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a b s t r a c t

A flaw in the greedy approximation algorithm proposed by Zhang et al. (2009) [1] for
the minimum connected set cover problem is corrected, and a stronger result on the
approximation ratio of the modified greedy algorithm is established. The results are now
consistent with the existing results on the connected dominating set problem which is a
special case of the minimum connected set cover problem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a set with a finite number of elements, and S = {Si ⊆ V : i = 1, . . . , n} a collection of subsets of V . Let G
be a connected graph with the vertex set S. A connected set cover (CSC) R with respect to (V , S,G) is a set cover of V such
that R induces a connected subgraph of G. The minimum connected set cover (MCSC) problem is to find a CSC with the
minimum number of subsets in S. In [1], Zhang et al. proposed a greedy approximation algorithm (Algorithm 2 in [1]) for
the minimum connected set cover (MCSC) problem, and obtained the approximation ratio of this algorithm. This algorithm
has a flaw, and the approximation ratio is incorrect. In this note, wemodify the greedy algorithm to fix the flaw and establish
the approximation ratio of the modified algorithm. The approximation ratio is with respect to the optimal solution to the
set cover problem (V , S), instead of the optimal solution to theMCSC problem (V , S,G), and thus it is stronger than the one
obtained in [1].

2. Greedy algorithm

Before stating the algorithm, we introduce the following notations and definitions. Most of them have also been used
in [1]. For two sets S1, S2 ∈ S, let distG(S1, S2) be the length of the shortest path between S1 and S2 in the auxiliary graph G,
where the length of a path is given by the number of edges; S1 and S2 are said to be graph-adjacent if they are connected via
an edge in G (i.e., distG(S1, S2) = 1), and they are said to be cover-adjacent if S1 ∩ S2 ≠ ∅. Notice that in general, there is no
connection between these two types of adjacency. The cover-diameter Dc(G) is defined as the maximum distance between
any two cover-adjacent sets, i.e.,

Dc(G) = max{distG(S1, S2) | S1, S2 ∈ S and S1, S2 are cover-adjacent}.
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At each step of the algorithm, letR denote the collection of the subsets that have been selected , andU the set of elements
of V that have been covered. Given R ≠ ∅ and a set S ∈ S \ R, an R → S path is a path {S0, S1, . . . , Sk} in G such that
(i) S0 ∈ R; (ii) Sk = S; (iii) S1, . . . , Sk ∈ S \ R. Let |PS | denote the length of an R → S path PS , and it is equal to the number
of vertices of PS that does not belong to R. Then we define the weight ratio e(PS) of PS as

e(PS) =
|PS |

|C(PS)|
, (1)

where |C(PS)| is the number of elements that are covered by PS but not covered by R.
For the greedy algorithm in [1], after the subset with the maximum size is selected at the first step, only the subsets that

are not inR and are cover-adjacentwith some subset inR are considered in the following iterations. At some iteration, there
may not exist a subset S ∈ S \R that is cover-adjacent to a subset inR, and if we only consider cover-adjacent subsets, then
the algorithm will enter a deadlock. Consider a simple example where V = {1, 2, 3, 4}, S = {{1, 2}, {1}, {2}, {2, 3}, {4}},
and G is a complete graph. If we apply the greedy algorithm in [1] to this MCSC problem, then after {1, 2} and {2, 3} are
selected, the algorithm enters a deadlock.

To fix this problem, we modify the greedy algorithm to include not only cover-adjacent subsets but also graph-adjacent
subsets. The modified greedy algorithm for the MCSC problem is presented below.

Input: (V , S,G).
Output: A connected set cover R.

1. Choose S0 ∈ S such that |S0| is the maximum, and let R = {S0} and U = S0.
2. While V \ U ≠ ∅ DO

2.1. For each S ∈ S \ R which is cover-adjacent or graph-adjacentwith a set in R, find a shortest R → S path PS .
2.2. Select PS with the minimum weight ratio e(PS) defined in (1), and let R = R ∪ PS (add all the subsets of PS to R)

and U = U ∪ C(PS).
End while

3. Return R.

3. Approximation ratio

In [1], the approximation ratio of the greedy algorithm is shown to be 1+DC (G) ·H(γ − 1), where γ = max{|S| | S ∈ S}

is themaximum size of all the subsets in S andH(·) is the harmonic function. In the proof, the authors assume that for every
subset S∗ in the optimal solution R∗

C to the MCSC problem, at least one of its elements is covered by the subset S0 selected
by the greedy algorithm at step 1. In general, some S∗ may not share any common elements with S0. Thus, this assumption
is invalid, and the resulting approximation ratio is incorrect. In the following theorem, we establish the approximation ratio
of the modified greedy algorithm for the MCSC problem. The proof of this theorem does not require this assumption, and
it takes into account the additional search of graph-adjacent subsets in the modified algorithm. Furthermore, a stronger
result on the approximation ratio is shown in the proof (see Lemma 1). Specifically, the approximation ratio is between the
solution returned by the algorithm and the optimal solution to the set cover problem, and the latter is always not greater
than the optimal solution to the MCSC problem.

Theorem 1. Given an MCSC problem (V , S,G), the approximation ratio of the modified greedy algorithm is at most DC (G)(1 +

H(γ − 1)), where γ = max{|S| | S ∈ S} is the maximum size of the subsets in S and H(·) is the harmonic function.

Proof. We show a lemma stronger than the above theorem.

Lemma 1. Let R∗ be an optimal solution to the set cover problem {V , S}, and R returned by the modified greedy algorithm for
the MCSC problem (V , S,G). Then we have that

|R|

|R∗|
≤ DC (G)(1 + H(γ − 1)).

Let R∗

C be an optimal solution to the MCSC problem (V , R,G). Since |R∗
| ≤ |R∗

C |, Theorem 1 follows from Lemma 1.

Proof of Lemma 1. The proof is based on the classic charge argument. Each time a subset S0 (at step 1) or a shortest R → S
path P∗

S (at step 2) is selected to be added toR, we charge each of the newly covered elements 1
|S0|

(at step 1) or e(P∗

S ) defined
in (1) (at step 2). During the entire procedure, each element of V is charged exactly once. Assume that step 2 is completed
in K − 1 iterations. Let P∗

Si be the shortest R → S path selected by the algorithm at iteration i. Let w(a) denote the charge
of an element v in V . Then we have−

v∈V

w(v) =

K−1−
i=0

−
v∈C(P∗

Si)

w(v) =

K−1−
i=0

−
v∈C(P∗

Si)

|P∗

Si|

|C(P∗

Si)|
=

K−1−
i=0

|P∗

Si| = |R|, (2)

where P∗

S0 = {S0}, |P∗

S0| = 1, and C(P∗

S0) = S0.
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Suppose thatR∗
= {S∗

1 , . . . , S
∗

N} is a minimum set cover for {V , S}. Since an element of V may be contained inmore than
one subset of R∗, it follows that−

v∈V

w(v) ≤

N−
i=1

−
v∈S∗

i

w(v). (3)

Next we will show an inequality which bounds from above the total charge of a subset in R∗, i.e., for any S∗
∈ R∗,−

v∈S∗

w(v) ≤ DC (G)(1 + H(|S∗
| − 1)). (4)

Let ni (i = 0, 1, . . . , K) be the number of elements of S∗ that have not been covered by S after iteration i−1, where step 1
is considered as iteration 0. Notice that n0 = |S∗

| and nK = 0. Let {i1, . . . , ik} denote the subsequence of {i = 0, 1, . . . , K−1}
such that ni − ni+1 > 0, i.e., at iterations i = i1, . . . , ik, at least one element of S∗ is covered by P∗

Si for the first time. For each
element v covered at iteration i1, if i1 = 0, based on the greedy rule at step 1, we have

w(v) = e(P∗

S0) ≤
1
ni1

; (5)

otherwise, depending on whether a cover-adjacent subset or a graph-adjacent subset is selected at iteration i1,

w(v) = e(P∗

Si1
) =


|P∗

Si1
|

|C(P∗
Si1

)|
(cover-adjacent)

1
|C(P∗

Si1
)|

(graph-adjacent)

 ≤
DC (G)

ni1 − n(i1+1)
. (6)

The inequality in (6) is due to three facts: (i) Si1 is cover-adjacent with R, leading to |P∗

Si1
| ≤ |DC (G)|; (ii) P∗

Si1
covers at least

ni1 − n(i1+1) elements of V , i.e., |C(P∗

Si1
)| ≥ ni1 − n(i1+1); (iii) |DC (G)| ≥ 1. Combining (5) and (6) yields

w(v) ≤
DC (G)

ni1 − n(i1+1)
. (7)

The proof in [1] does not consider the case of i1 ≠ 0, leading to the wrong inequality

w(v) ≤
1

ni1 − n(i1+1)
.

Consider two cases:
(i) If all the elements of S∗ are covered after iteration i1, i.e., n(i1+1) = 0, then−

v∈S∗

w(v) ≤

−
v∈S∗

DC (G)

n0
= DC (G). (8)

(ii) If not all the elements of S∗ are covered by R after iteration i1, S∗ becomes cover-adjacent with R and thus a candidate
for being selected at the following iterations. Then based on the greedy rule at step 2, we have that for an element v ∈ S∗

covered at iteration ij (j = 2, . . . , k),

w(v) = e(P∗

Sij
) ≤ e(PS∗) =

|PS∗ |

|C(PS∗)|
≤

DC (G)

nij
. (9)

Notice that if PS∗ is selected at iteration ij, at least nij elements will be covered for the first time, i.e., |C(PS∗)| ≥ nij .
It follows from (7) and (9) that−

v∈S∗

w(v) ≤ (ni1 − n(i1+1))
DC (G)

ni1 − n(i1+1)
+

k−
j=2

(nij − n(ij+1))
DC (G)

nij

= DC (G)


1 +

k−
j=2

nij − ni(j+1)

nij


. (10)

Here we have used the fact that n(ij+1) = ni(j+1) . It is because between iteration ij and iteration i(j+1), no elements of S∗

are covered.
For the summation term in (10), we have the following inequality:

k−
j=2

nij − ni(j+1)

nij
≤

k−
j=2

1
nij

+
1

nij − 1
+ · · · +

1
ni(j+1) + 1

= H(ni2) ≤ H(|S∗
| − 1). (11)
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Fig. 1. An illustration of the auxiliary graph G derived from the given graph H .

The last inequality is due to the fact that ni2 ≤ ni1 − 1 = |S∗
| − 1.

Eq. (4) is a direct consequence of (8), (10) and (11). Thus, using (2)–(4),

|R| =

−
v∈V

w(v) ≤

N−
i=1

−
v∈S∗

i

w(v)

≤

N−
i=1

DC (G)(1 + H(|S∗

i | − 1))

≤ DC (G)(1 + H(γ − 1))|R∗
|. �

Let n = |V | be the number of elements of V . Then the approximation ratio of the modified greedy algorithm is
DC (G)(1 + H(γ − 1)) = O(ln n). Since the set cover problem is a special case of the MCSC problem where the auxiliary
graph G is complete and the best possible approximation ratio for the set cover problem is O(ln n) (unless NP has slightly
superpolynomial time algorithms) [2], the modified greedy algorithm achieves the order-optimal approximation ratio.

4. Connection with connected dominating set problem

A dominating set of a graph is a subset of vertices such that every vertex of the graph is either in the subset or a neighbor
of some vertex in the subset. The connected dominating set (CDS) problem asks for a dominating set of minimum sizewhere
the subgraph induced by the vertices in the dominating set is connected. It is not difficult to show that the CDS problem is a
special MCSC problem. Specifically, given an undirected graph H = (V , E), we can derive an MCSC problem (V , S,G) from
the CDS problem of H as follows:

(i) the universe set V is the vertex set V of H;
(ii) For each vertex v ∈ V , create a subset Sv = {v} ∪ {all neighbors of v} of V in S;
(iii) the auxiliary graph G is the same as the given graph H except that each vertex of H is replaced by Sv , as illustrated in

Fig. 1.

It can be shown that by exchanging the vertex subset Sv with the vertex v, the optimal solution to the derivedMCSC problem
is equivalent to the optimal solution to the CDS problem.

Guha and Khuller propose a greedy algorithm (Algorithm I in [3]) for CDS problem with an approximation ratio
2(1 + H(γ − 1)), where γ = max{|Sv| | v ∈ V } and γ − 1 is the maximum degree of the vertices in H . The modified
greedy algorithm for the MCSC problem reduces to the greedy algorithm of [3] when applied to the CDS problem. Notice
that DC (G) = 2 for the derived MCSC problem, since two vertex subsets Sv1 and Sv2 are overlapping if and only if their
corresponding vertices v1 and v2 have at least one common neighbor. We see that the approximation ratio of the modified
greedy algorithm established here is consistent with the one shown in [3], while the original approximation ratio obtained
in [1] is not.
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