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Abstract

We consider the geometry of the space of Borel measures endowed with a distance that is defined by
generalizing the dynamical formulation of the Wasserstein distance to concave, nonlinear mobilities. We
investigate the energy landscape of internal, potential, and interaction energies. For the internal energy, we
give an explicit sufficient condition for geodesic convexity which generalizes the condition of McCann. We
take an eulerian approach that does not require global information on the geodesics. As by-product, we
obtain existence, stability, and contraction results for the semigroup obtained by solving the homogeneous
Neumann boundary value problem for a nonlinear diffusion equation in a convex bounded domain. For the
potential energy and the interaction energy, we present a nonrigorous argument indicating that they are not
displacement semiconvex.
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1. Introduction

1.1. Displacement convexity and Wasserstein distance

In [33], McCann introduced the notion of displacement convexity for integral functionals of
the form: given U : [0,+∞) → R,

U (μ) :=
∫
Ω

U
(
ρ(x)

)
dx for μ = ρL d,

defined on the set Pac(Ω) of the Borel probability measures in a convex open domain Ω ⊂ R
d ,

which are absolutely continuous with respect to the Lebesgue measure L d . Displacement con-
vexity of U means convexity along a particular class of curves, given by displacement inter-
polation between two given measures. These curves turned out to be the geodesics of the space
Pac(Ω) endowed with the euclidean Wasserstein distance.

We recall that the Wasserstein distance W between two Borel probability measures μ0 and μ1
on Ω is defined by the following optimal transportation problem (Kantorovich relaxed version)
(see [42,43])

W 2(μ0,μ1) := min

{ ∫
Ω×Ω

|x − y|2 dγ (x, y): γ ∈ Γ (μ0,μ1)

}
,

where Γ (μ0,μ1) is the set of admissible plans/couplings between μ0 and μ1, that is the set of
all Borel probability measures on Ω × Ω with first marginal μ0 and second marginal μ1.

We introduce the “pressure” function P , defined by

P(r) := rU ′(r) − (
U(r) − U(0)

) =
r∫

0

sU ′′(s)ds so that

P ′(r) = rU ′′(r), P (0) = 0. (1.1)

The main result of [33] states that under the assumption

P ′(r)r � (1 − 1/d)P (r) � 0 ∀r ∈ (0,+∞), (1.2a)

or, equivalently,

r 	→ P(r)

r1−1/d
is nonnegative and nondecreasing on (0,+∞), (1.2b)

the functional U is convex along the constant speed geodesics induced by W , i.e. for every curve
(μs)s∈[0,1] ⊂ Pac(Ω) satisfying

W(μs ,μs ) = |s1 − s2|W(μ0,μ1) ∀s1, s2 ∈ [0,1], (1.3)
1 2
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the map s 	→ U (μs) is convex in [0,1]. This class of curves can be, equivalently, defined by
displacement interpolation, using the Brenier’s optimal transportation map pushing μ0 onto μ1
(see [42], for example). Note that (1.2a) and (1.1) imply the convexity of U .

For power-like functions U,P

U(ρ) =
{

1
β−1ρβ if β 
= 1,

ρ logρ if β = 1,
P (ρ) = ρβ, (1.2a) is equivalent to β � 1 − 1/d . (1.4)

1.2. The link with a nonlinear diffusion equation

Among the various applications of this property, a remarkable one concerns a wide class of
nonlinear diffusion equations. The seminal work of Otto [34] contributed the key idea that a
solution of the nonlinear diffusion equation

∂tρ − ∇ · (ρ∇U ′(ρ)
) = 0 in (0,+∞) × Ω, (1.5)

with homogeneous Neumann boundary condition on ∂Ω can be interpreted as the trajectory of
the gradient flow of U with respect to the Wasserstein distance. This means that the equation is
formally the gradient flow of U with respect to the local metric which for a tangent vector s has
the form

〈s, s〉ρ =
∫
Ω

ρ|∇p|2 dx where

{−∇ · (ρ∇p) = s in Ω,

∇p · n = 0 on ∂Ω

where n is a unit normal vector to ∂Ω . Let us note here that Eq. (1.5) corresponds via (1.1) to

∂tρ − �P(ρ) = 0. (1.6)

In particular, the heat equation, for P(ρ) = ρ, is the gradient flow of the logarithmic entropy
U (ρ) = ∫

Ω
ρ logρ dx. Let us also note that the metric above satisfies

〈s, s〉ρ = inf

{∫
Ω

ρ|v|2 dx: s + ∇ · (ρv) = 0 in Ω and v · n = 0 on ∂Ω

}
.

The key property of this metric is that the length of the minimal geodesic between two given
measures is nothing but the Wasserstein distance. More precisely

W 2(μ0,μ1) = inf

{ 1∫
0

∫
Rd

∣∣vs(x)
∣∣2

ρs(x)dx ds: ∂sρ + ∇ · (ρv) = 0 in (0,1) × R
d ,

supp(ρs) ⊂ Ω̄, ρ0L
d = μ0, ρ1L

d = μ1

}
.

This dynamical formulation of the Wasserstein distance was rigorously established by Benamou
and Brenier in [5] and extended to more general situations in [2] and [30].
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As for the classical gradient flows of convex functions in euclidean spaces, the flow associated
with (1.5) is a contraction with respect to the Wasserstein distance. In [2] the authors showed that
one of the possible ways to rigorously express the link between the functional U , the distance W ,
and the solution of the diffusion equation (1.5) is given by the evolution variational inequality
satisfied by the measures μt = ρ(t, ·)L d associated with (1.5):

1

2

d+

dt
W 2(μt , ν) � U (ν) − U (μt ) ∀ν ∈ Pac(Ω). (1.7)

1.3. A new class of “dynamical” distances

In a number of problems from mathematical biology [8,9,14,17,18,26,27,36] mainly in
chemotaxis with prevention of overcrowding, mathematical physics [10,13,21,22,28,29,40],
studies of phase segregation [23,39], and studies of thin liquid films [6], the mobility of “par-
ticles” depends on the density ρ itself. For instance, a typical choice of the mobility to avoid
overcrowding in chemotaxis is to assume a saturation of the density, see [26], after normalization
this leads to m(ρ) = ρ(1 − ρ). The equation for the population density is

∂tρ = ∇ · [m(ρ)∇(ρ ∗ W) + ∇ρ
] = ∇ · [m(ρ)∇(

ρ ∗ W + U ′(ρ)
)]

with U(ρ) = ρ logρ + (1 − ρ) log(1 − ρ) and W the fundamental solution of −�S + δS with
δ � 0. Another source of models comes from mathematical physics. The same equation has
been derived as a hydrodynamical limit of interacting particles system with Kawasaki exchange
dynamics in studies of phase segregation [23]. Moreover, these type of equations appear in the
study of relaxation towards equilibrium of fermionic or bosonic particles based on kinetic models
[28,29]. In their diffusive approximation, they lead to equations of the form

∂tρ = ∇ · [m(ρ)x + ∇ρ
] = ∇ · [m(ρ)∇(

V + U ′(ρ)
)]

with m(ρ) = ρ(1 ± ρ), V (x) = |x|2
2 and U(ρ) = ρ logρ ± (1 ∓ ρ) log(1 ∓ ρ), with + corre-

sponding to bosons and − to fermions.
More precisely the local metric in the configuration space is formally given as follows: For a

tangent vector s (euclidean variation)

〈s, s〉ρ =
∫
Ω

m(ρ)|∇p|2 dx where

{−∇ · (m(ρ)∇p) = s in Ω,

∇p · n = 0 on ∂Ω

where m : [0,+∞) → [0,+∞) is the mobility function. The global distance generated by the
local metric is given by

W2
m,Ω(μ0,μ1) := inf

{ 1∫
0

∫
Rd

∣∣vs(x)
∣∣2

m
(
ρs(x)

)
dx ds: ∂sρ + ∇ · (m(ρ)v

) = 0

in (0,1) × R
d, supp(ρs) ⊂ Ω̄, ρ0L

d = μ0, ρ1L
d = μ1

}
. (1.8)
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This distance was recently introduced and studied in [19] in the case when m is concave and
nondecreasing. Similarly to the case m(r) = r , it is easy to check formally that the trajectory of
the gradient flow of U with respect to the modified distance Wm,Ω solves

∂tρ − ∇ · (m(ρ)∇U ′(ρ)
) = 0 in (0,+∞) × Ω (1.9)

with homogeneous Neumann boundary conditions on ∂Ω . Assuming that U ′′m and U ′′mm′ are
locally integrable, we can define in this case the function P and the auxiliary function H by

P(r) :=
r∫

0

U ′′(z)m(z)dz, H(r) :=
r∫

0

U ′′(z)m(z)m′(z)dz =
r∫

0

P ′(z)m′(z)dz,

so that

P ′ = mU ′′, H ′ = m′P ′, P (0) = H(0) = 0,

and, at least for smooth solutions, the problem (1.9) is equivalent to (1.6).
By means of a formal computation, detailed in Section 2, the second derivative of the internal

energy functional U along a geodesic curve (μs)s∈[0,1] satisfying as in (1.3)

Wm,Ω(μs1,μs2) = |s1 − s2|Wm,Ω(μ0,μ1) ∀s1, s2 ∈ [0,1],

is nonnegative, i.e. d2

ds2 U (μs) � 0, if the following generalization of McCann condition (1.2a),
(1.2b) holds

P ′(r)m(r) � (1 − 1/d)H(r) � 0 ∀r ∈ (0,+∞). (1.10a)

It can also be expressed by requiring that

r 	→ H(r)

m1−1/d(r)
is nonnegative and nondecreasing in (0,+∞). (1.10b)

Note that P ′(r) � 0 by (1.10a) implies the convexity of U .
As in the case of the Wasserstein distance, in dimension d = 1 the condition (1.10a) reduces

to the usual convexity of U . In dimension d � 2, still considering the relevant example of power-
like functions U,P,m as in (1.4), we get

U(ρ) =
{ 1

β−1ρβ if β 
= 1,

ρ logρ if β = 1
, m(ρ) = ρα, P (ρ) = β

γ
ργ , γ := α + β − 1

and condition (1.10a) is equivalent to

α ∈ (0,1], γ � 1 − α/d.
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In this case the heat equation corresponds to γ = α + β − 1 = 1 and it is therefore the gradient
flow of the functional

U (ρ) = 1

(2 − α)(1 − α)

∫
Ω

ρ2−α dx (1.11)

with respect to the distance Wm,Ω induced by the mobility function m(ρ) = ρα .
Understanding diffusion equations as gradient flows with respect to these new metrics has a

functional analysis interest, since it naturally leads to new functional inequalities and to a new
interpretation of classical ones. As in the Wasserstein framework [1,15], geodesic/displacement
convexity of integral functionals usually plays a crucial role; in particular, in the case of Fokker–
Planck equations with a log-concave invariant measure γ = e−V L d , one can recover the family
of the classical Beckner inequalities (interpolating between Log–Sobolev and Poincaré inequal-
ities, see [4]) by exploiting the geodesic convexity of the functional obtained integrating ρ2−α

with respect to γ as in (1.11). In this case (considered in [20]) also the definition of the transport
distance involves the reference measure γ [19]. Analogous inequalities can be expected in the
nonlinear diffusion case.

Convexity and dissipation inequalities for second order diffusion equations are also a crucial
tool (see the “metric” techniques developed by [25,32] in the linear mobility case m(ρ) = ρ) for
the study of nonnegative solutions to a certain class of fourth-order nonlinear diffusion equations

∂tρ + ∇ · (m(ρ)∇(
ρβ−1�ρβ

)) = 0. (1.12)

Particularly interesting cases correspond to the values β = 1 (equation of thin-film type for
power-like mobilities or Cahn–Hiliard when m(ρ) = ρ(1 − ρ)) and β = 1/2 (the so called
Derrida–Lebowitz–Speer–Spohn equation also arising in quantum drift-diffusion models). They
are formally the gradient flows of the first-order functionals

U (ρ) := 1

2β

∫
Ω

∣∣∇(
ρβ

)∣∣2 dx (1.13)

with respect to Wm,Ω .
In view of applications to Cahn–Hiliard models, another interesting example, still leading to

the heat equation, is represented by the functional

U (ρ) =
∫
Ω

(
ρ logρ + (1 − ρ) log(1 − ρ)

)
dx, 0 � ρ � 1, L d -a.e. in Ω,

and the distance induced by m(ρ) = ρ(1 − ρ), ρ ∈ [0,1]. Notice that in this case the positivity
domain of the mobility m is the finite interval [0,1], a case that has not been explicitly considered
in [19], but that can be still covered by a careful analysis (see [31]).

1.4. Geodesic convexity and contraction properties

Our aim is to prove rigorously the geodesic convexity of the integral functional U under
conditions (1.10a), (1.10b) and the metric characterization of the nonlinear diffusion equation
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(1.9) as the gradient flow of U with respect to the distance Wm,Ω (1.8). If one tries to follow
the same strategy which has been developed in the more familiar Wasserstein framework, one
immediately finds a serious technical difficulty, due to the lackness of an “explicit” representation
of the geodesics for Wm,Ω . In fact, the McCann’s proof of the displacement convexity of the
functionals U is strictly related to the canonical representation of the Wasserstein geodesics in
terms of optimal transport maps.

Existence of a minimal geodesic connecting two measures at a finite Wm,Ω distance has been
proved by [19]. However, an explicit representation is no longer available. On the other hand
in [16], following the eulerian approach introduced in [35], the authors presented a new proof of
McCann’s convexity result for integral functionals defined on a compact manifold without the
use of the representation of geodesics. Here, following the same approach of [16], we reverse
the usual strategy which derives the existence and the contraction property of the gradient flow
of a functional from its geodesic convexity. On the contrary, we show that under the assumption
(1.10a) smooth solutions of (1.9) satisfy the following Evolution Variational Inequality analogous
to (1.7),

1

2

d+

dt
W2

m,Ω(μt , ν) � U (ν) − U (μt )

∀t ∈ [0,+∞), ∀ν ∈ P(Ω): Wm(ν,μ0) < +∞. (1.14)

This is sufficient to construct a nice gradient flow generated by U and metrically characterized
by (1.14), as showed in [2] and [3]. The remarkable fact proved by [16] is that whenever a
functional U admits a flow, defined at least in a dense subset of D(U ), satisfying (1.14), the
functional itself is convex along the geodesics induced by the distance Wm,Ω . As a by-product
we obtain stability, uniqueness, and regularization results for the solutions of the problem (1.9)
in a suitable subspace of P(Ω) metrized by Wm,Ω .

Concerning the assumptions on m, its concavity is a necessary and sufficient condition to
write the definition of Wm,Ω with a jointly convex integrand [19], which is crucial in many
properties of the distance, in particular for its lower semicontinuity with respect to the usual
weak convergence of measures. Since m � 0 on [0,∞) the concavity implies that the mobility
must be nondecreasing. This is the case considered in [19]. However we are also able to treat the
case when the mobility is defined on an interval [0,M) where it is nonnegative and concave. It
that case the configuration space is restricted to absolutely continuous measures with densities
bounded from above by M . Such mobilities are of particular interest in applications as mentioned
before.

1.5. Plan of the paper

In next section, we show the heuristic computations for the convexity of functionals with
respect to Wm,Ω . Section 3 is devoted to introduce the notation and to review the needed concepts
on Wm,Ω from [19]. Moreover, we prove a key technical regularization lemma: Lemma 3.6.
Subsection 3.4 addresses the question of finiteness of Wm,Ω(μ0,μ1), providing new sufficient
conditions on m and μ0,μ1 in order to ensure that Wm,Ω(μ0,μ1) < +∞. After a brief review
of some basic properties of the diffusion equation (1.6), in Section 4 we try to get some insight
on the features of the generalized McCann condition (1.10a), (1.10b), we recall some basic facts
on the metric characterization of contracting gradient flows and their relationships with geodesic
convexity borrowed from [2,16], and we state our main results Theorems 4.10 and 4.12. The core
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of our argument in smooth settings is collected in Section 5, whereas the last Section concludes
the proofs of the main results. At the end of the paper we collect some final remarks and open
problems.

2. Heuristics

We first discuss, in a formal way, the conditions for the displacement convexity of the internal,
the potential and the interaction energy, with respect to the geodesics corresponding to the dis-
tance (1.8). For simplicity, we assume that Ω = R

d and that densities are smooth and decaying
fast enough at infinity so that all computations are justified.

2.1. Geodesics

We first obtain the optimality condition for the geodesic equations in the fluid dynamical
formulation of the new distance (1.8). As in [7], we insert the nonlinear mobility continuity
equation (1.8)

∂sρ + ∇ · (m(ρ)v
) = 0 in (0,1) × R

d . (2.1)

inside the minimization problem as a Lagrange multiplier. As a result, we get the unconstrained
minimization problem

W2
m(μ0,μ1) = inf

(ρ,v)
sup
ψ

{ 1∫
0

∫
Rd

1

2

∣∣vs(x)
∣∣2

m
(
ρs(x)

)
dx ds

−
1∫

0

∫
Rd

[
ρs(x)∂sψ(s, x) + m

(
ρs(x)

)(
vs(x) · ∇ψ(s, x)

)]
dx ds

+
∫
Rd

ρ1(x)ψ(1, x)dx −
∫
Rd

ρ0(x)ψ(0, x)dx

}
.

Applying a formal minimax principle and thus taking first an infimum with respect to v we obtain
the optimality condition v = ∇ψ, and the following formal characterization of the distance

W2
m(μ0,μ1) = sup

ψ

inf
ρ

{
−1

2

1∫
0

∫
Rd

|∇ψ |2m(ρ)dx ds −
1∫

0

∫
Rd

ρ∂sψ dx ds

+
∫
Rd

ρ1(x)ψ(1, x)dx −
∫
Rd

ρ0(x)ψ(0, x)dx

}
,

which provides the further optimality condition

∂sψ + 1
m′(ρs(x)

)|∇ψ |2 = 0. (2.2)

2
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We thus end up with a coupled system of differential equations in (0,1)×R
d [19, Remark 5.19],

⎧⎨
⎩

∂sρ + ∇ · (m(ρ)∇ψ
) = 0,

∂sψ + 1

2
m′(ρ)|∇ψ |2 = 0.

(2.3)

2.2. Internal energy

We use the formal equations (2.3) for the geodesics associated to the distance (1.8) to compute
the conditions under which the internal energy functional is displacement convex. If therefore
(ρs,ψs) is a smooth solution of (2.3), which decays sufficiently at infinity, we proceed as usual
[11,35,42] to obtain the following formulas:

d

ds
U (μ) = −

∫
Rd

P (ρ)�ψ dx,

where ρ denotes, as usual in this paper, the density of μ with respect to the Lebesgue measure,
and

d2

ds2
U (μ) =

∫
Rd

(
P ′(ρ)m(ρ) − H(ρ)

)
(�ψ)2 dx +

∫
Rd

H(ρ)

(
−∇ψ · ∇�ψ + 1

2
�|∇ψ |2

)
dx

− 1

2

∫
Rd

P ′(ρ)m′′(ρ)|∇ρ|2|∇ψ |2 dx.

As usual, the Bochner formula

−∇ψ · ∇�ψ + 1

2
�|∇ψ |2 = |Hessψ |2 � 1

d
(�ψ)2,

and the fact that H(ρ) � 0, allow us to estimate it as

d2

ds2
U (μ) �

∫
Rd

(
P ′(ρ)m(ρ) − (1 − 1/d)H(ρ)

)
(�ψ)2 dx − 1

2

∫
Rd

P ′(ρ)m′′(ρ)|∇ρ|2|∇ψ |2 dx.

Therefore, under conditions of concavity of the mobility m(ρ) and the generalized displacement
McCann’s condition (1.10a), the functional U is convex along the geodesics of the distance Wm.

2.3. Potential energy

Similar heuristic formulas can be obtained for the potential and the interaction energy, as in
[11,42]. We consider the potential energy functional

V (μ) :=
∫
d

V (x)dμ,
R
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with V a given smooth potential. The equation that we formally obtain as the gradient flow of V
with respect to the distance Wm is the conservation law

∂tρ = ∇ · (m(ρ)∇V
)
, (2.4)

which is an equation of hyperbolic type. As before, it is easy to check that the second derivative
of V along a geodesic satisfying (2.3) is

d2

ds2
V (μ) =

∫
Rd

m(ρ)m′(ρ) (HessV ∇ψ) · ∇ψ dx

+
∫
Rd

m(ρ)m′′(ρ)

(
(∇ρ · ∇ψ)(∇V · ∇ψ) − 1

2
(∇ρ · ∇V )|∇ψ |2

)
dx.

This formula allows us to show that this functional cannot be convex along geodesics if m
is not linear. Technically, the reason is the presence of the terms linearly depending on ∇ρ. We
present a simple example:

Example. Let us first construct the example in one dimension. The expression for the second
derivative of the functional above reduces to

d2

ds2
V (μ) =

∫
R

m(ρ)m′(ρ)Vxxψ
2
x dx + 1

2

∫
R

m(ρ)m′′(ρ)ρxVxψ
2
x dx =: I + II.

Consider the case that V is nontrivial. Then Vx 
= 0 on some interval. For notational simplicity,
we assume that

Vx > 0 on [−2,2].

Since the mobility m we are considering is not a linear function of ρ there exists z > 0 such that
m′′(z) 
= 0. Again for notational simplicity, let us assume that

m′′(z) < 0 on

[
1

2
,

3

2

]
.

The fact that we chose Vx to be positive and m′′ negative is irrelevant because the sign of term II
can be controlled by the sign of ρx . Let η be a piecewise linear function on R:

η(x) =

⎧⎪⎨
⎪⎩

3
2 if x < − 1

2 ,

1 − x if x ∈ [− 1
2 , 1

2 ],
1
2 if x > 1

2 .

The fact that the function is Lipschitz, but not smooth is irrelevant; smooth approximations of
the given η, can also be used in the construction. Let ηε(x) = η(x ). Let σ ∈ C∞(R, [0,1]),
ε 0
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Fig. 1. A profile at which the potential energy is not convex.

supported in [−1,1], such that σ = 1 on [− 1
4 , 1

4 ] and
∫

R
σ(x)dx = 1. Let ρε = σηε . Note that∫

R
ρε dx = 1. A typical profile of ρε is given in Fig. 1.
The test velocity (tangent vector at s = 0) we consider also needs to be localized near zero.

A simple choice is ψε(0) = ηε . Let ρε(s) be the corresponding geodesics given by (2.1) and (2.2).
Let us observe how, at s = 0, the terms I and II scale with ε:

Iε � max
z∈[0,2]

m(z)m′(z) max
x∈[−1,1]

Vxx(x)
1

ε2
ε ∼ 1

ε
,

IIε � −1

2
min

z∈[ 1
2 , 3

2 ]
m(z)

∣∣m′′(z)
∣∣1

ε
min

x∈[−1,1]Vx

1

ε2
ε ∼ − 1

ε2
.

Thus, for ε small enough, d2

ds2

∣∣
s=0V (ρε(s)) < 0. Furthermore note that the square of the length

of the tangent vector d
dt

ρε(0) is

∫
R

m
(
ρε(0)

)
(∂xψε)

2 dx ∼ 1

ε
.

Thus for any λ ∈ R there exists ε > 0 such that

d2

ds2

∣∣∣∣
s=0

V
(
ρε(s)

) + λ

∫
R

m
(
ρε(0)

)
(∂xψε)

2 dx < 0

which implies that V is not λ-convex for any λ ∈ R.
Let us conclude the example by remarking that it can be extended to multidimensional do-

mains. In particular it suffices to extend the 1-D profile to d-D to be constant in every other
direction and then use a cut-off. We only sketch the elements of the construction.

We can assume that ∇V (0) = ed . Let ρ̃ε(x) = ρε(xd). Let x̂ = (x1, . . . , xd−1). To cut-off in
the directions perpendicular to ed we use the length scales 1 � l � δ � ε. Let θl,δ be smooth
cut-off function equal to 1 on [−l, l] and equal to 0 outside of [−l − δ, l + δ]; with |∇θl,δ| < C

δ

and |D2θl,δ| < C

δ2 . Let ρl,δ,ε(x) = ρ̃ε(xd)θl,δ(|x̂|). Let ψl,δ,ε(x) = ηε(xd)θl,δ(|x̂|). Checking the
scaling of appropriate terms is straightforward.
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2.4. Interaction energy

Consider the interaction energy functional

W (μ) := 1

2

∫
Rd

∫
Rd

W(x − y)ρ(x)ρ(y)dx dy,

with W a given smooth potential. The equation that we formally obtain as the gradient flow of W
with respect to the distance Wm is the interaction equation

∂tρ = ∇ · (m(ρ)(ρ ∗ ∇W)
)
. (2.5)

As before, it is easy to check that

d2

ds2
W (μ) =

∫
Rd

∫
Rd

m
(
ρ(x)

)
m′(ρ(x)

)
ρ(y)∇ψ(x) · (HessW(x − y)∇ψ(x)

)
dx dy

−
∫
Rd

∫
Rd

m
(
ρ(x)

)
m

(
ρ(y)

)∇ψ(y) · (HessW(x − y)∇ψ(x)
)

dx dy

+
∫
Rd

∫
Rd

m
(
ρ(x)

)
m′′(ρ(x)

)
ρ(y)

(∇ρ(x) · ∇ψ(x)
)(∇W(x − y) · ∇ψ(x)

)
dx dy

− 1

2

∫
Rd

∫
Rd

m
(
ρ(x)

)
m′′(ρ(x)

)
ρ(y)

(∇ρ(x) · ∇W(x − y)
)∣∣∇ψ(x)

∣∣2 dx dy.

It can be demonstrated that if m is nonlinear then the interaction energy is not geodesically
convex. As for the potential energy, the reason lies in the presence of derivatives of ρ in the
expression above. More precisely, in one dimension the second derivative of W (ρ) reduces to

d2

ds2
W (ρ) =

∫
R

∫
R

m
(
ρ(x)

)
m′(ρ(x)

)
ρ(y)ψ2

x (x)Wxx(x − y)dx dy

−
∫
R

∫
R

m
(
ρ(x)

)
m

(
ρ(y)

)
ψy(y)Wxx(x − y)ψx(x)dx dy

+ 1

2

∫
R

∫
R

m
(
ρ(x)

)
m′′(ρ(x)

)
ρ(y)ρx(x)ψ2

x (x)Wx(x − y)dx dy.

It turns out that the example for the lack of (semi)convexity provided for the potential energy is
also an example (with V replaced by W ) for the interaction energy. The estimates of the terms
are similar, so we leave the details to the reader.
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3. Notation and preliminaries

In this section, following [19], we shall recall the main properties of the distance Wm,Ω in-
troduced in (1.8). For the sake of simplicity, we only consider here the case of a bounded open
domain Ω , so that it is not restrictive to assume that all the measures (Radon, i.e. locally finite, in
the general approach of [19]) involved in the various definitions have finite total variation. Since
we deal with arbitrary mobility functions m, these distances do not exhibit nice homogeneity
properties as in the Wasserstein case; therefore we deal with finite Borel measures without as-
suming that their total mass is 1.

3.1. Measures and continuity equation

We denote by M+(Rd) (resp. M+
c (Rd)) the space of finite positive Borel measures on R

d

(resp. with compact support) and by M(Rd ;R
d) the space of R

d -valued Borel measures on R
d

with finite total variation. By Riesz representation theorem, the space M(Rd ;R
d) can be identi-

fied with the dual space of C0
c (Rd ;R

d) and it is endowed with the corresponding weak∗ topology.
We denote by |ν| ∈ M+(Rd) the total variation of the vector measure ν ∈ M(Rd ;R

d). ν admits
the polar decomposition ν = w|ν| with w ∈ L1(|ν|;R

d). If B is a Borel subset of R
d (typically

an open or closed set) we denote by M+(B) (resp. M+(B;R
d)) the subset of M+(Rd) (resp.

M(Rd ;R
d)) whose measure μ are concentrated on B , i.e. μ(Rd \B) = 0 (resp. |μ|(Rd \B) = 0).

Notice that if B is a compact subset of R
d then the convex set in M+(B) of measures with a fixed

total mass m is compact with respect to the weak∗ topology. If m > 0, M+(B,m) is the convex
subset of M+(B) whose measures have fixed total mass μ(B) = m.

Let Ω be a bounded open subset of R
d . Given μ0,μ1 ∈ M+(Ω̄) we denote by CEΩ(μ0 → μ1)

the collection of time dependent measures (μs)s∈[0,1] ⊂ M+(Ω̄) and (νs)s∈(0,1) ∈ M(Ω̄;R
d)

such that

1. s 	→ μs is weakly∗ continuous in M+(Rd) with μ|s=0 = μ0 and μ|s=1 = μ1;
2. (νs)s∈(0,1) is a Borel family with

∫ 1
0 |νs |(Ω̄)ds < +∞;

3. (μ, ν) is a distributional solution of

∂sμs + ∇ · νs = 0 in (0,1) × R
d .

If (μ, ν) ∈ CEΩ(μ0 → μ1) then it is immediate to check that the total mass μs(R
d) = μs(Ω̄) =

m is a constant, independent of s. In particular, μ0(R
d) = μ1(R

d).

3.2. Mobility and action functional

We fix a right threshold M ∈ (0,+∞] and a concave mobility function m ∈ C0[0,M) strictly
positive in (0,M). We denote by m(M) the left limit of m(r) as r ↑ M . We can also introduce
the maximal left interval of monotonicity of m whose right extreme is

M↑ := sup
{
m ∈ [0,M): m|[0,m] is nondecreasing

}
.

We distinguish two situation:
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Case A. M = +∞, so that m is nondecreasing and M↑ = M = +∞; typically m(0) = 0 and
the main example is provided by m(r) = rα , α ∈ [0,1]. This is the case considered in [19].
When m′(+∞) := limr↑+∞ r−1m(r) = limr↑+∞ m′(r) = 0 we are in the sublinear growth case.
A linear growth of m corresponds to m′(+∞) > 0.

Case B. M < +∞, so that 0 � M↑ � M and m is nonincreasing in the right interval [M↑,M] (but
we also allow m to be constant or even decreasing in [0,M) with M↑ = 0). Typically m(0) =
m(M) = 0 (in this case 0 < M↑ < M) and the main example is m(r) = r(M − r), or, more
generally, m(r) = rα0(M − r)α1 , α0, α1 ∈ (0,1].

Remark 3.1. Many properties proved in the Case A can be extended to the Case B, but there are
important exceptions. The most important one concerns the upper bound on the two measures
μ0,μ1 in order to satisfy Wm,Ω(μ0,μ1) < +∞ in Case B: they should be absolutely continuous
with respect to L d with essentially bounded densities ρi � M , i = 0,1.

Another important difference concerns the subadditivity property [19, Theorem 5.12],

Wm,Ω

(
μ0 + σ 0,μ1 + σ 1) � Wm,Ω

(
μ0,μ1) + Wm,Ω

(
σ 0, σ 1)

which does not hold in Case B. We refer to [31] for further technical details.

Using the conventions

a/b = 0 if a = b = 0,

a/b = +∞ if a > 0 = b, (3.1)

the corresponding action density function φm : R × R
d → [0,+∞] is defined by

φm(ρ,w) =
{

|w|2
m(ρ)

if ρ ∈ [0,M],
+∞ if ρ < 0 or ρ > M.

It is not difficult to check that, under the convention (3.1), the function φm is (jointly) convex and
lower semicontinuous.

Given that m is concave and φm is convex, when M = +∞ we can define the recession
function ϕ∞

m : R
d 	→ [0,+∞] (recall (3.1)),

ϕ∞
m (w) := lim

r↑+∞ rφm(1,w/r) = |w|2
m′(∞)

, m′(∞) := lim
r→+∞ m′(r) = lim

r→+∞
m(r)

r
� 0.

We introduce now the action functional

Φm,Ω : M+(
R

d
) × M

(
R

d;R
d
) → [0,+∞],

defined on couples of measures μ ∈ M+(Rd), ν ∈ M(Rd;R
d). In order to define it we con-

sider the usual Lebesgue decomposition μ = ρL d + μ⊥, ν = wL d + ν⊥ and distinguish the
following cases:
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1. If the support of μ or ν is not contained in Ω̄ then Φm,Ω(μ, ν) = +∞;
2. When M < +∞ (Case B), we set

Φm,Ω(μ,ν) :=
{∫

Ω
φm(ρ,w)dx if μ⊥ = 0, ν⊥ = 0,

+∞ otherwise;

notice that if Φm,Ω(μ, ν) < +∞ then ρ ∈ L∞(Ω) with 0 � ρ � M , L d -a.e. in Ω and
w ∈ L2(Ω;R

d).
3. When M = +∞ and m′(∞) = 0 (Case A, sublinear growth) then

Φm,Ω(μ,ν) :=
{∫

Ω
φm(ρ,w)dx if ν⊥ = 0,

+∞ otherwise;

4. Finally, when M = +∞ and m′(∞) > 0 (Case A, linear growth) then we set

Φm,Ω(μ,ν) :=
{∫

Ω
φm(ρ,w)dx + ∫

Ω̄
ϕ∞

m (w⊥)dμ⊥ if ν⊥ = w⊥μ⊥ � μ⊥,

+∞ otherwise.

3.3. The modified Wasserstein distance

Let Ω be a bounded open set. Given μ0,μ1 ∈ M+(Ω̄) we define

Wm,Ω

(
μ0,μ1) := inf

{( 1∫
0

Φm,Ω(μs,νs)ds

)1/2

: (μ,ν) ∈ CEΩ

(
μ0 → μ1)} (3.2)

= inf

{ 1∫
0

(
Φm,Ω(μs,νs)

)1/2 ds: (μ,ν) ∈ CEΩ

(
μ0 → μ1)}. (3.3)

We refer to [19, Theorem 5.4] for the equivalence between (3.2) and (3.3). Wm,Ω(μ0,μ1) = +∞
if the set of connecting curves CEΩ(μ0 → μ1) is empty. The following three propositions are
proved in [19], see Theorems 5.5–5.7, 5.15, and Proposition 5.14.

Proposition 3.2. The space M+(Ω̄) endowed with the distance Wm,Ω is a complete pseudo-
metric space (the distance can assume the value +∞), inducing as strong as, or stronger
topology than the weak∗ one.

Given a measure σ ∈ M+(Ω̄), the space M+
m,Ω [σ ] := {μ ∈ M+(Ω̄): Wm,Ω(μ,σ ) < +∞} is

a complete metric space whose measures have the same total mass of σ .
Moreover, for every μ0, μ1 ∈ M+(Ω̄) such that Wm,Ω(μ0,μ1) < +∞ there exists a min-

imizing couple (μ, ν) in (3.2) (unique, if m is strictly concave and sublinear) and the curve
(μs)s∈[0,1] is a constant speed geodesic for Wm,Ω , thus satisfying

Wm,Ω(μt ,μs) = |t − s|Wm,Ω(μ0,μ1) ∀s, t ∈ [0,1].
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Proposition 3.3 (Lower semicontinuity). If Ωn,Ω are bounded open sets such that L d |Ωn

weakly∗ converges to L d |Ω , Mn ∈ (0,+∞] is a nonincreasing sequence converging to M , mn

is a sequence of nonnegative concave functions in the intervals (0,Mn) such that

mn′(r) � mn′′(r) ∀r ∈ (0,Mn′′) if n′ � n′′, lim
n→∞ mn(r) = m(r) ∀r ∈ (0,M),

and μn
0 , μn

1 are sequences of measures weakly∗ convergent to μ0 and μ1 respectively, then

lim inf
n→+∞Wmn,Ωn

(
μn

0,μn
1

)
� Wm,Ω(μ0,μ1). (3.4)

Proposition 3.4 (Monotonicity). Let Ω̃ ⊃ Ω , m̃ � m, μ0,μ1 ∈ M+(Ω̄). Then the following in-
equality holds

Wm̃,Ω̃ (μ0,μ1) � Wm,Ω(μ0,μ1).

Proposition 3.5. Let k ∈ C∞
c (Rd) be a nonnegative convolution kernel, with

∫
Rd k(x)dx = 1

and supp(k) = B̄1(0), and let kε(x) := ε−dk(x/ε). For every μ,μ0,μ1 ∈ M+(Ω̄) and ν ∈
M(Ω̄;R

d) we have

Φm,Ωε (μ ∗ kε,ν ∗ kε) � Φm,Ω(μ,ν) ∀ε > 0,

Wm,Ωε (μ0 ∗ kε,μ1 ∗ kε) � Wm,Ω(μ0,μ1) ∀ε > 0, (3.5)

lim
ε→0

Wm,Ωε (μ0 ∗ kε,μ1 ∗ kε) = Wm,Ω(μ0,μ1), (3.6)

where Ωε := Ω + Bε(0).

Proof. If Φm,Ω(μ, ν) < +∞ then μ, ν are supported in Ω̄ and [19, Theorem 2.3] yields

Φm,Ω(μ,ν) = Φm,Rd (μ,ν) � Φm,Rd (μ ∗ kε,ν ∗ kε) = Φm,Ωε (μ ∗ kε,ν ∗ kε),

being μ ∗ kε, ν ∗ kε supported in Ω̄ε . Notice that only the concavity of m (and not its monotonic-
ity) plays a role here. A similar argument and [19, Theorem 5.15] yields (3.5). The limit (3.6) is
an immediate consequence of (3.4) and (3.5). �

The next technical lemma provides a crucial approximation result for curves with finite Φm,Ω

energy. It allows for measures to be approximated by ones with smooth, positive densities.

Lemma 3.6. Let Ω be an open bounded convex set and let (μ, ν) ∈ CEΩ(μ0 → μ1) with given
constant mass m and finite energy

∫ 1
0 Φm,Ω(μs, νs)ds < +∞. For every ε > 0, δ ∈ [0,1] there

exist a decreasing family of smooth convex sets Ωε ↓ Ω and a family of curves (με,δ, νε,δ) ∈
CEΩε(μ

ε,δ → μ
ε,δ

) with the following properties
0 1
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μ
ε,δ
i = (1 − δ)μi ∗ kε + δλε, λε := m

L d(Ωε)
L d |Ωε , με,δ

s

(
Ωε

) = m, (3.7)

με,δ
s = ρε,δ

s L d |Ωε , νε,δ
s = wε,δ

s L d |Ωε , ρε,δ,wε,δ ∈ C∞([0,1] × Ω̄ε
)
, (3.8)

∂sρ
ε,δ
s + ∇ · wε,δ

s = 0 in (0,1) × Ωε, ρε,δ � δ
m

L d(Ω)
> 0,

1

c2
ε

1∫
0

Φm,Ωε

(
με,δ

s ,νε,δ
s

)
ds �

1∫
0

Φm,Ω(μs,νs)ds = lim
ε,δ↓0

1∫
0

Φm,Ωε

(
με,δ

s ,νε,δ
s

)
ds,

where cε := 1 + 2ε.

Proof. Let us extend (μs, νs) outside the unit interval by setting νs ≡ 0 and μs ≡ μ0 if s < 0,
μs ≡ μ1 if s > 1; it is immediate to check that (μ, ν) still satisfy the continuity equation. We then
consider a family of smooth and convex open sets Ωε satisfying Ω +B2ε(0) ⊂ Ωε ⊂ Ω +B3ε(0)

and define μ̃ε
s := μ ∗ kε, ν̃

ε
s := ν ∗ kε which have smooth densities ρ̃ε

s , w̃
ε
s and are concentrated

in Ω̄ + Bε(0). We perform a further time convolution with respect to a 1-dimensional family of
nonnegative smooth mollifiers hε(z) := ε−1h(z/ε) with support in [−ε, ε] and integral 1,

μ̄ε
s :=

∫
R

μ̃ε
zhε(s − z)dz, ν̄ε

s :=
∫
R

ν̃ε
zhε(s − z)dz,

with corresponding densities ρε
s ,w

ε
s . Notice that μ̄ε−ε = μ

ε,0
0 , μ̄ε

1+ε = μ
ε,0
1 and, by the convexity

of φm and Jensen’s inequality, we have

φm
(
ρε

s ,w
ε
s

)
�

∫
R

φm
(
ρ̃ε

z , w̃
ε
z

)
hε(s − z)dz, Φm,Ωε

(
μ̄ε

s , ν̄
ε
s

)
�

∫
R

Φm,Ωε

(
μ̃ε

s , ν̃
ε
s

)
hε(s − z)dz

so that, being ν̄ε
s = 0 if s < −ε or s > 1 + ε,

1+ε∫
−ε

Φm,Ωε

(
μ̄ε

s , ν̄
ε
s

)
ds =

∫
R

Φm,Ωε

(
μ̄ε

s , ν̄
ε
s

)
ds �

∫
R

Φm,Ωε

(
μ̃ε

s , ν̃
ε
s

)
ds �

1∫
0

Φm,Ω(μs,νs)ds.

We eventually set

με
s := μ̄ε

cεs−ε, νε
s := cε ν̄

ε
cεs−ε, cε := 1 + 2ε

and

με,δ
s := (1 − δ)με

s + δλε, νε,δ
s := νε

s .

It is then easy to check that all the requirements are satisfied. �
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3.4. Couple of measures at finite Wm,Ω distance

We discuss now some cases when it is possible to prove that the distance between two mea-
sures is finite. We already know [19, Cor. 5.25] (in the Case A, but the same argument can be
easily adapted to cover the case M < +∞) that when Ω is convex and bounded

if μi = ρiL
d with ‖ρi‖L∞(Rd ) < M then Wm,Ω(μ0,μ1) < ∞. (3.9)

We focus on the Case A, M = +∞, and exploit some ideas of [37]. In order to refine the condi-
tion (3.9), we first introduce the functions

km,d (r) := (
r1+2/dm(r)

)−1/2
, Km,d (r) := 1

d

+∞∫
r

km,d (z)dz, r > 0.

Observe that Km,d is either everywhere finite or identically +∞. In particular, in the case
m(r) = rα , Km,d is finite if and only if α > 1 − 2/d .

Theorem 3.7. Let Ω be a bounded, open convex set of R
d . Suppose that M = +∞, m > 0, and

that Km,d is finite (in particular α > 1 − 1/2d in the homogeneous case m(r) = rα). Then any
two measures μ0,μ1 ∈ M+(Ω̄,m) have finite distance Wm,Ω(μ0,μ1) < +∞ and the topology
induced by Wm,Ω on the space M+(Ω̄,m) coincides with the usual weak∗ topology. In particu-
lar, the metric space (M+(Ω̄,m),Wm,Ω) is compact and separable.

Proof. We fix an open set B with compact closure in Ω and a reference measure λ = ρ̄L d |B
with λ(Ω) = m and 0 < ρ̄(x) � b for L d -a.e. x in B . Since Wm,Ω satisfies the triangular in-
equality, the first part of the theorem follows if we show that Wm,Ω(λ,μ) < +∞ for every
μ ∈ M+(Ω̄,m).

Let r : B → Ω̄ be the Brenier map pushing λ onto μ: we know that r is cyclically monotone.
We set r s := (1− s)i + sr with image Bs ⊂ (1− s)B̄ + sΩ̄ ⊂ Ω̄ and inverse ss = r−1

s : Bs → B ,
and vs := (r − i) ◦ r−1

s = i − ss . It is well known that ss is a Lipschitz map with Lipschitz
constant bounded by (1 − s)−1 and that the curve μs := (r s)#λ belongs to CEΩ(λ → μ) with

μs = ρ̄sL
d |Bs , ρ̄s = χBs ρ̄(ss)Js, Js := det Dss , νs = ρ̄svsL

d .

Since the map r 	→ r/m(r) is nondecreasing and Js � (1 − s)−d , it follows that

Φm,Ω(μs,νs) =
∫
Bs

ρ̄2
s

m(ρ̄s)
|vs |2 dx =

∫
B

ρ̄(y)Js(rs(y))

m(ρ̄(y)Js(rs(y)))

∣∣r(y) − y
∣∣2

ρ̄(y)dy (3.10)

� b(1 − s)−d

m(b(1 − s)−d)

∫
B

∣∣r(y) − y
∣∣2

ρ̄(y)dy = b(1 − s)−d

m(b(1 − s)−d)
W 2

2 (λ,μ). (3.11)

Taking the square root and applying (3.3), since
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1∫
0

(
b(1 − s)−d

m(b(1 − s)−d)

)1/2

ds = b1/d

d

+∞∫
b

(
z

m(z)

)1/2

z−1−1/d dz = b1/d Km,d (b)

we get the estimate

Wm,Ω(λ,μ) � b1/d Km,d (b)W2(λ,μ). (3.12)

A completely analogous calculation with μ := μ0 (resp. μ := μ1) and μs = μ0,s (resp. μs =
μ1,s ) shows that

Wm,Ω(μi,1−ε,μi) � b1/dKm,d

(
bε−d

)
W2(λ,μi) ∀ε > 0, i = 0,1.

On the other hand, taking into account that the density of μi,1−ε is bounded by bε−d , we can
apply (3.12) with μ0,1−ε instead of λ, obtaining

Wm,Ω(μ0,1−ε,μ1,1−ε) � b1/dε−1Km,d

(
bε−d

)
W2(μ0,1−ε,μ1,1−ε).

Therefore, the triangular inequality yields

Wm,Ω(μ0,μ1) � b1/dKm,d

(
bε−d

)(
W2(μ0, λ) + W2(μ1, λ) + ε−1W2(μ0,1−ε,μ1,1−ε)

)
.

Applying this estimate to a sequence μn weakly∗ converging to μ (and therefore converging also
with respect to W2), since the corresponding geodesic interpolants with λ μn,1−ε converge to
μ1−ε as n → ∞ with respect to W2, we easily obtain

lim sup
n→∞

Wm,Ω(μn,μ) � 2b1/d Km,d

(
bε−d

)
W2(μ,λ).

Since limε↓0 Km,b(bε−d) = 0, taking ε arbitrarily small, we conclude. �
In the next result we do not assume any particular condition on m, but we ask that μi � L d

with densities satisfying some extra integrability assumptions.

Theorem 3.8. Let Ω be a bounded, open convex set of R
d and assume that M = +∞, m > 0. If

the measures μi = ρiL d |Ω ∈ M+(Ω,m), i = 0,1, satisfy

∫
Ω

ρi(x)2

m(ρi(x))
dx < +∞, i = 0,1, (3.13)

then Wm,Ω(μ0,μ1) < +∞.

Proof. We argue as in the previous proof, keeping the same notation and observing that for
0 � s � 1/2, (3.11) yields

Φm,Ω(μs,νs) � b 2d

d
W 2

2 (λ,μ). (3.14)

m(b 2 )
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When 1/2 � s � 1 we invert the role of λ and μ = ρL d in (3.10) obtaining

Φm,Ω(μs,νs) =
∫
Ω

ρ(y)J̃s(s̃s(y))

m(ρ(y)J̃s(s̃s(y)))

∣∣s̃(y) − y
∣∣2

ρ(y)dy (3.15)

where s̃s = (1 − s)s + si is the optimal map pushing μ onto μs and J̃s = det Ds̃−1
s satisfies

J̃s � s−d . (3.15) then yields for 1/2 � s � 1,

Φm,Ω(μs,νs) � 2d+1
∫
Ω

ρ(y)2

m(ρ(y))

(∣∣s̃(y)
∣∣2 + |y|2)dy. (3.16)

Since the range of s̃(y) is μ-essentially bounded, the integral in (3.16) is finite thanks to (3.13).
Integrating (3.14) in (0,1/2) and (3.16) in (1/2,1) we conclude that Wm,Ω(λ,μ) is finite. �
4. Geodesic convexity of integral functionals and their gradient flows

4.1. Nonlinear diffusion equations: weak and limit solutions

We consider a

convex density function U ∈ W
2,1
loc (0,M) with mU ′′ ∈ L1

loc

([0,M)
)

(4.1a)

and a pressure function P : [0,M) → R defined by

P(r) :=
r∫

0

m(z)U ′′(z)dz. (4.1b)

Let us observe that P ∈ W
1,1
loc ([0,M)) is nondecreasing, continuous, and P(0) = 0. When U

has a superlinear growth at +∞ the corresponding internal energy functional U : D(U ) ⊂
M+

c (Rd) → (−∞,+∞] is defined as

U (μ) :=
∫
Rd

U
(
ρ(x)

)
dx, D(U ) := {

μ = ρL d ∈ M+
c

(
R

d
)
: U(ρ) ∈ L1(

R
d
)}

. (4.2)

Since U is bounded from below by a linear function and μ has compact support, the integral in
(4.2) is always well defined. U is lower semicontinuous with respect to weak convergence in
M+

c (Rd) if and only if

U ′(+∞) := lim
r↑+∞

U(r)

r
= lim

r↑+∞U ′(r) = +∞.

When U ′(+∞) < +∞ we define the functional U as
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U (μ) :=
∫
Rd

U(ρ)dx + U ′(+∞)μ⊥(
R

d
)
, μ = ρL d + μ⊥,

where μ⊥ is the singular part of μ in the usual Lebesgue decomposition.
Let Ω ⊂ R

d be a bounded, open, and connected set with Lipschitz boundary ∂Ω and exterior
unit normal n. We will often suppose that Ω is convex in the sequel. We consider the homoge-
neous Neumann boundary value problem for the nonlinear diffusion equation

∂tρ − �P(ρ) = 0 in (0,+∞) × Ω, ∂nP(ρ) = 0 on (0,+∞) × ∂Ω, (4.3)

with nonnegative initial condition ρ(0, ·) = ρ0. We also introduce the dissipation rate of U along
the flow by

D(ρ) =
∫
Ω

|∇P(ρ)|2
m(ρ)

dx =
∫
Ω

φm
(
ρ,∇P(ρ)

)
dx ∀0 � ρ ∈ L1(Ω), P (ρ) ∈ W 1,1(Ω). (4.4)

We collect in the following result some well established facts [41] on weak and classical solutions
to (4.3).

Theorem 4.1 (Very weak and classical solutions). Let us suppose that Ω is bounded and
ρ0 ∈ L∞(Ω). There exists a unique solution ρ ∈ L∞((0,+∞) × Ω) ∩ C0([0,+∞);L1(Ω))

with P(ρ) ∈ L∞((0,+∞)×Ω)∩L2((0,+∞);W 1,2(Ω)) to (4.3) satisfying the following weak
formulation

+∞∫
0

∫
Ω

(
ρ∂t ζ − ∇P(ρ) · ∇ζ

)
dx dt = 0 ∀ζ ∈ C∞

c

(
(0,+∞) × R

d
)
, (4.5)

and the initial condition ρ(0, ·) = ρ0. The energy U is decreasing along the flow and satisfies
the identity

∫
Ω

U
(
ρ(T , x)

)
dx +

T∫
0

∫
Ω

|∇P(ρ)|2
m(ρ)

dx dt =
∫
Ω

U
(
ρ0(x)

)
dx ∀T > 0. (4.6)

The map ρ0 	→ Stρ0 := ρ(t, ·) can be extended to a C0 contraction semigroup S = S(P,Ω) in
the positive cone of L1(Ω), whose curves Stρ0 are also called “limit L1-solutions” of (4.3), and
it satisfies

ess infΩρ0 � Stρ0 � ess supΩρ0.

If moreover U,m ∈ C∞(0,M), U is uniformly convex, Ω is smooth and infΩ ρ0 > 0, then ρ ∈
C∞((0,+∞) × Ω̄) and is a classical solution to (4.3).

Let us briefly discuss here two useful lemma, whose proof follows from a standard variational
argument.
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Lemma 4.2. If ρ0, U(ρ0) ∈ L1(Ω) then the limit L1-solution ρ = S(ρ0) satisfies P(ρ) ∈
L1

loc([0,+∞);W 1,1(Ω)), the weak formulation (4.5), and the energy inequality

∫
Ω

U
(
ρ(T , x)

)
dx +

T∫
0

∫
Ω

|∇P(ρ)|2
m(ρ)

dx dt �
∫
Ω

U
(
ρ0(x)

)
dx. (4.7)

Proof. Let us first show that we can find a constant C depending only on P , ω := L d(Ω),
m = ∫

Ω
ρ dx, and the constant cp in the Poincaré inequality for Ω such that

∥∥P(ρ)
∥∥

L1(Ω)
� C

(
1 + ∥∥∇P(ρ)

∥∥
L1(Ω)

) ∀ρ ∈ L1(Ω),∫
Ω

ρ dx = m, P (ρ) ∈ W 1,1(Ω). (4.8)

In fact, setting p := ∫
Ω

P(ρ)dx and � := L d({x ∈ Ω: P(ρ) � p/2}) Poincaré and Chebyshev
inequality yield

1

2
p(ω − �) �

∫
Ω

∣∣P(ρ) − p
∣∣dx � cp

∫
Ω

∣∣∇P(ρ)
∣∣dx,

1

2
p � P(m/�),

so that if � � ω/2 we get p � 2P(2m/ω), whereas if � � ω/2 we obtain

p � 4ω−1cp

∫
Ω

∣∣∇P(ρ)
∣∣dx.

If now ρt = Stρ0 is the L1(Ω)-limit of a sequence ρn,t = Stρn,0 of bounded solutions with
U(ρn,0) → U(ρ0) in L1(Ω) as n ↑ +∞, from the uniform bound (4.6) we obtain for every
bounded Borel set T ⊂ (0,+∞), every B ⊂ Ω , and every nonnegative constants a, b such that
m(r) � a + br ,

∫
T

∫
B

∣∣∇P(ρn)
∣∣dx dt �

∥∥m(ρn)
∥∥1/2

L1(T×B)

( ∫
T×B

|∇P(ρn)|2
m(ρn)

dx dt

)1/2

� C‖a + bρn‖1/2
L1(T×B)

.

Taking T = (0, T ),B = Ω and applying (4.8), we obtain a uniform bound of the sequence P(ρn)

in L1(0, T ;W 1,1(Ω)); since ρn converges to ρ in L1((0, T ) × Ω), we obtain that ∇P(ρn) is
uniformly integrable and therefore it converges weakly to ∇P(ρ) in L1((0, T ) × Ω). It follows
that P(ρ) ∈ L1(0, T ;W 1,1(Ω)) and we can then pass to the limit in the weak formulation (4.5)
written for ρn, obtaining the same identity for ρ. The inequality (4.7) eventually follows by the
same limit procedure, recalling that the dissipation functional (4.4) is lower semicontinuous with
respect to weak convergence in L1(Ω). �
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The following stability result is used in the sequel; its proof is an easy adaption of [41,
Prop. 6.10].

Proposition 4.3. Let Ωn ⊂ R
d be a decreasing sequence of open, bounded, convex sets con-

verging to Ω and let Sn = S(P,Ωn), S(P,Ω) be the associated semigroups provided by
Theorem 4.1. If (after a trivial extension to 0 outside Ωn) ρn

0 ∈ L1(Ωn) is converging strongly in
L1(Rd) to ρ0 ∈ L1(Ω), then Sn

t (ρn
0 ) → St (ρ0) in the same L1 sense, as n ↑ +∞ for every t > 0.

4.2. The generalized McCann condition

Let us assume that P ′m′ ∈ L1
loc([0,M)) and let us introduce a primitive function H of h :=

P ′m′ = U ′′mm′,

H(r) := H0 +
r∫

0

P ′(z)m′(z)dz for some H0 � 0. (4.9)

Notice that in the most common case when m′(0+) = limr↓0 r−1m(r) > 0, the local integrability
of h in a right neighborhood of 0 implies the local integrability of mU ′′ (which we already
required in (4.1a)) and the fact that P is bounded from below. These restrictions can be removed
in the 1-dimensional case, see Remark 4.15.

Definition 4.4 (Generalized McCann condition). Let U,P,H and m be defined in the interval
(0,M) according to (4.1a), (4.1b) and (4.9). We say that the energy density U and the corre-
sponding pressure function P satisfy the d-dimensional generalized McCann condition for the
mobility m, denoted by GMC(m, d), if for a suitable choice of H0

U ′′(r)m2(r) = P ′(r)m(r) � (1 − 1/d)H(r) � 0 ∀r ∈ (0,M), (4.10a)

or, equivalently,

r 	→ H(r)

m1−1/d(r)
is nonnegative and nondecreasing in (0,+∞). (4.10b)

Before analyzing some properties related to GMC(m, d) let us consider in more detail the
nonegativity condition of (4.10a) in dimension d = 1 and in the two distinct Cases A–B we
introduced in Section 3.2.

Dimension d = 1. In the 1-dimensional the generalized McCann condition GMC(m,1) reduces
to the usual convexity of U : we will also comment on this issue in the next Remark 4.15.

Case A. M = +∞ and d > 1. The minimal admissible choice for H corresponds to H0 = 0
in (4.9). Notice that the existence of a nonnegative primitive of h = P ′m′ in (0,+∞) is in fact
equivalent to its local integrability in a right neighborhood of 0.

Case B. M < +∞ and d > 1. In this case we have to assume h = P ′m′ ∈ L1(0,M) and we can
choose
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H0 :=
( M∫

0

P ′m′ dx

)−
< +∞. (4.11)

If moreover P is locally Lipschitz near 0 and M , and m(0) = m(M) = 0, then imposing the first
inequality of (4.10a) at r = 0+ yields H0 = 0 and at r = M− yields the compatibility condition∫ M

0 P ′m′ dr = 0.

We collect in the following remarks some simple properties related to this definition.

Remark 4.5 (Elementary properties).

1. (Linear mobility) (4.10a) is consistent with the usual McCann condition (1.2a) in the linear
case of m(r) = r .

2. (Dimension d = 1) As in the case of McCann condition, in space dimension d = 1 (4.10a)
is equivalent to the convexity of U or to the monotonicity of P .

3. (Local boundedness of U when d > 1) In dimension d > 1 the energy density function
U is bounded in a right neighborhood of 0 (and in a left neighborhood of M , in the case
M < +∞). Since U ′′ = P ′/m the property is immediate if m(0) > 0. If m(0) = 0 then
m′(0) > 0 and therefore P is bounded around 0 and the formula

U(r) = U(r0) + U ′(r0)(r − r0) +
r0∫

0

(z − r)+

m(z)
P ′(z)dz, r ∈ (0, r0],

shows that limr↓0 U(r) < +∞.
4. (Constant mobility) When m(r) ≡ c > 0 (4.10a) is still equivalent to the convexity of U .
5. (The power-like case) In the case of P(r) = rγ (γ = α+β −1 if U(r) = rβ ) and m(r) = rα ,

(4.10a) is satisfied if and only if

γ � 1 − α

d
. (4.12)

6. (The case P(r) = r) It is immediate to check that the couple (r,m) always satisfies (4.10a):
it corresponds to the entropy function Um whose second derivative is m−1. After fixing some
r0 ∈ (0,M) (the choice r0 = 0 is admissible if m−1 is integrable in a right neighborhood
of 0), we obtain

Um(r) :=
r∫

r0

r − z

m(z)
dz, Pm(r) = r − r0.

7. (The case of the logarithmic entropy) U(r) = r log r satisfies GMC(rα, d) if and only if
γ = α � d/(d + 1).

8. (Linearity) If P1 and P2 satisfy GMC(m, d) then also α1P1 +α2P2 satisfies GMC(m, d), for
every α1, α2 � 0. Analogously, if P satisfies GMC(m1, d) and GMC(m2, d) then P satisfies
GMC(α1m1 + α2m2, d). In particular, if P satisfies GMC(m, d) then P(r) + αr satisfies
GMC(m + β,d) for every α,β � 0.
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9. (Shift) If M = +∞ and P satisfies GMC(m, d) then P satisfies GMC(m(· + α), d) and
P(· − α) satisfies GMC(m, d), for every α � 0.

The next two properties are more technical and require a detailed proof.

Lemma 4.6 (Smoothing). Let us assume that P satisfies GMC(m, d) and let us fix two con-
stants 0 < M ′ < M ′′ < M . Then there exists a family Pη,mη, η > 0, with smooth restriction to
[M ′,M ′′] such that Pη � P is strictly increasing, mη � m is concave, Pη satisfies GMC(mη, d)

(in [0,M ′′]), and Pη,mη converge uniformly to P,m in [M ′,M ′′] as η ↓ 0. Moreover, if P ′ is
locally integrable in a right neighborhood of 0, then we can choose M ′ = 0.

Proof. When M ′ > 0 it is not restrictive (up to choosing a smaller M ′) to assume that M ′ is a
Lebesgue point of the derivative of P . Let H be as in (4.9) and let us set m̃η(r) := m(r) + η,
P̃η(r) = P(r) + ηr ,

H̃η(r) = H0 + ηm(0) + η2 +
r∫

0

P̃ ′
η(r)m̃

′
η(r)dr = H(r) + ηm(r) + η2 � η2 > 0.

By the previous remark (points 6 and 8) P̃η satisfies GMC(m̃η, d) and moreover

P̃ ′
ηm̃η − (1 − 1/d)H̃η = P ′m − (1 − 1/d)H + η

d
(η + m) � η

d
(m + η) � η2/d. (4.13)

By choosing a family of mollifiers hδ , δ > 0, with support in [0, δ], we introduce the functions

P̃η,δ(r) :=
{

P̃η(M
′) + ∫ r

M ′ P̃ ′
η ∗ hδ ds if r � M ′,

P̃η(r) if r < M ′,

m̃η,δ(r) :=
{

m̃η(M
′) + ∫ r

M ′ m̃′
η ∗ hδ ds if r � M ′,

m̃η(r) if r < M ′,

which are smooth in [M ′,M ′′] and satisfy the requested monotonicity/concavity conditions.
Since P̃ ′

η,δ converges to P̃ ′
η in L1

loc(0,M ′] and m̃η,δ is uniformly bounded and converges point-

wise a.e. to m̃′
η as δ → 0, we conclude that the corresponding continuous functions H̃η,δ converge

uniformly to H̃η as δ ↓ 0. By (4.13), we can find a sufficiently small δ = δη depending on η such
that

P̃ ′
η,δη

m̃′
η,δη

� (1 − 1/d)H̃η,δη � 0.

A standard diagonal argument concludes the proof. �
Lemma 4.7 (Minimal asymptotic behaviour). When d > 1 and M = +∞, the function
Pmin(r) := ∫ r

0 m(z)−1/d dz satisfies GMC(m, d) and provides an (asymptotic) lower bound for
every any other P , since for every r0 > 0 there exists a constant c0 > 0 such that

P ′(r) � c0P
′
min(r) = c0m(r)−1/d , U ′′(r) � c0m(r)−1−1/d for a.e. r � r0. (4.14)
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Proof. In fact f (r) := P ′(r)m(r) satisfies

f (r) � (1 − 1/d)

(
H(r0) +

r∫
r0

f (r)m′(r)/m(r)dr

)
.

Gronwall Lemma then yields (4.14) with c0 := (1 − 1/d)H(r0)m(r0)
1/d−1. �

Notice that in the case m(r) = rα we obtain the functions Pmin(r) = c rγ0 with exponent
γ0 = 1 − α/d , which is consistent with (4.12). The corresponding energy density functions are
then Umin(r) = cr2−α(1+1/d): in particular, when α < d/(d + 1), all the energy functions have a
superlinear growth as r ↑ ∞.

Remark 4.8 (A sufficient condition). It is possible to give a simpler sufficient condition than
(4.10a), at least when mU ′′ is integrable in a right neighborhood of 0 and M = +∞: if

the map r 	→ m1/d(r)P ′(r) = m1+1/d(r)U ′′(r) is nondecreasing in (0,+∞) (4.15)

then (4.10a) is satisfied. In fact, assuming U smooth for simplicity, (4.15) is equivalent to

0 � m1/dP ′′ + 1/dm1/d−1m′P ′.

Multiplying the inequality by m1−1/d and integrating from 0 to r we get (4.10a). Condition (4.15)
gives the same sharp bound (4.12) in the power case.

4.3. The metric approach to gradient flows

We recall here some basic facts about the metric notion of gradient flows, referring to [2] for
further details. Let (D,W) be a metric space, not assumed to be complete, and let V : D(V ) →
(−∞,+∞] be a lower semicontinuous functional. A family of continuous maps St : D → D,
t � 0, is a C0-(metric) contraction gradient flow of V with respect to W if

St+h(u) = Sh

(
St (u)

)
, lim

t↓0
St (u) = S0(u) = u ∀u ∈ D, t,h � 0, (4.16a)

1

2
W2(St (u), v

) − 1

2
W2(u, v) � t

(
V (v) − V

(
St (u)

)) ∀t > 0, u ∈ D, v ∈ D(V ). (4.16b)

Thanks to [16, Prop. 3.1], conditions (4.16a), (4.16b) imply

St (D) ⊂ D(V ) ∀t > 0 and the map t 	→ V
(
St (u)

)
is not increasing in (0,+∞),

1

2

d+

dt
W2(St (u), v

) + V
(
St (u)

)
� V (v) ∀u ∈ D, v ∈ D(V ), t � 0, (4.17)

V
(
St (u)

)
� V (v) + 1

2t
W2(u, v) ∀u ∈ D, v ∈ D(V ), t > 0,

W2(St1(u),St0(u)
)
� 2(t1 − t0)

(
V (St0u) − Vinf

) ∀u ∈ D(V ), 0 � t0 � t1, (4.18)

W
(
St (u),St (v)

)
� W(u, v) ∀u,v ∈ D, t � 0.
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In (4.17) we used the usual notation

d+

dt
ζ(t) = lim sup

h→0+

ζ(t + h) − ζ(t)

h

for every real function ζ : [0,+∞) → R.
The following approximated convexity estimate [16, Theorem 3.2] plays an important role in the
sequel.

Theorem 4.9 (Approximated convexity). Let us suppose that S is metric contraction gradient
flow of V with respect to W according to (4.16a), (4.16b) and let s 	→ us ∈ D, s ∈ [0,1], be a
Lipschitz (“almost” geodesic) curve such that u0, u1 ∈ D(V ) and

W(ur , us) � L|r − s| ∀r, s ∈ [0,1], L2 � W2(u0, u1) + δ2. (4.19)

Then for every s ∈ [0,1] and t > 0, we have

V
(
St (us)

)
� (1 − s)V (u0) + sV (u1) + s(1 − s)

2t
δ2.

In particular, if us is a minimal geodesic, i.e. (4.19) holds with δ = 0, then

V (us) � (1 − s)V (u0) + sV (u1) ∀s ∈ [0,1].

4.4. Main results

We state our main result about the generation of a contractive gradient flow of U with respect
to Wm,Ω .

Theorem 4.10 (Contractive gradient flow). Let us assume that Ω is a bounded, convex open
set, and the functions U,P,H satisfy the generalized McCann condition GMC(m, d). For every
reference measure σ ∈ M+(Ω) with finite energy U (σ ) < +∞ the functional U generates a
unique metric contraction gradient flow S = S(U ,m,Ω) in the space

D := {
μ ∈ M+(Ω): μ � L d |Ω, Wm,Ω(μ,σ ) < +∞, U (μ) < +∞}

endowed with the distance Wm,Ω . Moreover S is characterized by the formula Stμ0 = ρtL d |Ω ,
where ρt = Stρ0 is a limit L1-solution of (4.3).

When m satisfies the finiteness condition of Theorem 3.7 (in particular m(r) = rα with
α > 1 − 2/d) we obtain a much more refined result, which in particular shows the continuous
dependence of S on the weak∗ topology.

Corollary 4.11. Under the same assumptions on Ω , U,P of the previous theorem, if moreover
M = +∞ and m satisfies the finiteness condition of Theorem 3.7, then the semigroup S can be
uniquely extended to a contraction semigroup on every convex set M+(Ω̄,m), which is continu-
ous with respect to the weak∗ convergence of the initial data. If U has a superlinear growth, then
St (μ0) = ρtL d � L d |Ω for every t > 0 and ρt is a weak solution of (4.3) according to (4.5).
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We conclude this section with our main convexity result.

Theorem 4.12 (Convexity). Let us assume that Ω is a bounded convex open set, and the
functions U,P,H satisfy the generalized McCann condition GMC(m, d). For every μ0,μ1 ∈
M+(Ω) ∩ D(U ) with finite distance Wm,Ω(μ0,μ1) < +∞ there exists a constant speed mini-
mizing geodesic for Wm,Ω , μ : [0,1] → M+(Ω) connecting μ0 to μ1 such that

U (μs) � sU (μ1) + (1 − s)U (μ0) ∀s ∈ [0,1]. (4.20)

The proof of Theorems 4.10 and 4.12 will be developed in the next two sections.

Remark 4.13 (Weak and strong convexity). When (4.20) holds for all the (constant speed, min-
imizing) geodesics, the functional U is called strongly geodesically convex. When m is strictly
concave and has a sublinear growth (or M < +∞) then every two measures with finite Wm,Ω -
distance can be connected by a unique geodesic [19, Theorem 5.11], so that there is no difference
between strong or weak convexity and (4.20) yields that the map s 	→ U (μs) is convex in [0,1].

Remark 4.14 (Absolutely continuous measures). Even when geodesics are not unique, the proof
of Theorem 4.12 shows in fact that (4.20) is satisfied by any geodesic μs with μs � L d for
every s ∈ R

d , which surely exist if U has a superlinear growth. Along this class of geodesics we
still obtain that the map s 	→ U (μs) is convex in [0,1].

Remark 4.15 (The one-dimensional case). When the space dimension d = 1, then the general-
ized McCann condition GMC(m,1) reduces to the usual convexity of U . In this case, a simple
approximation argument shows that we can cover also the case of functions U which are not
bounded in a right neighborhood of 0 (and in a left neighborhood of M , if M < +∞) and the
integrability assumptions on U ′′m of (4.1a) and on U ′′mm′ of (4.11) can be dropped.

5. Action inequalities in the smooth case

This Section contains the proof of the action inequality in the smooth case. This is a core
of the proof of the main result. Indeed, in the next Section, the proof of Theorem 4.10 will be
obtained by using the approximation results of Lemma 3.6 and 4.6, and passing to the limit on
the inequality (5.13).

In this section we assume that Ω is a smooth and bounded open set. We consider a smooth
curve

μs := ρsL
d |Ω, ρ ∈ C∞([0,1] × Ω̄

)
, 0 < m0 � ρ � m1 < M,

μs(Ω) ≡ m, s ∈ [0,1]. (5.1)

We also assume that P and m are of class C∞ in [m0,m1]. We consider the semigroup S =
S(P,Ω) defined by Theorem 4.1 and we set

μs,t := ρs,tL
d |Ω, ρs,t (·) = ρ(s, t, ·) := Sstρs, s ∈ [0,1], t � 0. (5.2)

Classical theory of quasilinear parabolic equation shows that ρ ∈ C∞([0,1] × [0,∞) × Ω) ∩
C∞([0,1] × (0,+∞) × Ω̄).
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Since the semigroup St preserve the lower and upper bounds on ρ and
∫
Ω

∂sρ dx = 0, for
every (s, t) ∈ [0,1] × [0,+∞) we can introduce the unique solution ζs,t = ζ(s, t, ·) ∈ C∞(Ω̄),
of the uniformly elliptic Neumann boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (m(ρ)∇ζ
) = ∂sρ in Ω,

∇ζ · n = 0 on ∂Ω,∫
Ω

ζ(x)dx = 0.
(5.3)

It is easy to check that ζ depends smoothly on s and t . Notice that (5.3) is equivalent to

∫
Ω

m(ρ)∇ζ · ∇η dx =
∫
Ω

∂sρ η dx ∀η ∈ C1(Ω̄). (5.4)

By construction, for every t � 0 the curve s 	→ (μs,t , νs,t ) with νs,t := m(ρs,t )∇ζs,tL d |Ω be-
longs to CEΩ(μ0 → μ1,t ) and its energy can be evaluated by integrating the action

As,t := Φm,Ω(μs,t ,νs,t ) =
∫
Ω

m(ρs,t )|∇ζs,t |2 dx

with respect to s in the interval [0,1]. The integral provides an upper bound of the Wm,Ω -distance
between μ0 and μ1,t = ρ1,tL d , which corresponds to the solution of the nonlinear diffusion
equation (4.3) with initial datum ρ1. As it was shown in [16], evaluating the time derivative of
the action As,t is a crucial step to prove that (4.3) satisfies the EVI formulation (4.16b). Next
lemma, which does not require any convexity assumption on Ω , collects the main calculations.

Lemma 5.1. Let ρs, ρs,t , and ζs,t be as in (5.1), (5.2), and (5.3). Then for every (s, t) ∈ [0,1] ×
(0,+∞) we have

1

2

∂

∂t
As,t = ∂

∂t

1

2

∫
Ω

|∇ζs,t |2m(ρs,t )dx

= −
∫
Ω

∇P(ρs,t ) · ∇ζs,t dx

− s

∫
Ω

((
P ′(ρs,t )m(ρs,t ) − H(ρs,t )

)
(�ζs,t )

2 + H(ρs,t )
∣∣D2ζs,t

∣∣2)dx

+ s

∫
Ω

P ′(ρs,t )m
′′(ρs,t )|∇ρs,t |2|∇ζs,t |2 dx

+ 1

2
s

∫
∂Ω

H(ρs,t )∇|∇ζs,t |2 · ndH d−1, (5.5)

where H is defined in (4.9).
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Proof. For keep the notation simple, we omit the explicit dependence of ρ, ζ on s, t . By the
definition of ρ we easily get

∂tρ = s�P (ρ) and s

∫
Ω

∇P(ρ) · ∇η dx = −
∫
Ω

∂tρ η dx ∀η ∈ C1(Ω̄). (5.6)

Further differentiation with respect to s yields

−
∫
Ω

∇P(ρ) · ∇η dx + s

∫
Ω

∂sP (ρ)�η dx =
∫
Ω

∂stρη dx (5.7)

for all η ∈ C2(Ω̄) with ∇η · n = 0 on ∂Ω . On the other hand, differentiating (5.4) with respect
to t we obtain∫

Ω

m(ρ)∂t∇ζ · ∇η dx =
∫
Ω

∂stρ η dx −
∫
Ω

∂tm(ρ)∇ζ · ∇η dx ∀η ∈ C1(Ω̄). (5.8)

The time derivative of the action functional is

∂

∂t

1

2

∫
Ω

|∇ζ |2m(ρ)dx = 1

2

∫
Ω

∂tm(ρ)|∇ζ |2 dx +
∫
Ω

∂t∇ζ · ∇ζm(ρ)dx

(5.8)=
∫
Ω

∂stρζ dx − 1

2

∫
Ω

∂tm(ρ)|∇ζ |2 dx

(5.7)= −
∫
Ω

∇P(ρ) · ∇ζ dx + s

∫
Ω

∂sP (ρ)�ζ dx − 1

2

∫
Ω

∂tm(ρ)|∇ζ |2 dx

= I + II + III. (5.9)

We evaluate separately the various contributions: concerning the second integral II we introduce
the auxiliary function G

G(r) := P ′(r)m(r) − H(r), so that G′(r) = P ′′(r)m(r), (5.10)

and we get

II = s

∫
Ω

∂sP (ρ)�ζ dx

= s

∫
Ω

P ′(ρ)∂sρ�ζ dx

(5.4)= s

∫
P ′(ρ)m(ρ)∇�ζ · ∇ζ dx + s

∫
�ζP ′′(ρ)m(ρ)∇ρ · ∇ζ dx
Ω Ω
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(5.10)= s

∫
Ω

P ′(ρ)m(ρ)∇�ζ · ∇ζ dx + s

∫
Ω

�ζ∇G(ρ) · ∇ζ dx

= s

∫
Ω

H(ρ)∇�ζ · ∇ζ dx − s

∫
Ω

G(ρ)(�ζ)2 dx.

The third integral of (5.9) is

III = −1

2

∫
Ω

m′(ρ)∂tρ|∇ζ |2 dx

(5.6)= s

2

∫
Ω

P ′(ρ)m′′(ρ)|∇ρ|2|∇ζ |2 dx + s

2

∫
Ω

P ′(ρ)m′(ρ)∇|∇ζ |2 · ∇ρ dx

(4.9)= s

2

∫
Ω

P ′(ρ)m′′(ρ)|∇ρ|2|∇ζ |2 dx + s

2

∫
Ω

∇|∇ζ |2 · ∇H(ρ)dx. (5.11)

A further integration by parts in the last integral and the Bochner formula

∇ζ · ∇�ζ − 1

2
�|∇ζ |2 = −|D2ζ |2

yield (5.5). �
Corollary 5.2. Under the same notation and assumptions of Lemma 5.1, if Ω is convex and U

satisfies the generalized McCann condition GMC(m, d) (4.10a), (4.10b), then

1

2

∂

∂t
As,t = ∂

∂t

1

2

∫
Ω

|∇ζs,t |2m(ρs,t )dx � − ∂

∂s
U (μs,t ) = − ∂

∂s

∫
Ω

U(ρs,t )dx, (5.12)

and

1

2
W2

m,Ω(μ1,t ,μ0) + tU (μ1,t ) � 1

2

1∫
0

As,t ds +
t∫

0

U (μ1,τ )dτ

� 1

2

1∫
0

As,0 ds + tU (μ0). (5.13)

Proof. We determine the sign of the terms in the right-hand side of (5.5) thanks to (4.10a),
(4.10b) and the convexity of Ω . Recalling that |D2ζ | � 1

d
(�ζ)2 and H � 0 we obtain that the

second integral in the right-hand side of (5.5) is nonpositive

−
∫ ((

P ′(ρ)m(ρ) − H(ρ)
)
(�ζ)2 + H(ρ)

∣∣D2ζ
∣∣2)dx

(4.10a)

� 0. (5.14)
Ω
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Since P is increasing and m is concave, we have P ′(ρ)m′′(ρ) � 0 which yields

∫
Ω

P ′(ρ)m′′(ρ)|∇ρ|2|∇ζ |2 dx � 0. (5.15)

Since H is nonnegative, the smoothness and convexity of Ω and the smoothness of ζ yields, see
[24,25,34],

∇|∇ζ |2 · n � 0, on ∂Ω,

∫
∂Ω

H(ρ)∇|∇ζ |2 · ndH d−1 � 0. (5.16)

Combining (5.14), (5.15) and (5.16), (5.5) yields the inequality

∂

∂t

1

2

∫
Ω

|∇ζ |2m(ρ)dx � −
∫
Ω

∇ζ · ∇P(ρ)dx. (5.17)

On the other hand

∂

∂s

∫
Ω

U(ρ)dx =
∫
Ω

U ′(ρ)∂sρ dx
(5.4)=

∫
Ω

m(ρ)∇U ′(ρ) · ∇ζ dx =
∫
Ω

∇P(ρ) · ∇ζ dx, (5.18)

so that (5.12) follows by (5.17) and (5.18). Integrating (5.12) with respect to s and t , we obtain
the second inequality in (5.13). The first inequality in (5.13) follows from the definition of Wm,Ω

and the monotonicity of τ 	→ U (μ1,τ ) (see the energy identity (4.6)). �
6. Proof of the main theorems

6.1. The generation result

Recall that St (μ0) = St (ρ0)L d |Ω when μ0 = ρ0L d |Ω ; Theorem 4.10 is an immediate con-
sequence of the following result.

Theorem 6.1. Let Ω be a bounded, convex open set of R
d and let us assume that μi ∈

M+(Ω̄), i = 0,1, have finite distance Wm,Ω(μ0,μ1) < +∞ and satisfy U (μ0) < +∞ and
μ1 = ρ1L d |Ω � L d . If U satisfies the generalized McCann condition GMC(m, d) (4.10a),
(4.10b) then

1

2
W2

m,Ω(Stμ1,μ0) + tU (Stμ1) � 1

2
W2

m,Ω(μ1,μ0) + tU (μ0) ∀t � 0.

Proof. Since Wm,Ω(μ0,μ1) < +∞ there exists a geodesic curve (μ, ν) ∈ CEΩ(μ0 → μ1) such
that

Φm,Ω(μs,νs) ≡
1∫
Φm,Ω(μs,νs)ds = W2

m,Ω(μ0,μ1).
0
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Applying Lemma 3.6, we find a family of approximating curves (με,δ, νε,δ) and smooth convex
open sets Ωε satisfying (3.7), (3.8) and

1∫
0

Φm,Ωε

(
με,δ,νε,δ

)
ds � c2

εW
2
m,Ω(μ0,μ1).

Let mη,Pη as in Lemma 4.6, for constants 0 < M ′ < M ′′ < M such that M ′ � ρε,δ � M ′′ in Ωε ,

and let ζ
ε,δ,η
s ∈ C∞(Rd) obtained by solving (5.3) with respect to mη and ∂sρ

ε,δ in Ωε . Since
mη � m, by Theorem 5.21 of [19] we easily have

∫
Ωε

∣∣∇ζ ε,δ,η
s

∣∣2
mη

(
ρε,δ

)
dx = Φmη,Ωε

(
με,δ,νε,δ

)
� Φm,Ωε

(
με,δ,νε,δ

) ∀η > 0, s ∈ [0,1].

If Sε,η = S(Uη,mη,Ωε) is the semigroup associated with S(Pη,Ωε) and the corresponding inte-
gral functional Uη , (5.13) gives

1

2
W2

mη,Ωε

(
S

ε,η
t μ

ε,δ
1 ,μ

ε,δ
0

) + tUη

(
S

ε,η
t μ

ε,δ
1

)
� 1

2

1∫
0

∫
Ωε

∣∣∇ζ ε,δ,η
s

∣∣2
mη

(
ρε,δ

)
dx ds + tUη

(
μ

ε,δ
0

)

� c2
ε

2
W2

m,Ω(μ1,μ0) + tUη

(
μ

ε,δ
0

)
.

Passing to the limit as η ↓ 0 (notice that the functions S
ε,η
t ρε,δ take their values in [M ′,M ′′]), we

get

1

2
W2

m,Ωε

(
Sε

t μ
ε,δ
1 ,μ

ε,δ
0

) + tU
(
Sε

t μ
ε,δ
1

)
� c2

ε

2
W2

m,Ω(μ1,μ0) + tU
(
μ

ε,δ
0

)
where Sε = S(U ,m,Ωε) is associated with S(P,Ωε). We can then pass to the limit as δ ↓ 0:
since ρε,δ → ρε in L∞(Ωε) we immediately have

1

2
W2

m,Ωε

(
Sε

t μ
ε
1,μ

ε
0

) + tU
(
Sε

t μ
ε
1

)
� c2

ε

2
W2

m,Ω(μ1,μ0) + tU
(
με

0

)
.

Finally as ε ↓ 0 we conclude, recalling Proposition 4.3. �
6.2. Geodesic convexity

The proof of Theorem 4.12 follows immediately from the generation result Theorem 6.1 and
Theorem 4.9 if every measure μs of the geodesic curve is absolutely continuous with respect to
L d |Ω (see also Remark 4.14). On the other hand, this property is not known a priori, so we need
a more refined argument.

Proof. As in Proposition 3.5 we set με
s := μs ∗ kε, ν

ε
s := νs ∗ kε and we denote by Sε =

S(U ,m,Ωε). By (3.5) and the contraction property given by Theorem 4.10 in Ωε we have
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Wm,Ωε

(
Sε

t μ
ε
s1

,Sε
t μ

ε
s2

)
� Wm,Ωε

(
με

s1
,με

s2

)
� Wm,Ω(μs1,μs2)

= |s1 − s2|Wm,Ω(μ0,μ1) (6.1)

and by (3.6), Theorem 4.9 and (4.18) we have

δ2
ε := W2

Ω,m(μ0,μ1) − W2
m,Ωε

(
με

0,μ
ε
1

) → 0 as ε ↓ 0,

U
(
Sε

t μ
ε
s

)
� (1 − s)U

(
με

0

) + sU
(
με

1

) + δ2
ε

2t
s(1 − s), (6.2)

W2
m,Ωε

(
Sε

t μ
ε
i ,μi

)
� t

(
U

(
με

i

) − infU
)
� t

(
U (μi) − infU

)
, (6.3)

where the second inequality in (6.3) follows from Jensen’s inequality.
We choose now a countable set C dense in [0,1] and containing 0 and 1, a vanishing sequence

(tk)k∈N and another vanishing sequence (εk)k∈N so that limk↑+∞ t−1
k δ2

εk
= 0. By compactness

and a standard diagonal argument, up to extracting a further subsequence, we can find limit
points μ̃s for s ∈ C such that

S
εk
tk

μεk
s ⇀ μ̃s weakly as k ↑ +∞.

By (6.1) and Proposition 3.3 we get

Wm,Ω(μ̃s1 , μ̃s2) � |s1 − s2|Wm,Ω(μ0,μ1) ∀s1, s2 ∈ C . (6.4)

(6.3) yields μ̃0 = μ0, μ̃1 = μ1 so that we can extend μ̃ to a continuous curve (still denoted by μ̃)
connecting μ0 and μ1 still satisfying (6.4) for every s1, s2 ∈ [0,1]. The triangular inequality
shows that (6.4) is in fact an equality and the curve μ̃ is a constant speed minimizing geodesic.
On the other hand, the lower semicontinuity of U with respect to weak convergence and (6.2)
yields

U (μ̃s) � (1 − s)U (μ0) + sU (μ1) ∀s ∈ C . (6.5)

A further lower semicontinuity and density argument shows that (6.5) holds for every s ∈
[0,1]. �
7. Final remarks and open problems

This paper is a first step towards the investigation of the geometry of spaces of measures
metrized by Wm,Ω , the induced convexity notions for integral functionals and the corresponding
generation of gradient flows with applications to various nonlinear evolutionary PDE’s.

Since a sufficiently general theory is far from being developed and understood, it is in some
sense surprising that one can reproduce in this setting the celebrated McCann convexity result.
On the other hand, many interesting and basic problems remain open: here is just a provisional
list.
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– At the level of the distance Wm,Ω only partial results on some basic properties (such as
density of regular measures or necessary and sufficient conditions ensuring the finiteness of
the distance), are known and a complete and accurate picture is still missing.

– The situation is even less clear in the case of unbounded domains: in this paper we restricted
our attention to the bounded case only.

– The study of other integral functionals is completely open, as well as applications to different
types of evolution equations, like scalar conservation laws (2.4), interaction equation (2.5)
or nonlinear fourth order equation (1.12).

– It would be interesting to study other metric quantities (e.g. the metric slope) and the
pseudo-Riemannian structure (tangent space, Alexandrov curvature, etc.) connected with the
distance and the energy functionals, see [2,12].

– The regularization properties and asymptotic behaviour of the gradient flow U and its pertur-
bation can be studied as well: in the Wasserstein case the geodesic convexity of a functional
yields many interesting estimates.

– The convergence of the so called “Minimizing movement” or JKO-scheme could be ex-
ploited in this and other situations: in the case of geodesically convex energies, further
information on the Alexandrov curvature of the distance Wm,Ω would be crucial, see [2,38].
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