A Constructive Characterization of Trees with at Least k Disjoint Maximum Matchings

Peter J. Slater*
Applied Mathematics Division 5641, Sandia Laboratories, Albuquerque, New Mexico 87185
Communicated by the Editors

Received July 15, 1975

Abstract

Let $H=F(v) \oplus G(w)$ denote the graph obtained from F and G by identifying vertices v of F and w of $G ; H$ will be said to be obtained by surgery on F and G. A matching of a graph is a collection of edges, no two of which are incident with the same vertex. This paper presents a constructive characterization of the set $S_{k}(k \geqslant 2)$ of trees which have at least k disjoint maximum matchings. There are three types of surgery such that, for each $k \geqslant 2, S_{k}$ is the set of all trees obtainable from a star $K_{1, n}(n \geqslant k)$ by a finite sequence of the specified surgical operations. A constructive characterization is also given for trees with two disjoint maximum independent vertex sets.

1. Introduction

Given a (finite, undirected) graph G, a matching is a collection of edges which are independent, that is, no two of them are incident with the same vertex. A maximal matching is one which is not a proper subset of any other matching. $\beta_{1}(G)$ denotes the number of edges in a maximum matching, that is, a maximal matching with the largest number of edges possible. In Fig. 1, $\{(2,3),(4,5)\}$ and $\{(1,2),(3,4)\}$ are disjoint maximal matchings, and $\{(1,2)$, $(4,5),(3,6)\}$ is the only maximum matching.

Fig. 1. A graph with two disjoint maximal matchings.
In [1] Cockayne and Hedetniemi have given a characterization of those

[^0]trees which do not have two or more disjoint maximal matchings, and in [3] Hartnell has initiated a study of unicyclic graphs with disjoint maximal matchings. In this paper, a constructive characterization of the set of trees with $k(k \geqslant 2)$ or more disjoint maximum matchings is presented.

If T is a tree (a connected, acyclic graph) containing vertex v, then a branch of T at v is a maximal subtree containing v as an endpoint. A path on n vertices, denoted P_{n}, is a tree with exactly two endpoints; a star on $n+1$ vertices ($n \geqslant 2$), denoted $K_{1, n}$, is a tree with n endpoints. A branch at v which is a path will be called a branch path at v. It is easy to see that in a tree T with at least one vertex u of degree at least three (i.e., $\operatorname{deg}(u) \geqslant 3$), there is at least one vertex v, with $\operatorname{deg}(v) \geqslant 3$, such that v has at least two branch paths, and, in fact, there is a vertex v with $\operatorname{deg}(v) \geqslant 3$ such that at most one branch at v is not a path. If $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ is a path in T in T with v_{i} adjacent to v_{i+1} for all $i \leqslant n$ and with $\operatorname{deg}_{T}\left(v_{1}\right)=1, \operatorname{deg}_{T}\left(v_{2}\right)=$ $\cdots=\operatorname{deg}_{T}\left(v_{n}\right)=2$, then $v_{1}, \ldots, v_{n}, v_{n+1}$ will be called a tail of length n. Note that $\operatorname{deg}_{T}\left(v_{n+1}\right)$ is unrestricted.

Let $V(G)$ and $E(G)$ denote the vertex and edge sets of graph G, respectively. Let v and w be specified vertices in graphs F and G, respectively. Then $H=F(v) \oplus G(w)$ will denote the graph obtained from F and G by identifying vertices v and w. That is, letting x be a vertex not in $V(F)$ or $V(G)$, one has $V(H)=(V(F)-\{v\}) \cup(V(G)-\{w\}) \cup\{x\}$ and $E(H)=E(F-v) \cup E(G-w)$ $\cup\{x u \mid v u \in E(F)$ or $w u \in E(G)\}$. Graph H will be said to be obtained by surgery on F and G.
Let $S_{k}(k \geqslant 2)$ denote the set of trees which have at least k disjoint maximum matchings. It will be shown that there are three types of surgery such that, for each $k \geqslant 2, T$ is in S_{k} if and only if T can be obtained from a star $K_{1, n}(n \geqslant k)$ by a finite sequence of the specified surgical operations. The case for $k=2$ will be handled in Section 2, and $k \geqslant 3$ will be done in Section 3.

A collection of vertices is called independent if no two are incident with the same edge (that is, no two are adjacent). It will be shown in Section 4 that there is one type of surgery such that tree T has two disjoint maximum independent vertex sets if and only if T can be obtained from P_{2} by a finite sequence of surgical operations of that type.

2. Trees with Two Disjoint Maximum Matchings

Lemma 1. If a tree T has a tail $v_{1}, v_{2}, v_{3}, v_{4}$ of length three, then T has at most two disioint maximum matchings. Furthermore, T has two disjoint maximum matchings if and only if $T-\left\{v_{1}, v_{2}\right\}$ does.

Proof. If M is a matching without edges $v_{2} v_{1}$ or $v_{2} v_{3}$, then $M \cup\left\{v_{2} v_{1}\right\}$
is also a matching. Thus every maximum matching contains an edge incident with v_{2}. Since $\operatorname{deg}\left(v_{2}\right)=2$, there are at most two disjoint maximum matchings.

It is clear that $\beta_{1}(T)=\beta_{1}\left(T-\left\{v_{1}, v_{2}\right\}\right)+1$. Given disjoint maximum matchings M_{1} and M_{2} for T (that is, disjoint sets each with $\beta_{1}(T)$ independent edges), one can assume $v_{1} v_{2} \in M_{1}$. Now $M_{1}-v_{1} v_{2}$ and $M_{2}-v_{2} v_{3}$ are disjoint sets in $T-\left\{v_{1}, v_{2}\right\}$, each with $\beta_{1}(T)-1$ independent edges. Thus $T-\left\{v_{1}, v_{2}\right\}$ has two disjoint maximum matchings. Given disjoint maximum matchings M_{1} and M_{2} for $T-\left\{v_{1}, v_{2}\right\}$, one can assume that $v_{3} v_{4} \notin M_{2}$. Now $M_{1} \cup\left\{v_{1} v_{2}\right\}$ and $M_{2} \cup\left\{v_{2} v_{3}\right\}$ are disjoint maximum matchings for T.

Since the subgraph induced by $\left\{v_{1}, v_{2}, v_{3}\right\}$ is $K_{1,2}$, one can write T as $\left(T-\left\{v_{1}, v_{2}\right\}\right)\left(v_{3}\right) \oplus K_{1,2}\left(v_{3}\right)$. In general, let H be called obtainable from G by $K_{1,2}$-surgery if H can be written as $G(v) \oplus K_{1,2}(w)$ where v and w are endpoints of G and $K_{1,2}$, respectively. It is clear that path P_{k} has two disjoint maximum matchings if and only if there are an even number of edges, that is, k is odd $(k \geqslant 3)$. Thus a path has two disjoint maximum matchings if and only if it can be obtained from $K_{1,2}$ (that is, P_{3}) by a finite sequence of $K_{1,2}$ surgeries.

Now suppose T is a tree (with a vertex of degree at least three) in which there is no tail of length three. Let w be a vertex of degree at least three which has at least two branch paths.

Lemma 2. If w has three or more branch paths with exactly two edges, then T does not have two disjoint maximum matchings.

Proof. Suppose u_{1}, u_{2}, w and v_{1}, v_{2}, w and x_{1}, x_{2}, w are tails as in Fig. 2. Let M be a maximum matching. Since M contains edges incident

Fig. 2. Substructure at a vertex with three branch paths of length two.
with u_{2}, v_{2}, and x_{2} and has at most one edge incident with w, then M contains at least two of the edges $u_{1} u_{2}, v_{1} v_{2}$, and $x_{1} x_{2}$. As this is true for any maximum matching, T does not have two disjoint maximum matchings.

Lemma 3. If w has a branch path with exactly two edges and another with exactly one edge, then T does not have two disjoint maximum matchings.
Proof. Suppose u_{1}, u_{2}, w and v, w are tails as in Fig. 3. Let M be a maximum matching. If $u_{1} u_{2} \notin M$, then $u_{2} w \in M, v w \notin M$, and no other edge incident with w is in M. If $M^{\prime}=M+u_{1} u_{2}+w v-u_{2} w$, then M^{\prime} is a larger matching than M. This contradiction implies that $u_{1} u_{2}$ is in every maximum matching, and T cannot have two disjoint maximum matchings.

Fig. 3. Substructure at a vertex with branch paths of length one and two.
Vertex $w(\operatorname{deg}(w) \geqslant 3)$ can be selected so that at most one branch is not a path. If one branch is not a path, let x be the vertex adjacent to w on that branch. If T has two disjoint maximum matchings (and, by assumption, has no tail of length three), then, by Lemmas 2 and 3 , either every branch path from w is of length one or there are exactly two branch paths and each is of length two.

Note that if T is a star $K_{1, n}(n \geqslant 2)$, then T has n disjoint maximum matchings.

Lemma 4. If tree T is not a star, $\operatorname{deg}(w)=d \geqslant 3$, and w has $d-1$ branch paths, $w u_{1}, w u_{2}, \ldots, w u_{d-1}$, each of length one, then T has two disjoint maximum matchings if and only if $T-\left\{w, u_{1}, u_{2}, \ldots, u_{d-1}\right\}$ does.

Since every maximum matching of T has exactly one edge incident with w, the proof of Lemma 4 is like the proof of Lemma 1. Note that one can write T as $\left(T-\left\{w, u_{1}, \ldots, u_{d-1}\right\}\right)(x) \oplus K_{1, d}(x)$. In general, let H be called obtainable from G by $K_{1, n}^{*}$-surgery if $H=G(x) \oplus K_{1, n}(v)$ where v is an endpoint of $K_{1 . n}$ and x may be any vertex of G.

Lemma 5. If T is a tree, $\operatorname{deg}(w)=3, w$ has exactly two branch paths of length two (say u_{1}, u_{2}, w and v_{1}, v_{2}, w) and $\operatorname{deg}(x)=2$ where x is the third vertex adjacent to w, then T does not have two disjoint maximum matchings.
Proof. Let y be the other vertex adjacent to x (Fig. $4, j=1$). Let M
be a maximum matching. If $x y$ is not in M, then $x w, u_{1} u_{2}$, and $v_{1} v_{2}$ are in M; if $x y$ is in M, then at least one of $u_{1} u_{2}$ and $v_{1} v_{2}$ is in M. So at least two of the three edges $x y, u_{1} u_{2}$, and $v_{1} v_{2}$ are in M. The same is true of any other maximum matching, which therefore cannot be disjoint from M.

Fig. 4. Structure at a vertex with two branch paths of length two.
Suppose w, u_{1}, u_{2}, v_{1}, and v_{2} are as in Lemma 5 with $\operatorname{deg}(x)=j+1 \geqslant 3$ (as in Fig. 4). If $T^{\prime}=T-\left\{u_{1}, u_{2}, v_{1}, v_{2}, w\right\}$ has a maximum matching with no edge incident with x, then $\beta_{1}(T)=\beta_{1}\left(T^{\prime}\right)+3$, and every maximum matching of T contains $x w, u_{1} u_{2}$, and $v_{1} v_{2}$. It follows that T having two disjoint maximum matchings implies that $\beta_{1}(T)=\beta_{1}\left(T-\left\{u_{1}, u_{2}, v_{1}, v_{2} w\right\}\right)+2$, and one easily obtains the next lemma.

Lemma 6. If T is as in Fig. 4 with $j \geqslant 2$, then T has two disjoint maximum matchings if and only if tree $T^{\prime}=T-\left\{u_{1}, u_{2}, v_{1}, v_{2}, w\right\}$ has two disjoint maximum matchings and every maximum matching of T^{\prime} has an edge incident with x.

Corollary 6.1. If T is as in Fig. 4 with $j \geqslant 2$ and if at least one y_{i} adjacent to x is an endpoint, then T has two disjoint maximum matchings if and only if $T-\left\{u_{1}, u_{2}, v_{1}, v_{2}, w\right\}$ does.

Corollary 6.2. If T is as in Fig. 4 and there is a y_{i} adjacent to x such that $\operatorname{deg}\left(y_{i}\right)=2, y_{i}$ is adjacent to x and y, and $\operatorname{deg}(y)=1$, then T does not have two disjoint maximum matchings.

Proof. Suppose T has two disjoint maximum matchings. By Lemma 6, $T-\left\{u_{1}, u_{2}, v_{1}, v_{2}, w\right\}$ has a maximum matching M which does not include $y_{i} y$. It therefore includes $y_{i} x$, and hence no other edge incident with x. Then $M+y_{i} y-y_{i} x$ is an independent set of edges in $T-\left\{u_{1}, u_{2}\right.$,
$\left.v_{1}, v_{2}, w\right\}$ with as many edges as M and no edge incident with x. This contradicts Lemma 6.

Let Z_{2} be the graph with $V\left(Z_{2}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, w, x\right\}$ and $E\left(Z_{2}\right)=$ $\left\{u_{1} u_{2}, u_{2} w, v_{1} v_{2}, v_{2} w, w x\right\}$. If T is as in Corollary 6.1, then $T=(T-$ $\left.\left\{v_{1}, v_{2}, w, u_{1}, u_{2}\right\}\right)(x) \oplus Z_{2}(x)$. In general, let H be said to be obtainable from G by Z_{2}-surgery if H can be written as $G(v) \oplus Z_{2}(x)$ where x is the endpoint of Z_{2} adjacent to the vertex of degree three and v is a vertex which is adjacent to an endpoint of G.

Assume T^{\prime} is a tree (not a path or star) with two disjoint maximum matchings, and assume there is not a tree T such that T^{\prime} can be obtained from T by $K_{1,2}$-surgery or by $K_{1, n}^{*}$-surgery for any $n \geqslant 3$. (See Lemmas 1 and 4.) Now every vertex w of T^{\prime}, with $\operatorname{deg}(w)=d \geqslant 3$ and at most one branch which is not a path, must have $d=3$ and exactly two branch paths, each of which has length two. Let $w_{1}, w_{2}, \ldots, w_{t}$ be a listing of all such w 's in T^{\prime}. and let γ_{i} be the graph consisting of w_{i} and its two branch paths. (Each γ_{i} is a P_{5}.) Also, let x_{i} be the vertex adjacent to w_{i} which is not in γ_{i}. The x_{i} 's may not be distinct, as in Fig. 5 where $x_{1}=x_{2}=x_{3}=x$.

Fig. 5. A tree for which T_{t}^{\prime} is an isolated vertex.
From Lemma 5 one has $\operatorname{deg}\left(x_{i}\right) \geqslant 3$ for $1 \leqslant i \leqslant t$. By assumption, T^{\prime} has no branch paths of length three, and by Corollary 6.2 there are no branch paths at an x_{i} of length two. To show that T^{\prime} is obtainable from some $T^{\prime}-\gamma_{i}$ by Z_{2}-surgery for some $i(1 \leqslant i \leqslant t)$, it suffices to show that some x_{i} is adjacent to an endpoint of T^{\prime}.

Since $\operatorname{deg}\left(x_{i}\right) \geqslant 3$ and there are no branch paths at x_{i} of length two, $x_{i} \notin \bigcup_{j=1}^{t} V\left(\gamma_{j}\right)$. Letting $T_{0}^{\prime}-T^{\prime}$ and $T_{i}^{\prime}-T_{i=1}^{\prime}-\gamma_{i}$, it is easy to see that each T_{i}^{\prime} is a tree $(1 \leqslant i \leqslant t)$. In particular, T_{t}^{\prime} is a tree. If an x_{i} of degree zero remains (that is, $x_{1}=x_{2}=\cdots=x_{t}$, as in Fig. 5), then $\beta_{1}\left(T^{\prime}\right)=2 t+1$ and any maximum matching will use both edges incident with endpoints from some γ_{i}. Since any maximum matching uses at least one edge of γ_{i} incident with an endpoint, there cannot be two disjoint maximum matchings. Thus $\operatorname{deg}\left(x_{i}\right) \geqslant 1$ in T_{i}^{\prime}.

Lemma 7. If T^{\prime} is as described above, then at least one x_{i} is adjacent to an endpoint.

Proof. Assume no x_{i} is adjacent to an endpoint. One now has that every branch of T^{\prime} from each x_{i} contains a vertex of degree at least three. It will first be shown that some $x_{i}(1 \leqslant i \leqslant t)$ has degree one in T_{t}^{\prime}. Select a value $j 1(1 \leqslant j 1 \leqslant t)$. If $\operatorname{deg}\left(x_{j 1}\right) \geqslant 2$ in T_{t}^{\prime}, then let p_{1}^{\prime} and $p_{1}^{\prime \prime}$ be vertices of T_{t}^{\prime} which are adjacent to $x_{j 1}$. On the branch B_{1} of T^{\prime} at $x_{j 1}$ which contains $p_{1}^{\prime \prime}$ there is a vertex of degree at least three in T^{\prime}. This implies that B_{1} contains a $w_{i}(i \neq j 1)$, and $p_{1}^{\prime \prime} \in T_{t}^{\prime}$ implies that w_{i} is not adjacent to $x_{j 1}$. Now one can select $x_{j 2}$ on B_{1} with $j 2 \neq j$. If $\operatorname{deg}\left(x_{j 2}\right) \geqslant 2$ in T_{t}^{\prime}, then let p_{2}^{\prime} and $p_{1}^{\prime \prime}$ be vertices of T_{t}^{\prime} which are adjacent to $x_{j 2}$. One can assume that the branch B_{2} of T^{\prime} at $x_{j 2}$ which contains $p_{2}^{\prime \prime}$ does not contain $x_{j 1}$. Repeating, the above argument, one obtains $x_{j 3}$ on B_{2} with $x_{j 3} \neq x_{i 1}$ and $x_{j 3} \neq x_{j 2}$. Iterating, one obtains a sequence of distinct vertices $x_{j 1}, x_{j 2}, x_{j 3}, \ldots$. Since T^{\prime} is finite, some $x_{j k}$ must have degree one in T_{t}^{\prime}.

Select i such that x_{i} has degree one in T_{t}^{\prime}, and let y be the vertex of T_{t}^{\prime} adjacent to x_{i} (as in Fig. 6). Let M be a maximum matching of T^{\prime} which does not contain edge $y x_{i}$. (One exists since T^{\prime} is assumed to have two

Fig. 6. Structure at an x_{t}^{\prime} of degree one in T_{i}^{\prime}.
disjoint maximum matchings.) Let $\operatorname{deg}\left(x_{i}\right)=k+1$ in $T^{\prime}(k \geqslant 1)$. In the component of $T^{\prime}-y x_{i}$ containing x_{i}, M has $2 k+1$ edges, two of which are adjacent to endpoints in one $\gamma_{i_{j}}$ where $x_{i} w_{i_{j}} \in M$. Since any maximum matching uses at least one of these two edges, there cannot be two disjoint maximum matchings.

This contradiction shows that at least one x_{i} is adjacent to an endpoint.
Theorem 8. A tree T has two disjoint maximum matchings if and only if T can be obtained from a star $K_{1, m}($ for some $m \geqslant 2)$ by a finite sequence of the following operations:
(1) $K_{1,2}$-surgery,
(2) $K_{1, n}^{*}$-surgery $(n \geqslant 3)$, and
(3) Z_{2}-surgery.

Proof. Star $K_{1, m}$ has $m \geqslant 2$ disjoint maximum matchings. By Lemmas 1 and 4 and Corollary 6.1 , each operation produces a tree with at least two disjoint maximum matchings.

Conversely, assume T has two disjoint maximum matchings. If T is a path, say $P_{2 n+1}$, then T can be obtained from $K_{1,2}$ by $n-1 K_{1,2}$-surgeries. If T has exactly one vertex of degree at least three, say $\operatorname{deg}(v)=d \geqslant 3$, then using Lemmas 2 and 3 one can see that T is obtainable from $K_{1, d}$ by a sequence of $K_{1,2}$-surgeries.

Employing induction on the number of vertices of T, assume T is a tree with p vertices and any tree with at most $p-1$ vertices which has two disjoint maximum matchings can be obtained by a suitable sequence of operations. Suppose T has at least two vertices of degree at least three. One may assume that T cannot be obtained from another tree T^{*} with two disjoint maximum matchings by $K_{1,2}$-surgery or $K_{1, n}^{*}$-surgery or else, applying the induction hypothesis to T^{*}, it is clear that T can be obtained from a star by a suitable sequence of operations. Applying Lemma 7, one obtains tree T^{*} such that $T=T^{*}\left(x_{i}\right) \oplus Z_{2}\left(x_{i}\right)$. By Corollary 6.1, T^{*}, and hence T, can be obtained from a star by a suitable sequence of operations.

3. Trees with k Disioint Maximum Matchings

For $k \geqslant 2$, the set of trees which have at least k disjoint maximum matchings will be denoted by S_{k}. For $k \geqslant 3$, if tree T has a tail of length at least two then, by the first paragraph in the proof of Lemma $1, T \notin S_{k}$. Such trees will be excluded for the balance of this section, and it will be assumed that $k \geqslant 3$. Note that a star $K_{1, n}$ is in S_{k} if and only if $n \geqslant k$.

Suppose T is a tree with at least two vertices that have degree at least three. Let w be a vertex with $\operatorname{deg}(w) \geqslant 3$ for which all but one of its branches are tails. (Each tail is necessarily of length one.) Since w is adjacent to an endpoint, each maximum matching must have an edge incident with w. Thus $\operatorname{deg}(w) \leqslant k-1$ implies $T \notin S_{k}$. Letting $u_{1}, u_{2}, \ldots, u_{t}$ be the endpoints adjacent to w, it is easy to show that $\beta_{1}(T)=\beta_{1}\left(T-\left\{w, u_{1}, \ldots, u_{t}\right\}\right)+1$. Let v be the vertex which is adjacent to w and which is not an endpoint. One easily obtains the following two lemmas.

Lemma 9. If $\operatorname{deg}(w)=k$ (that is, $t=k-1)$ and $\operatorname{deg}(v) \leqslant k$, then T has k disjoint maximum matchings if and only if $T-\left\{w, u_{1}, u_{2}, \ldots, u_{k-1}\right\}$ does.

Lemma 10. If $\operatorname{deg}(w) \geqslant k+1$, then T has k disjoint maximum matchings if and only if $T-\left\{w, u_{1}, \ldots, u_{t}\right\}$ does.

Let H be called obtainable from G by $K_{1, k}$-surgery if H can be written as
$G(v) \oplus K_{1, k}(x)$ where x is an endpoint of $K_{1, k}$ and $\operatorname{deg}(v) \leqslant k-1$ in G. Recall that H is said to be obtainable from G by $K_{1, n}^{*}$-surgery if $H=$ $G(v) \oplus K_{1, n}(x)$ where x is an endpoint of $K_{l, n}$ and v is any vertex of G.

Define a k-constellation, denoted X_{k}, to be the graph obtained from k copies of the star $K_{1 . k}$ by identifying one endpoint of each star. For example, $X_{2}=P_{5} . X_{k}$ is as in Fig. 7. Call the vertex of distance two from all the

Fig. 7. The k-constellation X_{k}.
endpoints the base vertex of X_{k}. Note that $\beta_{1}\left(X_{k}\right)=k$, and $X_{k} \in S_{k}$. Furthermore, in any collection $M_{1}, M_{2}, \ldots, M_{k}$ of k disjoint maximum matchings of X_{k}, each M_{i} must contain an edge incident with the base vertex.

Let Z_{k} be the graph obtained from X_{k} by adding another vertex of degree one adjacent to the base vertex. $\beta_{1}\left(Z_{k}\right)=k+1$, and $Z_{k} \notin S_{2}$.

Let H be said to be obtainable from G by Z_{k}-surgery if $I I$ can be written as $G(y) \oplus Z_{k}(x)$ where x is the endpoint of Z_{k} adjacent to the base vertex and y is a vertex of G which is adjacent to an endpoint.

Lemma 11. Suppose tree $T=T^{\prime}(y) \oplus Z_{k}(x)$ where X_{k} is the k-constellation with base vertex v contained in Z_{k}. (Note that $\operatorname{deg}(v)=k+1$ in Z_{k}, and y is the vertex not in X_{k} which is adiacent to v.) If y is adjacent to an endpoint s, then $T \in S_{k}$ if and only if $T^{\prime}=T-X_{k} \in S_{k}$.

Proof. As y is adjacent to endpoint s, each maximum matching of $T-X_{k}$ contains an edge incident with y. This implies $\beta_{1}(T) \leqslant \beta_{1}\left(T-X_{k}\right)+k$. Assume $M_{1}, M_{2}, \ldots, M_{k}$ are disjoint maximum matchings for $T-X_{k}$. Since one has M_{1}, \ldots, M_{k} and $X_{k} \in S_{k}$, one easily obtains k disjoint matchings of T, each with $\beta_{1}\left(T-X_{k}\right)+k$ elements. Thus $T \in S_{k}$.

Conversely, assume disjoint maximum matchings $M_{1}, M_{2}, \ldots, M_{k}$ for T. Assume one M_{i} contains edge $v y$, say $v y \in M_{1}$. Then $v w_{i} \notin M_{1}(1 \leqslant i \leqslant k)$. Since $\operatorname{deg}\left(w_{i}\right)=k$, each $v w_{i}$ must appear in one M_{j} where $2 \leqslant j \leqslant k$. This would imply two edges incident with v are in one M_{j}. Thus $v y \notin M_{i}$ $(1 \leqslant i \leqslant k)$. This implies $\beta_{1}\left(T-X_{k}\right) \geqslant \beta_{1}(T)-k$. Removing all edges of X_{k} from each M_{i}, one obtains k disjoint maximum matchings for $T-X_{k}$.

Theorem 12. Tree $T \in S_{k}$ if and only if T can be obtained from a star $K_{1, m}$ (for some $m \geqslant k$) by a finite sequence of the following operations:
(1) $K_{1, k}$-surgery,
(2) $K_{1, n^{-}}^{*}$-surgery $(n \geqslant k+1)$, and
(3) Z_{k}-surgery.

Proof. By Lemmas 9-11 each operation will produce a tree with at least k disjoint maximum matchings.

Conversely, assume T is a tree with k disjoint maximum matchings, namely, $M_{1}, M_{2}, \ldots, M_{k}$. Since T has no tails of length two, T is not a path, and if T has exactly one vertex of degree at least three, then T is a star $K_{1, m}$ with $m \geqslant k$.

We proceed by induction on the number of vertices of T. Suppose T has at least two vertices of degree at least three, and assume that T cannot be obtained from another tree by $K_{1, k}$-surgery or $K_{1, m}^{*}$-surgery ($m>k$). Let $w_{1}, w_{2}, \ldots, w_{l}$ be the vertices with degree at least three for which all but one of the branches are tails (of length one), and let v_{i} be the vertex which is not an endpoint and which is adjacent to w_{i}. (The v_{i} 's may not be distinct.) By assumption, each w_{i} has degree exactly k, and each v_{i} has degree at least $k+1$. Letting L_{i} be the set of vertices containing w_{i} and each endpoint adjacent to w_{i}, one has $v_{i} \notin L_{j}(1 \leqslant j \leqslant t)$.

Consider the tree $F=T-\bigcup_{i=1}^{t} L_{i}$. If one v_{i} were adjacent to $k+1$ or more w_{j} 's, say $w_{1}, w_{2}, \ldots, w_{s}(s \geqslant k+1)$, then since $\operatorname{deg}\left(w_{j}\right)=k$ each edge $v_{i} w_{j}(1 \leqslant j \leqslant s)$ must appear in one M_{h}. This would imply that some M_{h} contains two edges incident with v_{i}. Thus each v_{i} is adjacent to at most k of the w_{j} 's. This implies F has more than one vertex. If F were a P_{2}, then the edge of F would appear in every maximum matching.

Also, F has no tail of length two, for suppose u_{1}, u_{2}, u_{3} is a tail. Since $k \geqslant 3$, at least one M_{i} does not contain edges $u_{1} u_{2}$ or $u_{2} u_{3}$, say M_{1}. If M_{1} has an edge incident with u_{i}, label it $e_{i}\left(i=1\right.$ or 2). As M_{1} is maximum, M_{1} has at least one of e_{1} and e_{2}. Suppose $e_{1}=u_{1} w_{i 1}$ and $e_{2}=u_{2} w_{i 2}$ are in M_{1}. Let e_{1}^{\prime} and e_{2}^{\prime} be other edges incident with $w_{i 1}$ and $w_{i 2}$, respectively. Now $M_{1}+e_{1}^{\prime}+e_{2}^{\prime}-e_{1}-e_{2}+u_{1} u_{2}$ would be a larger matching than M_{1}. Suppose $e_{1}=u_{1} w_{i 1} \in M_{1}$ and no edge incident with u_{2} is in M_{1}. Let e_{1}^{\prime} be another edge incident with $w_{i 1}$, and $M_{1}+e_{1}^{\prime}-e_{1}+u_{1} u_{2}$ would be a larger matching than M_{1}. Thus there is not a tail of length two, and F is not a path.

Select a vertex y in F of degree $h+1 \geqslant 3$ with y adjacent to $x_{1}, x_{2}, \ldots, x_{h}$ and y^{\prime} where x_{i} is an endpoint of $F(1 \leqslant i \leqslant h, h \geqslant 2)$. Now F is as in Fig. 8, where the dashed lines indicate edges in T but not F.

If endpoint x_{i} of F is not an endpoint of T, then x_{i} is adjacent to some w_{j}, that is, $x_{i}=v_{j}$ for some $j, 1 \leqslant j \leqslant t$. As has been shown, $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(v_{j}\right) \geqslant$
$k+1$ and x_{i} is adjacent to at most $k w_{i}$'s. This implies that $\operatorname{deg}\left(x_{i}\right)=k+1$ and x_{i} is the base vertex of a k-constellation, $X_{k}{ }^{i}$.

At least one x_{i} is an endpoint of T, for suppose there exists an $X_{k}{ }^{i}$ for each $i, 1 \leqslant i \leqslant h$. As in Fig. 8, let b be the number of w_{i} 's adjacent to y. Select an $M_{d}(1 \leqslant d \leqslant k)$ which does not contain edge $y^{\prime} y$. In the component of $T-y^{\prime} y$ containing y there are $h k+1+b$ edges of M_{a}. One can obtain this many independent edges only if M_{d} has an edge of the form $y x_{i}$

Fig. 8. Substructure at vertex y of graph F.
for some $i, 1 \leqslant i \leqslant h$. As each edge of $X_{k}{ }^{i}$ incident with x_{i} appears in one M_{j}, each M_{j} must contain one of these edges, so that M_{d} would contain two edges incident with x_{i}. Thus one can assume x_{1} is an endpoint of T.

Now $b=0$, for suppose $b \geqslant 1$. Since $\operatorname{deg}\left(w_{1}\right)=k$, in some M_{i} the edge incident with w_{1} would have to be $y w_{1}$; say this M_{i} is M_{1}. Let e_{1} be an edge incident with w_{1} other than $y w_{1}$. Now $M_{1}+e_{1}+y x_{1}-y w_{1}$ would be a matching with more edges than M_{1}.

Since $b=0$, if each $x_{i}(1 \leqslant i \leqslant h)$ is an endpoint of T, then y would be a w_{j} for some $j, 1 \leqslant j \leqslant t$, but $y \in F$ implies $y \neq w_{j}$ for any j. Suppose x_{h} is a base vertex of k-constellation $X_{k}{ }^{h}$.

The maximal subgraph with $V\left(X_{k}^{h}\right) \cup\{y\}$ as vertex set is a Z_{k}, and $T=\left(T-X_{k}{ }^{h}\right)(y) \oplus Z_{k}(y)$ where vertex y in Z_{k} is the endpoint adjacent to the base vertex x_{h}, and vertex y in $T-X_{k}{ }^{h}$ is adjacent to endpoint x_{1}. Using Lemma 11 and the induction hypothesis, the theorem is proved.

4. Parameters other than β_{1}

The edge independence number, $\beta_{1}(G)$, is the maximum number of edges in an independent set; the vertex independence number, $\beta_{0}(G)$, is the maximum
number of vertices in an independent set (no two of the vertices are adjacent); the vertex covering number, $\alpha_{0}(G)$ is the minimum number of vertices in a set S such that every edge is incident with at least one vertex in S; the edge covering number, $\alpha_{1}(G)$, is the minimum number of edges in a set S such that every vertex is incident with at least one edge in S. Gallai [2] has shown that $\alpha_{0}+\beta_{0}=p=\alpha_{1}+\beta_{1}$ for any nontrivial connected graph where p is the number of vertices.

Since each edge of tree T incident with an endpoint must be in every α_{1}-set, no tree has two disjoint α_{1}-sets. For maximum independent sets of vertices, that is, β_{0}-sets, one easily derives the next two lemmas which can be used to prove the following theorem.

Lemma 13. If x_{1}, x_{2}, x_{3} is a tail of tree T, then T has two disjoint maximum independent vertex sets if and only if $T-x_{1}-x_{2}$ does.

Lemma 14. If x is a vertex of tree T and x is adjacent to two endpoints, then T does not have two disjoint maximum independent vertex sets.

Theorem 15. A tree T has two disjoint maximum independent vertex sets if and only if T can be obtained from P_{2} by a finite sequence of $K_{1,2^{-}}^{*}$ surgeries.

Corollary 15.1. A tree T has two disjoint maximum independent vertex sets if and only if it has a 1-factor.

Corollary 15.2. A tree T has two disjoint minimum vertex covering sets if and only if T can be obtained from P_{2} by a finite sequence of $K_{1,2}^{*}$-surgeries.

Proof. If T has two disjoint β_{0}-sets and is obtainable from tree $T^{\prime \prime}$ by a $K_{1,2}^{*}$-surgery, then T has exactly two more vertices than T^{\prime}. Label them u and v where u is adjacent to vertex $w \in V\left(T^{\prime}\right)$. By induction on the number of vertices in trees with two disjoint β_{0} sets, it can be assumed that $V\left(T^{\prime}\right)=$ $S_{1}^{\prime} \cup S_{2}^{\prime}$ where S_{1}^{\prime} and S_{2}^{\prime} are disjoint β_{0}-sets. Assume $w \in S_{i}^{\prime}$. Now $S_{1}=$ $S^{\prime} \cup\{v\}$ and $S_{2}=S_{2}^{\prime} \cup\{u\}$ are disjoint β_{0}-sets of T with $V(T)=S_{1} \cup S_{2}$. Each $S_{i}\left(i=1\right.$ or 2) is an α_{0}-set since it is the complement in $V(T)$ of a β_{0}-set. If A_{1} and A_{2} are α_{0}-sets in graph G and $u \notin A_{1}$ and $u \notin A_{2}$, then every vertex adjacent to u is in $A_{1} \cap A_{2}$. Thus, if a graph G has two disjoint α_{0}-sets, A_{1} and A_{2}, then $V(G)=A_{1} \cup A_{2}$, and G has two disjoint β_{0}-sets. (The complement of an α_{0}-set is a β_{0}-set.) This implies that a tree has two disjoint β_{0}-sets if and only if it has two disjoint α_{0}-sets.

Let v be an endpoint of tree T with v adjacent to w. Any β_{0}-set (respectively, α_{0}-set) which does not contain w must contain v. Thus no tree contains three or more disjoint β_{0}-sets (respectively, α_{0}-sets).

References

1. E. J. Cockayne and S. T. Hedetniemi, Which trees have no two disjoint matchings?, Utilitas Math. 9 (1976), 329-337.
2. T. Gallai, "Uber extreme Punkt - und Kantenmengen," Ann. Univ. Sci. Budapest. Eotvos Sect. Math. (1959), 133-139.
3. B. L. Hartnell, On Unicyclic Graphs Having Two Disjoint Maximal Matchings, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory and Computing, February, 1975, 405-413.

[^0]: * This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C., 20234.

