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The C-terminal cytoplasmic domain of human proEGF is a negative modulator
of body and organ weights in transgenic mice
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a b s t r a c t

We generated transgenic mice to study the in vivo role of the cytoplasmic domain of human proEGF
(proEGFcyt). Post-pubertal proEGFcyt transgenic (tg) mice displayed an up to 15% reduction in body
weight, including smaller kidney and brain weights as compared to control littermates. Renal his-
tology, gene expression profiles, and functional parameters were normal. In both sexes, serum levels
of IGFBP-3 were reduced. Circulating IGF-I/IGF-II levels were unchanged. Histomorphological analy-
sis revealed isolated foci of liver necrosis specific to proEGFcyt tg mice. In conclusion, we identified
proEGF cytoplasmic domain as a novel modulator of whole body and organ-specific growth in mice.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction mice overexpressing human proEGFcyt under the control of a
The membrane-anchored proform of the largest epidermal
growth factor (EGF)-like precursor, proEGF, contains the largest
cytoplasmic domain (155 aa; proEGFcyt) of all EGFR ligands [1].
Cytoplasmic domains of proEGF-like ligands are biologically active
and have multiple cellular functions [2–8]. Transgenic (tg) mice
expressing human full-length proEGF under the control of a
beta-actin promoter showed stunted growth, abnormalities of
osteoblasts, focal liver necrosis, and infertility [9,10]. This complex
phenotype was distinct from that of transforming growth factor-al-
pha (TGFA) tg mice [11,12], but showed similarities with the phe-
notypes of tg mice overexpressing heparin-binding EGF-like
growth factor (HBEGF) [13] or betacellulin [14]. We generated tg
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isch).
chicken beta-actin promoter and found that proEGFcyt contributed
to some but not all reported phenotypical changes observed with
the full-size proEGF tg mice [9,10].

2. Materials and methods

2.1. RNA-processing, RT-PCR, Northern blot

Total RNA isolation, first strand cDNA synthesis, and semiquan-
titative RT-PCR were performed as described earlier [2,3]. Primers
and PCR conditions were used as described previously [15]. North-
ern blot analysis was done as described previously [14] using ran-
dom prime-labeled cDNA probes.

2.2. Transgene construction and generation of transgenic mice

An EcoRI fragment of human proEGFcyt [3] was cloned down-
stream of the cytomegalovirus enhancer, chicken b-actin
lsevier B.V. All rights reserved.
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promoter and rabbit b-globin splice acceptor, and upstream to
the rabbit b-globin 30-flanking region and polyadenylation signal
in the expression vector pUC-CAGGS (Fig. 1A). Transgenic mice
were generated by pronuclear injection of the constructs (diluted
to 1–2 ng/ll) into fertilized FVB/N oocytes [14]. Founders were
identified by PCR and mated to wild-type FVB/N animals. All ani-
mal experiments were approved by the institutional animal care
committee and carried out in accordance with the German Ani-
mal Protection Law.

2.3. Growth analyses, pathology, clinical chemistry

Litters were weighed weekly from 3 to 12 weeks of age. Animals
were bled under ether anesthesia and then sacrificed. Organs were
dissected, blotted dry, and weighed to the nearest mg. Tissue sam-
ples were taken and frozen at �80 �C or fixed in Bouin’s solution
(Sigma), processed, and embedded in paraffin for histological
examination and staining with hematoxylin/eosin (H&E). Mouse
serum samples were diluted 1:2 with deionised water (except for
magnesium measurement, which was done on undiluted samples)
and centrifuged for 10 min at 4700�g to remove clots. An Olympus
AU 400 autoanalyzer was used to determine electrolyte, total pro-
tein, creatinine levels, and serum activities for a-amylase, alanine
aminotransferase, aspartate aminotransferase, alkaline phospha-
tase, creatine kinase, and lipase.
Fig. 1. (A) Schematic of the construct used in generating proEGFcyt tg mice. (B) RT-PCR a
obtained for L1. (C) Northern blot detection of transcripts encoding human proEGFcyt in
2.4. Detection of cleaved proEGFcyt in stable MCF-7 transfectants

The production of the rabbit (rb) antiserum against human pro-
EGFcyt has been described previously [2]. The anti-proEGFcyt and
anti-FLAG M2 antisera (Sigma) were used in Western blots (both
1:1000) and immunoprecipitation (both 1:100) on stable transfec-
tants of the human breast cancer cell line MCF-7 expressing
Xpress-tagged human proEGFcyt, membrane-anchored proEGF
with C-terminal FLAG tag (proEGFctF; generously provided by Dr.
H.S. Wiley), and empty vector, respectively [2,3]. For binding inhi-
bition assays, GST-proEGFcyt (8 lg/ml) was pre-incubated for 2 h
at 4 �C with the proEGFyt antiserum prior to Western blot. Detec-
tion of human proEGFcyt in mouse tissue extracts (20 lg/ml) was
done with the proEGFcyt antiserum (1:1000).

2.4. Immunohistochemistry

Non-specific binding was blocked with 3% BSA and 10% goat
normal serum or 10% rb normal serum (for the detection of mouse
EGF) (both Sigma). Tissue sections (5 lm) were incubated over-
night at 4 �C with proEGFcyt antiserum at 1:100, goat anti-mouse
EGF (1:200; R&D Systems, MN, USA), rabbit anti-aquaporin-1 and
anti-calbindin-D (K28) (both 1:250; Calbiochem, NJ, USA). Sections
were incubated with the appropriate secondary antibodies (1:300;
New England Bio Labs) and developed using DAB kit.
nalysis of transgene expression in various tissues of tg mice (L3); same results were
mouse tissues of female L1 and L3 tg and normal littermates.
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2.5. Measurement of IGFs and IGFBPs in serum

Determination of serum IGF-I, IGF-II, and IGFBP-1 to -5 levels
were quantified as described previously [16–18].

2.6. Statistics

All experiments were repeated at least three times. For growth
and weight measurements, the mean values with standard errors
are shown and independent two-tailed t-test was performed, with
P < 0.05 considered significant. For multiple group comparison,
ANOVA table and Tukey’s test were used with P < 0.05 being re-
garded significant.

3. Results

Two tg mouse lines (L1 and L3) expressing human proEGFcyt
(Fig. 1A) were established and transmitted the transgene in a men-
delian fashion. Transcripts for human proEGFcyt were detected by
Fig. 2. (A) A rabbit (rb) anti-human proEGFcyt immunoprecipitated Xpress-tagged hum
transfectant served as positive control (lane 1). ProEGFcyt protein was exclusively dete
(lane 5). (B) Preincubation of the rb anti-human proEGFcyt with GST-proEGFcyt abolish
proEGFcyt antiserum in Western blots of extracts from MCF-7-proEGFcyt transfectants.
mice but not in tissues of normal littermates (lanes 3–6). MCF-7-mock and MCF-7-proE
RT-PCR (L3; Fig. 1B) and Northern blot analysis (Fig. 1C). A specific
antiserum against human proEGFcyt immunoprecipitated human
Xpress-tagged proEGFcyt protein from extracts of MCF-7-pro-
EGFcyt transfectants expressing soluble human proEGFcyt (Fig
2A). Specific binding of this antiserum to proEGFcyt was blocked
by pre-incubation with GST-proEGFcyt protein (Fig. 2B). The pro-
EGFcyt antiserum failed to detect mouse proEGF in mouse tissue
extracts but specifically detected immunoreactive human pro-
EGFcyt in transgenic mouse tissues (Fig. 2C). To determine if pro-
EGFcyt can be detected as a naturally cleaved product, we
generated stable MCF-7-proEGFctF transfectants which express a
previously described membrane-anchored construct of human
proEGF with C-terminally FLAG-tagged cytoplasmic domain
[19,20]. Using both antisera against FLAG (M2) and proEGFcyt,
immunoprecipitates of MCF-7-proEGFctF revealed a band of
immunoreactive membrane-bound proEGF (Fig. 3A). In addition,
we detected a second band of lower molecular weight correspond-
ing to cleaved proEGF cytoplasmic domain as determined by Wes-
tern blot analysis of immunoprecipitates from MCF-7-proEGFcyt
an proEGFcyt from MCF-7-proEGFcyt stable transfectants. Protein extracts of this
cted when proEGFcyt antiserum was employed on MCF-7-proEGFcyt transfectants
ed detection of the Xpress-proEGFcyt fusion protein by either anti-Xpress or anti-
(C) Rb anti-proEGFcyt detected human proEGFcyt in tissue extracts of proEGFcyt tg
GFcyt stable transfectants served as negative and positive control, respectively.
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with the antiserum against proEGFcyt (Fig. 3A). Immunodetection
of both proteins by the antiserum against proEGFcyt was blocked
completely by pre-incubation with recombinant GST-proEGFcyt
(Fig. 3B). Thus, in MCF-7-proEGFctF transfectants the membrane-
anchored proEGFctF was cleaved to release a soluble cytoplasmic
proEGF domain (Fig. 3A and B) validating our transgenic approach
and indicating that the presence of soluble proEGFcyt cleaved
product occurs naturally.

ProEGFcyt tg mice (L3) developed post-pubertal growth reduc-
tion of 15% (females) and 10% (males) compared to non-transgenic
littermates as monitored during 3–12 weeks of postnatal life
(Fig. 4A). Growth reduction remained constant at 5 months of
age (Fig. 4B) when organ weights were evaluated (Table 1). L1 tg
proEGFcyt animals with low levels of transgene expression were
similar to control littermates. Thus, a specific threshold level of
proEGFcyt was required to induce growth retardation. Tg mice
from both genders consistently displayed a significant reduction
in absolute weight of the brain (male ca. 10%; female ca. 15%)
and kidney (ca. 20% for both sexes) as determined at 5 months of
age (Table 1 and Fig. 5A). The reduced kidney weight was evident
at 2 months of age (Fig. 5B), remained constant in females, and de-
creased further with age in male tg mice (Fig. 5B). Renal p38 MAPK
phosphorylation [18] and p42/44 ERK have been implicated in re-
nal development [21] but we failed to detect differences in the
Fig. 3. (A) Rabbit anti-human proEGFcyt and FLAG antisera were employed to immunopr
proEGFcyt stable transfectants and human C-terminally FLAG-tagged proEGFctF from MC
membrane-anchored proEGFctF and a truncated FLAG-tagged protein of ca. 20 kDa, sim
human proEGFcyt antiserum from MCF-7-proEGFcyt transfectants. (B) Preincubation o
proEGFctF and the 20 kDa truncated protein by anti-proEGFcyt antiserum in Weste
immunoprecipitated FLAG-tagged proteins both contained proEGFcyt. This provided firs
occurring cleavage from the membrane-bound EGF proform in human cells and validate
controls for the immunoprecipitation.
phosphorylation status of p38 or p42/44 in renal tissues of pro-
EGFcyt tg mice (data not shown).

Kidney histology from proEGFcyt tg mice and wild-type litter-
mates was normal. Immunoreactive human proEGFcyt was de-
tected in aquaporin-(AQ-)1-immunopositive tubular cells (Fig. 6I)
of the thick ascending loop of Henle (TAL; Fig. 6A, C, and E) of
the outer and inner medullar region and in cells of the distal con-
voluted tubule (CT; Fig. 6G). The proximal nephron, including glo-
merulus, proximal tubule, and calbindin-D (K28)-immunopositive
cells of the thin descending loop of Henle (Fig. 6K), were devoid
of proEGFcyt. Instead, human proEGFcyt was localized to the basal
tubular epithelial cell compartment (Fig. 6G) while mouse proEGF
was immunolocalized to the apical membrane (Fig. 6M). Kidney
sections from control mice were devoid of proEGFcyt immunoreac-
tivity (data not shown). proEGFcyt tg mice are fertile and display
normal bone structure (data not shown), but showed isolated foci
of liver necrosis (Fig. 6O) not observed in control mice.

Reduced kidney weight in male and female proEGFcyt tg mice
was not associated with altered renal expression patterns or de-
creased kidney function. We failed to detect differences in gene
expression of key renal factors, including NKA, NKCC2, NHE3,
CIC-K2, ROMK, ENaC, Barttin, renin, and Tamm Horsfall in kidneys
of proEGFcyt and controls; NCC and COX2 were undetectable [15].
Serum levels of Na+ and Cl- (Fig. 7A), K+, Mg2+, Ca2+, inorganic phos-
ecipitate and detect in Western blots Xpress-tagged human proEGFcyt from MCF-7-
F-7-proEGFctF stable transfectants. The latter showed two distinct bands resembling
ilar in size to soluble proEGFcyt which was immunoprecipitated with the rb anti-
f the rb anti-human proEGFcyt with GST-proEGFcyt abolished detection of both
rn blots of extracts from stable MCF-7-proEGFctF transfectants. Thus, the two
t evidence for a physiological presence of soluble proEGFcyt as a result of naturally
d the transgenic approach described here. IgG1 isotype antisera served as negative



Fig. 4. (A) Weekly body weight measurements (3–12 weeks) revealed a significant
reduction in postnatal body weight in L3 proEGFcyt tg animals compared to sex-/
age-matched littermates. The differences in body weights were more pronounced in
post-pubertal females than in male mice. The number of animals used is indicated
in the graph and data are expressed as means ± S.E.M. (B) At the age of 5 months, L3
proEGFcyt tg mice displayed up to 15% reduction in body weight (n = 8 animals/
group; data are shown as means ± S.E.M.).
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phorus, creatinine, and total protein (Fig. 7B) were normal. Thus,
reduced kidney weight in proEGFcyt tg mice did not coincide with
altered gene expression pattern or reduced kidney functions.

Insulin-like growth factors (IGFs) and IGF-binding proteins
(IGFBPs) are important in the control of body/organ growth
Table 1
Absolute organ weights (mg) of female and male non-transgenic (wt) and EGFcyt tg mice fro
A t-test was used to show absence (�) or presence (*P < 0.05; **P < 0.01; ***P < 0.001) of a

Organs Organ weight (mg)

Females

WT Tg (L1) D Tg (L3)

Kidneys 337 (15) 329 (21) – 279 (23)
Brain 513 (20) 499 (6.2) – 453 (8.7)
Lungs 160 (3.9) 169 (11) – 145 (10)
Heart 128 (7.6) 114 (9.5) * 117 (7.0)
Liver 1414 (130) 1503 (87) – 1412 (105)
Pancreas 289 (20) 281 (22) – 271 (43)
Spleen 138 (15) 137 (19) – 159 (32)
Adrenal glands 11.2 (1.6) 9.8 (1.2) – 10.3 (1.9)
Uterus 85.5 (26) 68.0 (16) – 80.4 (24)
Ovaries 12.2 (6.3) 17.7 (2.1) – 11.9 (4.7)
Testis
Carcass (g) 9.92 (0.3) 10.23 (0.55) – 8.30 (0.4)
n 6 6 8
[18,22–24]. We did not observe differences in serum IGF-I and
IGF-II levels between transgenic and non-transgenic littermates
(Fig. 8A). Western ligand blots revealed similar serum levels of
IGFBP-1, -2, -4, and -5, but a marked down-regulation of IGFBP-3
in proEGFcyt tg mice compared to non-transgenic littermates
(Fig. 8B).

4. Discussion

Here we report the generation of transgenic mice expressing
human proEGFcyt and demonstrate for the first time an in vivo role
of human proEGFcyt as a negative modulator of body mass and
specific organ weights (kidney and brain). We also provide unique
evidence from our MCF-7 human breast cancer cell model for a
physiological cleavage of free cytoplasmic domain from mem-
brane-anchored proEGF. This extends the list of EGFR ligands
showing that the cytoplasmic domain is proteolytically cleaved
from the membrane-bound proform. We had shown previously
that human proEGFcyt is a modulator of microtubule dynamics
and microtubule-associated protein (MAP) 1 and MAP2 production
in human thyroid carcinoma [3]. Free cytoplasmic domains from
other EGF-like ligands were shown to elicit important functional
roles in the maturation, basolateral sorting, and intracellular traf-
ficking of membrane proteins [4,25–30]. EGFR ligand cytoplasmic
domains may also be clinically relevant by affecting cell prolifera-
tion and survival, as demonstrated for proHBEGFcyt [5–7,31].

Transgenic mice expressing the full-length human proEGF dis-
played 22% growth retardation at adulthood [9]. The proEGFcyt
tg mice showed a similar albeit milder growth retardation of up
to 15% in body weight in post-pubertal animals. As with full-size
proEGF tg mice, proEGFcyt tg mice showed isolated foci of liver
necrosis but failed to display abnormal ossification and infertility
[9,10]. The proEGFcyt tg phenotype reflected distinct domain-spe-
cific in vivo functions of proEGFcyt which did not require the pres-
ence of full-size proEGF. One of those functions was the reduction
in serum IGFBP-3 levels observed in both proEGF and proEGFcyt tg
mice [9] which coincided with a growth retardation in both tg
models. Serum levels of IGFBP-3 are known to be positively associ-
ated with body and organ mass [32] and inversely related to serum
levels of IGF-I [33]. Rats treated with soluble EGF displayed de-
creased levels of circulating IGF-I as a result of a reduction in ser-
um IGFBP-3 which is required for the binding of the majority of
IGF-I in the serum as a ternary complex between IGFBP-3, IGF-I,
and the acid-labile subunit (ALS) [24,34]. Stunted growth of tg
mice expressing human proEGF was hypothesized to be a direct ef-
fect of extracellular EGF decreasing the secretion of IGFBP-3 [9].
m L1 and L3 at the age of 5 months. The table shows calculated mean values (±S.E.M.).
statistically significant difference (D) between groups.

Males

D WT Tg (L1) D Tg (L3) D

*** 531 (35) 493 (15) * 430 (30) ***
*** 489 (18) 465 (18.7) * 454 (11) **
** 169 (9.2) 163 (9.8) – 164 (13) –
* 143 (12) 124 (11) * 144 (22) –
– 1607 (86) 1540 (150) – 1598 (212) –
– 283 (19) 264 (18) – 274 (30) –
– 106 (4.5) 100 (11) – 127 (35) –
– 3.6 (1.5) 3.1 (0.7) – 4.3 (1.6) –
–
–

195 (21) 189 (7.4) – 196 (12) –
*** 11.13 (0.50) 10.4 (0.73) – 10.6 (0.95) –

7 6 6



Fig. 5. (A) Absolute body and organ weights of proEGFcyt tg mice. Kidney and brain showed a significant and gender-independent decrease in weight compared to normal
littermates set to 100%. (B) Detailed analysis of kidney weights revealed a permanent reduction in weight for kidneys in all tg animals, but more significant in male mice. At
least five animals were used for each time point and data are shown as means ± S.E.M.

1354 T. Klonisch et al. / FEBS Letters 583 (2009) 1349–1357
Our proEGFcyt tg mouse model suggests a novel in vivo role by
which proEGFcyt acts as a negative modulator of the IGF/IGFBP-3
system, specially affecting organs like the kidney and brain known
to contain proEGF [35,36]. Since proEGFcyt tg mice lack ossification
defects, growth retardation in these mice may be initiated by un-
known intracellular processes systemically impacting on the IGF/
IGFBP-3 axis. There is a sexual dimorphism for EGF production in
the mouse kidney, with higher renal EGF concentrations in females
[37,38]. The more pronounced reduction in kidney weight in male
as in female proEGFcyt tg mice suggests that higher proEGF con-
centrations present in female kidneys partially compensate for
the renal growth-retarding action of proEGFcyt, an effect amelio-
rated in male kidneys with lower EGF content. ProEGFcyt can
antagonize functions of extracellular EGF in cancer cells [2].

A homozygous mutation with substitution of the conserved
proline P1070 by leucine within exon 22 links proEGFcyt to a rare
primary hypomagnesemia disorder which is characterized by renal
and intestinal magnesium wasting and general symptoms of se-
vere Mg2+ depletion [39]. This occurs as a result of impaired baso-
lateral sorting and inadequate renal secretion of EGF into the
circulation [39]. ProEGFcyt tg mice contained a functional sorting
signal as proEGFcyt displayed basal localization in the tubular epi-
thelial lining of TAL and DC and electrolyte serum levels, including
Mg2+, and gene expression of the Mg2+ transporters, NCC and NKA,
were normal. The distinct cellular localization of human proEGFcyt
(basal cellular compartment) and mouse proEGF (luminal mem-
brane) suggests that the human proEGFcyt tg product did not
interfere with the normal renal localization/function of endoge-
nous mouse proEGF.

In conclusion, we have identified novel domain-specific in vivo
functions of human proEGFcyt with impact on body/organ weight
and serum IGFBP-3 levels in mice.
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Fig. 6. Immunolocalization of human proEGFcyt in kidney of tg mice (A, C, E, G). ProEGFcyt was present in tubular epithelial cells of the thick ascending loop of Henle (TAL)
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Fig. 7. Measurements of serum levels for (A) Na+, Cl� (mmol/l) and (B) K+, Ca2+,
Mg2+, phosphorus (mmol/l), creatinin (mg/dl), and total protein (TP; g/dl) serum
levels normal values for proEGFcyt tg mice and normal littermates (five animals at 6
months of age each; data are shown as means ± S.E.M.).

Fig. 8. (A) Radioimmunoassays demonstrated similar serum levels of IGF-I and IGF-
II (ng/ml) in five male and female each of tg mice and normal littermates at 5
months of age. (B) Representative Western ligand blot showing serum levels for
IGFBP-1 to -5. A total of four tg and wild-type mice were used. Both female and
male tg mice displayed exclusive reduction in the level of IGFBP-3 which was most
pronounced in male tg mice.
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