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Let H = F(v) @ G(w) denote the graph obtained from F and G by identifying 
vertices v of F and w of G; H will be said to be obtained by surgery on F and G. 
A matching of a graph is a collection of edges, no two of which are incident 
with the same vertex. This paper presents a constructive characterization of the 
set Sk (k > 2) of trees which have at least k disjoint maximum matchings. There 
are three types of surgery such that, for each k > 2, Sk is the set of all trees 
obtainable from a star KI,n (n > k) by a finite sequence of the specified surgical 
operations. A constructive characterization is also given for trees with two dis- 
joint maximum independent vertex sets. 

1. INTRODUCTION 

Given a (finite, undirected) graph G, a matching is a collection of edges 
which are independent, that is, no two of them are incident with the same 
vertex. A maximal matching is one which is not a proper subset of any other 
matching. PI(G) denotes the number of edges in a maximum matching, that 
is, a maximal matching with the largest number of edges possible. In Fig: I, 
{(2, 3), (4, 5)} and {(I, 2), (3, 4)} are disjoint maximal matchings, and {(l, 2), 
(4, 5), (3, 6)} is the only maximum matching. 

9 
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FIG. 1. A graph with two disjoint maximal matchings. 

In [I] Cockayne and Hedetniemi have given a characterization of those 
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trees which do not have two or more disjoint maximal matchings, and in [3] 
Hartnell has initiated a study of unicyclic graphs with disjoint maximal 
matchings. In this paper, a constructive characterization of the set of trees 
with k (k > 2) or more disjoint maximum matchings is presented. 

If T is a tree (a connected, acyclic graph) containing vertex P, then a 
branch of T at v is a maximal subtree containing v as an endpoint. A path 
on n vertices, denoted Pn , is a tree with exactly two endpoints; a star on n + 1 
vertices (n > 2), denoted KIPn , is a tree with n endpoints. A branch at v 
which is a path will be called a branch path at v. It is easy to see that in a 
tree T with at least one vertex u of degree at least three (i.e., deg(u) > 3), 
there is at least one vertex v, with deg(v) > 3, such that v has at least two 
branch paths, and, in fact, there is a vertex v with deg(r) > 3 such that 
at most one branch at v is not a path. lf v1 , vZ ,..., V~ , v~+~ is a path in T 
in T wit&ui adjacent to vd+r for all i < n and with degr(vl) = 1, degr(vZ) = 
. . . = degr(un) = 2, then a1 ,..., V~ , z?~+~ will be called a tail of length n. 
Note that degr(vn+J is unrestricted. 

Let V(G) and E(G) denote the vertex and edge sets of graph G, respectively. 
Let u and w be specified vertices in graphs F and G, respectively. Then 
H = F(u) @ G(W) will denote the graph obtained from F and G by identifying 
vertices u and W. That is, letting x be a vertex not in F’(F) or V(G), one has 
V(H) = (V(F) - {u}) u (V(G) - {w}) u {x} and E(H) = E(F - u) u E(G - w) 
u {XU 1 VU E E(F) or wu G E(G)}. Graph H will be said to be obtained by 
surgery on F and G. 

Let Sk (k > 2) denote the set of trees which have at least k disjoint 
maximum matchings. It will be shown that there are three types of surgery 
such that, for each k > 2, T is in Sk if and only if T can be obtained from a 
star KI,n (n > k) by a finite sequence of the specified surgical operations. 
The case for k = 2 will be handled in Section 2, and k > 3 will be done in 
Section 3. 

A collection of vertices is called independent if no two are incident with 
the same edge (that is, no two are adjacent). It will be shown in Section 4 
that there is one type of surgery such that tree T has two disjoint maximum 
independent vertex sets if and only if T can be obtained from P2 by a finite 
sequence of surgical operations of that type. 

2. TREES WITH Two DISJOINT MAXIMUM MATCHINGS 

LEMMA I. Zf a tree T has a tail vI , v2 , v3 , v4 of length three, then T has 
at most two disjoint maximum matchings. Furthermore, T has two disjoint 
maximum matchings zy and onIy $ T - {vI , VJ does. 

ProoJ If M is a matching without edges vZvl or v+~ , then M u {vZvl} 
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is also a matching. Thus every maximum matching contains an edge incident 
with ~1~ . Since deg(uz) = 2, there are at most two disjoint maximum 
matchings. 

It is clear that &(T) = /I1(T - {O 1 , ZJ~}) + 1. Given disjoint maximum 
matchings iI4r and iVz for T (that is, disjoint sets each with /II(T) independent 
edges), one can assume ~~0~ E Mr . Now Mr - vlvz and Mz - vzva are 
disjoint sets in T - {vi , uzj, each with PI(T) - 1 independent edges. Thus 
T - {vi , vz} has two disjoint maximum matchings. Given disjoint maximum 
matchings Ml and Mz for T - {v r , v~}, one can assume that vav4 # Mz . 
Now Mr u {VIVA} and Mz u {v~Q} are disjoint maximum matchings for T. 1 

Since the subgraph induced by {vi , vz , v~) is Klpz , one can write T as 
U-- lo 1 , vz})(vJ @ K&v3). In general, let H be called obtainable from G 
by Kl,z-surgery if H can be written as G(v) @K&w) where u and w are 
endpoints of G and Kl,z , respectively. It is clear that path Pk has t&i disjoint 
maximum matchings if and only if there are an even number of edges, that 
is, k is odd (k > 3). Thus a path has two disjoint maximum matchings 
if and only if it can be obtained from Kl,z (that is, P3) by a finite sequence of 
K1,z-surgeries. 

Now suppose T is a tree (with a vertex of degree at least three) in which 
there is no tail of length three. Let w be a vertex of degree at least three which 
has at least two branch paths. 

LEMMA 2. If w has three or more branch paths with exactly two edges, 
then T does not have two disjoint maximum matchings. 

ProoJ Suppose or, uz, w and vl, vz, w and x1, x2, w are tails as in 
Fig. 2. Let M be a maximum matching. Since 44 contains edges incident 

“1 

FIG. 2. Substructure at a vertex with three branch paths of length two. 

with uz , vz , and x2 and has at most one edge incident with W, then M con- 
tains at least two of the edges ulug , vlvz , and x1x2 . As this is true for any 
maximum matching, T does not have two disjoint maximum matchings. 1 
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LEMMA 3. If w has a branch path with exactly two edges and another 
with exactly one edge, then T does not have two disjoint maximum matchings. 

ProoJ Suppose q, uz, w and v, w are tails as in Fig. 3. Let A4 be a 
maximum matching. If U~U~ # M, then uzw E A4, VW $ M, and no other edge 
incident with w is in M. If M’ = M + uluz + WV - U~W, then W is a larger 
matching than M. This contradiction implies that uluz is in every maximum 
matching, and T cannot have two disjoint maximum matchings. 1 

FIG. 3. Substructure at a vertex with branch paths of length one and two. 

Vertex w (deg(w) > 3) can be selected so that at most one branch is not 
a path. If one branch is not a path, let x be the vertex adjacent to w on that 
branch. If T has two disjoint maximum matchings (and, by assumption, 
has no tail of length three), then, by Lemmas 2 and 3, either every branch 
path from w is of length one or there are exactly two branch paths and each 
is of length two. 

Note that if T is a star K1,n (n > 2) then T has n disjoint maximum 
matchings. 

LEMMA 4. If ‘tree T is not a star, deg(w) = d > 3, and w has d - 1 
branch paths, wuI , wu2 ,..., wuamI , each of length one, then T has two disjoint 
maximum matchings ~yand only ty T - {w, uI , u2 ,..., udeI} does. 

Since every maximum matching of T has exactly one edge incident with w, 
the proof of Lemma 4 is like the proof of Lemma 1. Note that one can write T 
as (T - {w, ul ,..., u~-~})(x) @ &(x). In general, let H be called obtainable 
from G by K&-surgery if H = G(x) @ K1,n(~) where v is an endpoint of 
Klan and x may be any vertex of G. 

LEMMA 5. If T is a tree, deg(w) = 3, w has exactly two branch paths 
of length two (say uI , u2 , w and vI , v2 , w) and deg(x) = 2 where x is the 
third vertex adjacent to w, then T does not have two disjoint maximum 
matchings. 

Proo$ Let y be the other vertex adjacent to x (Fig. 4, j = 1). Let A4 
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be a maximum matching. If xy is not in M, then xw, u1u2 , and v1v2 are in A’; 
if xy is in M, then at least one of u1u2 and v1v2 is in A4. So at least two of the 
three edges xy, u1u2 , and ~~~~~~ are in M. The same is true of any 
other maximum matching, which therefore cannot be disjoint from h4. 1 

FIG. 4. Structure at a vertex with two branch paths of length two. 

%p= w ul , u2 , 4 , and v2 are as in Lemma 5 with deg(x) = j + 1 > 3 
(as in Fig. 4). If T’ = T - {q , u2 , v1 , ZJ~ , W} has a maximum matching 
with no edge incident with x, then PI(T) = /$(T’) + 3, and every maximum 
matching of T contains xw, zq2, and ~ZJ~ . It follows that T having two 
disjoint maximum matchings implies that ,&(T) = &(T- {Us, u2, ul, v2 WI) + 2, 
and one easily obtains the next lemma. 

LEMMA 6. If T is as in Fig. 4 with j > 2, then T has two disjoint maximum 
matchings if and only if tree T’ = T - {ul , us , v1 , vz , w} has two disjoint 
maximum matchings and every maximum matching of T has an edge incident 
with x. 

COROLLARY 6. I. If T is as in Fig. 4 with j > 2 and $at Ieast one yi atiacent 
to x is an endpoint, then T has two disjoint maximum matchings $and only ty 
T - hl , u2 , vl , v2 , 4 &es. 1 

COROLLARY 6.2. If T is as in Fig. 4 and there is a yi a@‘jacent to x such that 
deg( yJ = 2, yi is adjacent to x and y, and deg( y) = I, then T does not have 
two disjoint maximum matchings. 

Proof. Suppose T has two disjoint maximum matchings. By Lemma 6, 
T - h > u2,01, ~2 , 4 h as a maximum matching A4 which does not 
include yiy. It therefore includes ydx, and hence no other edge incident 
with x. Then M + yiy - yiX is an independent set of edges in T - {ul , u2 , 
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01 3 vz, w] with as many edges as A4 and no edge incident with x. This 
contradicts Lemma 6. 1 

Let Z2 be the graph with V(Z& = {q , Us, vl, vz, w, x} and ,Y(ZJ = 
lW2 , U~W, vlvz , VOW, wx}. If T is as in Corollary 6.1, then T = (T - 
h 3 02 7 WY 24 1 , Us}) @ Z2(x). In general, let H be said to be obtainable 
from G by Z2-.surger.r if H can be written as G(v) @ Z2(x) where x is the 
endpoint of Z2 adjacent to the vertex of degree three and v is a vertex which 
is adjacent to an endpoint of G. 

Assume T’ is a tree (not a path or star) with two disjoint maximum 
matchings, and assume there is not a tree T such that T’ can be obtained 
from T by K1,2-surgery or by K&- surgery for any n > 3. (See Lemmas I 
and 4.) Now every vertex w of Y, with deg(w) = d > 3 and at most one 
branch which is not a path, must have d = 3 and exactly two branch paths, 
each of which has length two. Let w1 , w2 ,..., We be a listing of all such w’s 
in T’. and let yi be the graph consisting of We and its two branch paths. 
(Each yi is a P6 .) Also, let xi be the vertex adjacent to We which is not in yi . 
The xi’s may not be distinct, as in Fig. 5 where x1 = x2 = x3 = x. 

FIG. 5. A tree for which Tl is an isolated vertex. 

From Lemma 5 one has deg(xJ > 3 for 1 < i < t. By assumption, 
T’ has no branch paths of length three, and by Corollary 6.2 there are no 
branch paths at an xi of length two. To show that T’ is obtainable from 
some T’ - y< by Z2-surgery for some i (1 < i < t), it suffices to show that 
some xi is adjacent to an endpoint of T’. 

Since deg(xJ > 3 and there are no branch paths at xi of length two, 
xi # lJicl V(yj). Letting Ti = T’ and Ti = TipI - yi , it is easy to see that 
each Ti is a tree (1 < i < t). In particular, Ti is a tree. If an x$ of degree 
zero remains (that is, xi = x2 = .+. = X~ , as in Fig. 5), then pl(T’) = 2t + 1 
and any maximum matching will use both edges incident with endpoints 
from some yi . Since any maximum matching uses at least one edge of yi 
incident with an endpoint, there cannot be two disjoint maximum matchings. 
Thus deg(q) > 1 in Ti . 
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LEMMA 7. If T’ is as described above, then at least one xi is adjacent to 
an endpoint. 

ProoJ Assume no xi is adjacent to an endpoint. One now has that 
every branch of T’ from each xi contains a vertex of degree at least three. 
It will first be shown that some xi (I < i < t) has degree one in Ti . Select 
a value jl (1 <jl < t). If deg(xJ > 2 in Ti , then let pi and p: be vertices 
of Tl which are adjacent to xi1 . On the branch Bl of T’ at xjl which contains 
pi there is a vertex of degree at least three in T’. This implies that Bl contains 
a We (i # jl), and p: E Tl implies that PV~ is not adjacent to xjl . Now one can 
select xfz on B1 with j2 # jl. lf deg(xJ > 2 in Ti , then let pi and pi be 
vertices of Ti which are adjacent to x~~ . One can assume that the branch Bz 
of T’ at xjz which contains pi does not contain xjl . Repeating the above 
argument, one obtains xjs on Bz with xjs # xji and xjz # xjz . Iterating, 
one obtains a sequence of distinct vertices xjl, xjz , xj3 ,... . Since T’ is 
finite, some xjk must have degree one in Ti . 

Select i such that xi has degree one in Ti , and let y be the vertex of Tl 
adjacent to xi (as in Fig. 6). Let A4 be a maximum matching of T’ which 
does not contain edge JJX~ . (One exists since T is assumed to have two 

FIG. 6. Structure at an xi of degree one in Ti. 

disjoint maximum matchings.) Let deg&) = k + 1 in Y (k > 1). In the 
component of T’ - yxi containing xi , kt has 2k + 1 edges, two of which 
are adjacent to endpoints in one Ye, where xiwij E M. Since any maximum 
matching uses at least one of these two edges, there cannot be two disjoint 
maximum matchings. 

This contradiction shows that at least one xi is adjacent to an endpoint. a 

THEOREM 8. A tree T has two disjoint maximum matchings if and only l$ T 
can be obtainedfiom a star Kl,m (f or some m > 2) by a finite sequence of the 
following operations: 

(11 IG,ewv, 
(2) K&-surgery (n > 3), and 

(3) Z+urgery. 
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ProoJ Star KI,m has m > 2 disjoint maximum matchings. By Lemmas 1 
and 4 and Corollary 6.1, each operation produces a tree with at least two 
disjoint maximum matchings. 

Conversely, assume T has two disjoint maximum matchings. If T is a 
path w P2n+l , then T can be obtained from KI,2 by n - 1 K1,z-surgeries. 
If T has exactly one vertex of degree at least three, say deg(u) = d 2 3, 
then using Lemmas 2 and 3 one can see that T is obtainable from KI,d by a 
sequence of K1,s-surgeries. 

Employing induction on the number of vertices of T, assume T is a tree 
with p vertices and any tree with at most p - 1 vertices which has two 
disjoint maximum matchings can be obtained by a suitable sequence of 
operations. Suppose T has at least two vertices of degree at least three. 
One may assume that T cannot be obtained from another tree T* with two 
disjoint maximum matchings by K1,z-surgery or K&-surgery or else, applying 
the induction hypothesis to T*, it is clear that T can be obtained from a 
star by a suitable sequence of operations. Applying Lemma 7, one obtains 
tree T* such that T = T*(xJ @ &(xJ. By Corollary 6.1, T*, and hence T, 
can be obtained from a star by a suitable sequence of operations. i 

3. TREES WITH k DISJOINT MAXIMUM MATCHINGS 

For k > 2, the set of trees which have at least k disjoint maximum 
matchings will be denoted by Sk . For k > 3, if tree T has a tail of length 
at least two then, by the first paragraph in the proof of Lemma I, T q! Sk . 
Such trees will be excluded for the balance of this section, and it will be 
assumed that k > 3. Note that a star KI,n is in Sk if and only if n > k. 

Suppose T is a tree with at least two vertices that have degree at least 
three. Let w be a vertex with deg(w) > 3 for which all but one of its branches 
are tails. (Each tail is necessarily of length one.) Since w is adjacent to an 
endpoint, each maximum matching must have an edge incident with w. 
Thus deg(w) < k - 1 implies T $ Sk . Letting z+ , Us ,..., Us be the endpoints 
adjacent to w, it is easy to show that PI(T) = /II(T - {w, uI ,..., ut}) + 1. 
Let v be the vertex which is adjacent to w and which is not an endpoint. 
One easily obtains the following two lemmas. 

LEMMA 9. If deg(w) = k (rhuf is, ? = k - 1) and deg(v) < k, then T 
/zas k disjoint maximum matchings tyand o&y if T - {w, uI , u2 ,..., u,+~} does. 

LEMMA 10. If deg(w) > k + 1, then T has k disjoint maximum matchings 
if and only zy T - {w, uI ,..., Us} does. 

Let H be called obtainable from G by KI,k-surgery if H can be written as 
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G(U) @ KIek(x) where x is an endpoint of KI,k and deg(u) < k - 1 in G. 
Recall that H is said to be obtainable from G by K&-surgery if H = 
G(z7) @ K&x) where x is an endpoint of KL,n and z’ is any vertex of G. 

Define a k-constellation, denoted X,c , to be the graph obtained from k 
copies of the star Kl,k by identifying one endpoint of each star. For example, 
X2 = P6 . Xk is as in Fig. 7. Call the vertex of distance two from all the 

FIG. 7. The k-constelIation X* . 

endpoints the base vertex of Xk . Note that ,8r(Xk) = k, and Xk 6 Sk. 
Furthermore, in any collection MI, Mz ,..., Mk of k disjoint maximum 
matchings of Xk, each Mi must contain an edge incident with the base 
vertex. 

Let Zk be the graph obtained from Xk by adding another vertex of degree 
one adjacent to the base vertex. fiI(Zk) = k + I, and Zk $ Sz . 

Let H be said to be obtainable from G by Zk-surgery if H can be written 
as G(y) @ Zk(x) where x is the endpoint of Zk adjacent to the base vertex 
and y is a vertex of G which is adjacent to an endpoint. 

LEMMA 11. Suppose tree T = T’(y) @ Zk(x) where Xk is the k-constelIa- 
tion with base vertex v contained in Zk . (Note that deg(v) = k + 1 in Zk , 
and y is the vertex not in .Yk which is adjacent to v.) If y is adjacent to an 
endpoint s, then T c Sk of and only $ T’ = T - Xk E Sk . 

Proox As y is adjacent to endpoint s, each maximum matching of 
T- Xk contains an edge incident with y. This implies PI(T) < pl(T- XJ + k. 
Assume MI , iVz ,..., Mk are disjoint maximum matchings for T - Xk . 
Since one has MI ,..., Mk and Xk E Sk , one easily obtains k disjoint matchings 
of T, each with pl(T - X,J + k elements. Thus T E Sk . 

Conversely, assume disjoint maximum matchings MI , Mz ,..., kfk for T. 
Assume one A4i contains edge cy, say vy E MI . Then VW~ $ MI (1 < i < k). 
Since deg(wJ = k, each VW~ must appear in one Mj where 2 <j < k. This 
would imply two edges incident with v are in one Mj . Thus vy 6 M; 
(1 < i < k). This implies fil(T - X,J > /$(T) - k. Removing all edges of 
Xk from each Mj , one obtains k disjoint maximum matchings for T - Xk . 1 
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THEOREM 12. Tree T E & if and only &f T can be obtainedfrom a star KI,m 
(for some m > k) by a$nite sequence of the following operations; 

C 11 IG ,k-sqwx 

(2) K&-surgery (n > k + l), and 

(3) Zk-urgery. 

ProoJ By Lemmas 9-11 each operation will produce a tree with at 
least k disjoint maximum matchings. 

Conversely, assume T is a tree with k disjoint maximum matchings, 
namely, ikfr , MS ,..., Mk . Since T has no tails of length two, T is not a 
path, and if T has exactly one vertex of degree at least three, then T is a 
star KI,m with m > k. 

We proceed by induction on the number of vertices of i? Suppose T 
has at least two vertices of degree at least three, and assume that T cannot 
be obtained from another tree by K1,k-surgery or Kcm-surgery (m > k). 
Let w1 , wz ,..., We be the vertices with degree at least three for which all but 
one of the branches are tails (of length one), and let Q be the vertex which 
is not an endpoint and which is adjacent to We . (The Q’S may not be distinct.) 
By assumption, each w$ has degree exactly k, and each vi has degree at least 
k + 1. Letting Li be the set of vertices containing We and each endpoint 
adjacent to We, one has vi $ Lj (I <j < t). 

Consider the tree F = T - lJisl Li . If one vi were adjacent to k + 1 
or more w~‘s, say w1 , wz ,..., We (s > k + l), then since deg(wJ = k each 
edge viwj (I < j < s) must appear in one Mk . This would imply that some kffi 
contains two edges incident with vi. Thus each vi is adjacent to at most k 
of the w~‘s. This implies F has more than one vertex. If F were a Pz , then the 
edge of F would appear in every maximum matching. 

Also, F has no tail of length two, for suppose z+, ~4~ , Us is a tail. Since 
k > 3, at least one Mi does not contain edges Z+U~ or u+~, say M1 . If iW1 
has an edge incident with Us, label it ei (i = 1 or 2). As Mr is maximum, 
MI has at least one of e1 and es . Suppose e1 = ulwil and ez = UNWON are 
in MI . Let ei and ei be other edges incident with iVi1 and wiz , respectively. 
Now MI + ei + ei - er - eg + U~ZQ would be a larger matching than MI . 
Suppose er = ulwil E MI and no edge incident with uz is in kfr . Let el be 
another edge incident with wil , and Zkfr + ei - er + ZJ~U~ would be a larger 
matching than MI . Thus there is not a tail of length two, and F is not a path. 

Select a vertex y in F of degree /z + I > 3 with y adjacent to x1 , x2 ,..., xk 
and y’ where xi is an endpoint of F(1 < i < h, h > 2). Now F is as in Fig. 8, 
where the dashed lines indicate edges in T but not F. 

If endpoint xi of F is not an endpoint of T, then xi is adjacent to some We , 
that is, xi = q for some j, I < j < t. As has been shown, deg(xi) = deg(vj) > 
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k + I and .x< is adjacent to at most k w~‘s. This implies that deg(xJ = k + I 
and X~ is the base vertex of a k-constellation, Xki. 

At least one xi is an endpoint of T, for suppose there exists an Xki for 
each i, 1 < i < IL As in Fig. 8, let b be the number of W~‘S adjacent to y. 
Select an Md (1 < d < k) which does not contain edge y’y. In the compo- 
nent of T - y’y contaming y there are hk + I + b edges of Md . One can 
obtain this many independent edges only if Md has an edge of the form y.x; 

xh - 

FIG. 8, Substructure at vertex y of graph F. 

for some i, 1 < i < h. As each edge of Xki incident with .x~ appears in one Mi , 
each Mj must contain one of these edges, so that h4d would contain two 
edges incident with xi . Thus one can assume x1 is an endpoint of T. 

Now b = 0, for suppose b > 1. Since deg(wJ = k, in some Mi the edge 
incident with q would have to be ywI ; say this &fi is MX . L,et el be an 
edge incident with wr other than ywI . Now MI + q + yxr - y~r would 
be a matching with more edges than Ml . 

Since b = 0, if each xi (1 < i < h) is an endpoint of T, then y would be a 
Wj for some j, I <j < t, but y E F implies y # wj for any j. Suppose xti is 
a base vertex of k-constellation Xkh. 

The maximal subgraph with V(Xkh) u {y} as vertex set is a Zk , and 
T = (T - Xhh)(y) @ Zk(y) where vertex y in Zk is the endpoint adjacent 
t0 the base Vertex &, , and vertex y in T - Xkh is adjacent to endpoint xr . 
Using Lemma 11 and the induction hypothesis, the theorem is proved. 1 

4. PARAMETERS OTHER THAN /?I 

lie edge independence number, fir(G), is the maximum number of edges 
in an independent set; the uertex independence number, PO(G), is the maximum 
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number of vertices in an independent set (no two of the vertices are adjacent); 
the vertex covering number, a,,(G) is the minimum number of vertices in a set S 
such that every edge is incident with at least one vertex in S; the edge covering 
number, al(G), is the minimum number of edges in a set S such that every 
vertex is incident with at least one edge in S. Gallai [2] has shown that 
cq, + PO = p = aI + /II for any nontrivial connected graph where JJ is the 
number of vertices. 

Since each edge of tree T incident with an endpoint must be in every 
q-set, no tree has two disjoint al-sets. For maximum independent sets of 
vertices, that is, /$,-sets, one easily derives the next two lemmas which can 
be used to prove the following theorem. 

LEMMA 13. Zf x1 , x2 , x3 is a tail of tree T, then T has two disjoint maximum 
independent vertex sets tf and only of T - x1 - x2 does. 

LEMMA 14. Zf x is a vertex of tree T and x is adjacent to two endpoints, 
then T does not have two disjoint maximum independent vertex sets. 

THEOREM 15. A tree T has two disjoint maximum independent vertex 
sets tf and only if T can be obtained from P2 by a finite sequence of K&C 
surgeries. 

COROLLARY 15.1. A tree T has two disjoint maximum independent vertex 
sets if and only if it has a l-factor. 

COROLLARY 15.2. A tree T has two disjoint minimum vertex covering 
sets if and only tf T can be obtainedfrom P2 by ajinite sequence of K&-surgeries. 

Proof lf T has two disjoint &sets and is obtainable from tree T’ by 
a K&- surgery, then T has exactly two more vertices than T’. Label them 
u and v where u is adjacent to vertex w E V(r). By induction on the number 
of vertices in trees with two disjoint PO sets, it can be assumed that V(Y) = 
Si u Si where Si and Sk are disjoint /$,-sets. Assume w g Si . Now Sr = 
S’ u {v} and Sz = Si u {uj are disjoint &sets of T with V(T) = SI u S2 . 
Each & (i = 1 or 2) is an q-set since it is the complement in V(T) of a &set. 
If AI and A2 are a!,,-sets in graph G and u $ AI and u $ A2 , then every vertex 
adjacent to u is in AI n A2 . Thus, if a graph G has two disjoint aqsets, 
AI and AZ, then V(G) = AI u AZ, and G has two disjoint &-sets. (The 
complement of an a,,-set is a &set.) This implies that a tree has two disjoint 
&sets if and only if it has two disjoint aO-sets. N 

Let v be an endpoint of tree T with v adjacent to w. Any &set (respectively, 
aO-set) which does not contain w must contain v. Thus no tree contains 
three or more disjoint &sets (respectively, qrsets). 
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