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Let H = F(v) ® G(w) denote the graph obtained from F and G by identifying
vertices v of F and w of G; H will be said to be obtained by surgery on F and G.
A matching of a graph is a collection of edges, no two of which are incident
with the same vertex. This paper presents a constructive characterization of the
set S, (k > 2) of trees which have at least & disjoint maximum matchings. There
are three types of surgery such that, for each k > 2, S, is the set of all trees
obtainable from a star K, ,, (» > k) by a finite sequence of the specified surgical
operations. A constructive characterization is also given for trees with two dis-
joint maximum independent vertex sets.

1. INTRODUCTION

Given a (finite, undirected) graph G, a matching is a collection of edges
which are independent, that is, no two of them are incident with the same
vertex. A maximal matching is one which is not a proper subset of any other
matching. 8,(G) denotes the number of edges in a maximum matching, that
is, a maximal matching with the largest number of edges possible. In Fig. 1,
{2, 3), (4, 5)} and {(1, 2), (3, 4)} are disjoint maximal matchings, and {(1, 2),
(4, 5), (3, 6)} is the only maximum matching.
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Fig. 1. A graph with two disjoint maximal matchings.

In [1] Cockayne and Hedetniemi have given a characterization of those
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trees which do not have two or more disjoint maximal matchings, and in [3]
Hartnell has initiated a study of unicyclic graphs with disjoint maximal
matchings. In this paper, a constructive characterization of the set of trees
with k (k > 2) or more disjoint maximum matchings is presented.

If T is a tree (a2 connected, acyclic graph) containing vertex v, then a
branch of T at v is a maximal subtree containing v as an endpoint. A path
on n vertices, denoted P, , is a tree with exactly two endpoints; a staronn -+ 1
vertices (n > 2), denoted K, , is a tree with » endpoints. A branch at v
which is a path will be called a branch path at v. It is easy to see that in a
tree T with at least one vertex u of degree at least three (i.e., deg(u) > 3),
there is at least one vertex v, with deg(v) >= 3, such that v has at least two
branch paths, and, in fact, there is a vertex v with deg(r) > 3 such that
at most one branch at v is not a path. If ¢, , v5,...,0,,0,,; IS a path in T
inT witl;vz- adjacent to v, for all i < n and with deg;(v,) = 1, deg(vy) =
-+ = degr(v,) = 2, then vy,..., v, , vy, Will be called a rail of length n.
Note that deg,(v,,) is unrestricted.

Let V(G) and E(G) denote the vertex and edge sets of graph G, respectively.
Let v and w be specified vertices in graphs F and G, respectively. Then
H = F(v) @ G(w) will denote the graph obtained from F and G by identifying
vertices v and w. That is, letting x be a vertex not in V(F) or V(G), one has
V(H) = (V(F)— {vD) v (V(G) — {(w)) U {x}and E(H) = E(F — v) U E(G — w)
U {xu | vu € E(F) or wue E(G)}. Graph H will be said to be obtained by
surgery on F and G.

Let Sy (k > 2) denote the set of trees which have at least & disjoint
maximum matchings. It will be shown that there are three types of surgery
such that, for each k£ > 2, T'is in S}, if and only if T can be obtained from a
star K, ,, (n > k) by a finite sequence of the specified surgical operations.
The case for £ = 2 will be handled in Section 2, and k& > 3 will be done in
Section 3.

A collection of vertices is called independent if no two are incident with
the same edge (that is, no two are adjacent). It will be shown in Section 4
that there is one type of surgery such that tree 7 has two disjoint maximum
independent vertex sets if and only if T can be obtained from P, by a finite
sequence of surgical operations of that type.

2. TRees wWiITH Two DIsioINT MAXIMUM MATCHINGS

LemMMmA 1. Ifatree T has a tail vy, vy, v5, vy of length three, then T has
at most two disjoint maximum matchings. Furthermore, T has two disjoint
maximum matchings if and only if T — {v, , vy} does.

Proof. If M is a matching without edges v,v, or vy, then M U {v,v,}
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is also a matching. Thus every maximum matching contains an edge incident
with v,. Since deg(v,) = 2, there are at most two disjoint maximum
matchings.

It is clear that By(T) = BT — {v,, v5}) + 1. Given disjoint maximum
matchings M, and M, for T (that is, disjoint sets each with B,(7) independent
edges), one can assume vv,€ M;. Now M; — vjv, and M, — v,v; are
disjoint sets in T — {v,, vy}, each with 8,(7) — 1 independent edges. Thus
T — {v, , vy} has two disjoint maximum matchings. Given disjoint maximum
matchings M, and M, for T — {v,, vy}, one can assume that vsv, ¢ M, .
Now M; U {r,0,} and M, U {v,v5} are disjoint maximum matchings for 7. |

Since the subgraph induced by {v;, vy, v5} is K;,, one can write T as
(T — {vy, v5})(v5) ® K, o(vs). In general, let H be called obtainable from G
by K, g-surgery if H can be written as G(v) @ K, o(w) where v and w are
endpoints of G and K, , , respectively. It is clear that path P, has twh disjoint
maximum matchings if and only if there are an even number of edges, that
is, k is odd (k = 3). Thus a path has two disjoint maximum matchings
if and only if it can be obtained from Kj , (that is, P;) by a finite sequence of
K, s-surgeries.

Now suppose 7T is a tree (with a vertex of degree at least three) in which
there is no tail of length three. Let w be a vertex of degree at least three which
has at least two branch paths.

LemmA 2. If w has three or more branch paths with exactly two edges,
then T does not have two disjoint maximum matchings.

Proof. Suppose u;, u,, w and v;, vy, w and x;, x,, w are tails as in
Fig. 2. Let M be a maximum matching. Since M contains edges incident

FiG. 2. Substructure at a vertex with three branch paths of length two.

with u, , v,, and x, and has at most one edge incident with w, then M con-
tains at least two of the edges uu, , v,v,, and x;x, . As this is true for any
maximum matching, T does not have two disjoint maximum matchings. [



TREES WITH k DISIOINT MATCHINGS 329

LEMMA 3. If w has a branch path with exactly two edges and another
with exactly one edge, then T does not have two disjoint maximum matchings.

Proof. Suppose u, , u,, w and v, w are tails as in Fig. 3. Let M be a
maximum matching. If uu, ¢ M, then u,w € M, vw ¢ M, and no other edge
incident with wis in M. If M’ = M + wu, -+ wo — u,w, then M’ is a larger
matching than M. This contradiction implies that w,u, is in every maximum
matching, and T cannot have two disjoint maximum matchings. ||

Fic. 3. Substructure at a vertex with branch paths of length one and two.

Vertex w (deg(w) > 3) can be selected so that at most one branch is not
a path. If one branch is not a path, let x be the vertex adjacent to w on that
branch. If T has two disjoint maximum matchings (and, by assumption,
has no tail of length three), then, by Lemmas 2 and 3, either every branch
path from w is of length one or there are exactly two branch paths and each
is of length two.

Note that if T is a star K, , (n > 2), then T has n disjoint maximum
matchings.

LEMMA 4. If tree T is not a star, deg(w) =d =3, and w has d — 1
branch paths, wu; , Wi ,..., Wiz_y , each of length one, then T has two disjoint
maximum matchings if and only if T — {w, u; , u, ,..., Uz_} does.

Since every maximum matching of T has exactly one edge incident with w,
the proof of Lemma 4 is like the proof of Lemma 1. Note that one can write T
as (T — {w, ty ,..., ug_1})(x) @ K, 4(x). In general, let H be called obtainable
from G by K{*,-surgery if H = G(x) ® K, ,(v) where v is an endpoint of
K, , and x may be any vertex of G.

LEMMA 5. If T is a tree, deg(w) = 3, w has exactly two branch paths
of length two (say uy, uy, w and v, v,, w) and deg(x) = 2 where x is the
third vertex adjacent to w, then T does not have two disjoint maximum
matchings.

Proof. Let y be the other vertex adjacent to x (Fig. 4, j=1). Let M
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be a maximum matching. If xy is not in M, then xw, uu, , and v,v, are in M;
if xy is in M, then at least one of w,u, and v,v, is in M. So at least two of the
three edges xy, wu,, and o, are in M. The same is true of any
other maximum matching, which therefore cannot be disjoint from M. |

Vi

Fic. 4. Structure at a vertex with two branch paths of length two.

Suppose w, u, , Uy , v, , and v, are as in Lemma 5 with deg(x) =j + 1 >3
(as in Fig. 4). If T' =T — {u;, 45, vy, 5, w} has a maximum matching
with no edge incident with x, then By(7) = By(T") -+ 3, and every maximum
matching of T contains xw, wu,, and vv,. It follows that 7 having two
disjoint maximum matchings implies that 8,(T) = By(T— {u,, s, v1,0,W}) + 2,
and one easily obtains the next lemma.

LemMMA 6. If Tis as in Fig. 4 withj = 2, then T has two disjoint maximum
matchings if and only if tree T' =T — {u, , 4y , vy, vy, W} has two disjoint
maximum matchings and every maximum matching of T’ has an edge incident
with x.

CoROLLARY 6.1. If Tisasin Fig. 4 withj = 2 and if at least one y; adjacent
to x is an endpoint, then T has two disjoint maximum matchings if and only if
T — {uy,uy, vy, Uy, w}does. |}

COROLLARY 6.2. If Tis as in Fig. 4 and there is a y; adjacent to x such that
deg(v,) = 2, y; is adjacent to x and y, and deg(y) = 1, then T does not have
two disjoint maximum matchings.

Proof. Suppose T has two disjoint maximum matchings. By Lemma 6,
T—{u,uy,v;,0,,w has a maximum matching M which does not
include y;y. It therefore includes y,x, and hence no other edge incident
with x. Then M 4 y,¥ — y,x is an independent set of edges in T — {u, , u, ,
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v, vy, w} with as many edges as M and no edge incident with x. This
contradicts Lemma 6. |

Let Z, be the graph with V(Zy) = {1, , 11y, 01, 05, w, x} and E(Z,) =
{uyuy , uyw, U105 , vaw, wx}. If T is as in Corollary 6.1, then T = (T —
{vy, v, w, 4y, w})(x) @B Zy(x). In general, let H be said to be obtainable
from G by Z,-surgery if H can be written as G(v) @® Z,(x) where x is the
endpoint of Z, adjacent to the vertex of degree three and v is a vertex which
is adjacent to an endpoint of G.

Assume T’ is a tree (not a path or star) with two disjoint maximum
matchings, and assume there is not a tree 7 such that 7" can be obtained
from T by K, ,-surgery or by Ki¥,-surgery for any n > 3. (See Lemmas 1
and 4.) Now every vertex w of T”, with deg(w) = d > 3 and at most one
branch which is not a path, must have d = 3 and exactly two branch paths,
each of which has length two. Let wy , w, ,..., w; be a listing of all such w’s
in T'. and let y; be the graph consisting of w, and its two branch paths.
(Each y; 1s a P;.) Also, let x; be the vertex adjacent to w; which is not in y, .
The x,;’s may not be distinct, as in Fig. 5 where x; = x, = x5 = x.

FIG. 5. A tree for which 7} is an isolated vertex.

From Lemma 5 one has deg(x;) >3 for 1 <i<s By assumption,
T’ has no branch paths of length three, and by Corollary 6.2 there are no
branch paths at an x; of length two. To show that 7" is obtainable from
some T — y; by Zy-surgery for some 7 (1 <7 < t), it suffices to show that
some Xx; is adjacent to an endpoint of 7".

Since deg(x;) > 3 and there are no branch paths at x; of length two,
x; ¢ U;=1 V(y;). Letting Ty = T and T; = T, , — y,, it is easy to see that
each 7 is a tree (1 < i < t). In particular, 7} is a tree. If an x; of degree
zero remains (that is, x, = x, = -~ = x;, as in Fig. 5), then B(T") = 2t + 1
and any maximum matching will use both edges incident with endpoints
from some y, . Since any maximum matching uses at least one edge of vy,
incident with an endpoint, there cannot be two disjoint maximum matchings.
Thus deg(x,) > 1in T; .
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LeMMA 7. If T' is as described above, then at least one x; is adjacent to
an endpoint.

Proof. Assume no x; is adjacent to an endpoint. One now has that
every branch of 7’ from each x, contains a vertex of degree at least three.
It will first be shown that some x; (1 << i < t) has degree one in 7T} . Select
a value j1 (1 <j1 < ¢). If deg(x;;) > 2 in T;, then let p; and p] be vertices
of T, which are adjacent to x;, . On the branch B, of T’ at x;; which contains
p; there is a vertex of degree at least three in 7. This implies that B, contains
a w; (i #j1), and p; € T, implies that w, is not adjacent to x,; . Now one can
select x;, on B; with j2 = j1. If deg{x;,) > 2 in T, then let p, and p] be
vertices of T, which are adjacent to x;, . One can assume that the branch B,
of T’ at x;, which contains p; does not contain x;; . Repeating, the above
argument, one obtains x;; on B, with x;3 # x; and x;3 7 x;, . Iterating,
one obtains a sequence of distinct vertices xj;, Xjs, Xj3,... . Since T’ is
finite, some x;; must have degree one in 7 .

Select 7 such that x; has degree one in 7, and let y be the vertex of 7,
adjacent to x; (as in Fig. 6). Let M be a maximum matching of 7’ which
does not contain edge yx; . (One exists since 7" is assumed to have two

Fic. 6. Structure at an x; of degree one in 7 .

disjoint maximum matchings.) Let deg(x,) =k + 1 in T’ (k = 1). In the
component of T’ — yx; containing x; , M has 2k + 1 edges, two of which
are adjacent to endpoints in one i, where x,w; € M. Since any maximum
matching uses at least one of these two edges, there cannot be two disjoint
maximum matchings.

This contradiction shows that at least one x; is adjacent to an endpoint. [

THEOREM 8. A tree T has two disjoint maximum matchings if and only if T
can be obtained from a star K, ., (for some m == 2) by a finite sequence of the
following operations:

(1) K, o-surgery,
(2) Ki,-surgery (n = 3), and
(3) Z,-surgery.
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Proof. Star K, ,, has m > 2 disjoint maximum matchings. By Lemmas 1
and 4 and Corollary 6.1, each operation produces a tree with at least two
disjoint maximum matchings.

Conversely, assume 7 has two disjoint maximum matchings. If T is a
path, say P,,.,, then T can be obtained from K, , by n — 1 K| ,-surgeries.
If T has exactly one vertex of degree at least three, say deg(v) =d >3,
then using Lemmas 2 and 3 one can see that 7 is obtainable from X, ,; by a
sequence of K ,-surgeries.

Employing induction on the number of vertices of T, assume T is a tree
with p vertices and any tree with at most p — 1 vertices which has two
disjoint maximum matchings can be obtained by a suitable sequence of
operations. Suppose 7 has at least two vertices of degree at least three.
One may assume that 7 cannot be obtained from another tree 7* with two
disjoint maximum matchings by K, o-surgery or K, -surgery or else, applying
the induction hypothesis to T*, it is clear that T can be obtained from a
star by a suitable sequence of operations. Applying Lemma 7, one obtains
tree T* such that 7 = T*(x;) @ Z,(x;). By Corollary 6.1, T*, and hence 7T,
can be obtained from a star by a suitable sequence of operations. ||

3. Tregs WITH k DISIOINT MAXIMUM MATCHINGS

For k£ = 2, the set of trees which have at least £ disjoint maximum
matchings will be denoted by S, . For k > 3, if tree T has a tail of length
at least two then, by the first paragraph in the proof of Lemma 1, T ¢S, .
Such trees will be excluded for the balance of this section, and it will be
assumed that k£ > 3. Note that a star K, , is in S, if and only if n > k.

Suppose T is a tree with at least two vertices that have degree at least
three. Let w be a vertex with deg(w) = 3 for which all but one of its branches
are tails. (Each tail is necessarily of length one.) Since w is adjacent to an
endpoint, each maximum matching must have an edge incident with w.
Thus deg(w) << k — 1 implies T ¢ S, . Letting u, , 4, ,..., 4, be the endpoints
adjacent to w, it is easy to show that By(7) = By(T — {w, wy ,..., u}) -+ 1.
Let v be the vertex which is adjacent to w and which is not an endpoint.
One easily obtains the following two lemmas.

LeMMA 9. If deg(w) = k (that is, t =k — 1) and deg(v) <k, then T
has k disjoint maximum matchings if and only if T — {w, u, , uy ..., t4;,_1} does.

Lemma 10. If deg(w) = k + 1, then T has k disjoint maximum matchings
if and only if T — {w, uy ,..., u;} does.

Let H be called obtainable from G by K, ,-surgery if H can be written as
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G(v) ® K, 1{x) where x is an endpoint of K, , and deg(v) < k — | in G.
Recall that H is said to be obtainable from G by Kif,-surgery if H —
G(v) @ K, .(x) where x is an endpoint of K, ,, and v is any vertex of G.
Define a k-constellation, denoted X, , to be the graph obtained from k
copies of the star K ; by identifying one endpoint of each star. For example,
X, =P;. X}, is as in Fig. 7. Call the vertex of distance two from all the

Fic. 7. The k-constellation X, .

endpoints the base vertex of X, . Note that By(X,) =k, and X,€S,.
Furthermore, in any collection M;, M,,..., M, of k disjoint maximum
matchings of X, each M, must contain an edge incident with the base
vertex.

Let Z;, be the graph obtained from X, by adding another vertex of degree
one adjacent to the base vertex. 8(Z,) =k + 1, and Z, ¢ S, .

Let H be said to be obtainable from G by Z,-surgery if H can be written
as G(y) @ Z,(x) where x is the endpoint of Z, adjacent to the base vertex
and y is a vertex of G which is adjacent to an endpoint.

LemmA 11. Suppose tree T = T'(y) @ Z(x) where X}, is the k-constella-
tion with base vertex v contained in Z, . (Note that deg(v) =k + 1 in Z,,
and y is the vertex not in X, which is adjacent to v.) If y is adjacent to an
endpoint s, then Te Sy ifandonly if T' =T — X, €S, .

Proof. As y is adjacent to endpoint s, each maximum matching of
T - X, contains an edge incident with y. This implies 8(7) < B(T - X,) + k.
Assume M, , M,,..., M; are disjoint maximum matchings for T — X, .
Since one has M, ,..., M, and X, € S, , one easily obtains k disjoint matchings
of T, each with B8,(T — X;) + k elements. Thus T € S, .

Conversely, assume disjoint maximum matchings M, , M, ,..., M, for T.
Assume one M; contains edge vy, say vye M; . Then ow, ¢ M; (1 < i < k).
Since deg(w;) = k, each vw; must appear in one M; where 2 <j < k. This
would imply two edges incident with » are in one M;. Thus vy ¢ M,
(1 < i < k). This implies 8(T — X;) = B(T) — k. Removing all edges of
X}, from each M, , one obtains k disjoint maximum matchings for 7 — X;.. |
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THEOREM 12. Tree T €S, if and only if T can be obtained from a star K, ,
(for some m > k) by a finite sequence of the following operations:

(1) K, j-surgery,
@) Kitu-surgery (n =k + 1), and
(3) Z,-surgery.

Proof. By Lemmas 9-11 each operation will produce a tree with at
least £ disjoint maximum matchings.

Conversely, assume 7T is a tree with k disjoint maximum matchings,
namely, M,, M,,..., M, . Since T has no tails of length two, T is not a
path, and if T has exactly one vertex of degree at least three, then T is a
star K, ,, with m > k.

We proceed by induction on the number of vertices of T. Suppose T
has at least two vertices of degree at least three, and assume that 7" cannot
be obtained from another tree by X, ,-surgery or Ki%,-surgery (m > k).
Let wy , w, ,..., w; be the vertices with degree at least three for which all but
one of the branches are tails (of length one), and let »; be the vertex which
is not an endpoint and which is adjacent to w; . (The v;’s may not be distinct.)
By assumption, each w; has degree exactly k, and each v; has degree at least
k + 1. Letting L; be the set of vertices containing w; and each endpoint
adjacent to w;, one has v, ¢ L; (I <j <1).

Consider the tree F =T — U:=1 L;. If one v; were adjacent to k + 1
or more w;’s, say w;, Wy ,..., w, {s = k + 1), then since deg(w;) = k each
edge v;w; (1 < j < s) must appear in one M}, . This would imply that some M,
contains two edges incident with v; . Thus each v; is adjacent to at most &
of the w;’s. This implies F has more than one vertex. If F were a P, , then the
edge of F would appear in every maximum matching.

Also, F has no tail of length two, for suppose u, , #,, uy is a tail. Since
k =3, at least one M, does not contain edges u,u, or usu, , say M, . If M,
has an edge incident with u,;, label it ¢; ( = 1 or 2). As M, is maximum,
M, has at least one of ¢, and ¢, . Suppose e, = u;w;; and e, = u,w;, are
in M; . Let e; and e, be other edges incident with w,; and w,, , respectively.
Now M; + e; + e; — e; — e, + wyu, would be a larger matching than M, .
Suppose e; = u;w;; € M; and no edge incident with u, is in M, . Let ] be
another edge incident with w;; , and M, + e; — e; + wu, would be a larger
matching than M, . Thus there is not a tail of length two, and F is not a path.

Select a vertex y in F of degree # + 1 > 3 with y adjacent to x; , x5 ,..., X3
and y’ where x; is an endpoint of F(1 < i < A, h = 2). Now Fis as in Fig. 8,
where the dashed lines indicate edges in 7" but not F.

If endpoint x; of Fis not an endpoint of 7, then x; is adjacent to some w; ,
thatis, x;, = v; forsome j, | <j < t. Ashas been shown, deg(x,) = deg(v;) >
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k + | and x; is adjacent to at most k£ w;’s. This implies that deg(x;) =k + 1
and x; is the base vertex of a k-constellation, X,

At least one x; is an endpoint of T, for suppose there exists an X,* for
each i, 1 <7 < h. As in Fig. 8, let b be the number of w,’s adjacent to y.
Select an M, (1 < d < k) which does not contain edge y'y. In the compo-
nent of 7 — y'y containing y there are hk + 1 4 b edges of M, . One can
obtain this many independent edges only if M, has an edge of the form yx;

FiG. 8. Substructure at vertex y of graph F.

for some i, | < i < h. Aseach edge of X} incident with x; appears in one M, ,
each M, must contain one of these edges, so that M; would contain two
edges incident with x; . Thus one can assume x; is an endpoint of 7.

Now b = 0, for suppose b > 1. Since deg(w,) = k, in some M; the edge
incident with w, would have to be yw, ; say this M, is M, . Let ¢, be an
edge incident with w, other than yw,. Now M, + e; + yx; — yw; would
be a matching with more edges than M, .

Since b = 0, if each x; (1 < i < A) is an endpoint of 7, then y would be a
w; for some j, 1 <j < ¢, but y € F implies y s w; for any j. Suppose x, is
a base vertex of k-constellation X;*.

The maximal subgraph with V(X,*) U {y} as vertex set is a Z,, and
T=(T— X;»y) @ Z(y) where vertex y in Z, is the endpoint adjacent
to the base vertex x; , and vertex y in T — X;? is adjacent to endpoint x; .
Using Lemma 11 and the induction hypothesis, the theorem is proved. ||

4. PARAMETERS OTHER THAN S,

The edge independence number, B,(G), is the maximum number of edges
in an independent set; the vertex independence number, By(G), is the maximum
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number of vertices in an independent set (no two of the vertices are adjacent);
the vertex covering number, oy(G) is the minimum number of vertices in a set S
such that every edge is incident with at least one vertex in S; the edge covering
number, o,(G), is the minimum number of edges in a set S such that every
vertex is incident with at least one edge in S. Gallai [2] has shown that
® + By = p = o4 + B, for any nontrivial connected graph where p is the
number of vertices.

Since each edge of tree T incident with an endpoint must be in every
ay-set, no tree has two disjoint oy-sets. For maximum independent sets of
vertices, that is, S;-sets, one easily derives the next two lemmas which can
be used to prove the following theorem.

Lemma 13. Ifx,, x,, x3is atail of tree T, then T has two disjoint maximum
independent vertex sets if and only if T — x, — x, does.

Lemma 14. If x is a vertex of tree T and x is adjacent to two endpoints,
then T does not have two disjoint maximum independent vertex sets.

THEOREM 15. A4 tree T has two disjoint maximum independent vertex
sets if and only if T can be obtained from P, by a finite sequence of Ki*y-
surgeries.

COROLLARY 15.1. A tree T has two disjoint maximum independent vertex
sets if and only if it has a 1-factor.

COROLLARY 15.2. A tree T has two disjoint minimum vertex covering
sets if and only if T can be obtained from P, by a finite sequence of Ki,-surgeries.

Proof. If T has two disjoint By-sets and is obtainable from tree 7' by
a Kj*,-surgery, then T has exactly two more vertices than 7°. Label them
u and v where  is adjacent to vertex w € V(T”). By induction on the number
of vertices in trees with two disjoint 8, sets, it can be assumed that V(T") =
S1 U S, where S; and S, are disjoint B-sets. Assume weS;. Now S, =
S’V {v} and S, = S, U {u} are disjoint By-sets of T with V(T)= S, U S,.
Each S; (i = 1 or 2) is an «4-set since it is the complement in V(T') of a B-set.
If A, and A, are ay-sets in graph G and u ¢ A, and u ¢ A4, , then every vertex
adjacent to u is in 4; N A,. Thus, if a graph G has two disjoint «,-sets,
A, and A4,, then V(G) = A, U A4,, and G has two disjoint By-sets. (The
complement of an «,-set is a B,-set.) This implies that a tree has two disjoint
Bo-sets if and only if it has two disjoint op-sets. ||

Let v be an endpoint of tree T with v adjacent to w. Any By-set (respectively,
ag-set) which does not contain w must contain . Thus no tree contains
three or more disjoint Bq-sets (respectively, ay-sets).
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