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This paper deals with optimal control problems associated with the 2-D Boussi-
nesq equations. The controls considered may be of either the distributed or the
Neumann type. These problems are first put into an appropriate mathematical for-
mulation. Then the existence of optimal solutions is proved. The use of Lagrange
multiplier techniques is justified and an optimality system of equations is derived.
© 2000 Academic Press

1. INTRODUCTION

In this article we consider the minimization of some desired objective
in viscous incompressible thermally convected flows using either boundary
temperature or heat source as a control mechanism. The control of vis-
cous flows for the purpose of achieving some desired objective is crucial to
many technological and scientific applications. The problem we consider is
a Bénard problem whose system is governed by the Boussinesq equations.

We now write the 2-D nondimensional Boussinesq equations as
− ν 1u+ �u · ∇�u = −∇p+ αTg + f in �; (1.1)

1 The first author was supported by KOSEF 97-07-01-01-01-3 and the second author was
supported by KIAS (Grant KIAS-M97003).
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∇ · u = 0 in �; (1.2)

− κ1T + �u · ∇�T = Q in �; (1.3)

with boundary conditions

u = 0 on ∂�; T = h on 0D;
∂T

∂n
= g on 0N; (1.4)

where � is the regular bounded open set in �2 and ∂� ∈ C2. In (1.4),
0D = ∂� \ 0N where 0N is a regular nonempty open subset of ∂�. In (1.1)–
(1.4), u, p, and T denote the velocity, pressure, and temperature fields,
respectively, f a given body force, h a given function, and controls Q and
g. The vector g is a unit vector in the direction of gravitational acceleration
and κ > 0 is the thermal conductivity parameter. In this paper we consider,
for simplicity, the case of constant κ. The vector n denotes the outward
unit normal to � and ν > 0 denotes the kinematic viscosity.

Next, we introduce the functionals

J1�u; T; p;Q; g� =
1
2

∫
�
�∇ × u�2 dx+ γ

2

∫
�
�Q�2 dx+ δ

2

∫
0N

�g�2 ds (1.5)

and

J2�u; T; p;Q; g� =
1
2

∫
�
�T − Td�2 dx+ γ

2

∫
�
�Q�2 dx+ δ

2

∫
0N

�g�2 ds: (1.6)

The optimal control problems we consider are to seek state variables
�u; p; T � and controls Q and g such that the functional (1.5) or (1.6) is
minimized subject to (1.1)–(1.4) where Td is some desired temperature
distribution. The functional (1.5) measures the vorticity of the flow. The
control of vorticity has significant applications in science and engineering
such as control of turbulence and control of crystal growth process. The
functional (1.6) effectively measures the difference between the tempera-
ture field T and a prescribed field Td. The real goal of optimization is to
minimize the first term appearing in the definition (1.5) or (1.6). The sec-
ond and third terms in the cost functionals (1.5) and (1.6) are added to
limit the cost of controls. The positive penalty parameters γ and δ can be
used to change the relative importance of the three terms appearing in the
definitions of the functionals.

In past years, considerable progress has been made in mathematical anal-
yses and computations of optimal control problems for viscous flows; see
[2–4, 6–10, 13–18, 20] and references therein. Optimal control problems
for the thermally coupled incompressible Navier–Stokes equation by Neu-
mann and Dirichlet boundary heat controls were considered in [13, 17].
Also, optimal control problems for the time-dependent problems and re-
lated problems were considered in [4, 6, 18] and references therein. Exact
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controllability of the Boussinesq problem and related problems were con-
sidered in [10] and references therein.

The plan of the paper is as follows. In the remainder of this section, we
introduce the notation that will be used throughout the paper. Then, in Sec-
tion 2, we give a precise statement of a weak formulation of the Boussinesq
equations and prove that a sufficiently smooth solution to the Boussinesq
equations exists. In Section 3, we give a precise statement of the optimiza-
tion problem and prove that an optimal solution exists. In Section 4, we
prove the existence of Lagrange multipliers and then use the method of
Lagrange multipliers to derive an optimality system. Some remarks and
further discussions are also given.

1.1. Notation

We introduce some function spaces and their norms, along with some
related notation used in subsequent sections; for details see [1].

Let � be a bounded domain of �2 with a C2 boundary 0. Let L2��� be
the space of real-valued square integrable functions defined on �, and let
� · �L2��� be the norm in this space. We define the Sobolev space Hm���
for the nonnegative integer m by

Hm��� def= �u ∈ L2��� � Dαu ∈ L2��� for 0 ≤ �α� ≤ m�;
where Dα is the weak (or distributional) partial derivative and α is a multi-
index. The norm � · �Hm��� associated with Hm��� is given by

�u�2
Hm��� =

∑
�α�≤m
�Dαu�2

L2���:

Note that H0��� = L2���. For the vector-valued functions, we define the
Sobolev space Hm��� (in all cases, boldface indicates vector-valued) by

Hm��� def= �u = �u1; u2� � ui ∈ Hm��� for i = 1; 2�
and its associated norm � · �Hm��� is given by

�u�2
Hm��� =

2∑
i=1

�ui�2
Hm���:

We also define particular subspaces

L2
0��� =

{
f ∈ L2��� x

∫
�
f dx = 0

}
; H1

0��� = �u ∈ H1��� x u = 0 on 0�

and

H1
D��� = �S ∈ H1��� x S = 0 on 0D�:
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We make use of the well-known space L4��� equipped with the norm
� · �L4���.

We also define the solenoidal spaces

V def= �u ∈ H1
0��� � ∇ · u = 0�:

If � is bounded and has a C2 boundary (these are the kinds of do-
mains under consideration here), Sobolev’s embedding theorem yields that
H1��� ↪→↪→ L4���, where ↪→↪→ denotes compact embedding; i.e., a con-
stant C exists such that

�u�L4��� ≤ C�u�H1���: (1.7)

Obviously, a similar result holds for the spaces H1��� and L4���.

2. A WEAK FORMULATION OF THE BOUSSINESQ EQUATIONS

2.1. A Weak Formulation of the Equations

We introduce the following bilinear and trilinear forms, for u, v, and
w ∈ H1���, T; S ∈ H1���,

a0�u; v� =
∫
�
∇u x ∇v dx ∀u; v ∈ H1���;

a1�T; S� =
∫
�
κ∇T · ∇S dx ∀T; S ∈ H1���;

b�v; q� = −
∫
�
q∇ · v dx ∀v ∈ H1���; ∀q ∈ L2���;

c0�u;w; v� =
∫
�
�u · ∇�w · v dx ∀u; v;w ∈ H1���;

c1�u; T; S� =
∫
�
�u · ∇�TS dx ∀u ∈ H1���; ∀T; S ∈ H1���;

and

d�T; v� =
∫
�
Tg · v dx ∀v ∈ H1���; ∀T ∈ H1���:

We first note that the bilinear forms a0�·; ·� and a1�·; ·� are clearly con-
tinuous, i.e.,

�a0�u; v�� ≤ �u�H1����v�H1��� (2.1)

and

�a1�T; S�� ≤ κ�T�H1����S�H1���: (2.2)
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We have the coercivity relations associated with a0�·; ·� and a1�·; ·�
a0�u;u� = �∇u�2

L2��� ≥ C1�u�2
H1��� ∀u ∈ H1

0���; (2.3)

and

a1�T; T � ≥ κ�∇T�2
L2��� ≥ C2�T�2

H1��� ∀T; S ∈ H1
D���; (2.4)

which are direct consequences of Poincaré inequality.

Lemma 2.1. For every u; v;w ∈ H1��� and every T; S ∈ H1��� there are
constants C1; 2; 3; 4 such that

�c0�u;w; v�� ≤ C1�u�H1����v�H1����w�H1���; (2.5)

c0�u; v; v� = 0 if u ∈ V; (2.6)

�c1�u; T; S�� ≤ C2�u�H1����T�H1����S�H1��� ∀u ∈ V; (2.7)

c1�u; T; T � = 0 if u ∈ V; (2.8)

and

�d�T;u�� ≤ C3�T�L2����u�L2��� ≤ C4�∇T�L2����∇u�L2���: (2.9)

Proof. These follow from the Cauchy–Schwarz inequality, Hölder’s in-
equality, and various embedding results, in particular the continuous em-
beddings of H1 into L4 and L2 and H1 into L4 and L2, respectively.

The weak form of the constraint equations (1.1)–(1.4) is then given as
follows: seek u ∈ H1

0���, p ∈ L2
0���, and T ∈ H1��� such that

νa0�u; v� + c0�u;u; v� + b�v; p� = αd�T; v� + �f; v� ∀v ∈ H1
0���;

(2.10)

b�u; q� = 0 ∀q ∈ L2
0���; (2.11)

a1�T; S� + c1�u; T; S� = �Q; S� +
∫
0N

κgS ds ∀S ∈ H1
D���; (2.12)

and

T = h on 0D: (2.13)
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Lemma 2.2 (Leray and Schauder). Let E be a Banach space, and let
Gx �0; 1� × E → E be a continuous, compact map, such that G�0; v� = v0
is independent of v ∈ E. Suppose there exists M < ∞ such that, for all
�τ; x� ∈ �0; 1� × E,

G�τ; x� = x⇒ �x� < M:
Then the map G1x E→ E given by G1�v� = G�1; v� has a fixed point.

Proposition 2.3. For every g ∈ L2�0N�, h ∈ H1�0D�, Q ∈ L2���, and
f ∈ L2��� the Boussinesq equations (2.10)–(2.13) have a solution �u; T; p� ∈
V×H1��� ×L2

0���. Moreover, if �u; T; p� is a solution to (2.10)–(2.13), then
�u; T; p� ∈ V ∩ H2��� ×Hs��� × L2

0��� ∩H1��� �1 ≤ s < 3
2 � and there is

a continuous function Ps for each s such that

�u�H2��� + �p�H1��� + �T�Hs���

≤ Ps��f�L2��� + �Q�L2��� + �g�L2�0N � + �h�H1�0D��: (2.14)

Proof. By virtue of the trace theorem, let T̂ in H1��� satisfy T̂ = h
on 0D and examine the following problem: for any given u ∈ V find T in
H1��� such that T − T̂ ∈ H1

D��� and

a1�T − T̂ ; S� + c1�u; T − T̂ ; S�
= �Q; S� − a1�T̂ ; S� − c1�u; T̂ ; S� +

∫
0N

κgS ds ∀S ∈ H1
D���: (2.15)

Let T̃ = T − T̂ ∈ H1
D���. From (2.2), (2.4), (2.7), and (2.8), it follows

that, for u ∈ V, a1�·; ·� + c1�u; ·; ·� is a continuous, elliptic, bilinear form
on H1

0��� × H1
0��� and thus on H1

D��� × H1
D���. Thus, for given g ∈

L2�0N�, h ∈ H1�0D�, and Q ∈ L2���, by the Lax–Milgram lemma and
trace theorems there is a unique solution T̃ ∈ H1

D��� satisfying (2.15) and
there is a unique T = T̃ + T̂ ∈ H1��� and the estimate

�T�Hs��� + �T�L2�0N � ≤ C��g�L2�0N � + �h�H1�0D� + �Q�L2���� (2.16)

holds true for all s ∈ �1; 3
2 � (see [22]). Thus, we may define a mapping

F x V → H1��� by F�u� = T . The theorem will be proved if one can show
that there is at least one u ∈ V such that

νa0�u; v� + c0�u;u; v� = αd�F�u�; v� + �f; v� ∀v ∈ V: (2.17)

From inequality (2.3) it follows that a0�·; ·� is a continuous elliptic bilinear
form on V × V and

� − c0�u;u; v� + d�F�u�; v� + �f; v��
≤ �C2�u�2

H1��� + αC4�F�u��H1��� + �f�L2�����v�H1���
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for all v ∈ V follows from (2.7) and (2.9). Thus, we may define a mapping
Gx V→ V by

νa0�G�u�; v� = −c0�u;u; v� + αd�F�u�; v� + �f; v� ∀v ∈ V: (2.18)

Clearly, u is a solution of (2.17) if it is a solution of

G�u� = u: (2.19)

Now, we may apply the Leray–Schauder principle to prove the existence
of the solution to (2.19). First, we verify the compactness of G. Let u1;u2 ∈
V. Set w = G�u2� −G�u1�. Subtracting the equations obtained from (2.18)
by substituting u2 and u1 for u and w for v, we get

νa0�w;w� = − c0�u2 − u1yu2;w�
+ c0�u1yu2 − u1;w� + αd�F�u2� − F�u1�;w�: (2.20)

Now, we estimate �F�u2� − F�u1��H1���. Substitute u2 and u1 in (2.12) and
subtract to get

a1�F�u2� − F�u1�; S� = −c1�u2 − u1yF�u2�; S�
−c1�u1yF�u2� − F�u1�; S� ∀S ∈ H1���:

(2.21)

Substituting F�u2� − F�u1� for S and using (2.4), (2.7), and (2.8)

�∇F�u2� − ∇F�u1��L2���

≤ C��g�L2�0N � + �h�H1�0D� + �Q�L2�����u2 − u1�L4���: (2.22)

Thus,

�∇w�L2��� ≤ ν−1��u2�L4��� + �u1�L4���

+ αC��g�L2�0N � + �h�H1�0D� + �Q�L2������u2 − u1�L4���

follows from (2.20) and (2.22) using (2.3), (2.5), and (2.8). Since H1
0��� is

compactly embedded in L4��� so is V. It follows that G is a continuous
compact map.

Now, we define G�τ; v� = τG�v� for all �τ; v� ∈ �0; 1� × V. Clearly,
G�0; v� = 0 is independent of v.

Suppose τ ∈ �0; 1� and v ∈ V satisfies τG�v� = v. Then

τ−1νa0�v; v� = −c0�vy v; v� + αd�F�v�; v� + �f; v�: (2.23)
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From the above fact, we have

�∇v�L2��� ≤ τ
(
α

ν
C4�∇F�v��L2��� + �f�L2���

)
≤ C��g�L2�0N � + �h�H1�0D� + �Q�L2��� + �f�L2����;

which completes the proof of the existence of the solution.
Since T ∈ Hs��� for all s ∈ �1; 3

2 � and f ∈ L2���, the regularity of u and
p follows from well-known theories concerning the Navier–Stokes equa-
tions. By (2.16) and a priori estimates for the Stokes system (see [24]) there
exists a continuous function S such that

�u�H2��� ≤ S��f�L2��� + �Q�L2��� + �g�L2�0N � + �h�H1�0D��: (2.24)

We now state a global uniqueness criterion for the case of small data.

Theorem 2.4. Let u and F�u� = T be a solution of (2.10)–(2.13) and
suppose N�∇u�L2��� + αM < ν where

N = sup
{
c0�u; v;w� x �∇u�L2��� = �∇v�L2���

= �∇w�L2��� = 1; u; v;w ∈ V
}

and

M = sup
{
d�F�u� − F�v�;u− v�
�∇u− ∇v�2

L2���
x u 6= v; u; v ∈ V

}
:

Then u and F�u� = T is the unique solution of (2.10)–(2.13).

Proof. Suppose w 6= u and F�w� is a solution of (2.10)–(2.13). Then

νa0�u; v� + c0�u;u; v� = αd�F�u�; v� + �f; v� ∀v ∈ V

and

νa0�w; v� + c0�w;w; v� = αd�F�w�; v� + �f; v� ∀v ∈ V:

Subtracting with v = u − w and using the fact c0�w;u − w;u − w� = 0, we
have

νa0�u− w;u− w� = −c0�u− w;u;u− w� + αd�F�u� − F�w�;u− w�:
Hence,

ν�∇�u− w��2
L2��� ≤ �N�∇u�L2��� + αM��∇�u− w��2

L2���

< ν�∇�u− w��2
L2���;

which is a contradiction. Therefore, w = u.
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3. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF
OPTIMAL SOLUTIONS

3.1. The Optimization Problem

We state the optimal control problem. We look for a �u; T; p;Q; g� ∈
H1

0��� ×H1��� × L2
0��� × L2��� × V such that the cost functional

�A1� J1�u; T; p;Q; g� =
1
2

∫
�
�∇ × u�2 dx+ γ

2

∫
�
�Q�2 dx+ δ

2

∫
0N

�g�2 ds
or

�A2� J2�u; T; p;Q; g� =
1
2

∫
�
�T − Td�2 dx+ γ

2

∫
�
�Q�2 dx+ δ

2

∫
0N

�g�2 ds
is minimized subject to the constraints

νa0�u; v� + c0�u;u; v� + b�v; p� = αd�T; v� + �f; v� ∀v ∈ H1
0���; (3.1)

b�u; q� = 0 ∀q ∈ L2
0���; (3.2)

a1�T; S� + c1�u; T; S� = �Q; S� − �κg; S�0N ∀S ∈ H1
D���; (3.3)

T = h on 0D; (3.4)

where V is a nonempty, closed, and convex subset of L2�0N�.
The admissibility set Uad is defined by

Uad = ��u; T; p;Q; g� ∈ H1
0��� ×H1��� × L2

0��� × L2��� × V x
J�u; T; p;Q; g� <∞ and (3.1)–(3.4) are satisfied�; (3.5)

where J�u; T; p;Q; g� is J1�u; T; p;Q; g� or J2�u; T; p;Q; g�, depending on
minimization problems. Then �û; T̂ ; p̂; Q̂; ĝ� ∈ Uad is called an optimal
solution if there exists ε > 0 such that

J�û; T̂ ; p̂; Q̂; ĝ� ≤ J�u; T; p;Q; g� ∀�u; T; p;Q; g� ∈ Uad (3.6)

satisfying

�û− u�H1��� + �T̂ − T�H1��� + �p̂− p �L2���

+ �Q̂−Q�L2��� + �ĝ − g�L2�0N � < ε: (3.7)

If, for optimal solution �û; T̂ ; p̂; Q̂; ĝ� ∈ Uad, inequalities (3.6) and (3.7)
hold true with ε = +∞, then we say that �û; T̂ ; p̂; Q̂; ĝ� is the global mini-
mum. The optimal control problem can now be formulated as a constrained
minimization in a Hilbert space:

min
�u; T; p;Q; g�∈Uad

J�u; T; p;Q; g�: (3.8)

Problems �A1� and �A2� can be analyzed in exactly the same manner. From
this section, we treat in detail the first problem �A1�.
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3.2. The Existence of an Optimal Solution

We now show the existence of an optimal solution. The existence of an
optimal solution can be proved based on the a priori estimates (2.14) and
standard techniques.

Theorem 3.1. Let f ∈ L2��� and h ∈ H1�0D�. Then there is an op-
timal solution �û; T̂ ; p̂; Q̂; ĝ� ∈ Uad to problem (3.8). Moreover, any opti-
mal solution satisfies û ∈ V ∩ H2���, T̂ ∈ Hs��� for all s ∈ �1; 3

2 �, and
p̂ ∈ L2

0��� ∩H1���.
Proof. The set Uad is apparently nonempty because of Theorem 2.3.

Thus, we may choose a minimizing sequence �u�n�; T �n�; p�n�;Q�n�; g�n�� in
Uad such that

lim
n→∞J1

(
u�n�; T �n�; p�n�;Q�n�; g�n�

) = inf
�v; S; q;R; z�∈Uad

J1�v; S; q;R; z�: (3.9)

By the definition of Uad, we have

νa0
(
u�n�; v

)+ c0
(
u�n�;u�n�; v

)+ b(v; p�n�)
= αd(T �n�; v

)+ �f; v� ∀v ∈ H1
0���; (3.10)

b�u�n�; q� = 0 ∀q ∈ L2
0���; (3.11)

a1�T �n�; S� + c1�u�n�; T �n�; S� = �Q; S� + κ�g�n�; S� ∀S ∈ H1
D���;

(3.12)

and

T �n� = h on 0D: (3.13)

From (1.5) and (3.5), we easily see that ��g�n��L2�0N �� and ��Q�n��L2����
are uniformly bounded. Also, by (2.14) we have that the sequences
��u�n��H1����, ��T �n��H1����, and ��p�n��L2���� are uniformly bounded. We
may then extract subsequences such that

Q�n� ⇀ Q̂ in L2���;
g�n� ⇀ ĝ in L2�0N�;
u�n� ⇀ û in H1

0��� and ∇u�n� ⇀ ∇û in L2���;
T �n� ⇀ T̂ in H1��� and ∇T �n� ⇀ ∇T̂ in L2���;
p�n� ⇀ p̂ in L2

0���;
u�n� → û in L4��� and L2���;

T �n��0N → T̂ �0N in L2�0N�
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for some �û; T̂ ; p̂; Q̂; ĝ� ∈ H1
0��� × H1��� × L2

0��� × L2��� × L2�0N�.
The last two convergence results above follow from the compact embed-
dings H1��� ↪→↪→ L2��� and H1/2�0N� ↪→↪→ L2�0N�. We may pass to
the limit in (3.10)–(3.12) to determine that �û; T̂ ; p̂; Q̂; ĝ� satisfies (3.1)–
(3.4). Indeed, the only troublesome term when one passes to the limit is
the nonlinearity c0�·; ·; ·�. However, note that

c0�u�n�;u�n�; v� =
∫
∂�
�u�n� · n�u�n� · v ds−

∫
�

(
u�n� · ∇)v · u�n� dx ∀v ∈ D��̄�;

where D��̄� is the space of test functions. Then, since u�n� → û in L2���
and

∫
∂��u�n� · n�u�n� · v ds = 0 for all n, we have that

lim
k→∞

c0�u�k�;u�k�; v� = −
∫
�
�û · ∇�v · û dx ∀v ∈ D��̄�:

Since D��̄� is dense in H1
0���, we have that, for each û ∈ H1

0���,
lim
k→∞

c0�u�k�;u�k�; v� = c0�û; û; v� ∀v ∈ H1���:

Thus, we have shown that �û; T̂ ; p̂; Q̂; ĝ� indeed satisfies (3.1)–(3.4) so that
�û; T̂ ; p̂; Q̂; ĝ� ∈ Uad.

Finally, it is easy to see that J1�·; ·; ·; ·; ·� is weakly lower semicontinuous
so that

J1�û; T̂ ; p̂; Q̂; ĝ� = inf
�v; S; q;R; z�∈Uad

J1�v; S; q;R; z�: (3.14)

Thus, an optimal solution belonging to Uad exists.
The regularity result easily follows by an argument similar to that in

Proposition 2.3.

4. THE EXISTENCE OF LAGRANGE MULTIPLIERS
AND AN OPTIMALITY SYSTEM

4.1. The Existence of Lagrange Multipliers

This section is devoted to obtaining an optimality system to prob-
lem (3.8). We wish to use the method of Lagrange multipliers to turn the
constrained optimization problem (3.8) into an unconstrained one. We also
establish that the Lagrange multiplier with respect to the functional (1.5)
is equal to 1.

Theorem 4.1. Let h ∈ H1�0D� and f ∈ L2���. Assume that �û; T̂ ; p̂; Q̂;
ĝ� ∈ Uad is an optimal solution to the minimization problem (3.8). Then there
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exist Lagrange multipliers �©;8; σ� ∈ V ∩H2��� ×Hs��� ×H1��� ∩L2
0���

for all s ∈ �0; 3
2 � such that

− κ18− �û · ∇�8− α �©; g� = 0 in �; 8 = γQ̂; (4.1)

∂8

∂n

∣∣∣
0N

= 0; �δĝ − κ8; g − ĝ�L2�0N � ≥ 0 ∀g ∈ V ; 8�0D = 0;

(4.2)

− ν 1© − �û · ∇�© + B�û; ©� +8∇T̂ + curl2û = ∇σ in �; (4.3)

and

∇ · © = 0; ©�∂� = 0; (4.4)

where

B�û; ©� =
((

©;
∂u
∂x1

)
;

(
©;
∂u
∂x2

))T
:

Proof. To prove the existence of Lagrange multipliers for the con-
strained minimization problem (3.8), we use a penalty method. Let
us consider the auxiliary extremal problem: find �u; T; p;Q; g� ∈ V ×
H1��� × L2

0��� × L2��� × L2�0N� which minimizes the functional

Jε�u; T; p;Q; g� = J1�u; T; p;Q; g�

+ 1
2ε
� − ν 1u+ �u · ∇�u− αTg + ∇p− f�2

L2���

+ N
2
�u− û�2

L2��� +
N

2
�T − T̂�2

L2���

+ N
2
�g − ĝ�2

L2�0N �; (4.5)

with

− κ1T + �u · ∇�T = Q in �; (4.6)

T �0D = h;
∂T

∂n

∣∣∣
0N

= g; g ∈ V ; u�∂� = 0; ∇ · u = 0; (4.7)

where �û; p̂; T̂ ; Q̂; ĝ� ∈ V ∩ H2��� ×H1��� ∩ L2
0��� ×Hs��� × L2��� ×

L2�0N� for all s ∈ �1; 3
2 � is a solution to the extremal problem (3.8), such

that inequality (3.7) holds true with ε = ε̂ and N > 0 and ε ∈ �0; 1�
are parameters. The existence of this solution �û; p̂; T̂ ; Q̂; ĝ� was estab-
lished in Theorem 3.1. As in the proof of Theorem 3.1, one can prove
that there exists a solution to the problem (4.5)–(4.7) �ûε; T̂ε; p̂ε; Q̂ε; ĝε� ∈
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V ∩H2��� ×Hs��� ×H1��� ∩L2
0��� ×L2��� ×L2�0N� for all s ∈ �1; 3

2 �.
Moreover, from the fact that Jε�ûε; T̂ε; p̂ε; Q̂ε; ĝε� ≤ Jε�û; T̂ ; p̂; Q̂; ĝ� =
J1�û; T̂ ; p̂; Q̂; ĝ� and inequality (2.14), we have{�ûε; T̂ε; p̂ε; Q̂ε; ĝε�}ε∈�0; 1� is bounded in

V ∩H2��� ×Hs��� × L2
0��� × L2��� × L2�0N� (4.8)

for all s ∈ �1; 3
2 �. Thus, from (4.5)–(4.8), for any ε̂ > 0 taking parameter N

sufficiently large we obtain

�ûε − û�L2��� + �T̂ε − T̂�L2��� + �ĝε − ĝ�2
L2�0N � ≤

ε̂

2
: (4.9)

Denoting

f̂ε = −ν 1ûε + �ûε · ∇�ûε − αT̂εg + ∇p̂ε − f;

we easily have

f̂ε→ 0 in L2���: (4.10)

By the Sobolev embedding theorem and interpolation theorem

��ûε · ∇�ûε − �û · ∇�û�L2���

≤ ���ûε − û� · ∇�ûε + �û · ∇��ûε − û��L2���

≤ C�ûε − û�H4/3�����ûε�H2��� + �û�H2����
≤ C�ûε − û�1/4

V �ûε − û�3/4
H2�����ûε�H2��� + �û�H2����

≤ C�ûε − û�1/4
V : (4.11)

Note that

−ν 1�ûε − û� + �ûε · ∇�ûε − �û · ∇�û
−α�T̂ε − T̂ �g + ∇�p̂ε − p̂� = f̂ε in � (4.12)

and

∇ · �ûε − û� = 0; �ûε − û��∂� = 0: (4.13)

By (4.11) and an a priori estimate for the Stokes problem (see [24]) we have

�ûε − û�H2��� + �p̂ε − p̂�H1���

≤ C(�ûε − û�1/4
V + �T̂ε − T̂�L2��� + �f̂ε�L2���

)
: (4.14)
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Inequalities (4.9), (4.10), and (4.14) imply that for any ε̂ > 0 there exist
an N�ε̂� > 0 and ε0 > 0 such that

�ûε − û�H1��� + �T̂ε − T̂�H1��� + �p̂ε − p̂�L2���

+�Q̂ε − Q̂�L2��� + �ĝε − ĝ�L2�0N � ≤ ε̂ (4.15)

∀ε ∈ �0; ε0�. Therefore, without loss of generality, taking, if necessary, a
subsequence one can prove that

�ûε; T̂ε; p̂ε; Q̂ε; ĝε�⇀ �ũ; T̃ ; p̃; Q̃; g̃�
in V ∩H2��� ×Hs��� ×H1��� ∩ L2

0��� × L2��� × L2�0N�
for all s ∈ �1; 3

2 �. In the same way, as was done in the proof of Theorem 3.1,
one can show that �ũ; T̃ ; p̃; Q̃; g̃� ∈ Uad. Moreover, inequality (4.15) and
the weak lower semicontinuity of norms in Hilbert spaces imply

�ũ− û�H1��� + �T̃ − T̂�H1��� + �p̃− p̂�L2���

+�Q̃− Q̂�L2��� + �g̃ − ĝ�L2�0N � ≤ ε̂: (4.16)

By the definition of Jε, the inequality

Jε�ûε; T̂ε; p̂ε; Q̂ε; ĝε� ≤ J1�û; T̂ ; p̂; Q̂; ĝ�
yields

J1�ûε; T̂ε; p̂ε; Q̂ε; ĝε� ≤ J1�û; T̂ ; p̂; Q̂; ĝ�: (4.17)

Since the functional J1 is weakly lower semicontinuous we obtain

J1�ũ; T̃ ; p̃; Q̃; g̃� ≤ J1�û; T̂ ; p̂; Q̂; ĝ�: (4.18)

From the facts (4.16) and (4.18), we have that �ũ; T̃ ; p̃; Q̃; g̃� is a solution to
the optimal control problem (3.8). Now, if we assume that �ũ; T̃ ; p̃; Q̃; g̃� 6=
�û; T̂ ; p̂; Q̃; ĝ�, then

J1�û; T̂ ; p̂; Q̂; ĝ�− J1�ũ; T̃; p̃; Q̃; g̃� ≥
1
2
�ũ− û�2

L2��� +
1
2
�T̃ − T̂�2

L2��� > 0;

which contradicts the fact that �û; T̂ ; p̂; Q̂; ĝ� is a solution to the prob-
lem (3.8). Thus, �ũ; T̃ ; p̃; Q̃; g̃� = �û; T̂ ; p̂; Q̂; ĝ� and we have

�ûε; T̂ε; p̂ε; Q̂ε; ĝε�⇀ �û; T̂ ; p̂; Q̂; ĝ�
in H2��� ×Hs��� × L2

0��� × L2��� × L2�0N� (4.19)
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for all s ∈ �1; 3
2 �. Moreover, by (4.18)–(4.19), we have

lim
ε→0+

J1�ûε; T̂ε; p̂ε; p̂ε; Q̂ε; ĝε� = J1�û; T̂ ; p̂; Q̂; ĝ�: (4.20)

Hence, by (4.19) and (4.20),

ĝε→ ĝ in L2�0N�: (4.21)

On the other hand, the facts (4.10), (4.14), (4.19), and (4.21) imply

�ûε; T̂ε; p̂ε; Q̂ε; ĝε� → �û; T̂ ; p̂; Q̂; ĝ�
in H2��� ×Hs��� × L2

0��� × L2��� × L2�0N�: (4.22)

and

�ûε; p̂ε; T̂ε� → �û; p̂; T̂ � in V ×H1��� ∩ L2
0��� ×Hs��� (4.23)

for all s ∈ �1; 3
2 �.

Taking first variations to problem (4.5)–(4.7) we obtain the optimality
system

8ε = γQ̂ε; −∇ · �κ∇T̂ε� + �ûε · ∇�T̂ε = Q̂ε in �; (4.24)

©ε =
1
ε
�−ν 1ûε + �ûε · ∇�ûε + ∇p̂ε − αT̂εg − f�; (4.25)

− κ18ε − �ûε · ∇�8ε − α �©ε; g� +N�T̂ε − T̂ � = 0 in �; (4.26)

∂8ε
∂n

∣∣∣
0N

= 0; 8ε�0D= 0;

�δĝε +N�ĝε − ĝ� − κ8ε; g − ĝε�L2�0N �≥ 0 ∀g ∈ V ; (4.27)

−ν 1©ε − �ûε · ∇�©ε + B�ûε; ©ε� +8ε∇T̂ε
+N�ûε − û� + curl2ûε = ∇σε in �; (4.28)

and

∇ · ©ε = 0; ©ε�∂� = 0; (4.29)

where the first equality in (4.27) makes sense due to the estimate∥∥∥∥∂8ε∂n

∥∥∥∥
Hs�∂��

≤ C�s���κ18ε�L2��� + �8ε�H1����

whenever 8ε ∈ H1���; s < 0:
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Now, setting Iε = �©ε�L2���, we prove that lim infε→0+ Iε < +∞ by the
contradiction. Let us assume that lim infε→0+ Iε = +∞ and denote

8̃ε =
8ε
Iε
; ©̃ε =

©ε
Iε
; and σ̃ = σε

Iε
:

From the equations (4.24)–(4.29) the triple �©̃ε; 8̃ε; σ̃ε� satisfies the equa-
tions

− κ18̃ε − �ûε · ∇�8̃ε − α �©̃ε; g� +N T̂ε − T̂
Iε

= 0 in �; (4.30)

∂8̃ε
∂n

∣∣∣
0N

= 0; 8̃ε�0D = 0;(
δĝε +N�ĝε − ĝ�

Iε
− κ8̃ε; g − ĝε

)
L2�0N �

≥ 0 ∀g ∈ V ; (4.31)

−ν 1©̃ε − �ûε · ∇�©̃ε + B�ûε; ©̃ε� + 8̃ε∇T̂ε

+N ûε − û
Iε
+ curl2ûε

Iε
= ∇σ̃ε in �; (4.32)

∇ · ©̃ε = 0; ©̃ε�∂� = 0: (4.33)

Since, by definition, �©̃ε�L2��� ≤ 1 and �8̃ε�L2��� ≤ J1�û; T̂ ; p̂; Q̂; ĝ�/Iε,
taking, if necessary, a subsequence, one can show that

�©̃ε; 8̃ε�⇀ �©̃; 0� in L2��� × L2���: (4.34)

Taking the inner product of (4.30) with 8ε in L2��� and integrating by
parts we have

∫
�
κ�∇8̃ε�2 dx ≤ �8̃ε�2

L2��� + C
(�T̂ε − T̂�2

L2���
I2
ε

+ �©̃ε�2
L2���

)
: (4.35)

By the definition of �8̃ε�L2��� ≤ C and (4.35) we can assume, without loss
of generality, that

�8̃ε�H1��� ≤ C; (4.36)
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where the constant C is independent of ε. Then again taking the inner
product of (4.32) with ©̃ε in L2��� and integrating by parts we obtain

ν
∫
�
�∇©̃ε�2 dx

= −
∫
�

(
8̃ε�∇T̂ε; ©̃ε� +N�ûε − û; ©̃ε� + �B�ûε; ©̃ε�; ©̃ε�

)
dx

−
∫
�
�curl2ûε; ©̃ε�/Iε dx

≤ C
(
�∇T̂ε�L2����8̃ε�H1����©̃ε�V + �ûε�V�©̃ε�1/2

L2����©̃ε�
3/2
V

+��ûε�H2����©̃ε�L2��� + �ûε − û�L2����©̃ε�L2����/Iε
)
:

(4.37)

By (4.22), (4.34), and (4.36) the above estimate implies immediately

�©̃ε�V ≤ C; (4.38)

where the constant C is independent of ε. From the facts (4.34), (4.36),
and (4.38), again taking, if necessary, a subsequence, we obtain

�©̃ε; 8̃ε�⇀ �©̃; 0� in V ×H1���;
�©̃ε; 8̃ε� → �©̃; 0� in L2��� × L2���:

(4.39)

Furthermore, by (4.8) and (4.39) the sequence{
−�ûε · ∇�©̃ε + B�ûε; ©̃ε� + 8̃ε∇T̂ε +N

ûε − û
Iε
+ curl2ûε

Iε

}
ε∈�0; 1�

is bounded in L2���. Thus, we have (see [24])

©̃ε ⇀ ©̃ in H2���: (4.40)

Since �©̃ε�L2��� = 1 it follows from (4.39) that

�©̃�L2��� = 1: (4.41)

Thus, passing to the limit in (4.30)–(4.33) as ε → 0+, keeping in
mind (4.19), (4.39), and (4.40), we obtain the optimality system (4.1)–
(4.4) with 8̃ ≡ 0:

− α �©̃; g� = 0 in �; (4.42)

− ν 1©̃ − �û · ∇�©̃ + B�û; ©̃� = ∇σ̃ in �; (4.43)

∇ · ©̃ = 0; ©̃�∂� = 0: (4.44)



208 lee and imanuvilov

By (4.42) and (4.44) there exist vectors ai (i = 1; 2) such that

∂©̃i
∂ai
= 0 in � ∀i ∈ �1; 2�: (4.45)

Hence, by (4.44) and (4.45), ©̃ ≡ 0. But this contradicts (4.41). Thus, we
have lim infε→0+ Iε < +∞ or, in other words,

�8ε�L2��� + �©ε�L2��� ≤ C: (4.46)

Now, taking the inner product of (4.26) with 8ε in L2��� and integrating
by parts we have∫

�
κ�∇8ε�2 dx ≤ �8ε�2

L2��� + C
(�T̂ε − T̂�2

L2��� + �©ε�2
L2���

)
: (4.47)

By (4.46) and (4.47) we can assume, without loss of generality, that

8ε ⇀ 8 in H1���: (4.48)

Then, again taking the inner product of (4.28) with ©ε in L2��� and inte-
grating by parts, we obtain

ν
∫
�
�∇©ε�2 dx = −

∫
�

(
8ε�∇T̂ε; ©ε� + �ûε − û; ©ε�

+�B�ûε; ©ε�; ©ε� + �curl2ûε; ©ε�
)
dx

≤ C
(
�∇T̂ε�L2����8ε�H1����©ε�V

+�ûε�V�©ε�1/2
L2����©ε�

3/2
V + �ûε − û�L2����©ε�L2���

)
:

(4.49)

By (4.22), (4.46), and (4.48) the above estimate implies immediately

©ε ⇀ © in V: (4.50)

Furthermore, by (4.8), (4.48), and (4.50) the sequence{
−�ûε · ∇�©ε + B�ûε; ©ε� +8ε∇T̂ε +N�ûε − û� + curl2ûε

}
ε∈�0; 1�

is bounded in L2���. Thus, we have (see [24])

©ε ⇀ © in H2���: (4.51)

Once again, since (4.8) and (4.48) imply boundedness of the sequence{−�û · ∇�8ε − α �wε; g� + T̂ε − T̂
}
ε∈�0; 1�
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in the space L2��� by regularity results for elliptic equations (see [22]) we
have

8ε ⇀ 8 in Hs��� as ε→ 0+ (4.52)

for all s ∈ �1; 3
2 �.

By (4.51) and (4.52) we obtain

�©ε;8ε�⇀ �©;8� in H2��� ×Hs��� (4.53)

for all s ∈ �1; 3
2 �. By (4.22), (4.50), and (4.53) passing to the limit in

the equations (4.24)–(4.29) we obtain optimality system (4.1)–(4.4). Rela-
tions (4.22), (4.50), and (4.53) and Eq. (4.4) imply the necessary regularity
of Lagrange multipliers.

We note that if we take V = L2�0N�, then the boundary condition �δĝ−
κ8; g − ĝ�L2�0N � ≥ 0 in (4.2) becomes δĝ − κ8 = 0 on 0N .

4.2. The Optimality System

Using the optimality condition Q = 8
γ

, we obtain the following optimality
system: find �u; T; p; g; ©;8; σ� ∈ H1

0��� ×H1��� ×L2
0��� ×V ×H1

0��� ×
H1
D��� × L2

0��� such that

− ν 1u+ �u · ∇�u = −∇p+ αTg + f in �;

∇ · u = 0 in �;

− κ1T + �u · ∇�T = 8
γ

in �

− ν 1©− �u · ∇�©+
((

©;
∂u
∂x1

)
;

(
©;
∂u
∂x2

))T
+8∇T+ curl2u = ∇σ in �;

∇ · © = 0

− κ18− �u · ∇�8− α �©; g� = 0 in �;

T = h on 0D;
∂T

∂n
= g on 0N;

∂8

∂n

∣∣∣
0N

= 0; �δg − κ8; ǧ − g�L2�0N � ≥ 0 ∀ǧ ∈ V : (4.54)

For the case V = L2�0N�, using the optimality conditions Q = 8
γ

and
g = κ8

δ
, we obtain the following optimality system: find �u; T; p; ©;8; σ� ∈
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H1
0��� ×H1��� × L2

0��� ×H1
0��� ×H1

D��� × L2
0��� such that

− ν 1u+ �u · ∇�u = −∇p+ αTg + f in �;

∇ · u = 0 in �;

− κ1T + �u · ∇�T = 8
γ

in �

− ν 1©− �u · ∇�©+
((

©;
∂u
∂x1

)
;

(
©;
∂u
∂x2

))T
+8∇T+ curl2u = ∇σ in �;

∇ · © = 0;

− κ18− �u · ∇�8− α �©; g� = 0 in �;

T = h on 0D;

∂T

∂n
= κ8

δ
and

∂8

∂n
= 0 on 0N: (4.55)
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