with each row different, not containing any matrix equivalent to (I,M).
Following the method of Marcus and Tardos, we want to divide A up into ‘fat’ and ‘skinny’
blocks of size 1 × t for some t . In preparation for this, we must remove the rows with few 1s. Let
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t ∈ N and let D = (2k − 1)t . (We shall eventually set t = 2k2, but we postpone choosing this
value until it is clear why the choice is being made. Our argument up to that point works for any
t ∈ N.) By Lemma 13, there are at most gD(D(D −1)C1(k))n 1s in rows with at most D of their
entries 1, otherwise A would contain some (K , L) ∼ (I,M), contradicting our assumption. Let
A′ = (a′

i j ) be the m′ × n matrix obtained from A by deleting the rows with at most D entries 1.
Now, let q and r satisfy n = qt + r , with q ∈ N and r ∈ [t], and partition A′ into

qm′ blocks of size 1 × t and m′ blocks of size 1 × r as follows. Let the 1 × t blocks be
Si j = (a′

i� : � ∈ [( j − 1)t + 1, j t]), for each i ∈ [m′] and j ∈ [q], and the 1 × r blocks be
Si(q+1) = (a′

i� : � ∈ [qt +1, n]), for each i ∈ [m′]. Define B = (bi j ) to be the m′×(q +1)(0, 1)-
matrix obtained by assigning the value 1 to a block if any entry of the block is 1. Thus, for j ∈ [q],
bi j = 0 if and only if a′

i� = 0 for every � ∈ [( j − 1)t + 1, j t], and similarly for j = q + 1.

Claim 1: B contains no matrix equivalent to (I,M).

Proof. This is Lemma 4 of Marcus and Tardos [22]. To spell it out, assume that B contains
such a matrix P and, for each 1 that it contains, choose an arbitrary non-zero entry from the
corresponding blocks of A′. These represent a copy of P in A, a contradiction. �

Call a block ‘fat’ if at least 2k of its entries are 1.

Claim 2: There are at most
( t

2k

)
(k − 1) fat blocks in any column of blocks (Si j : i ∈ [m′]).

Proof. This is Lemma 5 of [22]. If there are more than
( t

2k

)
(k − 1) fat blocks in a given column

Si j , then there are at least k fat blocks which contain 1s in the same 2k columns of A′. Hence A′
contains a complete k × 2k matrix (i.e. a matrix in which all entries are 1), so A contains every
k × 2k(0, 1)-matrix, another contradiction. �

We wish to bound the number of 1s in B . B may contain repeated rows but, since every row
in A′ has at least (2k − 1)t + 1 of its entries 1, every row of B must have at least 2k of its
entries 1. Thus, if any row occurs in B more than k − 1 times, then B contains a complete k × 2k
matrix, contradicting Claim 1. If we let B ′ be the matrix obtained from B by deleting repeated
rows, then B ′ contains no matrix equivalent to (I,M) and all rows of B ′ are different, so at most
f (�n/t�, k) of the entries of B ′ are 1. Since each row in B was repeated at most (k − 1) times,
it follows that at most (k − 1) f (�n/t�, k) of the entries of B are 1. We have thus established the
following recurrence:

f (n, k) � (2k − 1)k f
(⌈n

t

⌉
, k

)
+

(
t

2k

)
(k − 1)n + gD

(
2

(
D

2

)
C1(k)

)
n.

Let t = 2k2. Assuming (by induction) that

f
(⌈ n

2k2

⌉
, k

)
< ck

⌈ n

2k2

⌉
,

and, using the inequality gD(x) < 2D
(

x
D−1

)
noted earlier, we obtain

f (n, k) < (2k2 − k)ck

⌈ n

2k2

⌉
+

⎛
⎝(

2k2

2k

)
k + 8k3

⎛
⎝2

(
4k3−2k2

2

)
C1(k)

4k3 − 2k2 − 1

⎞
⎠

⎞
⎠ n

< ckn − ckn

2k
+ (2k2 − k)ck + 8k3

(
16k6C1(k)

4k3

)
n. (1)
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Now if

ck � 32k4
(

16k6C1(k)

4k3

)
,

then

ckn

2k
�

ckn

4k
+ 8k3

(
16k6C1(k)

4k3

)
� 2k2ck + 8k3

(
16k6C1(k)

4k3

)
, (2)

since n � 8k3. Set ck = 32k4
(

16k6C1(k)
4k3

)
, and note that ck > 28k3

. Now inequalities (1) and (2)

imply that f (n, k) < ckn, so the induction step is complete. �

Remark 4. Marcus and Tardos proved that C(k) < 2k4
(

k2

k

)
, so the explicit bound that we

obtain is roughly ck = O(k9k4
).

4. Ordered hypergraphs

We now deduce Theorem 1 from Theorem 2. This implication may be read out of a proof of
Klazar (Theorem 2.5 of [18]) but, for the sake of completeness, we shall prove it (and in fact our
proof is slightly different from that in [18]).

Given an ordered hypergraph H on [n], say that H contains a k-permutation π if H contains
the ordered hypergraph H (π). In other words, there exist 2k vertices v1, . . . , v2k ∈ [n] and
k distinct edges E1, . . . , Ek ∈ E(H) such that, letting ei = {vi , vπ(i)+k} denote the edges of
H (π), we have ei ⊂ Ei for each i ∈ [k]. Otherwise, say that H avoids π . For each permutation
π , and each n ∈ N, let Tn(π) denote the family of ordered hypergraphs on [n] avoiding π .

Lemma 14. Let k ∈ N and π ∈ Πk . If H ∈ Tn(π), then

‖H‖ =
∑

E∈E(H)
|E | < ckn.

Proof. The lemma is a simple corollary of Theorem 2. To spell it out, let k ∈ N, π ∈ Πk and
H ∈ Tn(π), let m = |E(H)|, and define A to be an m × n(0, 1)-matrix whose rows are the
indicator functions of the edges of H. (Note that A is unique up to permutations of its rows.)

Now, A has exactly ‖H‖ of its entries 1, and each of its rows are different, so, by Theorem 2,
if ‖H‖ � ckn then A contains a sub-matrix B ∼ (I,M), where M is the permutation matrix of
π . Now, let v1, . . . , v2k be the vertices in [n] corresponding to the columns of B , and E1, . . . , Ek

be the edges of H corresponding to the rows of B , ordered so that vi ∈ Ei for each i ∈ [k]. Then,
for each i ∈ [k], we have vi , vπ(i)+k ∈ Ei , so H contains π , a contradiction. Hence ‖H‖ < ckn.

�

Proof of Theorem 1. Let n, k ∈ N, and π ∈ Πk . We claim that

|T2n(π)| � |Tn(π)|32c2n, (3)

where c = ck is the constant obtained in Theorem 2.
To prove inequality (3), we map each H ∈ T2n(π) to the ordered hypergraph K on [n] with

edge set

{E ⊂ [n] : ∃E ′ ∈ E(H) with i ∈ E ⇔ {2i − 1, 2i} ∩ E ′ �= ∅}.
In other words, K is formed by identifying vertices 2i − 1 and 2i for every i ∈ [n].
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We claim that K ∈ Tn(π), i.e. that K avoids π . Indeed, suppose for a contradiction that there
exist edges E1, . . . , Ek ∈ E(K) and vertices v1, . . . , v2k ∈ [n] such that, for each i ∈ [k],
we have ei = {vi , vπ(i)+k} ⊂ Ei . For each edge Ei , choose an edge Fi of H such that
{2 j − 1, 2 j} ∩ Fi �= ∅ if and only if j ∈ Ei (such an Fi exists by the definition of K). The
edges Fi are distinct (since the edges Ei are), and ei ⊂ Fi for each i ∈ [k], so H contains π ,
which is the desired contradiction.

Now, how many ordered hypergraphs H map to the same ordered hypergraph K? An edge
E of K is the image of 3|E | different possible edges of H, since each vertex v of E may have
come from {2v − 1}, {2v} or {2v − 1, 2v}. However, suppose that at least 2c = 2ck of these did
in fact occur in H for a given edge E . Each such edge has a size of at least |E |, so the ordered
hypergraph H′ induced by H on vertex set {2i − 1, 2i ∈ [2n] : i ∈ E} has ‖H′‖ � 2c|E |. But
now H′ �∈ T2|E |(π), by Lemma 14, so H contains π , a contradiction.

Thus, for each edge E of K, at most 2c − 1 of the edges that map to it actually occur in H, so
we have at most

2c−1∑
i=0

(
3|E |

i

)
< 32c|E |

choices for these edges.
Now, again by Lemma 14, since K ∈ Tn(π), we have ‖K‖ � cn. Thus the maximum possible

number of ordered hypergraphs H that map to a given K is

∏
E∈E(K)

32c|E | = 3
2c

∑
E

|E |
� 32c2n .

This proves inequality (3).
Now, let P be a strongly monotone property of ordered hypergraphs, let k ∈ N, π ∈ Πk , and

suppose that H (π) �∈ P . Then Pn ⊂ Tn(π) and, by inequality (3) and induction on n,

Tn(π) � 33c2n,

for every n ∈ N, where again c = ck , since

|T2n−1(π)| � |T2n(π)| � |Tn|32c2n � 35c2n � 33c2(2n−1)

when n � 3. So |Pn| � 33c2n for every n ∈ N, which proves Theorem 1. �

5. Partitions and ordered graphs

We shall now deduce Theorems 3–5 from Theorem 1. We begin with Theorem 3. The
implication is very simple, but in any case we shall write out all the details.

Proof of Theorem 3. Let P be a hereditary property of partitions. For each partition P ∈ P ,
let H(P) be the ordered hypergraph whose edges are the parts of P of size of at least two. To
be precise, if P is the partition {A1, . . . , At } of [n], then H(P) has vertex set [n] and edge set
{Ai : i ∈ [t], |Ai | � 2}. Observe that, for any permutation π , H(P) contains π if and only if P
contains the partition H (π) as an induced subpartition.

Suppose that, for some π ∈ Π , P does not contain H (π). By the observation above, H(P)
avoids π for every P ∈ P . Now, let T (π) denote the strongly monotone property of ordered
hypergraphs consisting of all ordered hypergraphs avoiding π (so T (π) = ⋃

n Tn(π), with Tn(π)

as in the previous section). Then H(P) ∈ T (π) for every P ∈ P .
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Now apply Theorem 1 to T (π). Since H (π) �∈ T (π), there exists a constant c such that
|Tn(π)| � cn for every n ∈ N. But now we are done, since

|Pn| = |{H(P) : P ∈ Pn}| � |Tn(π)| � cn

for every n ∈ N, since H(P) ∈ T (π) for every P ∈ P . This proves Theorem 3. �

Remark 5. If π ∈ Π , let P(π) be the largest hereditary property of partitions such that P avoids
the partition H (π). Let c′

k be the smallest constant such that |P(π)n| < (c′
k)

n for every n ∈ N

and π ∈ Πk . We have shown that c′
k = O(3k19k4

).

We next deduce Theorem 4 from Theorem 1. Since a monotone property of ordered graphs is
a strongly monotone property of ordered hypergraphs, the implication is trivial.

First proof of Theorem 4. Let P be a monotone property of ordered graphs and, for each
G ∈ P , let G′ be the ordered hypergraph with the same vertex and edge set as G. Define
P ′ = {G′ : G ∈ P}. Now P ′ is a strongly monotone property of ordered hypergraphs, since each
edge of G′ ∈ P ′ has size 2, so the only ordered hypergraphs contained in G′ are its subgraphs.
The result now follows by applying Theorem 1 to P ′. �

In fact, one can also prove Theorem 4 without using Theorem 1, but using the Marcus–Tardos
and Klazar–Marcus–Tardos theorems instead. Alternative proofs can often give new insight
into the difficulties and the true nature of a problem, as well as offering new methods for
generalization. For this reason, we give a sketch of this second proof.

Sketch of the second proof of Theorem 4. Let P be a monotone property of ordered graphs,
let π ∈ Π , and suppose that P does not contain the ordered graph H (π).

Suppose first that, for some n ∈ N, there exists an ordered graph G ∈ Pn with at least
C(k + 1)n edges (where C(k) is again the constant in Theorem B). In this case, we can use
Theorem B to find H (π) in G, just as in the proof of Lemma 10. So assume that, for every
G ∈ P , e(G) < C(k + 1)|G|.

Let S(n,m) denote the family of sequences (a1, . . . , an) such that ai ∈ N∪{0} for each i and∑
i ai = m, and let S = ⋃

n,m S(n,m). We define a map ϕ : P → Π × S × S as follows.
Let G ∈ P have n vertices and m edges. We put the following two linear orders, <� and <r ,

on the edges of G. If e = {e1, e2} and f = { f1, f2} with e1 < e2 and f1 < f2, then e<� f if
e1 < f1 or e1 = f1 and e2 < f2, while e<r f if e2 < f2 or e2 = f2 and e1 < f1. Let ϕp(G) be
the m-permutation that takes the order of the edges under<r to the order under<�. Let ϕ�(G) be
the left-endpoint degree sequence of G, i.e. the sequence (a1, . . . , an) where ai is the number of
edges of G whose left-endpoint is vertex i , and let ϕr (G) be the right-endpoint degree sequence
of G. Let ϕ(G) = (ϕp(G), ϕ�(G), ϕr (G)) ∈ Πm × S(n,m)× S(n,m).

Let Q = {ϕp(G) : G ∈ P}. Q is a hereditary property of permutations so, by the
Klazar–Marcus–Tardos theorem, either Q = Π or there exists a constant c such that |Qn| � cn

for every n ∈ N.
Suppose first that |Qn | � cn for every n ∈ N. We claim that, for any ϕ ∈ Π × S × S, there is

only at most one G such that ϕ(G) = ϕ. We omit the proof, which is by induction on m. For the
induction step, remove the first edge of G in the order<r .

So |Pn| is just |Imϕ(Pn)|, which can easily be approximated, since each G ∈ Pn has at most
C(k + 1)n edges. Thus

|Imϕp (Pn)| �

∣∣∣∣∣
C(k+1)n⋃

m=0

Qm

∣∣∣∣∣
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�
C(k+1)n∑

k=0

cm < 2cC(k+1)n,

assuming (as we may) that c > 2, and

|Imϕ�(Pn)| �
(

m + n − 1

n − 1

)
<

(
(C(k + 1)+ 1)n

n − 1

)
< 2(C(k+1)+1)n,

and similarly for |Imϕr (Pn)|. Hence

|Pn| = |Imϕ(Pn)| � |Imϕp (Pn)| · |Imϕ�(Pn)| · |Imϕr (Pn)|
< 22(C(k+1)+1)n+1cC(k+1)n,

so we are done in this case.
Now suppose that Q = Π . We want to show that P contains the ordered graph H (π), and

thus obtain a contradiction. To do this, define the 2k-permutation σ by σ(2i − 1) = 2π(i) and
σ(2i) = 2π(i)−1 for 1 � i � k (so, for example, if π = 213 then σ = 432 165). By assumption,
there exists an ordered graph G ∈ P such that ϕp(G) = σ . Let the edges of G be e1, . . . , e2k in
the order <�. Note that, for each i ∈ [k], the edges e2i−1 and e2i do not share an endpoint, since
e2i−1<� e2i and e2i−1 >r e2i .

Consider the edges {e2i−1 : i ∈ [k]}. Suppose that two of them share a left (right) endpoint
v. Then all edges between them in the order <� (<r ) also share that endpoint. This contradicts
the previous observation that e2i−1 and e2i do not share an endpoint, so these edges are in fact
independent. Thus there exists G ∈ P with Δ(G) = 1 and ϕp(G) = π .

Now apply the same technique to the (k+1)-permutationπ ′, where π ′(i) = π(i)+1 if i ∈ [k]
and π ′(k + 1) = 1. We obtain G ∈ P with Δ(G) = 1 and ϕp(G) = π ′. Again (as in the proof
of Theorem 7), notice that, in G, all left-endpoints occur to the left of all right-endpoints, since
π ′(k + 1) = 1. Therefore, letting G′ be a subgraph of G induced by the first k left-endpoints and
last k right-endpoints, we have G′ = H (π).

So H (π) ∈ P , and this gives us the desired contradiction. �
Finally, we deduce Theorem 5 from Theorem 4.

Proof. Let t ∈ N, and let P be a hereditary property of ordered graphs such that Kt �∈ P and
Kt,t �∈ P . Let G = G(P) be the smallest monotone property containing P . Note that (trivially)
|Gn| � |Pn|.

By Theorem 4, either G contains H (π) for every π ∈ Π , or there exists a constant c such that
|Gn| < cn for every n ∈ N. Suppose the latter. Then |Pn| � |Gn | < cn for every n ∈ N, in which
case we are done. So assume that G contains H (π) for every π ∈ Π .

We wish to find, for each permutation π , a large permutation σ such that an ordered graph
on [n] containing no induced copy of Kt or Kt,t , and containing H (σ ) as a subgraph, contains
H (π) as an induced subgraph. We shall use Ramsey’s theorem and the pigeonhole principle,
so recall that, for � ∈ N, R(�) denotes the smallest integer n such that any graph on n vertices
contains either a clique on � vertices, or an independent set of order �. We shall also write S(�)
for the smallest integer n such that any bipartite graph with one part of order at least 2� − 1
and the other of order at least n contains either the complete bipartite graph K�,� or the empty
bipartite graph E�,�. It is easy to show that R(�) < 4� and S(�) < �4�. For each j ∈ N, let
R( j+1)(�) = R(R( j )(�)), where R(1)(�) = R(�), and let S( j )(�) be defined similarly.

Let k ∈ N and π ∈ Πk . We shall show that H (π) ∈ P . Let m′ = S(K )(t), where

K =
(

2k
2

)
− k, and m = R(2)(m′). We define the mk-permutation σ as follows: for each
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i ∈ [k] and j ∈ [0,m − 1], let σ(im − j) = π(i)m − j . By assumption, H (σ ) ∈ G; let G ∈ P
be an ordered graph on [2mk] containing H (σ ). Such a G must exist by the definition of G. We
know that, for each i ∈ [mk], the edge {i, σ (i)+mk} is in E(G). We want to show that, for some
subset A = {a(1), . . . , a(2k)} ⊂ [2mk] with a(i) ∈ [(i − 1)m + 1, im] for each i ∈ [2k] and
a(π(i)+ k) = a(i)+ (k + π(i)− i)m for each i ∈ [k], these are the only edges induced by A.

First we use Ramsey’s theorem to find ‘matching’ independent subsets of [(i − 1)m + 1, im]
for each i ∈ [2k]. (This step is necessary if we are to assume only that Kt and Kt,t are avoided;
without it we would have to assume that every ordered graph containing Kt,t is missing from
P .) We do this first for each i ∈ [k]. Since m � R(2)(m′), by Ramsey’s theorem there exists
either a clique or an independent set A(1)i of order R(m′) in [(i − 1)m + 1, im]. Since R(m′) � t ,

Kt �∈ P and P is hereditary, A(1)i must be an independent set. For i ∈ [k + 1, 2k], let A(1)i be

the set A(1)
π−1(i−k)

+ (k + π(i) − i)m (if A is a set and b ∈ N, then A + b = {a + b : a ∈ A}).
Now, again by Ramsey’s theorem, for each i ∈ [k +1, 2k] there exists a clique or independent set
A(2)i ⊂ A(1)i of order m′. Again, this must be an independent set, since m′ � t . For each i ∈ [k],
let A(2)i be the set A(2)π(i)+k − (k + π(i)− i)m.

Thus we have found independent sets A(2)i ⊂ [(i − 1)m + 1, im] of order m′ for each i ∈ [2k]
such that there is a matching between A(2)i and A(2)π(i)+k for each i ∈ [k]. We next apply the

pigeonhole principle (also known as the bipartite Ramsey theorem) to each of the pairs A(2)x and
A(2)y with 1 � x < y � 2k, y �= π(x)+ k, to find the desired subset A.

To be precise, let {e1, . . . , eK } be the set of pairs {x, y} such that 1 � x < y � 2k and

y �= π(x) + k (recall that K =
(

2k
2

)
− k) and, for each i ∈ [2k] let B(0)i = A(2)i . We shall

define inductively, for each i ∈ [2k], a sequence of sets B(0)i ⊃ B(1)i ⊃ · · · ⊃ B(K )i . For each

pair e� = {x(�), y(�)} in turn (i.e. for each � ∈ [K ]), define the sets B(�)i as follows.
Let x ′ = x ′(�) and y ′ = y ′(�) be the elements matched to x = x(�) and y = y(�) respectively

by π , so x ′ = π(x) + k if x � k and x ′ = π−1(x − k) if x � k + 1, and similarly for y ′. If
i �∈ {x, y, x ′, y ′}, then set B(�)i = B(�−1)

i . Let B(�)x and B(�)y be the parts of the largest empty

bipartite graph induced by G with B(�)x ⊂ B(�−1)
x , B(�)y ⊂ B(�−1)

y and |B(�)x | = |B(�)y |. Let B(�)x ′
be the set B(�)x + (k + π(i)− i)m if x � k and the set B(�)x − (k + π(i)− i)m if x � k + 1. Let
B(�)y′ be defined from B(�)y similarly. Note that B(�)x ′ ⊂ B(�−1)

x ′ and B(�)y′ ⊂ B(�−1)
y′ .

We claim that |B( j )
i | � S(K− j )(t) for each i ∈ [2k] and j ∈ [K ], and prove it by induction on

j . For j = 0, the statement is that |B(0)i | � S(K )(t) = m′ for each i ∈ [k], so the base case holds

(since each set A(2)i has order m′). Assume that the result holds for j − 1. If i �∈ {x, y, x ′, y ′},
then |B( j )

i | = |B( j−1)
i | � S(K− j+1)(t) > S(K− j )(t), so we are done in this case. Now suppose

i ∈ {x, y, x ′, y ′}. By the induction hypothesis, |B( j−1)
� | � S(K− j+1)(t) for each � ∈ {x, y}

so, by the definition of S, there exists either a complete bipartite or an empty bipartite graph in
G[B( j−1)

x , B( j−1)
y ], with each part having at least S(K− j )(t) vertices. Since S(K− j )(t) � t , it

cannot be complete (since the sets B( j−1)
x and B( j−1)

y are independent), so B( j )
� � S(K− j )(t), for

� ∈ {x, y}. Since |B( j )
x ′ | = |B( j )

x | and |B( j )
y′ | = |B( j )

y |, the induction step is complete.

It follows from the claim that |B(K )i | � t � 1 for each i ∈ [2k]. Observe also that, for each

i ∈ [k], B(K )i + (k + π(i) − i)m = B(K )π(i)+k and that for {i, j} ∈ {e1, . . . , eK }, there are no

edges in G between B(K )i and B(K )j . For each i ∈ [k], choose a vertex a(i) ∈ B(K )i , and let
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a(π(i)+ k) = a(i)+ (k +π(i)− i)m ∈ B(K )π(i)+k . Let A = {a(1), . . . , a(2k)}. The set A induces
the ordered graph H (π) in G, so we are done. �

Remark 6. For each permutation π , let c̃(π, t) denote the smallest constant such that |Pn| <
c̃(π, t)n for every n ∈ N, for every hereditary property P , satisfying the conditions of the
theorem, which avoids H (π). The bounds given by our proof on the constant c̃(π, t) are
rather large. They could be improved somewhat by choosing the order in which the pairs
ei are dealt with, and thus obtaining a much stronger inequality than the one we obtained
(|B( j )

i | � S(K− j )(t)), but for simplicity of presentation (and because the actual bounds are not
our main interest), we leave this as an exercise for the interested reader. Notice also that, although
we assumed that Kt �∈ P , we only needed Km′ �∈ P .

We finish by noting an immediate consequence of Theorem 5.

Corollary 15. Let P be a hereditary property of ordered graphs. If there exists a function
f : N → N such that

e(G) � f (n) = o(n2)

for every G ∈ Pn and every n ∈ N, then Conjecture 2 holds for P .

Proof. Suppose that there is such a function f (n) = o(n2), satisfying e(G) � f (n) for every
G ∈ Pn and every n ∈ N. Since f (n) = o(n2), there must exist t ∈ N such that e(G) < n2/4
for every G ∈ Pn with n � t .

Assume t � 2. Now, e(Kt ) = ( t
2

)
� t2

4 and e(Kt,t) = t2, so Kt �∈ Pt and Kt,t �∈ P2t . The
result now follows by Theorem 5. �
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