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ABSTRACT Pumping power as delivered by the heart is generated by the cells in the myocardial wall. In the present model study
global left-ventricular pump function as expressed in terms of cavity pressure and volume is related to local wall tissue function as
expressed in terms of myocardial fiber stress and strain. On the basis of earlier studies in our [aboratory, it may be concluded that in
the normal left ventricle muscle fiber stress and strain are homogeneously distributed. So, fiber stress and strain may be
approximated by single values, being valid for the whole wall. When assuming rotational symmetry and homogeneity of mechanical
load in the wall, the dimensionless ratio of muscle fiber stress (o) to left-ventricular pressure (P,) appears to depend mainly on the
dimensionless ratio of cavity volume (V,) to wall volume (V,) and is quite independent of other geometric parameters. A good
(x10%) and simple approximation of this relation is o,/P,, = 1 + 3 V,/V,,. Natural fiber strain is defined by e, = In (|/} .,), where /, .,
indicates fiber length (/,) in a reference situation. Using the principle of conservation of energy for a change in e,, it hoids Ae, = (145)A

In(1 + 3V,/V,).

INTRODUCTION

The left venticle is an example of a cavity enclosed by a
fibrous wall. The cavity can exchange mechanical power
to the environment by changing volume at a certain
cavity pressure. The work is generated or absorbed by
the material in the wall. From a mechanical point of view
the material in the wall may be considered as a soft,
incompressible bulk material embedding a fibrous struc-
ture. Generally, most deformation energy is stored and
exchanged by the fibrous structures formed by for
instance collagen and muscle filaments. The soft nonfi-
brous bulk material cannot absorb or store large amounts
of mechanical energy because it is incompressible, and
easily deformable. So, absorption or delivery of mechan-
ical power by the cavity is predominantly associated with
absorption or generation of mechanical power by the
fibers in the wall. The present study deals with a general
relation between pressure in and volume of a cavity and
mechanical load of the fibers in the wall.

In the in vivo situation direct measurement of muscle
fiber stress is difficult. Transducers inserted into the wall
(Feigl et al., 1967; Huisman et al., 1980) to measure
stress, damage the tissue at the site of measurement.
Direct measurement of stress may be circumvented by
introduction of mathematical models of the mechanics
of the chamber wall. A review of such models has been
presented by Yin (1981). The early, simple models
assume a thin-walled chamber obeying Laplace’s law
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(Woods, 1892). In a newer generation of models, the left
ventricle is considered to be thick-walled, having isotro-
pic material properties. At this point, several investiga-
tors calculated the ratio of mid-wall stress to left-
ventricular pressure on the basis of a thick-walled
spherical (Mirsky, 1973) or ellipsoidal (Mirsky, 1969;
Falsetti, 1970; Kim, 1985) geometry. A more accurate
description of the geometry of the heart required the use
of the finite-element calculation technique, applied to
an ellipsoidal (Janz, 1982) or more realistic geometry
with isotropic (Pao et al., 1976) or anisotropic (Perl et
al., 1986; Huyghe, 1986) material. The results obtained
with the models using isotropy were essentially similar as
far as the transmural distribution of stress is concerned,
regardless of the complexity of their geometry. In these
models, both stress and strain were often more than
twice as high in the subendocardial than in the subepicar-
dial layers. In models the transmural gradient in stress
can be reduced easily by introducing an artificial pre-
stress and strain in the reference state. But even then
changes in stress during deformation showed essentially
unaltered transmural differences.

When introducing anisotropic properties in the thick
wall, the transmural course of fiber stress appeared to be
qualitatively and quantitatively different (Arts et al.,
1979; Beyar et al., 1984; Chadwick, 1982). With a proper
choice of the transmural course of fiber orientation close
to anatomical findings (Streeter and Hanna, 1973), and
introduction of torsional deformation, fiber stress was
calculated to be homogeneous with < *10% deviation
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from the average stress (Arts et al., 1982) under a wide
variety of loading conditions. Such homogeneity in
mechanical load is supported by an experimental study
(Waldman et al., 1988) in which transmural differences
in strain along the fiber direction were found to be below
the level of significance. When postulating homogeneity
of fiber stress and fiber strain in the thick wall enclosing
a cavity, significant simplications can be introduced
(Regen, 1984, 1988; Skalak, 1982; Arts and Reneman,
1987, 1988). Regen showed that average fiber stress
could be estimated on the basis of left-ventricular
pressure and wall dimensions without solving the trans-
mural distribution of fiber stress in detail. He also
mentioned that the ratio of cavity volume to wall volume
was a major determinant of the ratio of fiber stress to
left-ventricular pressure. Skalak showed that left-
ventricular pressure can be calculated by integration of
the regional product of fiber stress and fiber curvature
along a path from the epicardium to the endocardium.
However, on the basis of the latter equation, left-
ventricular pressure cannot be related to fiber stress
directly, because radius of fiber curvature is determined
by the unknown local geometry and fiber orientation.

In the present study we have investigated how accu-
rately left-ventricular pressure and volume can be re-
lated to fiber stress and fiber strain, when using only one
single geometric parameter, namely the ratio of cavity
volume to wall volume. We postulate homogeneity of
fiber stress and fiber strain in the thick wall enclosing a
cavity. The stress in the incompressible, soft, nonfibrous
bulk material of the wall is described by a hydrostatic
pressure, implying a fluidlike behavior of the bulk
material between the fibers. Under these assumptions,
for a rotationally-symmetric geometry, cavity pressure is
expressed in terms of fiber stress, cavity volume, wall
volume, and cavity shape. In a second step, based on the
principle of conservation of energy, fiber strain is calcu-
lated as a function of cavity volume. Thus, the calculated
results may describe mechanical properties of the left-
ventricular chamber, and other biological chambers with
a fibrous wall like the bladder, the uterus as well as
blood vessels.

FIBER STRESS IN A THIN-WALLED
ROTATIONALLY-SYMMETRIC CHAMBER

In the present study, myocardial material is considered
to be a soft incompressible material, embedding muscle
fibers. During systole, when fiber stress is high, in the
soft bulk of the tissue hydrostatic pressure (P,,) is the
only stress component. For the stress along (o,) and

perpendicular to (o,) the fiber direction it holds,
g = _Pim + O (1)
o, = —P,, @

where o; represents the tensile stress in the fibers.

In a thin-walled geometry, the fibers are directed
parallel to the surface. Assuming that B represents the
angle between the fibers and circumference at the
c-coordinate in the surface (Fig. 1), for the components
of fiber stress along the circumference o, along the
perpendicular ¢ coordinate o, and perpendicular to the
surface o, it holds (Arts et al., 1979):

o, = —P, + o,cos* B 3)
g, = —P,_ + a,sin’ B 4)
oy, = —P,. %)

From these equations fiber stress o, can be found by:
0y =0, % o, — 20'hh' (6)

Eq. 6 is an interesting and important result, and shows
that fiber stress can be expressed in terms of perpendic-
ular components of stress, irrespective of the actual fiber
orientation in the cz-plane.

Fig. 2 represents a thin-walled rotationally-symmetric
shell with r, ¢, and z being the radial, circumferential and
axial coordinates, respectively. The surface is described
by the function r(z). In a point § at the surface, the ¢

<

(9
2

B

Pim @’tt

FIGURE1 Fiber stress o; equals the sum of perpendicular fiber stress
components. The fiber stress components may be obtained from the
perpendicular stress components o, and o, after subtraction of the
hydrostatic pressure P,, in the soft, incompressible material surround-
ing the fibers.
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FIGURE2 Thin-walled rotationally-symmetric shell. The variables r
and z are the radial and axial coordinate, ¢ and ¢ are the circumferen-
tial and tangential coordinate in point S on the shell, p_ and p, refer to
circumferential and tangential radius of curvature.

coordinate is the tangent of the surface perpendicular to
the ¢ direction. For the calculation of fiber stress in the
thin wall in point S we define the angle a as the angle
between 2z and ¢ direction, and p_ and p, as the radii of
curvature of the surface along the ¢ and ¢ direction,
respectively.

Assume a pressure difference, AP, across the thin
wall, while the average of cavity pressure and outer
pressure is zero. Then the stress component g, may be
neglected. The stress component a,, along the ¢ direction
causes a total axial force component F, on the edge of
the cross-sectional circle through S:

F, = 2xnrho, cos a, N

where h represents wall thickness. This force is equal to
the force exerted by the pressure difference AP across
the wall acting on the circular area of the cross-section
(F, = APxr?). Elimination of F, results in

APr

O, = 5 .
* 2hcosa

®)

As now will be shown, wall thickness # may be expressed
as a function of z. According to Laplace’s law for a
thin-walled membrane it holds

h
ap=20 %R
p! pC

®

The angle o and the radii of curvature depend on the

function r(z) by
dridl- e
cosa =1+ (EH (10)
d¥ !
po=- (a? cos’ a (11)
’
Pe= oo (12)

The stress component o, in Eq. 9 may be eliminated
using Eq. 6 and o,, = 0. Next, the component g, is
eliminated by using Eq. 8. With Egs. 10-12, the radii of
curvature p, and p_ as well as cos « are eliminated. So,
finally wall thickness may be expressed as a function of
pressure P, fiber stress o, and the geometric function
r(z) by

2 d2

+r&

APr
20,

dr

dz

h= @

3+3 1+

]_ . (13)

Using our hypothesis that fiber stress o; is homoge-
neously distributed, the volume V, of the thin-walled
shell is found by integration of the cross-sectional area
of the wall over the axial length of the rotationally-
symmetric geometry. Using Eq. 13 it holds

2 2r

e

rmax 2T h

dz

Zmax AP‘H’"Z

Vo=
Zmin COS QL Zmin Oy

[3 +3 dz. (14)

The boundaries z_,, and z,,,, indicate the axial dimension
of the shell. The integral Eq. 14 can be split and
rewritten as

” 3AP (o " TAP fz.m 3 dri® ~  dr
w= o, ™) Pl T @
3APV mAP e d¥rt)

T 40} Zmin d22 ’

where V equals the inner volume enclosed by the shell.
The integral of the second derivative is equal to the first
derivative, so it follows

3APV TwAP

dir) d(r)
dz]‘Z:zmax_ dz]z=zmin
_3AP(V + V)

Oy

sh o, 40,

(16)

The volume V,, expresses the error volume introduced
by the last integral term. Physically, the error volume
equals the volume of the cone with the top at the
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intersection of the axis of symmetry and the line perpen-
dicular to the surface, and with the base being the cut-off
cross-section. V_, is equal to zero, if forz =z, andz =
z,,. the derivative d7*/dz = 0. This is the case if the cavity
is closed with finite radius of curvature at the axis, or
open with dr/dz = 0. The condition of finite radius of
curvature is even more stringent than strictly needed.

Thus, a general result is found, being valid for all
thin-walled (V, < V') rotationally-symmetric geome-
tries, which are closed or open with dr/dz = 0 at the end.
The sphere, ellipsoid as well as the cylinder are just
special cases of this large family. It holds

a2 _v, @)

o 3V

Early in the derivation it is assumed that the average of
inner and outer pressure equals zero so that o, and P,
in Eqgs. 1 and 5 are zero too. When adding a hydrostatic
pressure P to both inner and outer pressure, oy, and P,
both increase with P, but the result of Eq. 17 remains
unaffected. This is because hydrostatic pressure cannot
store deformation energy in incompressible structures.

The most important implication of Eq. 17 is the fact
that the dimensionless ratio of transmural pressure to
fiber stress depends solely on the dimensionless ratio of
shell volume to cavity volume, whereas the actual shape
of the shell is irrelevant, as long as it is rotationally
symmetric.

FIBER STRESS IN A THICK-WALLED
ROTATIONALLY-SYMMETRIC CHAMBER

The relation between fiber stress o, and left-ventricular
cavity pressure (P,) in a thick-walled rotationally-
symmetric geometry is found by integration of pressure
increments over a sufficient number of thin fitting shells.
It is assumed that fiber stress is homogeneous in the
thick wall and that the fibers are directed parallel to the
isobaric surfaces. Using the result of Eq. 17 inside the
wall, for the derivative of the hydrostatic pressure P,
with respect to enclosed volume V it holds within the
wall

ot (18)

The negative sign is introduced because the pressure
gradient is negative towards the outer wall. Integration
of Eq. 18 from the outer wall surface (V =V, + V),
where pressure is assumed to be zero, to the inner wall

surface (V' = V) results in

P, l1
O'f_3n

Ve
1+ 7), (19)

Iv.

with V|, and V, being cavity and wall volume, respec-
tively. For a ratio V,/V, much smaller than unity, Eq. 19
simplifies to Eq. 17. Eq. 19 implies that, when assuming
rotational symmetry, the isobaric surfaces being parallel
to the fibers, and fiber stress being homogeneous, the
dimensionless ratio of cavity pressure to fiber stress
depends solely on the dimensionless ratio of cavity
volume to wall volume, and appears to be independent
of other geometric factors. Eq. 19 has been derived
earlier by Regen (1984) for the special case of an
ellipsoid at the equator.

In Figs. 3 and 4 fiber stress relative to left-ventricular
pressure (o/P,) is plotted as a function of left-
ventricular volume relative to wall volume (V/V,) for
various models. Typically relative volume is in the range
from 0.15-0.70, which is indicated by a horizontal,
shaded bar. In Fig. 3 the line marked with In represents
the results obtained with Eq. 19. The thin lines (cyl) are
obtained from simulations by a cylindric model of the
fibrous left ventricle including mitral valve and right-
ventricular asymmetry of fiber orientation (Arts and
Reneman, 1989). Fiber stress as shown has been aver-
aged over wall volume. Systoles of five beats with
different preloads and afterloads are analyzed. The
relation appears to be nearly perfectly linear, and the
different beats closely coincide. The line /in represents a
simple linear approximation to this model (Arts et al.,

stress
pressure

In~

, =

cyl

0 + + +
0 0.2 0.4 0.6 0.8 1

Viv/iVw

FIGURE3 Calculated fiber stress relative to left-ventricular pressure
as a function of cavity volume relative to wall volume. The shaded bar
indicates the physiological range of the latter variable. Different curves
refer to different models In: Eq. 19 in this article; cyl: cylinder (Arts
and Reneman, 1989); lin: linear approximation of ¢yl (Eq. 20).
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FIGURE 4 Calculated relative effective fiber stress using Eq. 6, plot-
ted as a function of relative cavity volume. The curves fal 1, fal 2, and
fal 20 refer to the model of thick-walled ellipsoids (Falsetti et al., 1979;
Kim et al., 1985) with axis ratio of 1:1, 1:2, and 1:20, respectively.
Similarly, mir 1, mir 2, and mir 20 refer to the model by Mirsky (1973).
The cross-mark indicates the cylindric model of Chadwick (1982). The
curve lin has been added for comparison with Fig. 3.

1982), expressed by
L1432, (20

In Fig. 4 fiber stress is calculated by applying Eqgs. 5
and 6 to the midwall stress components as found at the
equator on the basis of models using isotropic material
properties, and as presented by Mirsky (1973), Kim et al.
(1985), and Falsetti et al. (1970). The latter two models
are essentially the same. For comparison with Fig. 3, the
results obtained by the linear approximation of Eq. 20
are duplicated. The cross-mark indicates a result ob-
tained by the model of Chadwick (1982), applying a
cylindric, anisotropic myocardial wall. Calculated effec-
tive fiber stress appears to depend on the ellipticity,
having the values 1:1 (sphere), 1:2, and 1:20. Generally,
spherical geometry is closest to Eq. 19. Ellipticity 1:2
shows the highest values of relative fiber stress.

Despite the wide variation in model setups used, all
equations shown in Figs. 3 and 4 are similar. Relative
fiber stress increases with relative cavity volume, which
agrees with the fact that stress increases with increasing
radius of curvature and decreasing wall thickness. Fiber
stress appears to be determined mainly by cavity pres-
sure and the ratio of cavity volume to wall volume and is
quite unaffected by the actual choice of material proper-
ties, geometric factors or the inhomogeneity of stress
distribution across the wall. In case of isotropic wall
material, an effective fiber stress is calculated, having

properties similar to real fiber stress in models based on
anisotropy.

FIBER STRAIN

It is assumed that the principle of conservation of energy
may be applied, i.e., mechanical work is generated by the
myocardial fibers in the entire wall is equal to pumping
work of the left-ventricular chamber. Then it holds

[ oe.av=pav, @1

where ¢, represents natural fiber strain (In [/ 4]), and A
is associated with a small increment in left-ventricular
cavity volume. Using the assumption that fiber stress and
strain are homogeneously distributed, Eq. 21 may be
converted to the following differential form

de D (22)
d Vi B o’
Z

w

Figs. 5 and 6 show natural fiber strain, as calculated by
integration of Eq. 22 with respect to relative cavity
volume, and as applied to the relations shown in Figs. 3
and 4. The reference length of strain is chosen so that
e, = 0 at V}, = 0. A change in natural fiber strain Ae,
during ejection may be obtained by subtraction of the
values of e,, as calculated for begin and end of ejection,
respectively. In Fig. 5 the line /n is obtained by integra-
tion of Eq. 19 with respect to V,/V,:

lIIIIlIl|ll|l|l|l|l|l|ll!l|lllIHIHIII|I|III|IIIIIHIIIIIIIIMIIIIIIHIIIIIIHIIH!IIIII
0 t t +
0 0.2 0.4 0.6 0.8 1

Viv/Vw

FIGURES Calculated natural fiber strain (In [//].]) as a function of
relative cavity volume. For identification of the curves, see legends Fig.
3. Fiber strain is defined to be zero in the reference situation at zero
cavity volume.
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FIGURE6 Calculated natural fiber strain as a function of relative
cavity volume. For identification of the curves, see legends Fig. 4.
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The line /in refers to the linear relation between relative
fiber stress and volume according to Eq. 20. The related
equation for fiber strain e is obtained by:

” vV, 1
e = "(1+3—“) diF=3ln

V=0 Vw

Vi
1+3 Vw) . (24)
For the five beats in the cylinder model, fiber strain has
been averaged over wall volume, and plotted as a
function of relative left-ventricular volume. These curves
are also shown in Fig. 5. In Fig. 6 fiber strain is obtained
by numerical integration of the reciprocate of relative
stress with respect to relative cavity volume (Eq. 22) for
the models presented by Falsetti et al. and Mirsky. From
the Figs. 5 and 6 the relation between fiber strain and
relative cavity volume appears to be moderately depen-
dent on the choice of the model.

The relation between fiber strain and ventricular
pressure has not been theoretically evaluated as exten-
sively as the relation between stress and left-ventricular
pressure. After all, in a majority of models using isotro-
pic properties of the wall material, fiber strain cannot be
easily interpreted. A more understandable description
of the relation between fiber strain and cavity volume
may be given by the fraction of wall volume which has to
be added to cavity volume in order to obtain a strain in
that layer of the wall, which is equal to fiber strain.
Mathematically, this wall fraction V/V, has been ob-

tained by solving the equation:

M+ Vi
V,

w

(25)

1
Aef=§Aln

The fraction V/V,, is expected to be in the range between
0 and 1, because fiber strain is likely to be smaller than
strain at the inner surface (V/V, = 0) and larger than
this strain at the outer surface (V/V, = 1). Using the
data obtained in relation to Figs. 5 and 6, the volume V,
has been calculated by taking the derivative of Eq. 25
with respect to V), and reordering, which results in:

[/l‘/
Vi 17V, V, 2%
V., 3de V,° (26)

In Figs. 7 and 8 the value of V/V,, thus calculated, has
been plotted as a function of relative volume. In Fig. 7,
the lines /n and lin refer to the models associated with
Eqgs. 19 and 20, respectively. For the five beats in the
cylinder model the derivative of fiber strain with respect
to relative left-ventricular volume, as needed in Eq. 26 is
determined as the slope of a quadratic curve fit to the
relation between fiber strain and relative cavity volume.
In Fig. 7 the related data points are indicated by the line
cyl. In Fig. 8, the value of V/V, is calculated on the basis
of the models of Falsetti et al. and Mirsky. In all models,
except for the model presented by Falsetti et al., the
value of V/V, is in the range between 0.2 and 0.45 for the
regular range of relative volume, being from 0.15-0.70.
In the model with linear stress-volume relation accord-
ing to Eq. 21 the value of V/V, is constant and equal to
.

0.7

Vi/Vw
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FIGURE7 The fraction (V;/V,) of the wall that should be added to
cavity volume is calculated so that strain in that layer of the wall is
similar to fiber strain. This fraction is plotted as a function of relative
cavity volume (V) /V,). For identification of the curves, see legends
Fig. 3.
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FIGURE8 Wall fraction as defined in the legends of Fig. 7 as a
function of relative cavity volume. For identification of the curves, see
legends Fig. 4.

ERROR ESTIMATES

In the model In, the accuracy of Eq. 17 is essential to the
derivation of the equations for fiber stress (Eq. 19) and
fiber strain (Eq. 23). The error in this equation is
expressed by error term V. in Eq. 16. As mentioned, this
term equals zero if the volume is closed, or dr/dz = 0 at
the boundary. In the real left ventricle at the basal
boundary, none of these conditions are satisfied. There-
fore, in a few examples we have calculated the maximum
error to be expected from cutting off a cavity. Let us
consider a thin-walled prolate ellipsoid with minor axis
2 R, and a major to minor axis ratio of a. The center is
placed in the origin, and the ellipsoid iscut offatz =z .
Then for the volume V within the cavity and the error
volume term V,_, it holds

3

maR
V= 2+3Z2-2°

3
wR?
= _ 73
V::n'— 3(1 (Z Z)
ith 7 = == 27
withZ =5 27

By differentiation of the ratio V,,_ /V with respect to z, .,
at positive z,,,, the maximum error is found to occur at
Zna = 0.5aR. Thus, using Eq. 16, for a sphere (@ = 1) the
overestimation of fiber stress is maximally 11%. The real
left ventricle resembles a prolate ellipsoid with a long to
short axis ratio of two or more (a > 2). Then the error in

Eq. 16 is found to be <3%, which may be neglected
under most circumstances.

A second source of error cannot be assessed quantita-
tively as easily. In the derivation of Eq. 16 the shell is
considered to be in internal equilibrium, without being
subject to external forces other than hydrostatic pres-
sure. Moreover, the fibers are assumed to be parallel to
the isobaric surfaces in the wall. So, strictly considered,
for the heart the integral needed for Eq. 19 may not be
used, because a number of muscular fibers mutually
connect the different shells. In the real heart muscle
fibers in the inner layers of the wall continue their course
in the outer layers passing through the apex or bending
over the rim of the base (Puff, 1960; Torrent Guasp,
1971). Considering the comparison of the results with
different models as presented in Figs. 3 and 4, the errors
thus introduced may be moderate.

DISCUSSION

In the present study equations are derived relating fiber
stress, fiber strain, left-ventricular pressure, and left-
ventricular volume. In the derivation which relates the
ratio of fiber stress and left-ventricular pressure to the
ratio of cavity to wall volume, it is assumed that the
myocardial material is soft and incompressible, embed-
ding stress bearing muscle fibers. During diastole muscle
fibers are not activated implying that stresses in the
passive, soft material cannot be neglected. During sys-
tole the muscle fibers are activated and bear stress far
above the passive stress level associated with diastole. So
during systole anisotropy of the kind as assumed is
probably far more pronounced than during diastole.
Hence, the presented equations on fiber stress and
strain are expected to be a more accurate description of
the systolic phase rather than of the diastolic phase of
the cardiac cycle.

In Fig. 3 the ellipsoidal models described by Falsetti et
al. (1970) and Kim et al. (1985) show somewhat higher
values for fiber stress than the other models. In these
models, apical and equatorial wall thickness are consid-
ered to be the same. Because the radii of curvature at
the equator are larger than at the long axis poles, in
these models stress in the wall at the poles is lower than
at the equator. Hence, equatorial stress as shown is an
overestimation of mean stress. This discrepancy van-
ishes for a spherical as well as a cylindrical geometry.
For a minor to major axis ratio of 1:2 this effect is nearly
maximal.

In many studies, the circumferential component of
wall stress is described and discussed as if it were a
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FIGURE9 Calculated ratio of the circumferential stress relative to
left-ventricular pressure, as a function of relative cavity volume. For
identification of the curves, see legends Fig. 4.

representative for fiber stress. In Fig. 9, relative circum-
ferential stress as calculated with the models presented
by Falsetti et al. and Mirsky are shown as a function of
relative cavity volume. For comparison, the linear rela-
tion lin for fiber stress is also shown. As may be expected
on the basis of Eq. 6, circumferential stress is smaller
than fiber stress. Moreover, this stress component is
sensitive to the actual shape of the left ventricle. When
neglecting intramyocardial pressure, for a sphere this
stress is 50% of fiber stress, and for a cylinder 67%. For
extremely low volumes, circumferentially directed stress
approaches zero. This paradoxical result is associated
with the fact that hydrostatic intramyocardial pressure
in the bulk compensates for the circumferential stress
component born by the fibers. Because fiber stress is not
as sensitive to shape as circumferential stress, this stress
is preferred in relating pumping work to myocardial
fiber work.

Left-ventricular pressure has been obtained by integra-
tion of pressure increments from the outer to the inner
shell. Similarly, Skalak (1982) has proposed to calculate
left-ventricular pressure by integration of pressure incre-
ments associated with the regional radius of fiber curva-
ture. Both methods require that the fibers are perpendic-
ular to the direction of the pressure gradient. In our
derivation this means that the fibers do not leave the
shell defined as to be enclosed between two isobaric
surfaces. In the equatorial region this assumption might
be realistic, but in the apical and basal regions muscle
fibers in the subendocardial layers continue in the
subepicardium (Torrent Guasp, 1971; Streeter et al.,
1973; Puff, 1960). So, fibers cross isobaric surfaces. As a
result, part of the fiber contraction work is transferred

from the subepicardium to the subendocardium along
the fibers by shear stress along isobaric surfaces, and not
only by the mechanism associated with building up of
hydrostatic pressure from the epicardium towards the
endocardium. Macroscopically, the energy transfer along
the fibers is associated with torsion of the left ventricle,
which is thought to be a mechanism of transmural
redistribution of fiber strain (Arts et al., 1979; Arts and
Reneman, 1989).

In the derivation relating relative fiber stress to
relative cavity volume, the shape of the shells is assumed
to be invariant. Generally, systems of nonspherical shells
have to change shape during large deformations as long
as the shells have a constant volume and fit without
interspacings. In the real left ventricle and the cylindric
model (Arts and Reneman, 1989), the inner shells
shorten much more circumferentially than axially. This
shape change has consequences for the stress-volume
relationship. The average change of fiber strain Ae;
depends on a small change in relative cavity volume
V., /V, and shape factor s by:

oe, V., e 1 d%, "
=T Ay + 3 As + 350 (As). (28)
7.

w

Because no external forces are loading the ventricle,
shape varies until potential energy is minimal. It is
assumed that fiber stress is homogeneously distributed,
so s varies until fiber length is minimal. Hence, around
the state of equilibrium, the first derivative of fiber
length with respect to the shape factor s is equal to zero.
Furthermore, because strain is minimum, d%,/ds” is
positive.

So, the value of Ae, is always more positive than as to
be expected when there was no shape constraint to
volume. The principal of conservation of energy (Eq. 22)
may be written as

O A(Vlv/Vw)
I:Tlv = _Aef . (29)
When AV, and Ae, both are positive, relative stress will
increase less than in absence of a shape constraint due to
an extra elevation of Ae,. Similarly, for negative AV, and
Ae,, relative stress will decrease less than without shape
constraint. As a result, the slope of relative stress versus
relative volume decreases due to shape restraints as long
as the principle of conservation of energy is satisfied. In
Fig. 3 this behavior is found indeed when comparing the
stress—volume curve of the shape-restrained cylinder
with the model /n, which is associated with Eq. 19.

Using different models, the relation between relative
fiber stress and volume are quite similar. In absence of
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forced shape changes due to geometric constraints
during deformation, the relation between relative stress
and relative volume is independent of the shape of the
cavity. When introducing effects of shape constraints,
the slope of the curve decreases, and the curve may
depend on geometry. In a cylinder model, empirically a
linear relation between relative stress and relative vol-
ume is found. A good and simple approximation of this
relation is o;/P, = 1 + 3V, /V,. When using other
models with spherical, ellipsoidal or cylindrical geome-
try, the fiber stress—volume relation is comparable to the
latter approximation (Fig. 4). This indicates that the
influence of geometric restraints is present, but moder-
ate in character.

Using the principle of conservation of energy, the
relation between relative fiber stress and volume may be
transformed to a relation between fiber strain and cavity
volume. Because in the various models stresses are
found to be similar, the dependency of strain on volume
is also quite similar for the various models. As indicated
by Figs. 7 and 8, in the regular range of relative cavity
volume (0.15 < V /¥, < 0.7), strain can be approxi-
mated as the relative change in diameter of a sphere
containing cavity volume and 4 of the wall volume.

In the cylinder model, fiber strain has been calculated
directly, thus circumventing the assumption of muscle
fiber work being equal to pumping work. Fiber strains,
thus found, are similar to the strains as found using the
stress—volume relation. The moderate difference be-
tween both strain curves may be explained by violation
of the assumption on homogeneity of fiber stress, or the
fact that pumping work may not be equal to the work in
the myocardial wall considered. After all, the effect of
right-ventricular stresses on the left-ventricular deforma-
tion has been partly included in the cylinder model
causing an energetic cross-talk between left- and right-
ventricular walls. Moreover, stress in the nonmuscular
leaflets of the mitral valve may have an effect too.

CONCLUSION

In a fibrous shell model it is assumed that the left-
ventricular wall is rotationally symmetric, and consists of
a fiber structure embedded in a soft incompressible
material. Fiber stress is homogeneous. As a result it is
found that the ratio of fiber stress (a;) to left-ventricular
pressure (P,) depends mainly on the ratio of cavity
volume (V) to wall volume (V/,). The shape of the cavity
appears of minor importance. In the derivation used, the
fibers are assumed to be parallel with the isobars of
tissue pressure in the wall.

In the real left ventricle, as well as in a cylindic model

of the left ventricle the shells change shape during
deformation and muscle fibers cross isobaric surfaces.
The discrepancies between the fibrous shell model and
the cylinder model are relatively small. When the
relation between fiber stress and cavity volume is known,
fiber strain can be derived using the principle of conser-
vation of energy. Simple approximations for the cylin-
dric wall with a geometric coupling between the shells
say o,/P, = 1 + 3V, /V,, and for natural fiber strain
Ae, = (B)A In (1 + 3 V,/V,). Thus, macroscopic cardiac
hemodynamics are related to microscopic myocardial
fiber function. In contrast with fiber stress, circumferen-
tial stress in the wall of a chamber is strongly dependent
on geometry.

Received for publication 29 August 1989 and in final form 31
August 1990.
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