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Abstract

Motivated by some investigations of Babbage, we study a class of single variable functional
equations. These are functional equations involving one unknown function and a finite set of known
functions that form a group under the operation of composition. It turns out that the algebraic
structure of a stabilizer determines the number of initial value conditions for the functional equation.
In the proof of the main result, the Implicit Function Theorem and, when the stabilizer is nontrivial,
the Global Existence and Uniqueness Theorem play a key role.
c⃝ 2012 Elsevier GmbH. All rights reserved.
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1. Introduction

The source of the present investigations can be traced back to a class of single variable
functional equations studied by Charles Babbage in a long series of papers [3–7]. In the
focus of these publications, as Babbage himself points out, “is this inverse method with
respect to functions, which I at present propose to consider”. Roughly speaking, if a
function is given, then, by applying a direct calculation to the function one can easily
determine particular equations that the function satisfies. However, the inverse problem,
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when we start with a given equation and our aim is to determine the family of functions
satisfying that equation, is highly nontrivial. This problem led Babbage to the functional
equation

F( f ◦ g1(t), . . . , f ◦ gr (t), t) = 0, (1)

where functions g1, . . . , gr and F are given, and f is to be determined. However, under
such general circumstances, there is no hope to give the set of solutions. As Babbage
illustrates it via several examples, it may occur that, having a particular solution, infinitely
many functions f can be created satisfying the equation above, although the family of
such functions may not be the complete collection of all solutions. For further interesting
mathematical and historical comments, one can refer to the book of Small [22].

The problem becomes more tractable if the functions g1, . . . , gr form a group G under
composition on their domain. Throughout the paper, we always use this assumption.
According to the best of our knowledge, the first systematic investigations in this direction
are due to Presić. He characterized all solutions of (1) when F is linear and does not depend
on its last variable [16,19]. Another nonlinear variant is also due to him [20].

Finally we mention that special cases of (1) which are solvable by elementary methods
arose as mathematical competition problems for secondary school students [10,18]. In this
setting, F is linear in its first r arguments, but the coefficients are allowed to be (known)
functions of t . We illustrate this and the general idea of the method via the subsequent
examples.

Example. Let H ⊆ R be a nonempty set symmetric about zero, and let α, β, h : H → R
functions satisfying α(t)α(−t) ≠ β(t)β(−t) for all t ∈ H . Then there exists a function
f : H → R satisfying the functional equation

α(t) f (t)+ β(t) f (−t) = h(t).

Proof. Set u(t) := f (t) and v(t) := f (−t). Replacing t by −t (which is allowed due to
the symmetry of H ), we arrive at the next inhomogeneous system of linear equations:

α(t)u(t)+ β(t)v(t) = h(t);

β(−t)u(t)+ α(−t)v(t) = h(−t).

The base determinant of the system is D(t) = α(t)α(−t) − β(t)β(−t), which is
nonsingular by assumption. Hence, applying Cramer’s Rule,

u(t) =
1

D(t)

 h(t) β(t)
h(−t) α(−t)

 =
h(t)α(−t)− h(−t)β(t)

α(t)α(−t)− β(t)β(−t)
;

v(t) =
1

D(t)

 α(t) h(t)
β(−t) h(−t)

 =
h(−t)α(t)− h(t)β(−t)

α(t)α(−t)− β(t)β(−t)

follows. That is, if there exists a solution f , then f = u. To make sure that f indeed solves
the equation, one can either check it via a direct substitution, or test the compatibility
property v(t) = u(−t). �

For slightly less trivial examples, one can consult the Putnam Competition Problem A3
(1959) [13] or Problem B2 (1971) [2]. Let us recall here the latter one.
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Example. Find all solutions f : R \ {0, 1} → R of the functional equation

f (t)+ f


t − 1

t


= 1 + t.

Proof. Set g1(t) = t, g2(t) = (t − 1)/t, g3(t) = 1/(1 − t) and compose the sides of the
equation above with g1, g2, g3, respectively. Since these functions generate a cyclic group,
we arrive at

f

g1(t)


+ f


g2(t)


= 1 + t

f

g2(t)


+ f


g3(t)


= (2t − 1)/t

f

g1(t)


+ f


g3(t)


= (2 − t)/t

with unknowns f

gk(t)


. Simple calculations show that the base determinant of the system

equals 2; hence, by Cramer’s Rule,

f (t) =
1
2


1 + t 1 0

(2t − 1)/t 1 1
(2 − t)/t 0 1

 =
t2

− 2t + 3
2t

.

A direct substitution into the original equation shows that f is indeed a solution. �

The method sketched above can also be applied in more general settings. Composing
both sides of (1) by the elements of the group, a system of nonlinear equations is
obtained where Φi = f ◦ gi play the role of unknowns. Then, under additional regularity
assumptions, the Implicit Function Theorem offers a possible approach to provide a
solution.

Such an approach is presented in [8] under the assumptions that the group is an Abelian
one and its elements have a common fixed point in the interior of the domain. However,
that paper concerns only a special case of (1). The general form of (1) is investigated in [9]
where the Abelian structure is omitted but stronger regularity is required. The assumption
on the existence of a common fixed point is also kept.

As we shall see, the required regularity properties of [8,9] turn out to be quite restrictive:
If the group elements have a common fixed point, then the group contains at most two
elements. On the other hand, there exist functions forming a group and having no common
fixed point. The aim of this paper is to handle these problems in a unified manner that
generalizes the previous results too. Our Main Theorem clarifies the connection of the
algebraic and analytic feature of the problem, contains the previous results as special cases,
and offers further applications.

In Section 2 we investigate the structure of the group G. The most important
consequence of these results justifies the required initial value conditions for (1): It turns
out that the number of conditions is determined by the structure of a stabilizer. The Main
Theorem is presented in Section 3. The proof can be split into two parts according to the
structure of the stabilizer. If the stabilizer is trivial, then the Implicit Function Theorem
gives a necessary condition for the representation of the solution. In this case, simply the
choice of the domain guarantees that this representation is indeed a solution.

If the stabilizer is nontrivial, the question of compatibility arises. It may occur that the
natural candidate for the solution (constructed by the Implicit Function Theorem) is only
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a relation but not a function. Assuming Lipschitz property on a suitable mapping, this
problem can be avoided. The key idea is as follows: If functions (which are the components
of the relation obtained) satisfy the same Cauchy problem possessing (local) uniqueness,
then the functions (locally) coincide. That is, the relation itself is in fact a function.

2. Preliminaries

The aim of this Section is to justify some assumptions of the Main Theorem. In
the investigations, the behavior of functions that form a group under the operation of
composition plays a crucial role. The subsequent propositions describe the most important
properties of group of functions.

If ∅ ≠ H ⊆ R, then we use the notation G (H) for a set of functions {gi : H →

H | i ∈ L} forming a group under composition, and say that G(H) is a group of functions
on H . Of course, on a set H several different, even non-isomorphic groups can exist, thus
the notation G(H) does not specify the group but rather only the domain of its elements.
It turns out that a finite group of monotonic functions has very simple structure.

Proposition 1. Let H ⊆ R be a nonempty set, G(H) be a group of strictly monotonic
functions. If G(H) is finite, then |G (H)| ≤ 2.

Proof. Let g ∈ G(H), g ≠ id be arbitrary (if such element exists). Let n be the order of g
and t ∈ I be an element such that g(t) ≠ t . We indirectly prove that g is not increasing. If
g is increasing and t < g (t), then composing this inequality by g several times yields to a
contradiction

t < g(t) < g2(t) < · · · < gn(t) = t,

where gk means the k-times iterative composition of g. If g is increasing and t > g(t), we
get a contradiction similarly. Thus an arbitrary nontrivial element of G(H) is decreasing.
Now, if g, h ∈ G(H), g ≠ id, h ≠ id, then g, g−1, h and h−1 are all decreasing. Then
g ◦ h−1 is increasing, hence g ◦ h−1

= id, yielding g = h. �

Note, that if H = I is an interval, then g ∈ G(H) is continuous if and only if g
is strictly monotonic. Hence the previous proposition immediately implies the following
simple result.

Proposition 2. Let I ⊆ R be an interval, G(I ) be a group of continuous functions. If G(I )
is finite, then |G (I )| ≤ 2.

In the Main Theorem, quite strong regularity properties are assumed on the elements
of G (H). A natural problem arises immediately, namely whether every finite group can
be represented as a group of (continuous or differentiable) functions over some open set
H ⊆ R. The answer to this question is positive.

Proposition 3. If G is a finite group, then there exists an open set H ⊆ R and a group of
C∞ functions G (H) such that G ≃ G (H).

Proof. It is enough to represent the symmetric group Sn for every n ∈ N, since every
subgroup of a representable group is representable, as well. Let I1, . . . , In ⊆ R be
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disjoint bounded open intervals and let H = ∪
n
i=1 Ii . Let hi, j : Ii → I j be the increasing

linear isomorphism between Ii and I j . For an arbitrary permutation π : {1, . . . , n} →

{1, . . . , n} let gπ : H → H be the function for which gπ (t) = hi,π(i) (t) whenever
t ∈ Ii . Then gπ ∈ C∞ (H) and G (H) = ({gπ | π ∈ Sn} , ◦) forms a group isomorphic
to Sn . �

This construction requires H to be the union of (at least) n intervals if n is the smallest
number such that G has an isomorphic copy in Sn . The minimum number of intervals
required can be decreased for certain finite groups. Let C2 = ({0, 1} ,+) be the two-
element group. For ε ∈ {0, 1} let hεi, j : Ii → I j the linear isomorphism between intervals
Ii and I j which is increasing if ε = 0 and decreasing if ε = 1. For every π ∈ Sn and every

w ∈ {0, 1}
n let gw,π : H → H be the function for which gw,π (t) = hw(i)i,π(i) (t) if t ∈ Ii .

Then gw,π ∈ C∞ (H) and K (H) =


gw,π | π ∈ Sn

, ◦


forms a group isomorphic to

the wreath product C2 ≀ Sn . This group is called the hyperoctahedral group, and is the
symmetry group of the n-dimensional cube (see e.g. [14] for more details). For example,
any subgroup of C2 ≀ S2 ≃ D4 can be represented on two bounded open intervals, or any
subgroup of C2 ≀ S3 ≃ C2 × S4 can be represented on three bounded open intervals. In
fact, on the union of n bounded open intervals C2 ≀ Sn is the maximal finite representable
group.

Proposition 4. Let I1, . . . , In ⊆ R be disjoint open intervals and H = ∪
n
i=1 Ii . If G (H)

is a finite group of continuous functions, then G (H) is isomorphic to a subgroup of C2 ≀Sn .

Proof. Let K (H) be the above mentioned representation of C2 ≀ Sn on H . Let g ∈ G (H)
be arbitrary, we prove that g ∈ K (H). As g is continuous, g−1


I j


is an open interval

for every 1 ≤ j ≤ n. Thus ∪
n
i=1 Ii = H = ∪

n
j=1 g−1


I j


are two partitioning of H

into n disjoint intervals. Hence there exists πg: {1, . . . , n} → {1, . . . , n} such that g|Ii

is an isomorphism between Ii and Iπg(i) for every 1 ≤ i ≤ n. Let hi, j : Ii → I j be
the increasing linear isomorphism between Ii and I j . Let h: H → H be the continuous
function for which h(t) = hi,πg(i)(t) whenever t ∈ Ii . Note that h ∈ K (H). Then g ◦ h−1

is a continuous function on Ii (for every 1 ≤ i ≤ n) of finite order. Thus by Proposition 1
the element g ◦ h−1 is either the increasing or the decreasing linear isomorphism on Ii for
every 1 ≤ i ≤ n, and hence g ◦h−1

∈ K (H). Composing by h we obtain g ∈ K (H). �

Note that by extending these functions as id on the interior of R \ H , one can have the
domain of the functions differ from R by only finitely many points. In particular, if n is the
smallest number for which G has an isomorphic copy in C2 ≀ Sn , then there exists a set of
C∞ functions G (H) on H = R \ {0, 1, . . . , n} isomorphic to G.

The last proposition of the Section plays a crucial role in the proof of the Main Theorem
in Section 3. It is known as the orbit-stabilizer theorem, and can be found in any textbook
on permutation groups (see e.g. [12, Theorem 1.4A]).

Proposition 5. Let H ⊆ R be a nonempty set, G(H) be a group of functions. Let ξ ∈ H be
arbitrary. Then Gξ (H) = {g ∈ G(H) | g(ξ) = ξ} is a subgroup of G(H). Consider the
left cosets of Gξ (H) in G(H). Then, the elements g and h of G(H) belong to the same
left coset if and only if g(ξ) = h(ξ).
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3. The main result

For our convenience, introduce the following concept. Assume G = {gi | i ∈ L} is an
arbitrary finite group. Define the operation ∗ on the L via the conventions i ∗ j = k if and
only if gi g j = gk holds. Then (L , ∗) is a group and ϕ : G → L given by ϕ(gi ) = i is an
isomorphism between the groups G and L . The inverse of i ∈ L is denoted by i−1.

For all i ∈ L , the mapping ψi : L → L defined by ψi ( j) = j ∗ i is an automorphism of
the group L . Let x ∈ R|L| be fixed. Then, x∗i stands for the vector whose j th component
is x j∗i . Since ψi is, in particular, a bijection, ∗i permutes the coordinates of vectors.

In what follows, G(H) stands for a finite set of functions defined on H that form a
group under the operation of composition. For a fixed ξ ∈ H , we assume that the stabilizer
Gξ (H) of ξ in G(H) has m elements and is given by

Gξ (H) = {gkn+1 | k = 0, . . . ,m − 1} .

As Proposition 5 shows, the stabilizer is a subgroup; let {g1, . . . , gn} be a representation
set of G(H) with respect to Gξ (H). Then, by Lagrange’s theorem, |G(H)| = mn.
Moreover, without loss of generality, we may assume that the elements of G(H) are
indexed according to the following table.

◦ g1 gn+1 · · · gkn+1 · · · g(m−1)n+1

g1 g1 gn+1 · · · gkn+1 · · · g(m−1)n+1
g2 g2 gn+2 · · · gkn+2 · · · g(m−1)n+2
...

...
...

. . .
...

. . .
...

gl gl gn+l · · · gkn+l · · · g(m−1)n+l
...

...
...

. . .
...

. . .
...

gn gn g2n · · · g(k+1)n · · · gmn

(2)

Evaluating all elements at ξ , the obtained values in a particular row coincide (that is, they
form a left coset of Gξ (H)) while the values in a particular column are pairwise distinct.
Moreover, we have

l ∗ (kn + 1) = kn + l (l = 1, . . . , n; k = 0, . . . ,m − 1).

In these settings, due to Proposition 5 again, gi (ξ) = g j (ξ) if and only if i ≡ j (mod n).
Hence if we require initial value conditions for the unknown f , then we have to take into
consideration the number of left cosets induced by the stabilizer: The number of conditions
must divide the order of the group G(H). Therefore, in the rest of the paper, (1) shall be
studied in the form

F( f ◦ g1(t), . . . , f ◦ gmn(t), t) = 0,

f ◦ gkn+l(ξ) = ηl .
(3)

As usual, if a matrix A is given, then ai, j denotes the common element of the i th row and
j th column. We shall use the notation Mr for the set of quadratic matrices of type r × r .
If A is a quadratic matrix and ∗i is a permutation on its type set, then A∗i stands for the
matrix which is obtained by permuting the rows and then the columns (or equivalently: the
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columns and then the rows) of A by ∗i . Similarly, if a vector B is given, then B∗i is given
as the vector arranged by the components of B by ∗i .

The main result of the paper is presented in the following theorem. In the proof, two
cases are distinguished according to the structure of the stabilizer. If Gξ (H) is trivial
(i.e., contains only the identity), then the Implicit Function Theorem guarantees the
existence of the solution. The simple fact that the group elements take pairwise distinct
values at ξ guarantees compatibility on a sufficiently small domain. If Gξ (H) is nontrivial,
then, different from the previous case, the compatibility cannot be guaranteed by the
construction. There will be part of the domain where the constructed candidate for the
solution is only a relation but not necessarily a function. However, under some Lipschitz
property, this problem can be avoided. The key idea is as follows: If functions (which
are the components of the relation obtained) satisfy the same Cauchy problem possessing
(local) uniqueness, then the functions (locally) coincide. That is, the relation itself is a
function, indeed. For technical details about the theorems applied, consult the books of
Rudin [21] and Chicone [11].

Theorem. Let H ⊆ R be a nonempty open subset, ξ ∈ H, and G(H) = {g1, . . . , gmn} be
a group of continuously differentiable functions such that gi (ξ) = g j (ξ) if and only if i ≡

j (mod n). Let η ∈ Rn, p = (η, . . . , η) ∈ Rmn and let F : Rmn
×R → R be a continuously

differentiable function such that F(p∗i , gi (ξ)) = 0 hold for all i = 1, . . . ,mn. Define the
mappings A: Rmn

→ Mmn and B: Rmn
→ Rmn by

A(x, t) :=

∂ j∗i−1 F(x∗i , gi (t))


,

B(x, t) :=

∂mn+1 F(x∗i , gi (t))g

′

i (t)


and assume that A is regular at (p, ξ). If either m = 1 or m ≥ 2 and the mapping
x → A−1 B(x, t) is Lipschitz in a neighborhood of (p, ξ) then there exist a G(H)-
invariant open set H0 ⊆ H containing ξ and a unique differentiable function f : H0 → R
satisfying (3).

Proof. By Proposition 5, the assumptions gi (ξ) = g j (ξ) if and only if i ≡ j (mod n)
imply that the stabilizer Gξ (H) is of order m. Therefore, without loss of generality
we may assume that the elements of G(H) are listed as in (2), where Gξ (H) =
g1, . . . , g(m−1)n+1


and the representation set of the left cosets of Gξ (H) in G(H) is

{g1, . . . , gn}. Let

Ψ(x, t) :=

F(x∗i , gi (t))


.

Then, Ψ : Rmn
×R → Rmn is continuously differentiable, and the properties F(p∗i , ξ) = 0

imply Ψ(p, ξ) = 0. Hence, the definition of the operation ∗ and the Chain Rule yield

D1Ψ(p, ξ) =

∂ j∗i−1 F(p∗i , gi (ξ))


= A(p, ξ).

The last term is nonsingular by assumption, hence the Implicit Function Theorem
guarantees the existence of a neighborhood U of (p, ξ), an open interval V containing
ξ and a continuously differentiable function Φ : V → Rmn such that (Φ(t), t) ∈ U for all
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t ∈ V , further Ψ(Φ(t), t) = 0 and Φ(ξ) = p are fulfilled. Let

H0 :=

n
l=1

m−1
k=0

gkn+l(V ).

Since gi (V ) = g−1
j (V ) for j = i−1 and the elements of G(H) are continuous, the sets

gi (V ) are open. If l ∈ {1, . . . , n} is fixed, then the properties gl(ξ) ∈ gkn+l(V ) ensure that
H0 is nonempty. The construction also guarantees that H0 is invariant under the action of
the elements of G(H). For simplicity we may assume that H0 has exactly n components,
that is, the sets ∩

m−1
k=0 gkn+l(V ) are pairwise disjoint for all j = 1, . . . , n.

Assume first that m = 1, that is, the stabilizer Gξ (H) is a trivial subgroup of G(H). For
simplicity we may assume also, that the neighborhood where A−1 exists and U coincide
(or else we can replace them by their nonempty intersection).

Define the function f : H0 → R by the formula f (t) := Φi ◦ g−1
i (t) for t ∈ gi (V ).

The structure of H0 guarantees that f is a function indeed; on the other hand, by the
construction, f is a solution of (3) on H0.

Assume now that m ≥ 2 and choose the neighborhood U such that A−1 B exists and is
continuous on U . The next goal is to verify the compatibility identities Φkn+l = Φl ◦gkn+1.
To do this, first we derive a differential equation for the function Φ satisfied on V . The sides
of the implicit equation Ψ


Φ(t), t


= 0 are continuously differentiable on V ; hence, after

differentiating and applying the Chain Rule on the components of the latter term, we obtain

0 =

mn
j=1

∂ j F(Φ∗i , gi )Φ′

j∗i + ∂mn+1 F(Φ∗i , gi )g
′

i

=

mn
j=1

∂ j∗i−1 F(Φ∗i , gi )Φ′

j + ∂mn+1 F(Φ∗i , gi )g
′

i .

Considering the definitions of the matrix A and the vector B, these equations reduce to the
first order implicit differential equation

A

Φ(t), t


Φ′(t)+ B


Φ(t), t


= 0. (4)

We shall prove, that the function Φ∗(kn+1)−1 ◦ gkn+1 satisfies the same differential
equation. Composing both sides of (4) by gkn+1 (which is allowed due to the construction
of H0), and then multiplying by g′

kn+1 we arrive at

A

Φ ◦ gkn+1, gkn+1


(Φ′

◦ gkn+1)g
′

kn+1 + B

Φ ◦ gkn+1, gkn+1


g′

kn+1 = 0. (5)

The Chain Rule yields

(Φ′
◦ gkn+1)g

′

kn+1 = (Φ ◦ gkn+1)
′
=


(Φ∗(kn+1)−1) ◦ gkn+1

′

∗(kn+1).

The i th component of the vector B∗(kn+1)

Φ∗(kn+1)−1 ◦ gkn+1, id


can be obtained in a

similar way, applying the Chain Rule again:

∂mn+1 F(Φ∗i∗(kn+1)−1∗(kn+1) ◦ gkn+1, gi∗(kn+1))g
′

i∗(kn+1)

= ∂mn+1 F(Φ∗i ◦ gkn+1, gi ◦ g)(gi ◦ gkn+1)
′

= ∂mn+1 F(Φ∗i ◦ gkn+1, gi ◦ g)(g′

i ◦ gkn+1)g
′

kn+1.
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That is,

B

Φ ◦ gkn+1, gkn+1


g′

kn+1 = B∗(kn+1)

Φ∗(kn+1)−1 ◦ gkn+1, id


. (6)

Finally, we determine the (i, j)-member of the matrix A∗(kn+1)

Φ∗(kn+1)−1 ◦ gkn+1, id


.

According to the associativity of the operation ∗,

∂( j∗(kn+1))∗(i∗(kn+1))−1 F(Φ∗i∗(kn+1)−1∗(kn+1) ◦ gkn+1, gi∗(kn+1))

= ∂ j∗i−1 F(Φ∗i ◦ gkn+1, gi ◦ gkn+1);

or equivalently,

A

Φ ◦ gkn+1, gkn+1


= A∗(kn+1)


Φ∗(kn+1)−1 ◦ gkn+1, id


. (7)

Substituting (6) and (7) into (5), we obtain that Φ∗(kn+1)−1 ◦ gkn+1 satisfies the differential
equation

0 = A∗(kn+1)

Φ∗(kn+1)−1 ◦ gkn+1, id


(Φ∗(kn+1)−1 ◦ gkn+1)

′

∗(kn+1)

+ B∗(kn+1)

Φ∗(kn+1)−1 ◦ gkn+1, id


.

Note that this equation can be derived from (4) by applying the permutation ∗(kn +1) thus
they are equivalent. That is, Φ∗(kn+1)−1 ◦ gkn+1 is a solution of differential equation (4).
On the other hand, Gξ (H) is a subgroup hence for every k ∈ {0, . . . ,m − 1} there exists
r ∈ {0, . . . ,m − 1} such that (kn + 1)−1

= rn + 1. Therefore, using the definition of p
and the table in (2), we have

Φ∗(kn+1)−1 ◦ gkn+1(ξ) = Φ∗(kn+1)−1(ξ) = p∗(rn+1) = p.

However, (4) can be written into the equivalent form Φ′(t) = −A−1 B(Φ(t), t) with the
initial value condition Φ(ξ) = p. The Global Existence and Uniqueness Theorem and the
calculations above guarantee that Φ = Φ∗(kn+1)−1 ◦ gkn+1 holds; in particular, comparing
the (kn + l)th components we get the desired compatibility properties

Φkn+l =

Φ∗(kn+1)−1 ◦ gkn+1


kn+l

= Φ(kn+l)∗(kn+1)−1 ◦ gkn+1 = Φl ◦ gkn+1.

To complete the proof, define the function f : H0 → R by f (t) := Φl ◦ g−1
kn+l(t)

provided that t ∈ ∩
m−1
k=0 gkn+l(V ). The compatibility properties above and the fact that a

particular component of H0 remains unchanged under the action of gkn+1 ensure that f is
well-defined. Moreover, the rows of the implicit equation Ψ


Φ(t), t


= 0 and the first row

of Ψ

Φ(ξ), ξ


= 0 show that (3) holds on H0, indeed. �

Observe, that the “existence” part of the Global Existence and Uniqueness Theorem
does not play any role in the proof. The main point is its “uniqueness” part for verifying
the compatibility equations. Hence the Lipschitz property can be changed to any suitable
one that guarantees a unique solution for a Cauchy problem. For such settings, one can
consult [17,23].

4. Special cases

In the rest of the paper, two applications are given. The first corollary concerns the
case when F is linear in its arguments except for the last one. In this setting, keeping the
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notations of the Main Theorem, the matrix A(x, t) depends only on its second variable. In
particular, the Lipschitz property of the mapping x → A(x, t) is straightforward.

In the second corollary, the form of (1) is nonlinear, but does not depend on the free
variable. This phenomenon is reflected in the fact that the matrix A(x, t) depends only on
the first variable.

Corollary 1. Let H ⊆ R be a nonempty open set, ξ ∈ H, and G(H) = {g1, . . . , gmn}

be a group of continuously differentiable functions such that gi (ξ) = g j (ξ) if and only
if i ≡ j (mod n). Let α1, . . . , αmn : H → R be continuous, h: H → R be continuously
differentiable functions and

D(t) :=

α j∗i−1 ◦ gi (t)


.

If D is regular at ξ , then there exist a G(H)-invariant open set H0 ⊆ H containing ξ and
a unique differentiable function f : H0 → R satisfying the functional equation

α1 f ◦ g1 + · · · + αmn f ◦ gmn = h.

Proof. Keeping the notations of the Main Theorem, let F(x1, . . . , xmn, t) :=
mn

k=1
αk(t)xk − h(t). Simple calculations show that A(x, t) = D(t) and hence the regularity
of A(x, t) at (p, ξ) means the regularity of D(t) at ξ . Since B(x, t) does not depend
on x , the mapping x → A−1 B(x, t) is constant and, in particular, is Lipschitz. Let
p := D−1(ξ)hg(ξ)where hg denotes the vector whose components are h◦g1, . . . , h◦gmn .
Then, the choice of p implies F(p∗i , gi (ξ)) = 0 since this is the i th equation of the linear
system D(ξ)p = hg(ξ). Finally we show that the coordinates of p are n-periodic. Let
k ∈ {0, . . . ,m − 1} be fixed. Then,

D∗(kn+1)(ξ)


i, j = α( j∗(kn+1))∗(i∗(kn+1))−1 ◦ gi∗(kn+1)(ξ) = α j∗i−1 ◦ gi (ξ)

= (D(ξ))i, j .

The middle equation holds since i and i ∗(kn+1) belong to the same coset of Gξ (H). That
is, D∗(kn+1)(ξ) = D(ξ). Similarly, (hg)∗(kn+1)(ξ) = hg(ξ). On the other hand, D(ξ)p =

hg(ξ) is equivalent to its arranged form D∗(kn+1)(ξ)p∗(kn+1) = (hg)∗(kn+1)(ξ) showing
that p and p∗(kn+1) solve simultaneously the same system. Therefore p = p∗(kn+1) as
it was desired. The assumptions of the Main Theorem are fulfilled hence the statement
follows. �

Corollary 2. Let H ⊆ R be a nonempty open set, ξ ∈ H, and G(H) = {g1, . . . , gmn}

be a group of continuously differentiable functions such that gi (ξ) = g j (ξ) if and only
if i ≡ j (mod n). Let η ∈ Rn, p = (η, . . . , η) ∈ Rmn and let F : Rmn

× R → R be a
continuously differentiable function such that F(p∗i ) = h ◦ gi (ξ) hold for all i =

1, . . . ,mn. Assume that the mapping D: Rmn
→ Mmn defined by

D(x) :=

∂ j∗i−1 F(x∗i )


is regular at p. If either m = 1 or m ≥ 2 and the mapping x → D(x) is Lipschitz in a
neighborhood of p, then there exist a G(H)-invariant open set H0 ⊆ H containing ξ and
a unique differentiable function f : H0 → R satisfying the conditions f ◦ gkn+l(ξ) = ηl



M. Bessenyei et al. / Expo. Math. 30 (2012) 283–294 293

and functional equation

F


f ◦ g1(t), . . . , f ◦ gmn(t)


= h(t).

Proof. Define G(x, t) := F(x) − h(t). Then, A(x, t) = D(x) and G(p∗k, ξ) = 0 if
and only if F(p∗k) = h(gk(ξ)) hold for all k = 1, . . . ,mn. The Lipschitz property of
x → A−1 B(x, t) is equivalent to that of x → D−1(x). Hence the assumptions of the Main
Theorem are satisfied, and the proof is completed. �

In fact, Corollary 1 remains true under much more general circumstances. Namely, if
D(t) is nonsingular on an arbitrary subset H of the reals, then the corresponding form of
(1) can be solved uniquely under considerably weaker regularity properties on the known
functions. An explicit representation for the solution can also be given via Cramer’s Rule.
This phenomenon can be traced through the motivating example of the present paper; for
precise details, consult [8]. However, the method using Cramer’s Rule is not applicable if
(1) is nonlinear. Note also that in Corollary 1 the assumptions F(p∗i , gi (ξ)) = 0 of the
Main Theorem turn out to be redundant.

Considering the second theorem of [8], its regularity properties are weaker but the
algebraic assumptions are stronger than in Corollary 2. The method presented here does
not rely on an Abelian structure; moreover, the existence of a common fixed point is also
dropped. Of course, the special setting n = 1 of the Main Theorem reduces to main result
of [9]. Similarly, Corollaries 1 and 2 generalize the corollaries of [9]. For further examples,
both in the linear and in the nonlinear cases, see [8,9]. Those who are interested in the basic
results of functional equations should look at [1,15].
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(OTKA) Grants NK-81402 and by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project
implemented through the New Hungary Development Plan co-financed by the European
Social Fund, and the European Regional Development Fund.

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, in: Mathematics in Science and
Engineering, vol. 19, Academic Press, New York, London, 1966.

[2] G.L. Alexanderson, L.F. Klosinski, L.C. Larson, The William Lowell Putnam Mathematical
Competition/Problems and Solutions: 1965–1984, The Mathematical Association of America, Washington,
2004.

[3] Ch. Babbage, An essay towards a calculus of functions I, Philos. Trans. 105 (1815) 389–423.
[4] Ch. Babbage, An essay towards a calculus of functions II, Philos. Trans. 106 (1816) 179–256.
[5] Ch. Babbage, Observations on the analogy which subsists between the calculus of functions and the other

branches of analysis, Philos. Trans. 107 (1817) 197–216.



294 M. Bessenyei et al. / Expo. Math. 30 (2012) 283–294

[6] Ch. Babbage, Solutions of some problems by means of the calculus of functions, J. Sci. 2 (1817) 371–379.
[7] Ch. Babbage, Observations on the notation employed in the calculus of functions, Trans. Camb. Phil. Soc.

1 (1822) 63–76.
[8] M. Bessenyei, Functional equations and finite groups of substitutions, Amer. Math. Monthly 117 (10) (2010)

921–927.
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