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1. Introduction

In his 1992 paper [26], Amnon Neeman has shown that for a noetherian commutative ring R
“one has a complete and very satisfactory description of the spectral theory of its derived category.”
Indeed, after providing a correct proof of Hopkins’ classification (see [18]) of the thick subcategories
of Db(R-proj) by way of specialization closed subsets of Spec R , he proceeds to show that even for
the unbounded derived category D(R) one has a bijection

{subsets of SpecR} τ

σ

{
localizing subcategories of D(R)

}
.

This restricts to a bijection between specialization closed subsets on one side and smashing sub-
categories on the other. From this Neeman proves the telescope conjecture for D(R), which is the
statement that every smashing subcategory of D(R) (a localizing subcategory whose inclusion has a
coproduct preserving right adjoint) is generated by the compact objects it contains. Another proof of
the classification for Db(R-proj) follows.

The bijection is stated in terms of the small support ssupp X = {p ∈ Spec R | k(p) ⊗L X �= 0} of a
complex X , which was originally introduced by Foxby [15]. Here k(p) denotes, as usual, the residue
field of R at p. For a subset S ⊆ Spec R and a localizing subcategory L one sets

τ (S) = {
X ∈ D(R)

∣∣ ssupp X ⊆ S
}
, σ (L) =

⋃
X∈L

ssupp X .

The purpose of this article is to extend Neeman’s classification to the setting of graded modules
over a graded commutative noetherian ring as well as to highlight the fact that most of the argument
is very general. We allow R to be graded by any abelian group G , possibly with torsion, and we allow
it to be commutative up to any reasonable sign rule, which covers both the strictly commutative case
as well as the usual graded commutative one (see Definition 2.4). If G �= 1 then D(R) is not generated
by the tensor unit R and therefore we restrict our attention to those localizing subcategories which
are tensor ideals; they are the same as those which are closed under twists by arbitrary elements g
of G . Our classification is a bijection as follows:

{subsets of Spech R} τ

σ

{
twist-closed localizing subcategories of D(R)

}

with corollaries similar to Neeman’s (see Theorem 5.8). As a special case we reprove Neeman’s original
classification for ungraded rings. That is not to say we give what could be considered a new proof;
the ideas involved are essentially the same. However, our approach makes it clear which parts of the
argument are general i.e., belong to the realm of tensor triangulated categories, and which parts are
instead specific to (graded) commutative noetherian rings.

Our original motivation for extending the classification to graded rings was to better understand
the connection between work of Dave Benson, Srikanth B. Iyengar and Henning Krause [5,7] and the
second author [31]. Benson, Iyengar, and Krause have introduced a notion of support in the situa-
tion where one is given a compactly generated triangulated category T together with an action by a
Z-graded commutative noetherian ring R and have used this machinery, for instance, to give a classi-
fication of the localizing tensor ideals of the stable module category of a finite group [6]. In [31] their
notion of support is categorified by considering an action of a tensor triangulated category rather
than a ring; one takes supports in the Balmer spectrum (as defined in [2]) of the category which acts,
rather than in the Zariski spectrum of the graded ring which acts.

Using Neeman’s classification one already understands how the work of the second author recovers
the support theory of Benson, Iyengar, and Krause when the derived category of a noetherian ring
acts on a compactly generated triangulated category. As the theory of Benson, Iyengar, and Krause
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works in the generality of a Z-graded noetherian ring it is thus natural to consider what happens
when one allows the derived category of graded modules over such a ring to act. This requires a
computation of the spectrum of the compact objects of such a derived category and, as stated, the
main goal of the current article is to perform this computation. Of course it is in any case natural to
ask if Neeman’s classification extends, in the obvious way, to graded modules over graded rings. As
shown in Theorem 5.8 the answer is yes; this opens the door to further exploring such categories, an
undertaking which seems to have many potential applications.

Let us now sketch the outline of the paper. Section 2 contains various preliminaries on the cate-
gory of graded modules over a graded ring and the corresponding derived category; the main point
is to provide details on the tensor product and show that the derived category is the homotopy cate-
gory of a symmetric monoidal model category. In Section 3 we briefly recall some facts we will need
concerning graded fields. Then we consider, in Section 4, the small support defined by the graded
residue fields k(p) and establish its properties. In particular, the small support detects the objects
of D(R) (Corollary 4.8), it is compatible with the tensor product (Lemma 4.6) and it behaves nicely
with respect to compact objects (Lemmas 4.11 and 4.12). In Section 5 we give the proof of the theo-
rem. By a general criterion, the results on the small support establish a canonical homeomorphism

Spech R ∼= Spc D(R)c

(Theorem 5.1) computing the spectrum in the sense of Balmer [2]. Since R is graded noetherian, this
space is noetherian. Hence the abstract theory of [31] can be applied, and one reduces to verifying
minimality of certain localizing tensor ideals; this is accomplished by showing the relevant ideals are
generated by the residue fields (Proposition 5.6) and then using the “field object” property of the
residue fields (Lemma 3.5). In the final section we apply our results to weighted projective schemes
giving a new proof of the classification of localizing tensor ideals in the derived category of quasi-
coherent sheaves on such a space.

Conventions. All categories are Z-categories and all functors are Z-linear.

2. Definitions and basic results

Let G denote our grading group, which will always be assumed to be abelian and whose operation
will be written additively. By a graded ring R we always mean a unital and associative ring graded
by G; in other words, R comes together with a decomposition

R =
⊕
g∈G

R g

such that the multiplication satisfies R g · Rh ⊆ R g+h for all g,h ∈ G , and thus also 1 ∈ R0. A (left)
graded module over R is an R-module M together with a decomposition M = ⊕

g∈G Mg such that
R g Mh ⊆ Mg+h . We denote by R-GrMod the category of graded R-modules and degree-zero homo-
morphisms, i.e., those R-linear maps f : M → N such that f (Mg) ⊆ Ng for all g ∈ G . As customary
we will write deg m = g to indicate that the degree of m is g , that is, that m ∈ Mg .

If M is an R-module and g is an element of G , we write M(g) for M twisted by g , that is, M en-
dowed with the new G-grading with components M(g)h := Mh+g . We say that an R-module M is
graded free if M is a sum of twists of R .

Definition 2.1. The companion category of R , denoted by CR , is the small Z-category whose set of
objects is obj(CR) := {g | g ∈ G}, whose morphism groups are given by CR(g,h) := Rh−g , and with
composition given by restricting the multiplication of R to the appropriate homogeneous components:

R�−h × Rh−g → R�−g, (r, s) 	→ rs.
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Lemma 2.2. (See [14, Proposition I.1.3].) There is an equivalence between R-GrMod and the additive functor
category AbCR , given by the functor

R-GrMod → AbCR , M 	→ (g 	→ Mg).

A quasi-inverse is provided by

AbCR → R-GrMod, F 	→
⊕
g∈G

F (g),

where we endow the abelian group
⊕

g∈G F (g) with the grading on evident display and with the R-action
induced by functoriality. Under this equivalence, the functor CR(g,−) corepresented by g corresponds to the
free left R-module R(−g). �

In the following, we make the identification R-GrMod = AbCR whenever convenient. It follows
from this description that the category R-GrMod is Grothendieck abelian, and {R(g) | g ∈ G} is a set
of projective generators. This second statement follows immediately from the Yoneda lemma:

Lemma 2.3. There is a natural isomorphism of abelian groups

R-GrMod
(

R(−g), M
) ∼→ Mg, f 	→ f (1)

for every M ∈ R-GrMod and g ∈ G. �
Note that, under the identification of Lemma 2.2, the Yoneda embedding becomes the fully faithful

functor

R : (CR)op → R-GrMod

with R(g) = R(−g) on objects and which sends the morphism r ∈ CR(g,h) to right multiplication
with r, seen as an R-linear map R(r) : R(−h) → R(−g).

Definition 2.4. Let ε : G × G → Z/2 be a symmetric Z-bilinear map. We say that the graded ring R is
ε-commutative if r · s = (−1)ε(deg r,deg s)s · r holds for all homogeneous elements r and s in R .

Examples 2.5.

(1) If ε is identically zero, then ε-commutative just means commutative.
(2) For G = Z the integers and ε : Z×Z

·→ Z → Z/2 the multiplication map modulo two, we recover
the familiar notion of a (Z-)graded commutative ring. For instance, the graded endomorphism
ring of the tensor unit object in any reasonable tensor triangulated category will be such a ring,
by the Eckmann–Hilton argument (see [33]).

(3) Hovey, Palmieri and Strickland [20] entertain the notion of a multigraded unital algebraic stable
homotopy category, in which one has a finite number of generating “spheres” S1, . . . , Sd , thus
giving rise to an ε-commutative Z

d-graded endomorphism ring of the tensor unit, where the
signing form ε : Zd ×Z

d → Z/2 is given by

ε((n1, . . . ,nd), (n
′
1, . . . ,n′

d)) = n1n′
1 + · · · + ndn′

d mod 2.

(4) A commutative superalgebra (or supercommutative algebra) is an algebra graded over Z/2 which
is ε-commutative for the multiplication map ε : Z/2 ×Z/2

·→ Z/2.
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We will need to use localization for such ε-commutative rings and to consider their homogeneous
spectra; essentially these are given by the obvious constructions, but let us be (at least a little) explicit
about what is meant and let us make a few comments on what happens at this level of generality.
We begin, as in the usual Z-graded case, by defining the even part of such a ring.

Definition 2.6. Let R be an ε-commutative G-graded ring, as in Definition 2.4. We define its even part,
written Rev, to be the commutative G-graded ring with components

(
Rev)

g :=
{

R g if ε(g,h) = 0 for all h ∈ G,

0 otherwise,

and with multiplication restricted from R . We say a homogeneous element is even if it belongs to the
even part and we say it is odd if it is not even.

Remark 2.7. Note that the bilinearity and symmetry of ε imply that Rev is indeed a well-defined
unital subring of R , which moreover is commutative. Note also that with this definition odd elements
may still belong to the center; e.g., if R0 is a commutative ring and if we endow R := R0[x]/(x2) with
the usual Z-grading where deg x = 1, then the strictly commutative ring R is also ε-commutative for
the product ε : Z×Z → Z/2, for which x is odd.

Observe that when R is ε-commutative all homogeneous ideals are automatically two-sided. A ho-
mogeneous ideal p of R is said to be prime if for any homogeneous elements r, s of R we have rs ∈ p

implies at least one of r, s lies in p. We denote by Spech R the collection of all homogeneous prime
ideals of R , and call it the homogeneous spectrum of R . We will consider Spech R as a topological space
with the Zariski topology. As usual, if we consider instead the homogeneous prime ideals of Rev we
would get the same space, since the square of any homogeneous element is even. We say that R is
(graded) noetherian if the ascending chain condition holds for homogeneous ideals of R .

From this point forward all rings we consider are assumed to be noetherian.

Remark 2.8. We recall that, if G is finitely generated, R being noetherian in the graded sense is
equivalent to R0 being noetherian and R being finitely generated over R0; counterexamples to this
statement exist if G is not finitely generated (see [16, Theorem 1.1]). One may suspect that the noethe-
rianity of R should require the grading group G to be finitely generated. This is not the case: it is
always possible to artificially enlarge the grading group (extending R by zero). A slightly less trivial
example is if R is a graded field (see the next section) in which case it is noetherian, independently
of G .

We make the following easy observation about the homogeneous spectrum of such a ring.

Lemma 2.9. If R is a noetherian ε-commutative G-graded ring, then the spectrum of homogeneous prime
ideals, Spech R, is a noetherian topological space. �

We can consider the graded localization of an ε-commutative ring R at a multiplicative set S
consisting of even (and therefore central) homogeneous elements. The construction of this localization
is the obvious one and it enjoys the usual properties; in particular, it is again an ε-commutative G-
graded ring. Similarly, we can also localize any graded R-module at such a multiplicative subset. For
a homogeneous prime ideal p ⊆ R and a graded module M , we denote by Mp the localization of R
at the multiplicative set S = Rev ∩ Rh ∩ (R � p) of the even homogeneous elements of R not in p.
We observe that in this generality it is possible for odd elements to become invertible in such a
localization.

Next, we want to define a symmetric monoidal structure for graded R-modules, where R is al-
lowed to be any ε-commutative G-graded ring. This can be done quite explicitly as follows. Every
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left R-module M = R M carries a canonical structure of right R-module, making it into an R-bimodule
R MR , by setting

m • r := (−1)ε(deg m,deg r)rm (2.10)

for all homogeneous r ∈ R and m ∈ M . Every morphism of left R-modules is also a morphism of right
modules for this action. Then the tensor product M ⊗R N of M with another left module N = R N is
given in each component by the following quotient of abelian groups:

(M ⊗R N)g :=
⊕

h Mh ⊗Z Ng−h

〈m • r ⊗ n − m ⊗ rn | m ∈ Mp, r ∈ Rh−p, n ∈ Ng−h〉
(cf. [14]). The ring R still acts on R M ⊗R N on the left. There are evident natural associativity and
right and left unit isomorphisms

(L ⊗R M) ⊗R N ∼= L ⊗R (M ⊗R N), M ⊗R R ∼= R, R ⊗R M ∼= R

as well as a natural symmetry isomorphism:

τM,N : M ⊗R N ∼= N ⊗R M, τM,N(m ⊗ n) := (−1)ε(deg m,deg n)n ⊗ m.

Lemma 2.11. The above constructions are well-defined and turn the category of graded left R-modules into a
closed symmetric monoidal abelian category with tensor unit R = R R.

Proof. All the verifications are straightforward and are therefore omitted. The existence of the inter-
nal Hom follows from the standard fact that every colimit preserving functor between Grothendieck
categories, such as M ⊗R (−) : R-GrMod → R-GrMod, has a right adjoint. �
Remark 2.12. If one considers R as a left R-module R R , its canonical right action (2.10) used for
tensoring is just multiplication in R from the right, by ε-commutativity. For the twisted left module
M = R R(g) however, beware that the element m • r in general is not equal to the product m · r
computed in R .

Lemma 2.13. There exist two natural isomorphisms

R(g) ⊗R M
∼→ M(g) and M ⊗R R(g)

∼→ M(g)

of left R-modules for all g ∈ G and all M ∈ R-GrMod.

Proof. The map R(g) ⊗R M → M(g) given by r ⊗ m 	→ (−1)ε(g,deg m)rm is well-defined, R-linear, and
invertible with inverse m 	→ (−1)ε(g,deg m)1 ⊗ m (here m ∈ Mdegm = M(g)degm−g ). The second isomor-
phism is obtained by composing the first one with the switch isomorphism τR(g),M . �

If M = R(h) in Lemma 2.13, denote by

μg,h : R(−g) ⊗ R(−h)
∼

R(−g − h)

R(g) ⊗ R(h) ∼ R(g + h)

the first isomorphism of left R-modules appearing in the last lemma.
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We recall the following definition which will be required throughout.

Definition 2.14. Let M be a symmetric closed monoidal category with unit 1, tensor ⊗, and inter-
nal hom hom(−,−). An object m ∈M is rigid if for all m′ ∈M the natural map

hom(m,1) ⊗ m′ → hom
(
m,m′)

is an isomorphism. We say M is rigid if every object of M is rigid.

Proposition 2.15. The companion category CR of any ε-commutative ring R carries a strict symmetric
monoidal structure ⊗ with unit 0, given on objects by g ⊗ h := g + h and on morphisms r ∈ CR(g, g′) and
s ∈ CR(h,h′) by the formula

r ⊗ s := (−1)ε(g,h′−h)rs.

With this tensor structure, the Yoneda embedding R : (CR)op → R-GrMod together with the identifications

μg,h : R(g) ⊗R R(h)
∼→R(g ⊗ h) and μ0 = id : R(0)

=→R

becomes a strong symmetric monoidal functor (R,μ,μ0). Moreover, the tensor category CR is rigid.

Proof. For the last assertion, note that the identity

CR(g ⊗ h, �) = R�−(g+h) = R(−h+�)−g = CR(g,−h ⊗ �)

shows that each object h is rigid with dual −h. All other verifications are straightforward and are
therefore omitted. �
Remark 2.16. We stress that “strict” in the last proposition means that the associativity, left unit, right
unit, and symmetry coherence isomorphisms are all identity maps.

Remark 2.17. It follows from the formal theory of Kan extensions – or, in this context, Day convo-
lution [12] – that there exists, up to canonical isomorphism, a unique closed symmetric monoidal
structure on the functor category AbCR such that the Yoneda embedding (CR)op → AbCR is strong
symmetric monoidal. By uniqueness we recover in this way the tensor product of Lemma 2.11. In-
deed, this is how one can find the (rather quaint) formula for the tensor product in the companion
category: given r ∈ R g′−g and s ∈ Rh′−h , one computes directly that the unique dotted map making
the following square commute

R(−g′) ⊗R R(−h′)

R(r)⊗R R(s)

μg′,h′

∼ R(−g′ − h′)

R(−g) ⊗R R(−h)
μg,h

∼ R(−g − h)

is right multiplication by (−1)ε(g,h′−h)rs. Similarly one finds that the symmetry isomorphism τR(g),R(h)

corresponds via μ to the identity map R(g + h) → R(h + g).
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Let Ch(R) := Ch(R-GrMod) be the category of chain complexes of graded R-modules. It has a
tensor product in the usual way, by setting

(X ⊗R Y )n :=
⊕
p∈Z

X p ⊗R Y n−p (n ∈ Z)

and by defining the differential with the Leibniz formula, for all complexes X and Y . The symmetric
monoidal category Ch(R) is again closed, with the usual Hom complexes HomR(X, Y ). In order to ap-
ply the machinery of [31] we need the derived category to be the homotopy category of a symmetric
monoidal model category (see [19] for details on monoidal model categories). Fortunately the manner
in which we have set up the monoidal structure on Ch(R) makes this relatively easy to verify.

Proposition 2.18. For every ε-commutative G-graded ring R, the category Ch(R) has a (proper, cellular and
combinatorial) Quillen model structure, where the weak equivalences are the quasi-isomorphisms and the
fibrations are the degreewise surjections. Moreover, this model is compatible with the tensor product of com-
plexes in the sense that it turns Ch(R) into a symmetric monoidal model category.

Proof. Of the various possibilities, we find it most convenient to cite some results from [11]. We
recall that we have at hand a Grothendieck abelian category A := R-GrMod which is equipped with
a closed symmetric monoidal structure. Moreover, it has a small set G := {R(g) | g ∈ G} of generators
which contains the tensor unit R = R(0) and which by Lemma 2.13 is essentially closed under the
tensor product. It also follows immediately from Lemma 2.13 that each R(g) is flat, i.e., that the
functor R(g) ⊗R (−) : A→A is exact.

With this set G of generators, the G-model structure of [11] exists and has the properties listed in
the proposition. More precisely (and adopting the terminology of [11]), by [11, Remark 1.15] it is al-
ways possible to choose a family H of complexes such that the pair (G,H) forms a descent structure,
so that by [11, Theorem 1.7] there exists a Quillen model structure on Ch(A) – which is independent
of H other than for the choice of generating trivial cofibrations – having quasi-isomorphisms for weak
equivalences; the description of fibrations as the degreewise surjections (which will not be used in
this article) follows from [11, Corollary 4.9] and the fact that every complex X ∈ Ch(A) is G-local,
that is, the canonical map

K (A)
(
Σn R(g), X

) → D(A)
(
Σn R(g), X

)
is bijective for all n ∈ Z, where K (A) denotes the homotopy category of complexes and Σ the shift
functor.

The facts that the generators G are flat, include the tensor unit, and are essentially closed under
tensoring, ensure that the model is compatible with the given symmetric monoidal structure, by [11,
Proposition 2.8] and [11, Corollary 2.6]. �
Remark 2.19. Although the existence of a model for D(R) will be required in Section 5, we will not
have to actually work with it: the (probably) more familiar methods of homological algebra will amply
suffice, see e.g. [21].

It follows from Proposition 2.18 that, by deriving the tensor product and the internal Hom functors,
the derived category of every ε-commutative G-graded ring R inherits the structure of a closed tensor
category (D(R),⊗L

R , R,RHomR). Moreover, the tensor structure is compatible with the triangulation
in the best way; we refer to [20, Appendix A] for precise statements.

If the group D(R)(Σn R(g), X) vanishes for all n ∈ Z and g ∈ G , then X is acyclic. Hence

{
Σn R(g)

∣∣ g ∈ G, n ∈ Z
}
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is a set of compact generators for the triangulated category D(R). It is not hard to see that the objects
Σn R(g) are also rigid, that is, that the canonical map

RHomR

(
Σn R(g), R

) ⊗L

R X →RHomR

(
Σn R(g), X

)
obtained by the tensor-Hom adjunction is an isomorphism for all X . Hence D(R) is a rigidly–compactly
generated tensor triangulated category, as in [20] and [4]. In particular, the full subcategory D(R)c ⊆
D(R) of compact objects coincides with that of rigid objects.

Notation 2.20. Since no confusion should arise, we will simply write ⊗ for the derived tensor product
⊗L

R in D(R). For any family of objects F ⊆ D(R) we will use the following notation:

〈F〉 := the localizing subcategory of D(R) generated by F,

〈F〉⊗ := the localizing tensor ideal of D(R) generated by F .

The following observation will be used repeatedly.

Lemma 2.21. Let R be any ε-commutative G-graded ring and F ⊆ D(R) any family of objects in the derived
category. Then 〈F〉⊗ coincides with the smallest localizing subcategory of D(R) containing F and closed under
all the twist functors (−)(g), g ∈ G, and also with the smallest localizing subcategory of D(R) containing the
objects {X(g) | X ∈F , g ∈ G}.

Proof. The equality of the last two subcategories is obvious. For the first one note that a localiz-
ing subcategory of D(R) is a ⊗-ideal if and only if it is closed under tensoring with the generators
Σn R(g). It suffices therefore to show that there exist isomorphisms R(g) ⊗ X ∼= X(g) for all com-
plexes X ∈ D(R), but this is an easy consequence of Lemma 2.13. �
3. Graded fields

Fix an abelian group G together with a Z/2Z-valued symmetric bilinear form ε . All rings consid-
ered henceforth are assumed to be ε-commutative G-graded rings. Let us begin by recalling that a
non-zero ε-commutative G-graded ring K is a graded field if every non-zero homogeneous element
of K is invertible. In particular, K0 is a field in the usual ungraded sense, and the components Mg of
every K -module M are K0-vector spaces. We wish to show, in analogy with the ungraded case, that
categories of modules over graded fields are rather structurally simple; this will provide us with a
good theory of residue objects in the derived category, as in [26] (cf. also [20, Section 3.7] for details
on field objects in general).

We fix some graded field K throughout the rest of the section.

Definition 3.1. Let M be a graded K -module. We define the scaffold of M to be

s(M) := {g ∈ G | Mg �= 0}.

Lemma 3.2. The scaffold, s(K ), of K is a subgroup of G.

Proof. As K is unital and 1 �= 0 we must have 0 ∈ s(K ). If g ∈ s(K ) then there is a non-zero element
in K g which, as K is a graded field, must have an inverse in K−g , so −g ∈ s(K ). Finally, suppose
g, g′ ∈ s(K ). Any non-zero element of K g gives, via multiplication, an isomorphism K g′ → K g+g′ , so
g + g′ ∈ s(K ). �
Lemma 3.3. For any g ∈ G we have s(K (g)) = s(K ) − g, the coset of −g with respect to the subgroup s(K ).
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Proof. Just note that s(K (g)) = {h ∈ G | K g+h �= 0} = s(K ) − g. �
Lemma 3.4. Every graded K -module M is graded free.

Proof. If h ∈ s(M) and g ∈ s(K ) then g + h ∈ s(M) and Mh
∼= Mg+h because K is a graded field. In

particular the subgroup s(K ) of G acts on s(M) by translation. Let {hi}i∈I be elements of s(M) giving
a decomposition of s(M) into disjoint orbits hi + s(K ). Then there is an isomorphism

⊕
i∈I

K (−hi)
mi → M,

where mi = rankK0 Mhi . Indeed, this is seen easily by choosing isomorphisms

K (−hi)
mi
hi

= K mi
0 → Mhi

and extending K -linearly. �
This gives us the next lemma, which is the graded analogue of [8, Lemma 2.17]. In fact this result

already appears in the work of Foxby (for instance in the proof of [15, Lemma 2.7]).

Lemma 3.5. Let R be a G-graded ring and R → K a map (of graded rings) into a G-graded field K . Then for
all X ∈ D(R) the object X ⊗ K is a coproduct of suspensions and twists of K .

Proof. The functor (−) ⊗ K : D(R) → D(R) factors through D(K ) and so the result is immediate from
Lemma 3.4. �
4. The small support

Fix an abelian group G and an ε-commutative noetherian G-graded ring R . From this point on we
will simply use ⊗ to denote the left derived tensor product on D(R). As usual we will write (−)p
to denote homogeneous localization with respect to a homogeneous prime ideal p. We now define
a notion of support in terms of the graded residue fields of R . We prove that this support satisfies
all the desirable properties one would hope for. In this case the virtues of the support are not just
their own reward: in the next section we see that a complete classification of the localizing ⊗-ideals
of D(R) follows in a very straightforward way from the results of this section and some abstract
machinery. Let us begin by defining the objects which give rise to the small support.

Definition 4.1. Let p ∈ Spech R be a homogeneous prime ideal. We define the residue field at p in the
usual way:

k(p) := Rp/pRp = (R/p)(0).

Happily it turns out that even in the ε-commutative case this gives rise to graded fields.

Lemma 4.2. Let p be a homogeneous prime ideal of R. Then the residue field k(p) is a graded field.

Proof. Let r ∈ R g be a homogeneous element of degree g . Then deg r2 = 2g and therefore r2 is even.
In particular, if r /∈ p then r2 ∈ (R � p)∩ Rev becomes inverted in k(p). But the inverse r−2 is also even
(of degree −2g). Therefore in k(p) the element r commutes with r−2 and thus with rr−2. Hence r is
invertible with inverse rr−1. �
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Definition 4.3. Let X be an object of D(R). We define the small support of X to be the subset

ssupp X := {
p ∈ Spech R

∣∣ k(p) ⊗ X �= 0 in D(R)
}

of the homogeneous spectrum Spech R of R .

Remark 4.4. We observe that there is no need to twist in this definition since, for every g ∈ G and
X ∈ D(R), we have k(p) ⊗ X �= 0 if and only if k(p)(g) ⊗ X �= 0.

We now consider the properties of the small support. Our discussion closely follows the work
of Foxby; Lemma 4.6 and Corollary 4.8 appear, for rings without a grading, in [15] as 2.7 and 2.6
respectively. Let us begin with those properties of the small support which are very obvious from the
definition (so obvious in fact that we do not give a proof).

Lemma 4.5. The small support satisfies the following properties:

(i) For every X in D(R) we have ssupp X = ssupp Σ X.
(ii) For any set-indexed family {Xi}i∈I of objects of D(R) we have

ssupp

(∐
i∈I

Xi

)
=

⋃
i∈I

ssupp Xi .

(iii) For any triangle X → Y → Z → Σ X in D(R) there is a containment

ssupp Y ⊆ ssupp X ∪ ssupp Z .

(iv) ssupp R = Spech R.
(v) ssupp 0 = ∅.

Lemma 4.6. The small support satisfies the tensor formula: for any X and Y in D(R) we have

ssupp(X ⊗ Y ) = ssupp X ∩ ssupp Y .

Proof. It is clear that ssupp(X ⊗ Y ) is contained in the intersection. To see the reverse inclusion just
note that if p is in the small support of both X and Y then

k(p) ⊗ X ⊗ Y ∼=
(∐

i

Σmi k(p)(gi)
αi

)
⊗ Y �= 0,

for some elements gi ∈ G , integers mi , and cardinals αi , where we use Lemma 4.2, Lemma 3.5 and
the fact that the tensor product commutes with coproducts. �

We next wish to check that the small support detects the vanishing of objects. This is, in some
sense, the most technically unpleasant property to verify. However, most of the details are routine
extensions of well-known facts about Z-graded rings to G-graded rings.

The category R-GrMod is a locally noetherian Grothendieck abelian category. Thus it has enough
injectives and every injective is a direct sum of indecomposable injectives. The general form of Matlis’
theory ([23] and cf. [30, Chapter V.2]) shows that every indecomposable injective is the injective en-
velope, E(R(g)/P ), of R(g)/P for some g ∈ G and some irreducible submodule P of R(g). As twisting
is an autoequivalence, it is easily seen that it is sufficient to consider only irreducible ideals of R .
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The argument of [23, Proposition 3.1] then extends in a straightforward way to show that every in-
decomposable injective is a twist of the envelope of R/p where p is a prime ideal, i.e., is of the form
E(R/p)(g) (cf. [9, Theorem 3.6.3]). In particular, they are easily seen to be p-local and p-torsion in the
graded sense.

Proposition 4.7. The objects k(p)(g), for p ∈ Spech R and g ∈ G, generate D(R):

D(R) = 〈
k(p)(g)

∣∣ p ∈ Spech R, g ∈ G
〉 = 〈

k(p)
∣∣ p ∈ Spech R

〉
⊗.

Proof. Let X be a non-zero object of D(R) and pick i ∈ Z such that Hi(X) �= 0. We may, without loss
of generality, assume that X is a complex of injectives by taking a K-injective resolution [29].

Pick some non-zero homogeneous element of Hi(X) and observe that it is represented by a mor-
phism f :Σ−i R(g) → X in D(R), which moreover may be assumed to correspond to a morphism of
complexes, i.e., a map R(g) → Xi . As Xi is a direct sum of indecomposable injectives and f is deter-
mined by the image of 1, we may assume that the image of f is contained in a single indecomposable
injective E(R/p)(g′) ⊆ Xi . Indeed R(g) → Xi factors through a finite direct sum of indecomposable
injectives and if each of the restrictions of f to these factors were null-homotopic, clearly f would
also be null-homotopic. So we just replace f , if necessary, by the restriction of f to a single inde-
composable summand of Xi .

Since E(R/p)(g′) is p-local, f factors via Rp(g). We can of course factor Rp(g) → E(R/p)(g′)
through its image which is finitely generated over Rp and p-torsion. Thus we get a factorization of f
via (Rp/pn Rp)(g), for some integer n. To summarize we have the following commutative diagram of
factorizations of f .

R(g) Xi

Rp(g) E(R/p)(g′)

(Rp/p
n Rp)(g)

To complete the proof, just note that (Rp/pn Rp)(g) is constructed from the k(p)(h), where h ∈ G ,
by taking finitely many extensions, so it certainly lies in the localizing subcategory generated by the
k(p)(h). Hence, in D(R), some k(p)(h) must also have a non-zero map to X . �

That the small support detects objects is an easy consequence of the proposition.

Corollary 4.8. For every object X of D(R) we have that X ∼= 0 if and only if ssupp X = ∅.

Proof. One direction is clear. On the other hand, suppose X ⊗ k(p) is zero for all p ∈ Spech R . Then
the kernel of the functor X ⊗ (−) is a localizing tensor ideal of D(R) containing all the residue fields.
Hence it must be D(R) and it is immediate that X ∼= 0. �

Before continuing, let us note the following important consequence of the last corollary.

Proposition 4.9. For each p ∈ Spech R, the localizing ⊗-ideal〈
k(p)

〉
⊗ = 〈

k(p)(g)
∣∣ g ∈ G

〉
is minimal, i.e., it properly contains no non-zero localizing ⊗-ideal.
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Proof. Suppose X ∈ 〈k(p)〉⊗ is a non-zero object. Since k(p) ⊗ k(q) = 0 whenever q �= p, it must also
hold that X ⊗ k(q) is zero for all q ∈ (Spech R)� {p}. By the last corollary we thus have that X ⊗ k(p)

is a non-zero object in 〈X〉⊗ . It follows from Lemma 3.5 that the ⊗-ideal generated by X contains
some twist of the object k(p), because localizing subcategories are thick. We conclude that 〈X〉⊗ =
〈k(p)〉⊗ . �

Next we wish to check that the small support of a compact object of D(R) is closed. For this we
need the following lemma, whose ungraded analogue is well-known.

Lemma 4.10. Let R be an ε-commutative noetherian G-graded ring.

(i) An object is compact in D(R) precisely when it is isomorphic to a bounded complex of finitely generated
projective graded modules.

(ii) Let (R,m,k) be graded local (e.g. Rp for any homogeneous prime p). Then in D(R) every right bounded
complex of finitely generated projectives C has a minimal graded free resolution f : B → C ; that is, f is a
quasi-isomorphism, the components Bi are finite graded free modules, and the differentials d : Bi → Bi+1

satisfy d(Bi) ⊆ mBi+1 .

Proof. (i) It is easily verified that bounded complexes of finitely generated projectives are compact;
just use that, for such a complex X and any other Y ∈ D(R), one computes D(R)(X, Y ) using homo-
topy classes of chain maps. To show the opposite inclusion note that, by the Thomason–Neeman lo-
calization theorem [24], D(R)c is the thick subcategory generated by the free modules {R(g) | g ∈ G}.
Hence it suffices to show that mapping cones and direct summands of bounded complexes of fi-
nite projectives are again of the same form; the first is clear, and the second follows (for instance)
precisely as in [10, Lemma 1.2.1].

(ii) The usual proof of the ungraded case, by induction, still works because Nakayama’s lemma still
holds for G-graded rings. The details for ungraded rings can be found in [28, Theorem 2.2.4]. �
Lemma 4.11. Let C be a compact object of D(R). Then ssupp C is a closed subset of Spech R.

Proof. Assume Cp �= 0 in D(Rp). By Lemma 4.10, the complex Cp has a minimal graded free resolution
over Rp. Tensoring with k(p) gives a complex which is non-zero in at least one degree and has zero
differentials and so C ⊗ k(p) is certainly non-zero. Conversely if Cp = 0 then of course C ⊗ k(p) =
Cp ⊗ k(p) = 0. Hence ssupp C = V (AnnR H∗C) = ⋃

i V (AnnR Hi C), which is closed since there are only
finitely many non-vanishing cohomology groups. �

Finally, we check that there are enough compact objects relative to the small support.

Lemma 4.12. Let V ⊆ Spech R be a closed subset. Then there exists a compact object C of D(R) such that
ssupp C = V .

Proof. By definition of the Zariski topology V = V (I) for some homogeneous ideal I ⊆ R . Since R is
noetherian, we may write I = ( f1, . . . , fn) for finitely many homogeneous elements f i ∈ R gi which we
may assume are even (for instance by replacing them with their squares). Let Ci denote the mapping
cone of f i , considered as a morphism R(−gi) → R . Each Ci is a compact object, and therefore so
is their tensor product C := C1 ⊗ · · · ⊗ Cn . We claim that ssupp C = V . Indeed, we have ssupp C =
ssupp C1 ∩ · · · ∩ ssupp Cn by the tensor formula (Lemma 4.6), so it suffices to show that ssupp Ci

equals V (( f i)) for each i. By considering the triangle R(−gi) → R → Ci → Σ R(−gi), we see that Ci ⊗
k(p) �= 0 if and only if the morphism f i ⊗ k(p) is not invertible; that is, if and only if the element f i

belongs to the ideal p. This proves the claim. �
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5. The spectrum and localizing tensor ideals

Let Spc D(R)c denote the spectrum of the tensor triangulated category of compact objects, in the
sense of Balmer [2]. We recall that this is a spectral topological space (defined for every essentially
small tensor triangulated category) which comes together with a function X 	→ supp X assigning a
closed subset of Spc D(R)c to every object X ∈ D(R)c . The support function supp is compatible with
the tensor triangular operations of D(R)c , and it is the universal (finest) such.

Theorem 5.1. For every ε-commutative noetherian G-graded ring R there is a unique support preserving
homeomorphism

Spech R → Spc D(R)c .

In particular, there are inclusion preserving mutually inverse assignments

{specialization closed subsets of Spech R} τ

σ

{
thick ⊗ -ideals of D(R)c

}

given, for a specialization closed subset V of Spech R and a thick ⊗-ideal J , by

τ (V ) = {
X ∈ D(R)c

∣∣ ssupp X ⊆ V
}

and

σ(J ) = {
p ∈ Spech R

∣∣ ∃X ∈ J s.t. p ∈ ssupp X
}
.

Proof. We wish to apply the recognition criterion [13, Theorem 3.1]. The category D(R) is rigidly–
compactly generated and, by a serendipitous occurrence, we just happened to have proved in the last
section that (Spech R, ssupp) satisfies all the necessary conditions to apply this criterion (by Corol-
lary 4.8 and Lemmas 4.5, 4.6, 4.11 and 4.12).

The second part follows from the basic result of tensor triangular geometry [2, Theorem 4.10]; in
general, on the left hand side one would have to consider Thomason subsets, but for the noetherian
space Spech R these coincide with specialization closed subsets, and on the right hand side radical
thick ⊗-ideals, but since D(R)c is rigid these coincide with ⊗-ideals, see [3, Proposition 2.4]. �

We now know that D(R) is a rigidly–compactly generated tensor triangulated category with a
model and whose compacts have noetherian spectrum. Thus we can apply all of the machinery of [31]
to the problem of classifying the localizing ⊗-ideals of D(R). We shall mostly use this machinery, as
well as the work of Balmer and Favi [4], as a black box; the following proposition spells out the little
we need to know.

Proposition 5.2. For each x ∈ Spc D(R)c there exists a ⊗-idempotent object Γx R of D(R) such that the as-
signment

X 	→ supp X := {
x ∈ Spc D(R)c

∣∣ Γx R ⊗ X �= 0
} (

X ∈ D(R)
)

extends the Balmer support of compact objects and such that the following hold:

(i) for x �= y we have Γx R ⊗ Γy R = 0;
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(ii) for every object X of R there is an equality of ⊗-ideals

〈X〉⊗ = 〈
Γx R ⊗ X

∣∣ x ∈ Spc D(R)c 〉
⊗;

(iii) an object X of D(R) is zero if and only if supp X = ∅.

Proof. The construction and orthogonality of the idempotents is due to Balmer and Favi. Given the
existence of a model and the fact that Spc D(R)c is noetherian the rest is a consequence of [31,
Theorem 6.8]. �
Remark 5.3. For p ∈ Spech R the functor Γp is just the localization of local cohomology along V(p)

at p. If one unwinds the construction (which we have not given) this can essentially already be found
in [17]. This is explained in a little more detail in [32, Proposition 3.9].

Lemma 5.4. For each p ∈ Spech R there is a unique x ∈ Spc D(R)c such that Γx R ⊗ k(p) is non-zero. In other
words, supp k(p) = {x}.

Proof. By part (iii) of the proposition we know there exists such an x. Now suppose y is another
point, distinct from x, such that Γy R ⊗ k(p) is also non-zero. Then, using part (i) of the proposition
together with Lemma 3.5 we get

0 = Γy R ⊗ Γx R ⊗ k(p) ∼= Γy R ⊗
(∐

i

Σni k(p)mi (gi)

)
�= 0,

which is a contradiction. �
Lemma 5.5. If p �= q are two homogeneous prime ideals of R then k(p) and k(q) have disjoint supports.

Proof. Suppose k(p) and k(q) both have support {x}. Then by the Half ⊗-Theorem [4, 7.22] we have
that, for any compact object C of D(R),

supp
(
k(p) ⊗ C

) = supp k(p) ∩ supp C = supp k(q) ∩ supp C = supp
(
k(q) ⊗ C

)
.

Thus by Proposition 5.2(iii) we see that k(p) ⊗ C is zero if and only if k(q) ⊗ C is zero. But this is
clearly absurd as one can see, for example, from Lemma 4.12. �
Proposition 5.6. For every p ∈ Spech R there is an equality of localizing ⊗-ideals

〈Γx R〉⊗ = 〈
k(p)

〉
⊗

where x is the unique point of Spec D(R)c such that supp k(p) = {x}.

Proof. The existence and uniqueness of x is Lemma 5.4. By [31, Proposition 5.5(4)] we deduce from
this that Γx R ⊗ k(p) ∼= k(p). On the other hand, it follows from the last lemma that Γx R ⊗ k(q) = 0 for
every q �= p. We know from Proposition 4.7 that the residue fields generate D(R) as a tensor ideal. So
we have



I. Dell’Ambrogio, G. Stevenson / Journal of Algebra 373 (2013) 356–376 371
〈Γx R〉⊗ = 〈Γx R〉⊗ ⊗ D(R)

= 〈Γx R〉⊗ ⊗ 〈
k(q)

∣∣ q ∈ Spech R
〉
⊗

= 〈
Γx R ⊗ k(q)

∣∣ q ∈ Spech R
〉
⊗

= 〈
k(p)

〉
⊗

where the third equality is an application of [31, Lemma 3.10]. �
Corollary 5.7. For all x ∈ Spc D(R)c the localizing ⊗-ideal 〈Γx R〉⊗ is minimal. Furthermore, the canonical
homeomorphism of Spc D(R)c with Spech R identifies supp X with ssupp X for all X in D(R).

Proof. The first statement is immediate from the proposition as the residue fields generate minimal
⊗-ideals by Proposition 4.9. The second statement is a trivial consequence of the first. �

We can now easily deduce the classification theorem for localizing ⊗-ideals.

Theorem 5.8. There are inclusion preserving mutually inverse bijections

{
subsets of Spech R

} τ

σ

{
localizing ⊗ -ideals of D(R)

}
,

and

{
specialization closed

subsets of Spech R

}
τ

σ

{
localizing ⊗ -ideals of D(R)

generated by objects of D(R)c

}

where for a subset W of Spech R and a localizing ⊗-ideal L we set

τ (W ) = {
X ∈ D(R)

∣∣ ssupp X ⊆ W
}

and

σ(L) = {
p ∈ Spech R

∣∣ ΓpR ⊗L �= 0
}
.

Proof. The map τ is a split monomorphism with left inverse σ by [31, Proposition 6.3]. By the
local-to-global principle (Proposition 5.2 (ii)) and its formal consequence [31, Lemma 6.2], for every
localizing ⊗-ideal L we have

τσ (L) = τ
({
p ∈ Spech R

∣∣ ΓpR ⊗L �= 0
})

= 〈ΓpR
∣∣ ΓpR ⊗L �= 0〉⊗.

To prove the first bijection note that, since the ΓpR generate minimal ⊗-ideals, we must have ΓpR ⊗
L = 〈ΓpR〉⊗ whenever this subcategory is non-zero. The result then follows from applying the local-
to-global principle again.

The second pair of maps are well-defined by Lemma 4.11, [31, Corollary 4.12], and the good prop-
erties of the support. That they give a bijection is immediate from the first bijection. �
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Remark 5.9. By Lemma 2.21, one can reformulate the last theorem in the following way: there is an
inclusion preserving bijection between subsets of Spech R and localizing subcategories of D(R) closed
under all twists (−)(g).

Corollary 5.10. The category D(R) satisfies the relative telescope conjecture, i.e., the second bijection in The-
orem 5.8 completely classifies those localizing ⊗-ideals whose inclusion admits a coproduct preserving right
adjoint.

Proof. This is an application of [31, Theorem 7.14]; one just needs to note that, by Lemma 4.11,
compact objects have closed supports (as we have identified our two notions of support), and that by
Lemma 4.12 any closed subset of Spech R can be realised as the support of a compact object. �
6. An application to (weighted) projective schemes

We now show how one easily obtains from Theorem 5.8 a classification of the localizing ten-
sor ideals of the derived category of certain weighted projective schemes. In particular, if R is a
noetherian non-negatively Z-graded ring this gives a direct method, from an “affine” point of view, of
classifying the tensor ideals in the derived category of Proj R .

Let R be a commutative noetherian G-graded ring, where G is an abelian group, and as previously
denote by R-GrMod the category of graded R-modules. Let Z be a closed subset of Spech R and denote
by U its open complement. We let R-GrModZ denote the Serre subcategory of R-GrMod consisting of
those objects supported on Z in the usual sense:

R-GrModZ = {M ∈ R-GrMod | Mp = 0 ∀p ∈ U }.
We write

QcohX := R-GrMod/R-GrModZ

for the abelian quotient of R-GrMod by R-GrModZ . We think of QcohX as the category of quasi-
coherent sheaves on a “weighted projective space X” (precisely what this means is not important
in the sequel, so let us not dwell on it). Observe that R-GrModZ is the smallest Serre subcategory
of R-GrMod closed under filtered colimits and containing all twists of the residue fields of points
in Z .

Lemma 6.1. The subcategory R-GrModZ is the torsion class, T , of the hereditary torsion theory on R-GrMod
cogenerated by {

E(R/p)(g)
∣∣ p ∈ U , g ∈ G

}
.

Proof. Recall that for any p ∈ Spech R and g ∈ G the indecomposable injective E(k(p))(g) = E(R/p)(g)

is p-torsion and p-local. Thus, by the universal property of localization, we must have R-GrModZ ⊆ T .
On the other hand note that a finitely generated module lies in T if and only if its injective

envelope is a (finite) direct sum of indecomposable injectives corresponding to points of Z . As in
the ungraded case one can easily check, using that filtered colimits of injectives in R-GrMod are
injective and localization preserves colimits, this extends to all objects of T . Thus every object of T
is a subobject of an object in R-GrModZ (namely its injective envelope) and so T ⊆ R-GrModZ giving
the claimed equality. �

It follows from the lemma that we have a diagram of abelian categories

R-GrModZ R-GrMod
j∗

j∗
QcohX (6.2)

where the quotient j∗ has right adjoint j∗ .
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Lemma 6.3. The subcategory R-GrModZ is a tensor ideal, so that QcohX inherits the tensor product
of R-GrMod.

Proof. This follows easily from the definition. Indeed, a module M belongs to R-GrModZ precisely
when SuppR M := {p ∈ Spech R | Mp �= 0} is contained in Z ; now use that SuppR(M ⊗ N) ⊆ SuppR M ∩
SuppR N . �

Let us now see what happens at the triangulated level. We denote by D(R)c
Z the thick subcategory

of compact objects supported on Z (in the sense of Balmer). We let ΓZ D(R) be the localizing subcat-
egory generated by D(R)c

Z and note that ΓZ D(R) is smashing as it is generated by compact objects of
D(R) (in fact it is precisely the subcategory τ (Z) as in Theorem 5.8). Let us be a little more explicit
about what all this means. The subcategory ΓZ D(R) gives rise to a smashing localization sequence

ΓZ D(R)
I∗

I !
D(R)

J∗

J∗
L Z D(R) (6.4)

i.e., all four functors are exact and coproduct preserving, I∗ and J∗ are fully faithful, I ! is right adjoint
to I∗ , and J∗ is right adjoint to J∗ . In particular there are associated coproduct preserving acyclization
and localization functors given by ΓZ = I∗ I ! and LZ = J∗ J∗ respectively. As in [20, Definition 3.3.2]
this gives rise to Rickard idempotents ΓZ R and L Z R with the property that

I∗ I ! ∼= ΓZ R ⊗ (−) and J∗ J∗ ∼= L Z R ⊗ (−);
it follows that they are ⊗-orthogonal to each other by the usual properties of localization and acy-
clization functors. We observe that both ΓZ D(R) and L Z D(R) are tensor triangulated categories with
units ΓZ R and L Z R respectively.

Remark 6.5. Such localization sequences are used to construct the idempotents Γx R which appeared
in Proposition 5.2. More details can be found in [4].

Lemma 6.6. From the sequence of abelian categories (6.2) we obtain a localization sequence

D R-GrModZ (R)
i∗

i!
D(R)

j∗

R j∗
D(QcohX),

where D R-GrModZ (R) denotes the full subcategory of D(R) of complexes with cohomology in R-GrModZ .

Proof. First we show that the sequence in the statement is in fact a localization sequence. To prove
this we need to check that R j∗ is fully faithful and that the image of i∗ is the kernel of j∗ .

We begin with the proof that R j∗ is fully faithful. If Y is an object of D(QcohX) then j∗R j∗Y
is computed by taking a K-injective resolution Ỹ of Y and applying j∗ j∗ . By [30, Chapter X, Propo-
sition 1.4] an object of QcohX is injective if and only if its image under j∗ is injective in R-GrMod.
Thus j∗Ỹ is just this complex of injectives viewed in D(R). In particular, j∗R j∗Y = j∗ j∗ Ỹ is quasi-
isomorphic to Y via the natural map.

Let us now give the argument that D R-GrModZ (R) is the kernel of j∗ . The functor j∗ is exact at
the level of abelian categories and has kernel equal to R-GrModZ ; thus j∗ commutes with taking
cohomology and we see that its kernel consists precisely of those complexes whose cohomology
modules lie in R-GrModZ . �
Lemma 6.7. The localization sequence of the last lemma agrees, up to monoidal equivalence, with (6.4).
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Proof. First observe that D R-GrModZ (R) is a localizing ⊗-ideal of D(R). It is clear that D R-GrModZ (R) is
a localizing subcategory of D(R) which is closed under twisting by all g ∈ G . Thus by Lemma 2.21 it
is a localizing ⊗-ideal.

So by Theorem 5.8 the ⊗-ideal D R-GrModZ (R) must correspond to a subset of Spech R and this
subset must contain Z as D R-GrModZ (R) contains the residue field of each point in Z . It must in fact
be Z as if some q /∈ Z were in σ(D R-GrModZ (R)) then, again by the classification, we would have k(q)

in D R-GrModZ (R). But this is impossible since k(q) is not an object of R-GrModZ . �
Corollary 6.8. There are inclusion preserving bijections

{subsets of U } τ

σ

{
localizing ⊗ -ideals of D(QcohX)

}
,

and

{
specialization closed

subsets of U

}
τ

σ

{
localizing ⊗ -ideals of D(QcohX)

generated by objects of D(R)c

}

induced by the bijections of Theorem 5.8.

Proof. By the last lemma it is sufficient to prove the result for L Z D(R). Note that any ⊗-ideal
of L Z D(R) is also a ⊗-ideal in D(R) as an object X of D(R) is in L Z D(R) if and only if it is isomor-
phic to L Z R ⊗ X . Thus the ideals in L Z D(R) are precisely those ideals of D(R) contained in L Z D(R).
Hence Theorem 5.8 tells us that they are in bijection with subsets of U . The restricted bijection for
those ideals generated by compact objects follows directly from the first bijection, the fact that the
quotient functor to L Z D(R) sends compacts to compacts (see for instance [25, Theorem 5.1]), and [31,
Lemma 7.10] which tells us that compacts of L Z D(R) have closed support in U . �
Example 6.9 (Projective schemes). Suppose R is a non-negatively Z-graded noetherian commutative
ring which is generated by R1 over R0. Then, letting Z be the Zariski closure in Spech R of the
irrelevant ideal R�1, QcohX is equivalent to Qcoh(Proj R), and by specializing the above result we
see that the localizing tensor ideals of D(Qcoh(Proj R)) are in bijection with the subsets of Proj R .

This gives a different proof of [1, Corollary 4.13] for noetherian (quasi-)projective schemes. Sim-
ilarly, by restricting to compact objects one recovers Thomason’s classification [34] of thick tensor
ideals of perfect complexes in the special case of noetherian (quasi-)projective schemes.

Example 6.10. Now suppose R is a non-negatively Z-graded finitely generated commutative k-algebra
such that R0 = k, where k is some field. The grading on R corresponds to an action of k∗ on Spec R
and the ideal R�1, generated by positively graded elements, corresponds to a closed fixed point 0 of
the k∗ action. Letting Z = {0} there is an equivalence of categories

QcohX � Qcoh
[
(Spec R � 0)/k∗],

where [(Spec R � 0)/k∗] denotes the corresponding global quotient stack, as in [27, Proposition 28].
Thus we obtain a classification of localizing ⊗-ideals of the unbounded derived category of quasi-
coherent sheaves on the quotient stack [(Spec R � 0)/k∗] in terms of subsets of the punctured homo-
geneous spectrum. In particular, if R is generated by R1 over R0 the quotient stack is just Proj R and
we are in the situation of the previous example. See [22] for related results.
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