JOURNAL OF COMBINATORIAL THEORY, Series B 25, 326-338 (1978)

A Constructive Characterization of Trees with at Least k Disjoint Maximum Matchings

Peter J. Slater*

Applied Mathematics Division 5641, Sandia Laboratories, Albuquerque, New Mexico 87185

Communicated by the Editors

Received July 15, 1975

Let $H = F(v) \oplus G(w)$ denote the graph obtained from F and G by identifying vertices v of F and w of G; H will be said to be obtained by surgery on F and G. A matching of a graph is a collection of edges, no two of which are incident with the same vertex. This paper presents a constructive characterization of the set S_k ($k \ge 2$) of trees which have at least k disjoint maximum matchings. There are three types of surgery such that, for each $k \ge 2$, S_k is the set of all trees obtainable from a star $K_{1,n}$ ($n \ge k$) by a finite sequence of the specified surgical operations. A constructive characterization is also given for trees with two disjoint maximum independent vertex sets.

1. INTRODUCTION

Given a (finite, undirected) graph G, a matching is a collection of edges which are independent, that is, no two of them are incident with the same vertex. A maximal matching is one which is not a proper subset of any other matching. $\beta_1(G)$ denotes the number of edges in a maximum matching, that is, a maximal matching with the largest number of edges possible. In Fig. 1, {(2, 3), (4, 5)} and {(1, 2), (3, 4)} are disjoint maximal matchings, and {(1, 2), (4, 5), (3, 6)} is the only maximum matching.

FIG. 1. A graph with two disjoint maximal matchings.

In [1] Cockayne and Hedetniemi have given a characterization of those

* This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C., 20234. trees which do not have two or more disjoint maximal matchings, and in [3] Hartnell has initiated a study of unicyclic graphs with disjoint maximal matchings. In this paper, a constructive characterization of the set of trees with k ($k \ge 2$) or more disjoint maximum matchings is presented.

If T is a *tree* (a connected, acyclic graph) containing vertex v, then a *branch* of T at v is a maximal subtree containing v as an endpoint. A *path* on n vertices, denoted P_n , is a tree with exactly two endpoints; a *star* on n + 1 vertices $(n \ge 2)$, denoted $K_{1,n}$, is a tree with n endpoints. A branch at v which is a path will be called a *branch path* at v. It is easy to see that in a tree T with at least one vertex u of degree at least three (i.e., $\deg(u) \ge 3$), there is at least one vertex v, with $\deg(v) \ge 3$, such that v has at least two branch paths, and, in fact, there is a vertex v with $\deg(v) \ge 3$ such that r is a path in T in T with v_i adjacent to v_{i+1} for all $i \le n$ and with $\deg_T(v_1) = 1$, $\deg_T(v_2) = \cdots = \deg_T(v_n) = 2$, then $v_1, ..., v_n, v_{n+1}$ will be called a *tail* of length n. Note that $\deg_T(v_{n+1})$ is unrestricted.

Let V(G) and E(G) denote the vertex and edge sets of graph G, respectively. Let v and w be specified vertices in graphs F and G, respectively. Then $H = F(v) \oplus G(w)$ will denote the graph obtained from F and G by identifying vertices v and w. That is, letting x be a vertex not in V(F) or V(G), one has $V(H) = (V(F) - \{v\}) \cup (V(G) - \{w\}) \cup \{x\}$ and $E(H) = E(F - v) \cup E(G - w)$ $\cup \{xu \mid vu \in E(F) \text{ or } wu \in E(G)\}$. Graph H will be said to be obtained by surgery on F and G.

Let S_k $(k \ge 2)$ denote the set of trees which have at least k disjoint maximum matchings. It will be shown that there are three types of surgery such that, for each $k \ge 2$, T is in S_k if and only if T can be obtained from a star $K_{1,n}$ $(n \ge k)$ by a finite sequence of the specified surgical operations. The case for k = 2 will be handled in Section 2, and $k \ge 3$ will be done in Section 3.

A collection of vertices is called *independent* if no two are incident with the same edge (that is, no two are adjacent). It will be shown in Section 4 that there is one type of surgery such that tree T has two disjoint maximum independent vertex sets if and only if T can be obtained from P_2 by a finite sequence of surgical operations of that type.

2. TREES WITH TWO DISJOINT MAXIMUM MATCHINGS

LEMMA 1. If a tree T has a tail v_1 , v_2 , v_3 , v_4 of length three, then T has at most two disjoint maximum matchings. Furthermore, T has two disjoint maximum matchings if and only if $T - \{v_1, v_2\}$ does.

Proof. If M is a matching without edges v_2v_1 or v_2v_3 , then $M \cup \{v_2v_1\}$

is also a matching. Thus every maximum matching contains an edge incident with v_2 . Since $deg(v_2) = 2$, there are at most two disjoint maximum matchings.

It is clear that $\beta_1(T) = \beta_1(T - \{v_1, v_2\}) + 1$. Given disjoint maximum matchings M_1 and M_2 for T (that is, disjoint sets each with $\beta_1(T)$ independent edges), one can assume $v_1v_2 \in M_1$. Now $M_1 - v_1v_2$ and $M_2 - v_2v_3$ are disjoint sets in $T - \{v_1, v_2\}$, each with $\beta_1(T) - 1$ independent edges. Thus $T - \{v_1, v_2\}$ has two disjoint maximum matchings. Given disjoint maximum matchings M_1 and M_2 for $T - \{v_1, v_2\}$, one can assume that $v_3v_4 \notin M_2$. Now $M_1 \cup \{v_1v_2\}$ and $M_2 \cup \{v_2v_3\}$ are disjoint maximum matchings for T.

Since the subgraph induced by $\{v_1, v_2, v_3\}$ is $K_{1,2}$, one can write T as $(T - \{v_1, v_2\})(v_3) \oplus K_{1,2}(v_3)$. In general, let H be called obtainable from G by $K_{1,2}$ -surgery if H can be written as $G(v) \oplus K_{1,2}(w)$ where v and w are endpoints of G and $K_{1,2}$, respectively. It is clear that path P_k has two disjoint maximum matchings if and only if there are an even number of edges, that is, k is odd ($k \ge 3$). Thus a path has two disjoint maximum matchings if and only if it can be obtained from $K_{1,2}$ (that is, P_3) by a finite sequence of $K_{1,2}$ -surgeries.

Now suppose T is a tree (with a vertex of degree at least three) in which there is no tail of length three. Let w be a vertex of degree at least three which has at least two branch paths.

LEMMA 2. If w has three or more branch paths with exactly two edges, then T does not have two disjoint maximum matchings.

Proof. Suppose u_1 , u_2 , w and v_1 , v_2 , w and x_1 , x_2 , w are tails as in Fig. 2. Let M be a maximum matching. Since M contains edges incident

FIG. 2. Substructure at a vertex with three branch paths of length two.

with u_2 , v_2 , and x_2 and has at most one edge incident with w, then M contains at least two of the edges u_1u_2 , v_1v_2 , and x_1x_2 . As this is true for any maximum matching, T does not have two disjoint maximum matchings.

LEMMA 3. If w has a branch path with exactly two edges and another with exactly one edge, then T does not have two disjoint maximum matchings.

Proof. Suppose u_1 , u_2 , w and v, w are tails as in Fig. 3. Let M be a maximum matching. If $u_1u_2 \notin M$, then $u_2w \in M$, $vw \notin M$, and no other edge incident with w is in M. If $M' = M + u_1u_2 + wv - u_2w$, then M' is a larger matching than M. This contradiction implies that u_1u_2 is in every maximum matching, and T cannot have two disjoint maximum matchings.

FIG. 3. Substructure at a vertex with branch paths of length one and two.

Vertex w (deg(w) ≥ 3) can be selected so that at most one branch is not a path. If one branch is not a path, let x be the vertex adjacent to w on that branch. If T has two disjoint maximum matchings (and, by assumption, has no tail of length three), then, by Lemmas 2 and 3, either every branch path from w is of length one or there are exactly two branch paths and each is of length two.

Note that if T is a star $K_{1,n}$ $(n \ge 2)$, then T has n disjoint maximum matchings.

LEMMA 4. If tree T is not a star, $deg(w) = d \ge 3$, and w has d - 1 branch paths, wu_1 , wu_2 ,..., wu_{d-1} , each of length one, then T has two disjoint maximum matchings if and only if $T - \{w, u_1, u_2, ..., u_{d-1}\}$ does.

Since every maximum matching of T has exactly one edge incident with w, the proof of Lemma 4 is like the proof of Lemma 1. Note that one can write T as $(T - \{w, u_1, ..., u_{d-1}\})(x) \oplus K_{1,d}(x)$. In general, let H be called obtainable from G by $K_{1,n}^*$ -surgery if $H = G(x) \oplus K_{1,n}(v)$ where v is an endpoint of $K_{1,n}$ and x may be any vertex of G.

LEMMA 5. If T is a tree, deg(w) = 3, w has exactly two branch paths of length two (say u_1 , u_2 , w and v_1 , v_2 , w) and deg(x) = 2 where x is the third vertex adjacent to w, then T does not have two disjoint maximum matchings.

Proof. Let y be the other vertex adjacent to x (Fig. 4, j = 1). Let M

be a maximum matching. If xy is not in M, then xw, u_1u_2 , and v_1v_2 are in M; if xy is in M, then at least one of u_1u_2 and v_1v_2 is in M. So at least two of the three edges xy, u_1u_2 , and v_1v_2 are in M. The same is true of any other maximum matching, which therefore cannot be disjoint from M.

FIG. 4. Structure at a vertex with two branch paths of length two.

Suppose w, u_1 , u_2 , v_1 , and v_2 are as in Lemma 5 with deg $(x) = j + 1 \ge 3$ (as in Fig. 4). If $T' = T - \{u_1, u_2, v_1, v_2, w\}$ has a maximum matching with no edge incident with x, then $\beta_1(T) = \beta_1(T') + 3$, and every maximum matching of T contains xw, u_1u_2 , and v_1v_2 . It follows that T having two disjoint maximum matchings implies that $\beta_1(T) = \beta_1(T - \{u_1, u_2, v_1, v_2w\}) + 2$, and one easily obtains the next lemma.

LEMMA 6. If T is as in Fig. 4 with $j \ge 2$, then T has two disjoint maximum matchings if and only if tree $T' = T - \{u_1, u_2, v_1, v_2, w\}$ has two disjoint maximum matchings and every maximum matching of T' has an edge incident with x.

COROLLARY 6.1. If T is as in Fig. 4 with $j \ge 2$ and if at least one y_i adjacent to x is an endpoint, then T has two disjoint maximum matchings if and only if $T - \{u_1, u_2, v_1, v_2, w\}$ does.

COROLLARY 6.2. If T is as in Fig. 4 and there is a y_i adjacent to x such that $deg(y_i) = 2$, y_i is adjacent to x and y, and deg(y) = 1, then T does not have two disjoint maximum matchings.

Proof. Suppose T has two disjoint maximum matchings. By Lemma 6, $T - \{u_1, u_2, v_1, v_2, w\}$ has a maximum matching M which does not include $y_i y$. It therefore includes $y_i x$, and hence no other edge incident with x. Then $M + y_i y - y_i x$ is an independent set of edges in $T - \{u_1, u_2, v_1, v_2, w\}$

 v_1 , v_2 , w} with as many edges as M and no edge incident with x. This contradicts Lemma 6.

Let Z_2 be the graph with $V(Z_2) = \{u_1, u_2, v_1, v_2, w, x\}$ and $E(Z_2) = \{u_1u_2, u_2w, v_1v_2, v_2w, wx\}$. If T is as in Corollary 6.1, then $T = (T - \{v_1, v_2, w, u_1, u_2\})(x) \oplus Z_2(x)$. In general, let H be said to be obtainable from G by Z_2 -surgery if H can be written as $G(v) \oplus Z_2(x)$ where x is the endpoint of Z_2 adjacent to the vertex of degree three and v is a vertex which is adjacent to an endpoint of G.

Assume T' is a tree (not a path or star) with two disjoint maximum matchings, and assume there is not a tree T such that T' can be obtained from T by $K_{1,2}$ -surgery or by $K_{1,n}^*$ -surgery for any $n \ge 3$. (See Lemmas 1 and 4.) Now every vertex w of T', with deg(w) = $d \ge 3$ and at most one branch which is not a path, must have d = 3 and exactly two branch paths, each of which has length two. Let $w_1, w_2, ..., w_t$ be a listing of all such w's in T'. and let γ_i be the graph consisting of w_i and its two branch paths. (Each γ_i is a P_5 .) Also, let x_i be the vertex adjacent to w_i which is not in γ_i . The x_i 's may not be distinct, as in Fig. 5 where $x_1 = x_2 = x_3 = x$.

FIG. 5. A tree for which T'_t is an isolated vertex.

From Lemma 5 one has $\deg(x_i) \ge 3$ for $1 \le i \le t$. By assumption, T' has no branch paths of length three, and by Corollary 6.2 there are no branch paths at an x_i of length two. To show that T' is obtainable from some $T' - \gamma_i$ by Z_2 -surgery for some i $(1 \le i \le t)$, it suffices to show that some x_i is adjacent to an endpoint of T'.

Since deg $(x_i) \ge 3$ and there are no branch paths at x_i of length two, $x_i \notin \bigcup_{j=1}^t V(\gamma_j)$. Letting $T'_0 = T'$ and $T'_i = T'_{i-1} - \gamma_i$, it is easy to see that each T'_i is a tree $(1 \le i \le t)$. In particular, T'_t is a tree. If an x_i of degree zero remains (that is, $x_1 = x_2 = \cdots = x_t$, as in Fig. 5), then $\beta_1(T') = 2t + 1$ and any maximum matching will use both edges incident with endpoints from some γ_i . Since any maximum matching uses at least one edge of γ_i incident with an endpoint, there cannot be two disjoint maximum matchings. Thus deg $(x_i) \ge 1$ in T'_t .

LEMMA 7. If T' is as described above, then at least one x_i is adjacent to an endpoint.

Proof. Assume no x_i is adjacent to an endpoint. One now has that every branch of T' from each x_i contains a vertex of degree at least three. It will first be shown that some x_i $(1 \le i \le t)$ has degree one in T'_t . Select a value j1 $(1 \le j1 \le t)$. If deg $(x_{j1}) \ge 2$ in T'_t , then let p'_1 and p''_1 be vertices of T'_t which are adjacent to x_{j1} . On the branch B_1 of T' at x_{j1} which contains p''_1 there is a vertex of degree at least three in T'. This implies that B_1 contains a w_i $(i \ne j1)$, and $p''_1 \in T'_t$ implies that w_i is not adjacent to x_{j1} . Now one can select x_{j2} on B_1 with $j2 \ne j1$. If deg $(x_{j2}) \ge 2$ in T'_t , then let p'_2 and p''_1 be vertices of T'_t which are adjacent to x_{j2} . One can assume that the branch B_2 of T' at x_{j2} which contains p''_2 does not contain x_{j1} . Repeating the above argument, one obtains x_{j3} on B_2 with $x_{j3} \ne x_{j1}$ and $x_{j3} \ne x_{j2}$. Iterating, one obtains a sequence of distinct vertices x_{j1} , x_{j2} , x_{j3} ,.... Since T' is finite, some x_{jk} must have degree one in T'_t .

Select *i* such that x_i has degree one in T'_t , and let *y* be the vertex of T'_t adjacent to x_i (as in Fig. 6). Let *M* be a maximum matching of *T'* which does not contain edge yx_i . (One exists since *T'* is assumed to have two

FIG. 6. Structure at an x'_t of degree one in T'_i .

disjoint maximum matchings.) Let $deg(x_i) = k + 1$ in T' $(k \ge 1)$. In the component of $T' - yx_i$ containing x_i , M has 2k + 1 edges, two of which are adjacent to endpoints in one γ_{i_j} where $x_i w_{i_j} \in M$. Since any maximum matching uses at least one of these two edges, there cannot be two disjoint maximum matchings.

This contradiction shows that at least one x_i is adjacent to an endpoint.

THEOREM 8. A tree T has two disjoint maximum matchings if and only if T can be obtained from a star $K_{1,m}$ (for some $m \ge 2$) by a finite sequence of the following operations:

- (1) $K_{1,2}$ -surgery,
- (2) $K_{1,n}^*$ -surgery $(n \ge 3)$, and
- (3) Z_2 -surgery.

Proof. Star $K_{1,m}$ has $m \ge 2$ disjoint maximum matchings. By Lemmas 1 and 4 and Corollary 6.1, each operation produces a tree with at least two disjoint maximum matchings.

Conversely, assume T has two disjoint maximum matchings. If T is a path, say P_{2n+1} , then T can be obtained from $K_{1,2}$ by n-1 $K_{1,2}$ -surgeries. If T has exactly one vertex of degree at least three, say deg $(v) = d \ge 3$, then using Lemmas 2 and 3 one can see that T is obtainable from $K_{1,d}$ by a sequence of $K_{1,2}$ -surgeries.

Employing induction on the number of vertices of T, assume T is a tree with p vertices and any tree with at most p-1 vertices which has two disjoint maximum matchings can be obtained by a suitable sequence of operations. Suppose T has at least two vertices of degree at least three. One may assume that T cannot be obtained from another tree T^* with two disjoint maximum matchings by $K_{1,2}$ -surgery or $K_{1,n}^*$ -surgery or else, applying the induction hypothesis to T^* , it is clear that T can be obtained from a star by a suitable sequence of operations. Applying Lemma 7, one obtains tree T^* such that $T = T^*(x_i) \oplus Z_2(x_i)$. By Corollary 6.1, T^* , and hence T, can be obtained from a star by a suitable sequence of operations.

3. Trees with k Disjoint Maximum Matchings

For $k \ge 2$, the set of trees which have at least k disjoint maximum matchings will be denoted by S_k . For $k \ge 3$, if tree T has a tail of length at least two then, by the first paragraph in the proof of Lemma 1, $T \notin S_k$. Such trees will be excluded for the balance of this section, and it will be assumed that $k \ge 3$. Note that a star $K_{1,n}$ is in S_k if and only if $n \ge k$.

Suppose T is a tree with at least two vertices that have degree at least three. Let w be a vertex with deg(w) ≥ 3 for which all but one of its branches are tails. (Each tail is necessarily of length one.) Since w is adjacent to an endpoint, each maximum matching must have an edge incident with w. Thus deg(w) $\leq k - 1$ implies $T \notin S_k$. Letting $u_1, u_2, ..., u_t$ be the endpoints adjacent to w, it is easy to show that $\beta_1(T) = \beta_1(T - \{w, u_1, ..., u_t\}) + 1$. Let v be the vertex which is adjacent to w and which is not an endpoint. One easily obtains the following two lemmas.

LEMMA 9. If deg(w) = k (that is, t = k - 1) and deg(v) $\leq k$, then T has k disjoint maximum matchings if and only if $T - \{w, u_1, u_2, ..., u_{k-1}\}$ does.

LEMMA 10. If deg(w) $\ge k + 1$, then T has k disjoint maximum matchings if and only if $T - \{w, u_1, ..., u_t\}$ does.

Let H be called obtainable from G by $K_{1,k}$ -surgery if H can be written as

 $G(v) \oplus K_{1,k}(x)$ where x is an endpoint of $K_{1,k}$ and $\deg(v) \leq k - 1$ in G. Recall that H is said to be obtainable from G by $K_{1,n}^*$ -surgery if $H = G(v) \oplus K_{1,n}(x)$ where x is an endpoint of $K_{l,n}$ and v is any vertex of G.

Define a *k*-constellation, denoted X_k , to be the graph obtained from *k* copies of the star $K_{1,k}$ by identifying one endpoint of each star. For example, $X_2 = P_5$. X_k is as in Fig. 7. Call the vertex of distance two from all the

FIG. 7. The k-constellation X_k .

endpoints the base vertex of X_k . Note that $\beta_1(X_k) = k$, and $X_k \in S_k$. Furthermore, in any collection M_1 , M_2 ,..., M_k of k disjoint maximum matchings of X_k , each M_i must contain an edge incident with the base vertex.

Let Z_k be the graph obtained from X_k by adding another vertex of degree one adjacent to the base vertex. $\beta_1(Z_k) = k + 1$, and $Z_k \notin S_2$.

Let *H* be said to be obtainable from *G* by Z_k -surgery if *H* can be written as $G(y) \oplus Z_k(x)$ where x is the endpoint of Z_k adjacent to the base vertex and y is a vertex of *G* which is adjacent to an endpoint.

LEMMA 11. Suppose tree $T = T'(y) \oplus Z_k(x)$ where X_k is the k-constellation with base vertex v contained in Z_k . (Note that $\deg(v) = k + 1$ in Z_k , and y is the vertex not in X_k which is adjacent to v.) If y is adjacent to an endpoint s, then $T \in S_k$ if and only if $T' = T - X_k \in S_k$.

Proof. As y is adjacent to endpoint s, each maximum matching of $T - X_k$ contains an edge incident with y. This implies $\beta_1(T) \leq \beta_1(T - X_k) + k$. Assume $M_1, M_2, ..., M_k$ are disjoint maximum matchings for $T - X_k$. Since one has $M_1, ..., M_k$ and $X_k \in S_k$, one easily obtains k disjoint matchings of T, each with $\beta_1(T - X_k) + k$ elements. Thus $T \in S_k$.

Conversely, assume disjoint maximum matchings M_1 , M_2 ,..., M_k for T. Assume one M_i contains edge vy, say $vy \in M_1$. Then $vw_i \notin M_1$ $(1 \le i \le k)$. Since $deg(w_i) = k$, each vw_i must appear in one M_j where $2 \le j \le k$. This would imply two edges incident with v are in one M_j . Thus $vy \notin M_i$ $(1 \le i \le k)$. This implies $\beta_1(T - X_k) \ge \beta_1(T) - k$. Removing all edges of X_k from each M_i , one obtains k disjoint maximum matchings for $T - X_k$. THEOREM 12. Tree $T \in S_k$ if and only if T can be obtained from a star $K_{1,m}$ (for some $m \ge k$) by a finite sequence of the following operations:

- (1) $K_{1,k}$ -surgery,
- (2) $K_{1,n}^*$ -surgery $(n \ge k + 1)$, and
- (3) Z_k -surgery.

Proof. By Lemmas 9–11 each operation will produce a tree with at least k disjoint maximum matchings.

Conversely, assume T is a tree with k disjoint maximum matchings, namely, M_1 , M_2 ,..., M_k . Since T has no tails of length two, T is not a path, and if T has exactly one vertex of degree at least three, then T is a star $K_{1,m}$ with $m \ge k$.

We proceed by induction on the number of vertices of T. Suppose T has at least two vertices of degree at least three, and assume that T cannot be obtained from another tree by $K_{1,k}$ -surgery or $K_{1,m}^*$ -surgery (m > k). Let $w_1, w_2, ..., w_t$ be the vertices with degree at least three for which all but one of the branches are tails (of length one), and let v_i be the vertex which is not an endpoint and which is adjacent to w_i . (The v_i 's may not be distinct.) By assumption, each w_i has degree exactly k, and each v_i has degree at least k + 1. Letting L_i be the set of vertices containing w_i and each endpoint adjacent to w_i , one has $v_i \notin L_j$ $(1 \le j \le t)$.

Consider the tree $F = T - \bigcup_{i=1}^{t} L_i$. If one v_i were adjacent to k + 1 or more w_j 's, say w_1 , w_2 ,..., w_s $(s \ge k + 1)$, then since $\deg(w_j) = k$ each edge $v_i w_j$ $(1 \le j \le s)$ must appear in one M_h . This would imply that some M_h contains two edges incident with v_i . Thus each v_i is adjacent to at most k of the w_j 's. This implies F has more than one vertex. If F were a P_2 , then the edge of F would appear in every maximum matching.

Also, F has no tail of length two, for suppose u_1 , u_2 , u_3 is a tail. Since $k \ge 3$, at least one M_i does not contain edges u_1u_2 or u_2u_3 , say M_1 . If M_1 has an edge incident with u_i , label it e_i (i = 1 or 2). As M_1 is maximum, M_1 has at least one of e_1 and e_2 . Suppose $e_1 = u_1w_{i1}$ and $e_2 = u_2w_{i2}$ are in M_1 . Let e'_1 and e'_2 be other edges incident with w_{i1} and w_{i2} , respectively. Now $M_1 + e'_1 + e'_2 - e_1 - e_2 + u_1u_2$ would be a larger matching than M_1 . Suppose $e_1 = u_1w_{i1} \in M_1$ and no edge incident with u_2 is in M_1 . Let e'_1 be another edge incident with w_{i1} , and $M_1 + e'_1 - e_1 + u_1u_2$ would be a larger matching than M_1 .

Select a vertex y in F of degree $h + 1 \ge 3$ with y adjacent to $x_1, x_2, ..., x_h$ and y' where x_i is an endpoint of $F(1 \le i \le h, h \ge 2)$. Now F is as in Fig. 8, where the dashed lines indicate edges in T but not F.

If endpoint x_i of F is not an endpoint of T, then x_i is adjacent to some w_j , that is, $x_i = v_j$ for some $j, 1 \le j \le t$. As has been shown, $\deg(x_i) = \deg(v_j) \ge$

k + 1 and x_i is adjacent to at most k w_i 's. This implies that $deg(x_i) = k + 1$ and x_i is the base vertex of a k-constellation, X_k^i .

At least one x_i is an endpoint of T, for suppose there exists an X_k^i for each i, $1 \le i \le h$. As in Fig. 8, let b be the number of w_i 's adjacent to y. Select an M_d ($1 \le d \le k$) which does not contain edge y'y. In the component of T - y'y containing y there are hk + 1 + b edges of M_d . One can obtain this many independent edges only if M_d has an edge of the form yx_i

FIG. 8. Substructure at vertex y of graph F.

for some $i, 1 \le i \le h$. As each edge of X_k^i incident with x_i appears in one M_j , each M_j must contain one of these edges, so that M_d would contain two edges incident with x_i . Thus one can assume x_1 is an endpoint of T.

Now b = 0, for suppose $b \ge 1$. Since deg $(w_1) = k$, in some M_i the edge incident with w_1 would have to be yw_1 ; say this M_i is M_1 . Let e_1 be an edge incident with w_1 other than yw_1 . Now $M_1 + e_1 + yx_1 - yw_1$ would be a matching with more edges than M_1 .

Since b = 0, if each x_i $(1 \le i \le h)$ is an endpoint of T, then y would be a w_j for some j, $1 \le j \le t$, but $y \in F$ implies $y \ne w_j$ for any j. Suppose x_h is a base vertex of k-constellation X_k^h .

The maximal subgraph with $V(X_k^h) \cup \{y\}$ as vertex set is a Z_k , and $T = (T - X_k^h)(y) \oplus Z_k(y)$ where vertex y in Z_k is the endpoint adjacent to the base vertex x_h , and vertex y in $T - X_k^h$ is adjacent to endpoint x_1 . Using Lemma 11 and the induction hypothesis, the theorem is proved.

4. PARAMETERS OTHER THAN β_1

The edge independence number, $\beta_1(G)$, is the maximum number of edges in an independent set; the vertex independence number, $\beta_0(G)$, is the maximum number of vertices in an independent set (no two of the vertices are adjacent); the vertex covering number, $\alpha_0(G)$ is the minimum number of vertices in a set S such that every edge is incident with at least one vertex in S; the edge covering number, $\alpha_1(G)$, is the minimum number of edges in a set S such that every vertex is incident with at least one edge in S. Gallai [2] has shown that $\alpha_0 + \beta_0 = p = \alpha_1 + \beta_1$ for any nontrivial connected graph where p is the number of vertices.

Since each edge of tree T incident with an endpoint must be in every α_1 -set, no tree has two disjoint α_1 -sets. For maximum independent sets of vertices, that is, β_0 -sets, one easily derives the next two lemmas which can be used to prove the following theorem.

LEMMA 13. If x_1 , x_2 , x_3 is a tail of tree T, then T has two disjoint maximum independent vertex sets if and only if $T - x_1 - x_2$ does.

LEMMA 14. If x is a vertex of tree T and x is adjacent to two endpoints, then T does not have two disjoint maximum independent vertex sets.

THEOREM 15. A tree T has two disjoint maximum independent vertex sets if and only if T can be obtained from P_2 by a finite sequence of $K_{1,2}^*$ -surgeries.

COROLLARY 15.1. A tree T has two disjoint maximum independent vertex sets if and only if it has a 1-factor.

COROLLARY 15.2. A tree T has two disjoint minimum vertex covering sets if and only if T can be obtained from P_2 by a finite sequence of $K_{1,2}^*$ -surgeries.

Proof. If T has two disjoint β_0 -sets and is obtainable from tree T' by a $K_{1,2}^*$ -surgery, then T has exactly two more vertices than T'. Label them u and v where u is adjacent to vertex $w \in V(T')$. By induction on the number of vertices in trees with two disjoint β_0 sets, it can be assumed that V(T') = $S'_1 \cup S'_2$ where S'_1 and S'_2 are disjoint β_0 -sets. Assume $w \in S'_i$. Now $S_1 =$ $S' \cup \{v\}$ and $S_2 = S'_2 \cup \{u\}$ are disjoint β_0 -sets of T with $V(T) = S_1 \cup S_2$. Each S_i (i = 1 or 2) is an α_0 -set since it is the complement in V(T) of a β_0 -set. If A_1 and A_2 are α_0 -sets in graph G and $u \notin A_1$ and $u \notin A_2$, then every vertex adjacent to u is in $A_1 \cap A_2$. Thus, if a graph G has two disjoint α_0 -sets. (The complement of an α_0 -set is a β_0 -set.) This implies that a tree has two disjoint β_0 -sets if and only if it has two disjoint α_0 -sets.

Let v be an endpoint of tree T with v adjacent to w. Any β_0 -set (respectively, α_0 -set) which does not contain w must contain v. Thus no tree contains three or more disjoint β_0 -sets (respectively, α_0 -sets).

PETER J. SLATER

References

- 1. E. J. COCKAYNE AND S. T. HEDETNIEMI, Which trees have no two disjoint matchings?, Utilitas Math. 9 (1976), 329-337.
- 2. T. GALLAI, "Uber extreme Punkt und Kantenmengen," Ann. Univ. Sci. Budapest. Eotvos Sect. Math. (1959), 133-139.
- 3. B. L. HARTNELL, On Unicyclic Graphs Having Two Disjoint Maximal Matchings, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory and Computing, February, 1975, 405–413.