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Abstract

We investigate the spectra of light scalar and vector glueballs in a holografic description of QCD with a dilaton background bulk field. In
particular, we study how the glueball masses depend on the conditions on the dilaton background and on the geometry of the bulk.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

A breakthrough in the attempt to understand strongly cou-
pled Yang–Mills theories is represented by the AdS/CFT cor-
respondence conjecture, stating that a connection can be estab-
lished between the supergravity limit of a superstring/M-theory
living on a d + 1 anti-de Sitter (AdS) space times a compact
manifold and the large N limit of a maximally N = 4 super-
conformal SU(N) gauge theory defined in the d dimension AdS
boundary [1–4]. However, the application of this conjecture to a
theory such as QCD is not straightforward, being QCD neither
supersymmetric nor conformal. Witten proposed a procedure to
extend duality to such gauge theories [5]: the conformal invari-
ance is broken by compactification (the compactification radius
giving rise to a dimensionful parameter, namely the mass gap of
QCD), while supersymmetry is broken by appropriate boundary
conditions on the compactified dimensions. The AdS geome-
try of the dual theory is then deformed into an AdS-black-hole
geometry where the horizon plays the role of an IR brane. In
this (so-called top–down) approach, analyses of the glueball
spectrum have been carried out, obtaining, for example, that the
operator TrF 2 in four dimensions corresponds to the massless
dilaton field in supergravity in ten dimensions, that the scalar
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glueball with JPC = 0++ in QCD is related to the dilaton prop-
agating in the black-hole geometry and its mass is computable
by solving the dilaton wave equation [6–8]. The numerical re-
sults are close to the available lattice data [9].

However, one could adopt the strategy of investigating which
features the dual theory should have in order to reproduce
known QCD properties. In this (so-called bottom–up) approach,
instead of trying to deform the high dimensional theory to ob-
tain a theory in 4d with similarities with QCD, one begins
with QCD and attempts to construct a five-dimensional holo-
graphic dual. A hint to follow is that, although QCD is not itself
a conformal theory, it nevertheless resembles a strongly cou-
pled conformal theory in the domain where the quark masses
are neglected and the coupling is approximately constant (the
possibility that the QCD β function has an infrared fixed point
is discussed, e.g., in [10,11]). As pioneered by Polchinski and
Strassler, it is possible to implement duality in these nearly
conformal conditions defining QCD on the four-dimensional
boundary, and introducing a bulk space which is a slice AdS5,
the size of which stands for an IR cutoff associated to the
QCD mass gap, the so-called hard IR wall approximation [12].
This procedure was investigated in Refs. [13–17] with the cal-
culation of the light hadron spectrum. Moreover, the glueball
spectrum was studied considering various boundary conditions
of the associated 5d field at the IR brane [17]. The static QQ̄

potential was also worked out [18] together with hadron wave-
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functions and form factors [19]. Besides, leaving the hard IR
wall and considering a background dilaton field, it was shown
that properties of QCD can be reproduced, namely the Regge
behaviour of light mesons [20], at odds with what happens
starting from a general string theory and attempting to deform
it [21].

Even though in the bottom–up approach αs corrections, run-
ning of the coupling constant, geometry of the compact man-
ifold which should be considered together with AdS5, etc., at
present are left aside, there is the hope that the main features of
the dual theory can be identified.

The starting point is inspired by a principle of the AdS/CFT
correspondence, which establishes a one-to-one correspon-
dence between a certain class of local operators (namely, the
chiral primary operators and their superconformal descendants)
in the 4d N = 4 superconformal gauge theory and supergrav-
ity fields representing the holographic correspondents in the
AdS5 × S5 bulk theory [2–4]. Analogously, in the bottom–up
approach one attempts to construct a correspondence between
QCD local operators and fields in the AdS5 bulk space. Al-
though in this way the five-dimensional dual of QCD contains
an infinite number of fields, in correspondence to the infinite
number of QCD operators, it was shown that, considering only
few operators relevant for chiral dynamics, a few properties in
the light meson sector can be obtained, namely the ρ meson
spectrum, the axial-vector meson spectrum, the ρππ coupling
and a few leptonic constants, with a small number of hadronic
parameters.

In this Letter we consider the spectrum of low-lying scalar
and vector glueballs in the approach, proposed in [20], where
the hard IR cutoff in the AdS5 space is replaced by a smooth
cutoff obtained introducing a dilaton background bulk field. In
particular, we study how the glueball masses depend on the con-
ditions on the background dilaton and on the bulk geometry, so
that they can be compared to, e.g., lattice QCD or QCD sum
rule results [9,22].

2. Model for a 5d holographic dual of QCD

Following [20], we consider a five-dimensional conformally
flat spacetime (the bulk) described by the metric

gMN = e2A(z)ηMN,

(1)ds2 = e2A(z)
(
ημν dxμ dxν + dz2)

(M,N = 0, . . . ,4), where ηMN = diag(−1,1,1,1,1), xμ (μ =
0, . . . ,3) represent the usual spacetime (the boundary) coordi-
nates and z is the fifth holographic coordinate running from
zero to infinity. The metric function A(z) satisfies the condition

(2)A(z)−→
z→0

ln

(
R

z

)

to reproduce the AdS5 metric close to the UV brane z → 0; in
the following we put to unity the radius R. Besides, we con-
sider a background dilaton field φ which only depends on the
holographic coordinate z and vanishes at the UV brane. By an
appropriate choice of the φ dependence in the IR (large values
of z) we construct a 5d model that can be considered similar to
a cutoff AdS space: a smooth cutoff in the IR replaces the hard-
wall IR cutoff that would be obtained by allowing the holo-
graphic variable z to vary to a maximum value zm � 1

ΛQCD
. The

introduction of a background dilaton allows to avoid ambigui-
ties in the choice of the field boundary conditions at the IR wall.

To investigate the mass spectra of the QCD scalar and vector
glueballs, we consider the two lowest dimension operators with
the corresponding quantum numbers and defined in the field
theory living on the 4d boundary:

(3)

{
OS = Tr

(
F 2

)
,

OV = Tr
(
F(DF)F

)
(with D the covariant derivative) having conformal dimension
Δ = 4 and Δ = 7, respectively. The operator corresponding
to the vector glueball satisfies the Landau–Pomeranchuk–Yang
selection rule [23]. In the AdS/CFT correspondence the confor-
mal dimension of a (p-form) operator on the boundary is related
to the (AdS mass)2 of its dual field in the bulk as follows [2,3]:

(4)(AdS mass)2 = (Δ − p)(Δ + p − 4).

In the following we assume that the mass m2
5 of the bulk fields

is given by this expression.
A 5d massless scalar field X(x, z) can be constructed as the

correspondent of TrF 2, described by the action in the gravita-
tional background:

(5)S = −1

2

∫
d5x

√−g e−φ(z)gMN(∂MX)(∂NX),

with g = det(gMN). Scalar glueballs are identified as the nor-
malizable modes of X satisfying the equations of motion ob-
tained from (5), corresponding to a finite action.

For the spin 1 glueball, we introduce a 1-form AM described
by the action:

S = −1

2

∫
d5x

√−g e−φ(z)

(6)×
[

1

2
gMNgST FMSFNT + m2

5g
ST ASAT

]
,

with FMS = ∂MAS −∂SAM and m2
5 = 24, and study its normal-

izable modes. Notice that the action (6), with a different value
of m2

5, describes fields that are dual to other operators in QCD,
namely those describing hybrid mesons with spin one, which is
an explicit example of different QCD operators having similar
bulk fields as holographic correspondents.

In Section 3 we discuss how the spectrum can be worked out.
However, before such a discussion, it is interesting to comment
on the pseudoscalar glueball, described in QCD by the Δ = 4
operator OP = Tr(F ∧ F). Identifying another 0-form in the
bulk as the correspondent of OP and describing it by the same
action (5), a degenerate mass spectrum would be obtained for
scalar and pseudoscalar glueballs, at odds with the results ob-
tained, e.g., in lattice QCD where it is found that the mass of
the lightest scalar glueball is smaller than the mass of the light-
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est pseudoscalar one.1 A way out to such a degeneracy issue
could be represented by the choice of still considering the rela-
tion (4) (keeping in mind that such a relation rigorously holds
only in the AdS/CFT correspondence conditions), and attempt-
ing to describe also the field corresponding to the pseudoscalar
glueball by a massive 1-form AM . There is an indication for
that, since in the top–down approach the pseudoscalar glueball
is described by a massless R-R 1-form [8]. The construction fol-
lowed in that approach is that, after a first compactification of
an 11d M-theory in AdS7 × S4, AdS/CFT establishes a duality
between a type IIA string theory in AdS6 ×S4 and a low-energy
effective supersymmetric theory SU(N) described in terms of N
coincident D4-branes. On this 5d D4-brane worldvolume, the
field that couples to TrF ∧ F is a massless R-R 1-form Aρ , the
coupling term reading as [4]

(7)
1

16π2

∫
d5x ερμναβAρFμνFαβ.

Then, a second compactification provides a non-supersymmet-
ric model of QCD in terms of N coincident D3-branes dual to
the type IIA string theory in an AdS-black-hole geometry. The
mass spectrum of the pseudoscalar glueball is then determined
by solving the equation of motion for the R-R 1-form in the
10d bulk.2 We do not continue here in such an analysis, since
the issue of parity of various hadronic excitations deserves a
dedicated study.

3. Background fields

The metric function A(z) and the background dilaton field
φ(z) can be constrained. A constraint to A(z) is the condition
(2) which, together with the requirement φ(z)−→

z→0
0, allows to

reproduce the AdS5 metric close to UV brane z � 0. On the
other hand, a suitable large z dependence of φ(z) can be fixed
to reproduce the Regge behaviour of the low-lying mesons. The
two conditions

(8)

⎧⎨
⎩

φ(z) − A(z)−→
z→0

ln z,

φ(z) − A(z) −→
z→∞ z2,

satisfy the two requirements: indeed, the first condition satisfies
Eq. (2), while the second one allows to recover the Regge be-
haviour of ρ resonances, as shown in [20]. Moreover, the metric
function A(z) must not have any contribution growing as z2

at large z, a condition coming from computing the masses of
higher spin mesons [20].

The simplest choice consistent with these constraints3

(9)φ(z) = z2, A(z) = − ln z,

1 A parity degeneracy has been pointed out in the light baryon spectrum in
the framework of a holographic dual of QCD [13].

2 The spectrum of the pseudoscalar glueball has also been analyzed using a
massive 3-form of the 11d supergravity coupled to a Δ = 9 operator of the 6d

boundary theory [6].
3 We put to one the scale parameter multiplying z2 in the dilaton field; mass

predictions will be given in units of this parameter.
has been chosen to calculate the spectrum of mesons of spin S

and radial quantum number n, with the result: m2
n = 4(n + S)

[20].
We use these expressions for the background dilaton and the

metric function to work out the glueball spectrum. The field
equations of motion obtained from the actions (5)–(6) can be
reduced in the form of a one-dimensional Schrödinger equation
in the variable z:

(10)−ψ ′′ + V (z)ψ = −q2ψ,

involving the function ψ(z) obtained applying a Bogoliubov
transformation ψ(z) = e−B(z)/2Q̃(q, z) to the Fourier trans-
form Q̃ of the field Q (Q = X,AM ) with respect to the bound-
ary variables xμ. The function B(z) is a combination of the
dilaton and the metric function: B(z) = φ(z) − cA(z), with the
parameter c given by: c = 3 and c = 1 in cases of X and AM

fields, respectively. The condition q2 = −m2 identifies the mass
of the normalizable modes of the two fields.

Eq. (10) is a one-dimensional Schrödinger equation where
V (z) plays the role of a potential. It reads as:

(11)V (z) = 1

4

(
B ′(z)

)2 − 1

2
B ′′(z) + m2

5

z2
= V0(z) + m2

5

z2

with

(12)V0(z) = z2 + c2 + 2c

4z2
+ c − 1.

With this potential Eq. (10) can be analytically solved. Regular
solutions at z → 0 and z → ∞ correspond to the spectrum:

(13)m2
n = 4n + 1 + c +

√
(c + 1)2 + 4m2

5

with n an integer (we identify it as a radial quantum number),
while the corresponding eigenfunctions read as:

ψn(z) = Ane
−z2/2zg(c,m2

5)+1/2

(14)× 1F1
(−n,g

(
c,m2

5

) + 1, z2),
with 1F1 the Kummer confluent hypergeometric function, An

a normalization factor, and g(c,m2
5) =

√
(c+1)2

4 + m2
5. From

these relations we obtain the spectrum of scalar and vector glue-
balls:

(15)m2
n = 4n + 8,

(16)m2
n = 4n + 12,

respectively.
A few remarks are in order. First, both the spectra have

the same dependence on the radial quantum number n as the
mesons of spin S: this is a consequence of the large z behaviour
chosen for the background dilaton. Second, both the lowest ly-
ing glueballs are heavier than the ρ mesons, the spectrum of
which reads: m2

n = 4n + 4, as derived in [20]. Finally, the vec-
tor glueball turns out to be heavier than the scalar one.

Comparing our result to the computed ρ mass, we obtain for
the lightest scalar (G0) and vector (G1) glueballs

(17)
m2

G0

m2
= 2,

m2
G1

m2
= 3,
ρ ρ
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Fig. 1. The unperturbed potential (solid line), and the potential obtained perturbing the dilaton field (dashed line) and the metric (dot-dashed line) for scalar (left)
and vector glueball (right) using λ = −0.2.
which implies that these glueballs are expected to be lighter
than as predicted by other QCD approaches [9]. Moreover, the
result m2

G1
− m2

G0
= m2

ρ predicts a lightest vector glueball with
mass below 2 GeV.

It is interesting to investigate how it is possible to modify the
z dependence of the background dilaton field and of the metric
function A, and how the spectra change, an issue discussed in
the following section.

4. Perturbed background

There are other choices for the background dilaton φ and
the metric function A which satisfy the constraints in (8) and
may modify the predictions for the scalar and vector glueball
masses. As a matter of fact, it is possible to add to the back-
ground fields terms of the type zα with 0 � α < 2. Considering
the simplest case: α = 1, this can be done in two different ways.
Instead of using (9), we can modify the dilaton field includ-
ing a linear contribution which is subleading in the IR regime
z → ∞:

φ(z) = z2 + λz,

(18)A(z) = − ln z,

with λ a real parameter. Another possibility consists in modify-
ing the metric function,

φ(z) = z2,

(19)A(z) = − ln z − λz,

which now acquires a linear term subleading in the UV regime
z → 0. The two choices produce different results.

Using the expressions (18), i.e., modifying the dilaton field,
the potential (10) becomes:

(20)V (z) = V0(z) + λV1(z) + λ2

4
+ m2

5

z2
f (z,λ),

with V0(z) given in Eq. (11) and

V1(z) = z + c

2z
,

(21)f (z,λ) = 1.

On the other hand, using the expressions in (19), i.e., modifying
the metric in the IR, the potential term reads as:

(22)V (z) = V0(z) + λṼ1(z) + c2λ2

+ m2
5
2

f (z,λ),

4 z
where

Ṽ1(z) = c

(
z + c

2z

)
,

(23)f (z,λ) = e−2λz.

Considering Eqs. (18)–(23) one sees that the mass term is the
main responsible of the difference between the scalar and vector
cases when the geometry is perturbed, while its effect turns out
to be the same when the background dilaton is modified. The
obtained potentials are depicted in Fig. 1.

Eq. (10) with the new potentials (20) and (22) can be solved
perturbatively, and for small values of the parameter λ the spec-
tra are modified:

(24)m2
n = m2

n,(0) + λm2
n,(1).

For the scalar glueball, modifying the dilaton field according
to (18) we obtain for the first three states:

m2
0 = 8 + λ

3
√

π

2
,

m2
1 = 12 + λ

27
√

π

16
,

(25)m2
2 = 16 + λ

237
√

π

128
.

On the other hand, modifying the geometry according to (19)
the masses of the first three states the spectrum are given by:

m2
0 = 8 + λ

9
√

π

2
,

m2
1 = 12 + λ

81
√

π

16
,

(26)m2
2 = 16 + λ

711
√

π

128
.

Also for vector glueballs a different spectrum is obtained,
depending on the perturbations (18) or (19). Modifying the dila-
ton field the values of the first three states of the spectrum are:

m2
0 = 12 + λ

189
√

π

128
,

m2
1 = 16 + λ

105
√

π

64
,

(27)m2
2 = 20 + λ

14667
√

π

8192
,
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Fig. 2. Mass shifts in Eq. (24) for scalar (red diamonds) and vector glueballs (blue boxes) obtained by modifying the dilaton field (left) or the metric function (right).
(For interpretation of the references to colour in this figure legend, the reader is referred to web version of this Letter.)
while modifying the geometry we obtain:

m2
0 = 12 − λ

1323
√

π

128
,

m2
1 = 16 − λ

1239
√

π

128
,

(28)m2
2 = 20 − λ

74685
√

π

8192
.

Therefore, when the dilaton field is modified, the mass shifts
have the same sign in case of scalar and vector glueballs, while
the sign is opposite when the geometry is changed. This result
is depicted in Fig. 2, where the mass shifts m2

n,(1) defined in
(24) are plotted for the first 11 states in case of modified dilaton
or geometry.

Different predictions at O(λ) for the vector and scalar glue-
ball mass difference are obtained modifying either the dilaton
or the geometry. Modifying the dilaton, we get

(29)m2
G1

− m2
G0

= 4 − 3
√

π

128
λ,

while, modifying the metric function, we obtain:

(30)m2
G1

− m2
G0

= 4 − 1899
√

π

128
λ.

Therefore, the mass splitting between vector and scalar glue-
balls increases if λ is negative, and the maximum effect is
produced for the same value of λ when the metric function is
perturbed. This can be considered as an indication on the type
of constraints the background fields in the bulk must satisfy.

5. Conclusions

We have discussed how the QCD holographic model pro-
posed in [20], with the hard IR wall replaced by a background
dilaton field, allows to predict the light glueball spectrum.
Scalar and pseudoscalar glueballs turn out to be degenerate if
the fields representing the holographic correspondent of the re-
spective QCD operators are both massless zero forms. Vector
glueballs turn out to be heavier than the scalar ones, and the
dependence of their masses on the radial quantum number is
the same as obtained for ρ and higher spin mesons. Combin-
ing the calculations of the glueball and ρ masses in the same
holographic model, the glueballs turn out to be lighter than pre-
dicted in other approaches.
We have investigated how the masses change as a conse-
quence of perturbing the dilaton in the UV or the bulk geometry
in the IR, finding that constraints in the bottom–up approach
can be found if information on the spectra from other ap-
proaches is considered. Such constraints should be taken into
account in the attempt to construct the QCD gravitational dual.
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