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1. Introduction

The processing of metals through the application of severe 
plastic deformation (SPD) has become important in materi-
als research over the last twenty years. This interest has 
arisen because SPD processing provides an opportunity for 
re  ning the grains of conventional bulk solids to produce 
grain sizes within the submicrometer (100 nm–1.0 m) or 
even the nanometer (<100 nm) range. Since many of the 
fundamental characteristics of polycrystalline materials are 
dependent upon the grain size, SPD processing has the capa-
bility of producing materials having unusual and attractive 
properties. For example, it is anticipated that materials 
having very small grain sizes will exhibit high strength and, 
if these ultra  ne grains are reasonably stable at elevated 
temperatures, it should be possible to achieve an excellent 
superplastic forming capability. 

A detailed review was published several years ago de-
scribing the basic principles of SPD processing[1] and more 
recently a report summarized the terminology associated 
with SPD[2]. Currently, it is now recognized that, although 
several procedures are available for applying SPD in metal-
lic systems, there are two processing procedures that rep-
resent the major methods for achieving grain re  nement. 
These two procedures are equal-channel angular pressing 
(ECAP)[3] and high-pressure torsion (HPT)[4]. In this report, 
sections 2 and 3 summarize the basic principles of ECAP and 
HPT, respectively. Materials scientists in Brazil have played 
an important role in establishing and conducting research 
on materials processed by SPD and the year of 2012 repre-
sents the tenth anniversary of the  rst Brazilian publication 
describing materials processed by SPD. Accordingly, these 
developments are presented in sections 4 and 5 that de-
scribe some of the current research that is now underway 
in the  eld of SPD processing in Brazil.

2. Processing by ECAP

Processing by ECAP refers to the situation in which a sam-
ple is pressed through a die constrained within an internal 
channel that is bent abruptly through a sharp angle. An ex-
ample of the ECAP process is shown in Fig. 1, where the 
channel angle is 90º[5]. It is readily apparent that the sample 
emerges from the die having the same cross-sectional area 
as in the initial condition and it means that repetitive press-
ings can be conducted in order to impose very high strains. 

The planes X, Y, and Z in Fig. 1 represent the transverse, 
 ow, and longitudinal planes within the as-pressed billet, 
respectively. 

A critical question in ECAP concerns the magnitude of 
the strain imposed in each separate pass through the die. 
In practice, it can be shown that this strain is dependent 
upon the angle between the two parts of the channel,  
(  = 90º in Fig. 1), and the angle representing the outer arc 
of curvature where the two parts of the channel intersect, 

 (  = 0º in Fig. 1 since no curvature is indicated). A rela-
tionship was derived for the strain in each pass[6] and this 
relationship can be plotted as shown in Fig. 2 to provide a 
direct representation of the imposed strain in ECAP[7]. In 
Fig. 2, the strain 1 is shown as a function of the channel 
angle, , for the condition where the number of passes, 
N, is 1. It can be seen that the arc of curvature has only a 
minor effect on the total strain; and in practice, for a con-
ventional die with  = 90º, the strain is approximately 1 on 
each separate pass.

The nature of the microstructure introduced by press-
ing through the ECAP die is dependent upon the processing 
route employed in conducting consecutive passes. Four dis-
tinct processing routes have been identi  ed: in route A the 

Fig. 1   Principle of the ECAP process using a die with a channel angle 
of 90°[5]

Considerable attention is now being devoted to the fabrication and properties of ultra  ne-grained materials processed through 
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billet is removed from the exit channel of the die and then 
re-inserted into the entrance channel without rotation; in 
route BA the billet is rotated through 90º in alternate direc-
tions between each pass; in route BC the billet is rotated by 
90º in the same direction between each pass; and in route C 
the billet is rotated by 180º between passes[8]. These differ-
ent processing routes are important because they produce 
different slip systems within the billet. This is illustrated 
schematically in Fig. 3, where the X, Y, and Z planes corre-
spond to the planes illustrated in Fig. 1 and the slip system 
is shown for each pass[9]. For example, in route C a rotation 
of the billet by 180º means that the slip in the second pass 
is on the same plane, but in the opposite direction, to the 
slip in the  rst pass and thereafter there is an alternation 
between these two slip directions. This means that route C 
is a redundant strain process and the same conclusion ap-
plies also to route BC, except that in the latter the  rst and 
third passes are in opposite directions and the second and 
fourth passes are similarly in an opposite sense. It follows 
from an analysis of these slip systems, and it can be shown 
experimentally with fcc metals such as aluminum[10], that 
processing by route BC is the optimum condition in order to 
achieve an equiaxed grain structure with grain boundaries 
having high angles of disorientation.

When a metal is processed by ECAP, the grain size is gen-
erally signi  cantly reduced and this should lead to a major 

strengthening. An example of this effect is shown in Fig. 4, 
where experimental data are plotted for a series of com-
mercial aluminum-based alloys[11]. For each alloy, the left 
axis denotes the 0.2% proof stress in the absence of ECAP 
and the points at equivalent strains of 1 and 2 represent 
the measured proof stresses after 1 and 2 passes through a 
die having a channel angle of  = 90º. Thus, all alloys sig-
ni  cantly strengthen after one pass but thereafter there is 
only a very minor additional increase in strength.

Metals processed by ECAP should also exhibit good su-
perplastic properties when tested in tension at elevated 
temperatures. An example of an exceptional superplastic 
elongation is shown in Fig. 5 for a magnesium ZK60 alloy 
containing 5.5% Zn and 0.5% Zr[12]. This alloy was extruded 
prior to ECAP in order to introduce a smaller grain size[13] 
and then pressed at 473 K, cut into a tensile specimen with 
the gauge length oriented along the pressing direction, and 
pulled in tension to failure at a temperature of 473 K using 
an initial strain rate, , of 1.0 × 10–4 s–1. The result shows ex-
cellent superplasticity with an elongation to failure, L/Lo, 
of 3,050%, where L is the change in length and Lo is the 
initial length, respectively. This is the highest tensile elon-
gation recorded to date for any magnesium alloy processed 
under any conditions and also it is the highest superplastic 
elongation recorded in any metal after processing by ECAP. 
The absence of any necking within the specimen gauge 
length is conclusive proof for the occurrence of true super-
plastic  ow[14]. 

Fig. 2   The strain imposed in one pass of ECAP as a function of the channel 
angle, [7]

Fig. 3   The slip systems associated with the four processing routes in ECAP[9]
Fig. 5   Exceptional superplasticity in a magnesium ZK60 alloy processed 
by ECAP[12]

Fig. 4   Strengthening in commercial aluminum alloys processed by ECAP[11]

600

500

400

300

200

100

0
0 1 2 3 4

1100

2024

3004

5083

6061

7075

5 6 7 8 9 10
Equivalent Strain

0.
2%

 P
ro

of
 S

tr
es

s 
(M

Pa
)

Edição 01.indb   Art57 22/06/2012   18:10:08



58 Figueiredo et al.

3. Processing by HPT

Processing by HPT is generally conducted using a thin disk 
which is placed between massive anvils, subjected to a 
pressure P, and then torsionally strained through rotation of 
one of the anvils: this situation is illustrated schematically 
in Fig. 6[15]. Some limited experimental results are available 
for small cylindrical samples processed by HPT[16,17] but most 
of the available data relate to the use of thin disks.

A potential problem in HPT processing is that the strain 
varies across the disk with a zero strain at the disk center 
and a maximum strain at the periphery. This suggests that 
the structures produced by HPT processing may be inher-
ently inhomogeneous but early experiments showed that a 
reasonable level of homogeneity may be attained across the 
disk’s surface provided there was a suf  ciently high applied 
pressure and the torsional strain was continued through a 
suf  ciently large number of revolutions[18]. This structural 
evolution towards homogeneity has been effectively inter-
preted using strain gradient plasticity modeling[19].

Very recently, interest has centered on whether there 
is homogeneity in the through-thickness of HPT disks paral-
lel to the rotation axis. The experimental results shown in 
Fig. 7 are for high-purity (99.99%) aluminum tested by HPT 
through 1/4 turn (upper row) and 1/2 turn (lower row) using 
a pressure of 6.0 GPa at room temperature (RT)[20]. Three 
disks were used for each testing condition with one disk 
sectioned horizontally through the mid-plane to give the 
Center position and the other two disks polished inwards 
from the top and bottom surfaces by ~200 m to give the 
Upper and Lower positions, respectively. Measurements of 
the Vickers microhardness, Hv, were recorded on the sec-
tional planes of each of these three samples and the results 
shown in Fig. 7 use colors to designate different hardness 
values as represented at the lower right. The important 
feature of these results is that all planes of sectioning show 

Fig. 7   Color-coded maps showing the hardness values recorded in high-purity aluminum after 1/4 turn (upper row) and 1/2 turn (lower row) of HPT in the 
center of the disk and near the upper and lower surfaces[20]

Fig. 6   Principle of processing by HPT[15]
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essentially the same result thereby demonstrating the pres-
ence of excellent homogeneity in pure aluminum after pro-
cessing by HPT. It should be noted that these results con-
trast with magnesium alloys where there is evidence for 
signi  cant inhomogeneities in the through-thickness after 
processing by HPT[21].

As with samples processed by ECAP, processing by HPT 
also provides an opportunity for achieving signi  cant super-
plastic elongations after torsionally straining. An example is 
shown in Fig. 8 for the Zn-22% Al eutectoid alloy[22]. For this 
material, the HPT was conducted at room temperature under 
an imposed pressure of 6.0 GPa at a rotation speed of 1 rpm 
and thereafter the disks were cut into miniature tensile 
specimens and tested in tension to failure using a strain rate 
of 1.0 × 10–1 s–1 at a temperature of 473 K. The samples in Fig. 
8 represent the untested condition (upper) and then process-
ing by HPT through 1, 3, and 5 turns, respectively. It is appar-
ent that the elongations to failure increase with increasing 
strain and the maximum elongation to failure of 1,800% for 
the sample processed through N = 5 turns represents a record 
elongation for any material processed by HPT.

4. Historical Developments in Severe Plastic 
Deformation in Brazil

The present paper marks the 10th anniversary of the  rst 
publication by a Brazilian research group where a material 
was processed using an SPD technique. High-Pressure Tor-
sion was used to consolidate metallic powder and the re-
sults were reported in Scripta Materialia in 2002[23]. Within 
the last ten years, many papers have been published in the 
area of SPD by different Brazilian research groups covering 
the areas of the processing, structure, and properties of 
ultra  ne-grained materials. In this research, different SPD 
techniques were employed including HPT, ECAP and Accu-
mulative Roll Bonding (ARB) for the processing of the ma-
terials.

Initially, studies on SPD processing in Brazil focused on 
the ECAP technique. Finite Element Modeling (FEM) was used 
to determine the effect of processing parameters on the oc-
currence of billet cracking[24,25], on the plastic  ow[26,27] and 
on the homogeneity of the distribution of deformation[28,29]. 
The upper-bond theory was used to estimate the effect of 
diverse processing parameters on the amount of strain im-
posed during ECAP and the punch pressure developed dur-
ing the process[30].

It should be noted that the research carried out in Brazil 
has strongly in  uenced the topic of ECAP processing. The oc-
currence of plastic instability,  ow localization, segmenta-
tion and billet cracking was reported in several early papers 
on SPD published in the United States[31–33]. It was observed 
in this early work that  ow softening materials tend to ex-
hibit plastic instability during ECAP processing[31] and some 
dif  cult-to-work materials exhibit segmentation and crack-
ing when processing at low temperatures[32,33]. These early 
publications stimulated the development of FEM in Brazil in 
order to model the occurrence of plastic instability[26,27] in 
 ow softening materials. Fig. 9 shows the appearance of bil-
lets of  ow softening materials after processing by ECAP[27]. 
Flow localization is clearly observed in the upper two billets 
but it was shown that increasing strain rate sensitivity could 
stabilize the plastic  ow in this kind of material so that  ow 
localization is not observed in the two lower billets. The oc-
currence of billet segmentation and cracking was also evalu-
ated. It was shown that increasing the ECAP die angle is an 
effective way to process dif  cult-to-work alloys[24] and, in 
addition, the use of a back-pressure reduces the amount of 
damage introduced in the material during ECAP[27].

Several different metallic alloys have been processed 
in Brazil using various SPD techniques including alumi-
num[23,25,29,34–40], lead alloys[41,42], magnesium[20,43], and 
steel[44,45]. Ultra  ne-grained structures, with grain sizes 
between 100 nm and 1,000 nm, were successfully intro-

Fig. 8   Superplasticity in the Zn-22% Al eutectoid alloy after processing 
by HPT[22]

Fig. 9   Appearance of a rectangular grid pattern after simulation of ECAP 
considering different values for strain-rate sensitivity, m: the distortions of the 
grids delineate a transition from unstable  ow at strain-rate sensitivities of (a) 
0 and (b) 0.01 to stable  ow at strain rate sensitivities of (c) 0.05 and (d) 0.1[27]
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duced into all of these materials. Fig. 10 shows examples 
of such structures in (a) an aluminum alloy processed 
by ECAP through four passes[37]; (b) an IF-steel processed by 
ARB through three passes[44]; and (c) a magnesium alloy pro-
cessed by HPT through one turn[20].

It was observed that there is a general trend of increas-
ing strength when processing aluminum[23,25,34,36–40], magne-
sium[20], and steel[44,45] by SPD. However, there is a decrease 
in strength when processing a lead alloy[41]. Superplastic 
ductilities were obtained in a lead-tin alloy after processing 
by ECAP and Fig. 11 shows the appearance of tensile sam-
ples of this alloy after pulling to failure at different strain 
rates at 423 K[42].

5. Current Trends in SPD Processing in Brazil

Following the general trend of the materials science com-
munity of increasing interest in processing by HPT, much 
of the research in Brazil is now focused on the various 
processing parameters associated with this technique. 
Recent reports have described the mechanisms of plastic 
 ow during this process[46–48]. It was reported that the gen-

eral belief that the hydrostatic pressure is constant in this 
process is not accurate. In fact, it can be shown by model-
ing that larger hydrostatic pressures develop in the center 
of the disc and a linear reduction is observed towards the 
edge of the disc[46]. Fig. 12 shows the distribution of the 
mean stresses in HPT predicted by FEM[46]. This result has 
implications for the evolution of the structure of materi-
als processed by HPT which depend upon the hydrostatic 
pressure. It was also shown that the temperature rise may 
reach tens of degrees in HPT during the processing of hard 
materials and/or at high rotation rates[47]. Heterogeneities 
in structure and hardness distribution were observed along 
the sample thickness[49] and the sources of these heteroge-
neities are currently under investigation[48].

The interest in the mechanical properties of materials 
processed by SPD is now signi  cantly focused on practical 
applications. Knowledge of successful processing routes 
for dif  cult-to-work materials can be used to produce in-
teresting combinations of properties in these materials. 
Thus, the processing of magnesium alloys by SPD has at-
tracted signi  cant attention from the scienti  c commu-
nity due to the potential improvement of the mechanical 
properties of these materials with an overall objective of 
increasing their use in the transportation industry. 

Many researchers are also interested in using SPD for 
processing biomaterials for use as biomedical implants. 
Early reports suggested that titanium could be processed 
only at high temperatures due to the occurrence of seg-
mentation and cracking. However, the development of 
processing routes using ECAP dies with larger angles be-
tween the channels has permitted the processing of this 
material at room temperature. Recent publications report 

Fig. 11   Appearance of tensile samples of the Pb-62% Sn alloy processed by 
ECAP and pulled to failure at 423 K at different strain-rates[42]

Fig. 12   Distribution of mean stresses during HPT considering different 
nominal hydrostatic stresses[46]

P = 0.5 GPa P = 1.0 GPa P = 2.0 GPa

Fig. 10   Ultra  ne-grained structures introduced in (a) an aluminum alloy 
processed by four passes of ECAP[37]; (b) an IF-steel processed by three passes of 
ARB[44]; and (c) a magnesium alloy processed by one turn of HPT[20]. The grain 
structure was evaluated by (a) transmission electron microscopy, (b) atomic 
force microscopy and (c) scanning electron microscopy.
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signi  cant improvements in the mechanical properties of 
titanium processed by ECAP and promotes this material as 
a potential substitute for other alloys[50,51]. Table 1 shows 
the evolution of strength in titanium of grade II after pro-
cessing by ECAP[50].

There is also a current interest in Brazil in producing 
magnesium alloys with small grain sizes in order to promote 
grain boundary diffusion and thereby improve the ef  ciency 
of magnesium as a hydrogen storage material[52,53].

Fundamental research is also of great interest in the 
SPD area. Recent experiments on copper[54] demonstrate 
that SPD processing may lead to an excess of vacancies in 
the material structure. This  nding has great implications 
for research in materials science and it is reasonable to an-
ticipate it will be the subject of extensive future studies. 
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Table 1    Evolution of hardness in commercial purity titanium during 
ECAP processing[50]

Condition Nominal equivalent 
strain

Hardness (Hv)

Coarse-grained – 145

1 pass of ECAP 0.66 205

2 passes of ECAP 1.32 208

3 passes of ECAP 1.98 213

4 passes of ECAP 2.64 269

6. Summary and Conclusions

The processing of ultra  ne-grained metals through the ap-
plication of severe plastic deformation is a major research 
topic in modern materials science. The main processing 
techniques at the present time are equal-channel angular 
pressing (ECAP) and high-pressure torsion (HPT).

Starting 10 years ago, in 2002, with research on a ma-
terial processed by HPT, there has been a continuous and 
signi  cant contribution to this research  eld by materials 
scientists in Brazil. This research is now continuing with 
major emphasis in areas such as  nite element modeling, 
hydrogen storage, and biomedical implants.
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