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Impaired neuroanatomic development in infants with congenital
heart disease
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Objectives: We performed a regional volumetric study of the brain using 3-dimensional magnetic resonance im-

aging in infants with congenital heart disease to search for variables in anatomic development of the brain that

may be associated with functional impairment.

Methods: Forty infants with congenital heart disease—17 infants with single ventricle physiology, 5 with trans-

position of great arteries, and 18 with ventricular septal defect—were studied prospectively by 3-dimensional

magnetic resonance imaging of the brain several months after heart surgery.

Results: The global volume of gray matter was significantly reduced in the patients with congenital heart disease

compared with normal controls (P< .001), whereas no significant difference in the volume of white matter was

observed. Further, the decrease in gray matter volume was more apparent in the frontal lobe than in the temporal

lobe, especially in infants with single ventricle physiology or transposition of the great arteries. Multivariate anal-

ysis revealed that preoperative hypoxia is strongly associated with decreased frontal gray matter volume (P<.01),

as well as a diagnosis of hypoplastic left heart syndrome (P< .05). Of note, frontal gray matter volume, which

includes the motor area, correlated weakly with psychomotor developmental index scores (P< .01).

Conclusions: Brain developmental impairment occurs in many infants with congenital heart disease, especially

in those who have preoperative hypoxia and critical congenital heart disease. This quantitative volumetric study

encourages larger scale and longitudinal follow-up to elucidate the significance of impaired neuroanatomic de-

velopment on functional outcome.
Recent advances in diagnostic and surgical techniques have

enabled early correction of most complex congenital heart

diseases (CHD) in infancy and have dramatically reduced

mortality.1,2 However, a considerable rate of neurologic se-

quelae is observed after heart surgery in infants.3-6 The eti-

ology is multifactorial with the integrity of the developing

nervous system being influenced by a complex interaction

of perioperative factors in infants with CHD.7,8 Newborns

with critical CHD have widespread brain abnormalities be-

fore undergoing cardiac surgery, possibly caused by im-

paired cerebral oxygen delivery and impaired brain

development in utero.9 Newborns with transposition of the
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great arteries (TGA) or single ventricle (SV) physiology

have altered brain metabolism and microstructure shortly af-

ter birth, even in the absence of visible injury on magnetic

resonance imaging (MRI).9 However, these subtle brain ab-

normalities are difficult to elucidate in infancy, and the final

neurologic outcome can only be determined by developmen-

tal testing late after the operation.10-12

Most infants with critical CHD, especially hypoplastic left

heat syndrome (HLHS), have a reduced head circumfer-

ence.13 Nevertheless, there are no data regarding exact brain

volume and its relation to neurodevelopment in infants with

critical CHD. We hypothesized that infants with critical

CHD have impaired anatomic development of the brain,

and this is associated with functional impairment. We per-

formed a regional volumetric study of the brain using 3-

dimensional magnetic resonance imaging (3D-MRI) in

infants with heterogeneous CHD including SV, TGA, and

ventricular septal defect (VSD) and performed neurodeve-

lopmental assessment using the Bayley Scales of Infant

Development II.

METHODS
Patients

A prospective observational study was performed in 40 infants with

CHD from May 2005 to April 2007. The patients were further classified

into those who had critical CHD including TGA and SV (critical CHD

group) and those who had a diagnosis of VSD (VSD group). Infants were

excluded if their gestational age was less than 36 weeks or if there was
gery c January 2009
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Abbreviations and Acronyms
CHD ¼ congenital heart disease

CSF ¼ cerebrospinal fluid

3D-MRI ¼ 3-dimensional magnetic resonance

imaging

GM ¼ gray matter

HLHS ¼ hypoplastic left heart syndrome

MDI ¼ mental developmental index

MRI ¼ magnetic resonance imaging

PDI ¼ psychomotor developmental index

SV ¼ single ventricle

TGA ¼ transposition of the great arteries

VSD ¼ ventricular septal defect

WM ¼ white matter

a genetic malformation syndrome. A volumetric study of the brain using

3D-MRI was performed at least 2 months (8.6� 5.7 months) after the latest

heart surgery in each patient. Neurodevelopmental assessment was per-

formed by the Bayley Scales of Infant Development II in all patients by a pe-

diatric psychologist (M.I.). The interval between the 3D-MRI study and the

neurodevelopmental assessment was less than 2 weeks in all patients. Pre-

operative clinical data were prospectively collected from the medical re-

cords and reviewed by pediatric cardiologists who were blinded to the

3D-MRI findings.

Nineteen healthy control infants (aged 1 month to 24 months) were re-

cruited from University Hospital staff and siblings of ambulatory child pa-

tients for volumetric study of the brain. They were born at term without any

complicated perinatal courses. Their heights and weights were all in the nor-

mal range. All controls had normal neurologic development and had no ab-

normal findings on routine MRI.

The Research Ethics Committee of the University Hospital of Toyama

approved the study. Written informed consent was obtained from parents af-

ter the purpose and all procedures of the study were fully explained. All pa-

tients and controls were sedated with monosodium trichorethyl phosphate

syrup (0.5–1.0 mL/kg) before MRI.

MRI Scan Acquisition
MRI scans were performed as previously described with a 1.5-T

Magnetom Vision scanner (Siemens, Erlangen, Germany).14 In brief, axial

images were obtained with a fast low-angle shot gradient refocused 3-

dimensional sequence with the following parameters: flip angle ¼ 35�,
repetition time ¼ 35 ms, echo time ¼ 6 ms, nex ¼ 1. The image obtained

was T1-weighted with a field of view of 256 mm and a matrix size of 256

3 256, and the entire scan was obtained in 15 minutes. The slice thick-

ness was 1.0 mm, and between 140 and 170 contiguous slices were ob-

tained in each case.

Image Processing
Each acquisition was transferred to an online UNIX workstation

(SPARC20; Sun Microsystems, Santa Clara, Calif). All image processing

was performed with a semi-automated software package.15 Manual delinea-

tion of cerebral hemispheres and cerebrospinal fluid (CSF) was based on

standard guidelines16 and frontal and temporal lobar volumes were calcu-

lated by previously described procedures.17

Cerebral Hemispheres and CSF
Collection of data in the axial plane required neuroanatomic knowl-

edge to separate the supratentorial from infratentorial compartments. All
The Journal of Thoracic and C
supratentorial slices were analyzed and the infratentorial CSF and tissue

were excluded by placing a boundary around the posterior fossa on

each slice.

Frontal and Temporal Lobes
As described previously,14 we have added a new method of delineation

to include more frontal lobar regions, such as the motor area. We measured

the global volume of gray matter (GM), white matter (WM), CSF, and re-

gional brain volume of the frontal lobe and temporal lobe in the patients

and normal controls.

Reliability of Regional Volumetric Measurements
Inter-reader reliability was examined in a sample of 10 normal controls

analyzed by two raters (K.W. and J.M.). The intraclass correlation for total

cerebral volumes ranged from 0.93 to 1.02 and those of frontal and temporal

lobar volumes from 0.95 to 0.99. The intra-reader reliability was also exam-

ined in the same 10 scans analyzed by one of these readers (K.W.), and the

correlation for total cerebral, frontal, and temporal lobar volumes ranged

from 0.93 to 0.98. The reader (K.W.) then completed the analysis on the re-

maining scans.

Statistical Analyses
In normal controls, the relationship between the whole brain volume

compartment of GM, WM, CSF, and age was modeled by linear regression

with fractional polynomials of age as the covariates.18 This approach finds

the combination of fractional powers of age that best describe each of the

relationships. Models with up to three fractional powers were explored.

For all three models (GM, WM, and CSF), one fractional power of age

was sufficient. In addition, the curve-fitting approach to examine age effects

on the frontal and temporal subregions, including examination of tissue

types, was done simultaneously by linear regression with fractional polyno-

mials. In infants with CHD, the difference from a normal population over

age was evaluated by the Wilcoxon signed rank test. Correlation between

regional brain volume and neurodevelopmental score by Bayley II scale

was assessed by t test concerning the slope. Independent risk factors for

the reduced regional brain volume were analyzed by multiple regression

analysis after the standardization by age. Statistical computations were per-

formed with STATA (STATA Corp, College Station, Tex) and SAS soft-

ware (SAS Institute Inc, Cary, NC).

RESULTS
Patient Clinical Characteristics

Clinical characteristics of the patients are described in Ta-

ble 1. Of the infants with critical CHD, 17 had SV physiol-

ogy including 4 with HLHS and 5 with TGA, whereas the

VSD group included 15 infants with simple VSD and 3

with associated VSD and coarctation of the aorta. Preopera-

tive oxygen saturation was significantly lower in the group

with critical CHD. No significant differences were found

in patient-related variables including age, body weight,

height, and head circumference. Periventricular leukomala-

cia was diagnosed by ultrasonography in 2 patients in the

critical CHD group during the neonatal period. Age at oper-

ation was significantly younger in the critical CHD group.

Other perioperative variables, including duration of intuba-

tion were not significantly different between the two groups.

Perioperative seizure was observed in only 1 patient in the

critical CHD group. All of the VSD patients underwent total

correction, whereas 17 of the patients with critical CHD
ardiovascular Surgery c Volume 137, Number 1 147
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TABLE 1. Patient characteristics and perioperative variables

Variables VSD group (n ¼ 18) Critical CHD group (n ¼ 22) P value

Patient-related variables

Age at examination(mo) 13.2 � 3.2 15.5 � 6.1 NS

Sex (male/female) 11/7 12/10 NS

Body weight (Z) �0.21 � 1.13 �0.99 � 1.50 NS

Body height (Z) �0.25 � 1.32 �1.20 � 1.42 NS

Head circumference (Z) �0.05 � 0.60 �0.64 � 0.61 NS

Gestational age (wk) 39.4 � 1.5 38.8 � 1.7 NS

Birth weight (g) 3059 � 447 2996 � 360 NS

Birth head

circumference (Z)

0.07 � 0.85 �0.21 � 0.55 NS

Apgar score

At 1 min 8.5 � 0.5 7.6 � 1.8

At 5 min 9.1 � 0.6 8.5 � 1.3

PVL at neonatal period 0 2

Periorerative variables

Age at latest

operation (d)

201.8 � 158.7 82.7 � 132.6 <.05

Oxygen saturation

Before surgery (%) 97.6 � 3.6 77.6 � 5.2 <.001

ACC duration (min) 94.3 � 56.3 91.4 � 45.4 NS

ECC duration (min) 154.0 � 84.3 209.3 � 83.2 NS

Duration of intubation (d) 2.0 � 4.6 5.1 � 5.4 NS

Perioperative seizures 0 1 NS

Diagnosis

TGA 5

SV (HLHS) 17 (4)

VSD (CoA) 18 (3)

Latest surgical procedures

Palliative operation 17

Stage 1 (Norwood, SP) 10 (4,6)

Stage 2 (Glenn, GlennþDKS) 7 (5,2)

Total correction 18 5

VSD, Ventricular septal defect; CHD, congenital heart disease; Z, Z-scores (body weight, height, and head circumference were expressed as Z-scores); PVL, periventricular

leukomalacia; ACC, aortic crossclamp; ECC, extracorporeal circulation; TGA, transposition of great arteries; SV, single ventricle; HLHS, hypoplastic left heart syndrome; VSD,

ventricular septal defect; CoA, coarctation of the aorta; SP, systemic–pulmonary shunt; DKS, Damus–Kaye–Stansel operation; NS, not significant.
underwent palliative operation and 5 underwent total correc-

tion (Table 1). Neuroexaminations, performed by a neurope-

diatrician (K.H.), revealed no significant abnormalities in

any of the patients except for 1 floppy infant in the critical

CHD group. Clinical review of the anatomic MRI scans

by a neuroradiologist (K.N.) resulted in normal findings in

all patients, except for 2 patients with slight subdural hema-

toma.

Volumetry of the Brain by 3D-MRI
Figure 1 shows representative MRIs of controls and pa-

tients with HLHS at different ages. Decreases in GM vol-

ume, especially frontal GM, are apparent in patients with

HLHS compared with age-matched normal controls.

The distribution by age of the global volumes of GM and

WM, as well as the best fitting models for normal controls,

are shown in Figure 2. As described previously,14 the vol-

umes of both GM and WM increase rapidly during the first
148 The Journal of Thoracic and Cardiovascular Su
2 years after birth. Further, the rate of increase in GM is

greater than that in WM and reaches a maximum around

16 to 24 months of age. While the WM increases more

steadily, it continues to increase after 24 months of age.

The distribution by age of the frontal and temporal vol-

umes of GM and WM, as well as the best fitting models

for normal controls, are shown in Figure 3.

Volumetric analysis revealed that the global volume of

GM was significantly reduced in the patients with CHD

compared with normal controls (P < .001) (Figure 2, A).

No significant differences in the global volume of WM

were observed between the patients with CHD and normal

controls (Figure 2, B). The decrease in global volume of

GM was more apparent and significant (P < .001) in the

frontal lobe than that in temporal lobe in the patients

with CHD (Figure 3, A, B). Further, a reduction in the

volume of frontal lobe WM was also noted (P < .01)

(Figure 3, C).
rgery c January 2009
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FIGURE 1. Examples of tissue classification (left) and original T1-weighted images (right) from 4-month-old (A) and 11/2 -year- old (C) normal controls (A,

axial image, C, axial, coronal, and sagittal images), and representative slices from patients with hypoplastic left heart syndrome (HLHS) at the same ages (B,

axial image, D, axial, coronal, and sagittal images). Decrease of the gray matter volume, especially frontal lobe (white arrows), is appreciated in the HLHS

patients compared with the age-matched controls. In the tissue classification images, the gray matter appears white, the white matter is gray and the cerebro-

spinal fluid is black.
Decreased GM Volume and Multivariate Risk Factor
Analysis

Among the variables shown in Table 2, preoperative

oxygen saturation was strongly associated with decreased
The Journal of Thoracic and C
frontal GM volume in this cohort (P < .01). HLHS and

body weight were also associated with decreased frontal

GM volume (P<.05). Other variables, such as Apgar score,

birth head circumference, age at latest operation, body
ardiovascular Surgery c Volume 137, Number 1 149
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FIGURE 2. The distribution by age of the global volumes of gray matter (GM, A), white matter (WM, B), and cerebrospinal fluid (CSF, C). The line shows

best fitting models for normal controls. For global volume of GM, WM, and CSF, the best fitting models for normal controls were as follows: GM¼ 718.84þ
89.12 3 Z, where Z ¼ In(age/100)þ0.76; WM ¼ 320.49þ88.59 3 Z, where Z ¼ In(age/100)þ0.76; CSF ¼ 122.99þ8.32 3 Z, where Z ¼ In(age/100)þ
0.76. Closed circles represent each of the patients with congenital heart diseae.
height, head circumference at study, duration of aortic cross-

clamp, duration of extracorporeal circulation, duration of in-

tubation, and duration of intensive care unit stay did not

correlate with decreased GM volume.

Neurodevelopmental Assessment and Regional Brain
Volumes by 3D-MRI

Delayed mental development (MDI score) was not noted

in either of the groups (Table 3) but psychomotor develop-

mental index (PDI) score was significantly lower in the crit-

ical CHD group. In addition, there was a trend toward

smaller brain volumes in the critical CHD patients compared

with the VSD patients; this difference reached significance

in frontal GM volume (P<.05). Analysis of the relationship

between total and regional brain volumes by 3D-MRI and

neurodevelopmental score by Bayley II scale showed that

frontal GM volume was weakly associated with PDI (P<
.01) but not MDI (Figure 4). No significant correlations

were noted between any other regional brain volumes and

neurodevelopmental score.

DISCUSSION
Decreased Brain Volume and Fetal Circulation

This is the first report of quantitative volumetric analysis

of the brain in infants with CHD. A high incidence of mi-

crocephaly, presenting with reduced head circumference,

has been reported in infants with complex CHD, especially

those with HLHS. However, an imbalance of regional
150 The Journal of Thoracic and Cardiovascular Su
brain growth has not previously been reported. We identi-

fied decreased GM volume in infants with CHD, especially

in those with critical and hypoxic CHD, even in the ab-

sence of visible injury on MRI. The etiology of this im-

paired neuroanatomic development in infants with CHD

may be multifactorial, but most likely begins in utero.

One potential cause is abnormal cerebrovascular blood

flow dynamics in the fetus. Fetal cerebral vascular

resistance has been shown to be abnormal in a variety of

complex cardiac lesions.19,20 These alterations in cerebro-

vascular blood flow distribution may be associated with

impaired brain growth. Fetuses with decreased cerebral ox-

ygen supply display autoregulation of blood flow that en-

hances cerebral perfusion, a brain-sparing effect, which is

most prominently found in fetuses with SV physiology,

HLHS, and TGA.19 Inadequate cerebral blood flow in

CHD fetuses, despite autoregulation by this brain-sparing

effect, may alter brain growth. This theory may partly ex-

plain our finding that decreased brain volume occurs most

prominently in infants with SV, HLHS, and TGA (critical

CHD group).

Preoperative Hypoxia and Brain Growth
After birth, cerebral blood flow and oxygen delivery are

low in infants with complex CHD21 and correlate with

WM injury. Low diastolic blood pressure is seen in such pa-

tients, especially in infants receiving prostaglandin E1, as

well as after systemic–pulmonary shunt operation, and
rgery c January 2009
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FIGURE 3. Regional brain volumes in patients with CHD compared with normal control values. The GM and WM volumes are significantly decreased in the

frontal lobe (A and C) but not in the temporal lobes (B and D) in the patients with CHD. For GM and WM in the frontal lobe, the best fitting models for normal

controls were as follows: GM¼ 230.60þ34.85 3 Z, where Z¼ In (age/100)þ0.76; WM,¼ 93.48þ26.68 3 Z, where Z¼ In (age/100)þ0.76. For GM and

WM in the temporal lobe, the best fitting models for normal controls were as follows: GM¼ 146.14þ23.94 3 Z, where Z¼ In (age/100)þ0.76; WM¼ 46.80

þ13.37 3 Z, where Z ¼ In (age/100)þ0.76.
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may predispose to WM injury as well as global cerebral

ischemia.19 In our study, the majority of the infants in the

critical CHD group were receiving prostaglandin E1 preop-

eratively, and the majority of the infants underwent sys-

temic–pulmonary shunt operations. Low diastolic blood

pressure coupled with hypoxia may partly affect brain

growth in patients with critical CHD in our study. In addition

to preoperative hypoxia and hypotension, perioperative

TABLE 2. Variables analyzed for association with reduced frontal

gray matter volume

Variables (unit)

Regression

coefficient 95% CI P value

Patient-related variables

Apgar score at 1 min 0.0029 �0.0170<0.0224 NS

Birth head circumference (Z) �0.0337 �0.0800<0.0128 NS

Age at latest operation (d) �0.0000 -0.0002<0.0001 NS

Preop oxygen saturation (%) 0.0041 0.0012<0.0071 <.01

Body weight at study (Z) 0.0342 0.0021<0.0665 <.05

Body height at study (Z) �0.0196 �0.0450<0.0063 NS

Head circumference (Z) 0.0290 �0.0190<0.0767 NS

Diagnosis-related variables

Diagnosis of HLHS �0.1351 �0.2680<�0.0020 <.05

Perioperative variables

ACC duration (min) �0.0009 �0.0020<0.0004 NS

ECC duration (min) 0.0005 �0.0005<0.0011 NS

Duration of intubation (d) 0.0012 �0.0080<0.0105 NS

Duration of ICU stay (d) 0.0037 �0.0060<0.0132 NS

For abbreviations see Table 1. CI, Confidence interval; ICU, intensive care unit.
The Journal of Thoracic and C
factors including cardiac arrest, hyperglycemia or hypo-

glycemia, and hyperthermia may cause brain damage, but

were not evident in our study, in agreement with previous

reports.22,23

In addition, multivariate risk factor analysis showed the

age at latest operation did not correlate with decreased GM

volume (Table 2). However, the majority of the patients in

the critical CHD group had neonatal surgery such as the

TABLE 3. Quantitative 3D-MRI of regional brain volume and

neurodevelopmental score

VSD group (n ¼ 18)

Critical CHD

group (n ¼ 22) P value

Quantitative 3D-MRI of regional brain volume

Total GM 0.948 � 0.056 0.902 � 0.081 NS

Total WM 0.931 � 0.155 0.848 � 0.188 NS

CSF 0.931 � 0.240 0.840 � 0.180 NS

Frontal GM 0.895 � 0.060 0.827 � 0.089 <.05

Frontal WM 0.853 � 0.167 0.766 � 0.184 NS

Temporal GM 1.005 � 0.094 0.953 � 0.099 NS

Temporal WM 0.923 � 0.352 0.824 � 0.318 NS

Neurodevelopmental assessment by Bayley Scale

PDI 96.5 � 15.3 84.7 � 19.7 .05

MDI 91.5 � 17.4 97.6 � 19.8 NS

Regional brain volumes are expressed as ratios to age-matched normal volume (mean

� SD). VSD, Ventricular septal defect; CHD, congenital heart disease; 3D-MRI, 3-

dimensional magnetic resonance imaging; GM, gray matter; WM, white matter; CSF,

cerebrospinal fluid; PDI, psychomotor developmental index; MDI, mental develop-

mental index. MDI and PDI are expressed as mean � SD.
ardiovascular Surgery c Volume 137, Number 1 151
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FIGURE 4. Correlation between neurodevelopmental score by Bayley II scale and frontal GM volume in patients with CHD. Frontal GM volume was

weakly associated with PDI (P<.01) (B) but not with MDI (A). Frontal GM volume is expressed as ratios to age-matched normal volumes. PDI, Psychomotor

developmental index; MDI, mental developmental index.
Norwood operation, and this operation might influence the

brain development greatly. Further, although we could not

analyze this in the present study because of the small number

of patients, the overall length of exposure to lower oxygen

saturations might have had an impact on the findings of

the MRI study, as well as the developmental testing.

Decreased GM Volume in Infants with CHD
A high incidence of WM injury, including periventricular

leukomalacia occurs in neonates with CHD preoperatively

and postoperatively24-27 and is thought to be related to hyp-

oxia/ischemia to immature oligodendroglia in the process of

myelination, which are most vulnerable to injury.27 On the

contrary, little attention has been paid to GM injury and

brain development in infants with CHD until now. This

study documents for the first time a reduction in GM volume

in infants with CHD, despite no significant reduction in WM

volume. During the first 2 years after birth, brain volumes,

especially GM, increase rapidly.28 This early growth spurt

of the brain is the most prominent growth of any organs in

the human body during this period. Further, the increase in

GM is greater than in WM and reaches a maximum around

16 to 24 months of age, whereas the WM has a slower

growth process throughout childhood. Therefore, if long-

lasting hypoxia/ischemia occurs in early infancy, GM would

be more affected than WM and would result in a prominent

reduction in the GM volume, as our study shows. Inder and

associates29 also reported that periventricular WM injury in

the premature infant is followed by reduced cerebral cortical

GM volume at term.

Underdevelopment of Frontal GM and Delayed
Psychomotor Development

Of note, frontal GM volume, which includes the motor

area, was positively but weakly associated with PDI score

by Bayley II scale in our study. The correlation between

the neuroanatomic changes and the neurodevelopmental

function could be influenced by a number of factors, includ-

ing the type of initial surgical intervention, the use of cardio-
152 The Journal of Thoracic and Cardiovascular Sur
pulmonary bypass, and the perfusion techniques, as well as

events related to hemodynamic instability and tendency to

hypoxemia in the perioperative period. A neuropathologic

study demonstrated that cerebral WM damage was the

most significant lesion in 38 infants dying after cardiac sur-

gery, followed by a spectrum of GM lesions,27 predomi-

nantly involving the cerebral cortex and hypocampus

acutely, and the thalamus and brain stem (including the infe-

rior oliva and basis pontis) more chronically. The common

occurrence of injury in the inferior oliva and basis pontis

suggests the possibility that dysfunction of cerebellar path-

ways contributes to the motor disturbances of survivors of

cardiac surgery in early infancy. Similarly, underdevelop-

ment of frontal GM, which includes the motor area, may

be positively associated with psychomotor developmental

delay in infants with critical CHD. Therefore, longer func-

tional assessment should be undertaken, especially in infants

with SV physiology, including HLHS, who have long-last-

ing hypoxia and staged reconstruction until ultimate conver-

sion to Fontan circulation. Another association of structural

underdevelopment of the brain, ‘‘open operculum,’’ and de-

velopmental disabilities of feeding and language are also re-

ported with high incidence in children with complex heart

disease.21,24 Further research is needed to prove whether in-

fants with developmental disabilities may have a structural

underdevelopment of the brain as the etiology.

Study Limitations
In infants between 1 and 6 months of age, GM and unmy-

elinated WM have signal values that are isointense and

are indistinguishable from one another. Therefore, when in-

terpreting the results, we need to consider that GM in chil-

dren under 6 months of age might include both GM and

unmyelinated WM. However, in this study, only 2 infants

under 6 months of age were enrolled, and they are unlikely

to affect the conclusion.

The present study analyzed the volumes of the whole

brain, fontal and temporal lobes, and did not analyze re-

gional volumes of cortical subdivisions, such as premotor
gery c January 2009
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and sensorimotor regions. Quantitative information on re-

gionally segmented brain volumes can be correlated with

neurodevelopmental and behavioral measures to document

the association between neuroanatomic development and

the behavior repertoire and functional development.30

Our data were also limited by a lack of comparison with

3D-MRI data before surgery, because it was not possible

to perform MRIs in most of the infants with critical CHD

owing to their unstable general condition. Another limitation

to this study is that longer functional assessments and fol-

low-up 3D-MRI studies are not available. A relatively small

patient population and variety of diagnostic categories also

limit our study.

CONCLUSION
Brain developmental impairments occur in a number of

infants with CHD, especially in those who have preoperative

hypoxia and critical CHD. In addition, the impact of repeated

procedures on patients undergoing staged palliation, as well

as the age of initial intervention, could have an important

role. A decrease in frontal GM volume, which includes the

motor area, was weakly associated with psychomotor

developmental delay in infants with critical CHD. This

quantitative volumetric study encourages larger scale and

longitudinal follow-up to elucidate the significance of im-

paired neuroanatomic development on functional outcome.
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