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ABSTRACT 

We give a new proof for the bound on the value of the determinant of a _ 1 
matrix of dimension n = 1 (mod 4) first given by Barba. Adapting a construction of A. 
E. Brouwer, we give examples to show that the bound is sharp for infinitely many 
values of n. This in turn gives an infinite family of examples which attain the bound 
given by H. Ehlich and by M. Wojtas for the determinant of a + 1 matrix of 
dimension n -= 2 (mod 4). For n ~ 3 (mod4) we construct an infinite family of 

1 examples which attain slightly more than : of the bound given by Ehlich. © Elsevier 
Science Inc., 1997 

1. I N T R O D U C T I O N  AND MAIN RESULT 

Let ~n be the set of _ 1 matrices of d imension n. The question of the 
maximum value of the de te rminant  of an e lement  N ~ X,  is an old one 
which goes back to the beginnings of matrix theory. It is a simple conse- 
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quence of Hadamard's inequality [16] that for all M ~ ,  

n ~ 1/2 

detM~< f i~=lm2j)  <~n n/2 . 
i=lj 

(1) 

There is a large body of work addressing the question of when (1) is sharp. 

DEFINITION 1.1. Matrices in ~n for which equality holds in (1) are 
called Hadamard matrices. 

For an n X n Hadamard matrix to exist it is necessary that n be either 1, 
2, or a multiple of 4, and it is conjectured that this condition is also sufficient. 
According to [2] the smallest value for which the existence of a Hadamard 
matrix is in question is n = 4 x 107 = 428. 

Hadamard matrices do exist for many infinite families of values of n; e.g., 
Sylvester [26] proved that Sylvester's matrix, 

(1 1) 
S =  1 - 1  ' 

tensored with itself t times, gives a Hadamard matrix of dimension 2 t. The 
Paley construction (see e.g. [2, pp. 271-275] or [20]) for an odd prime power 
p gives a Hadamard matrix of size p + 1 if p - 3 (mod 4) and size 2 p + 2 if 
p = 1 (mod 4), thus providing another infinite family of Hadamard matrices. 

For further discussion of Hadamard matrices the reader might consult [4] 
or one of the surveys [1] or [25]. 

1.1. (0, 1) Matrices 
There is a strong connection between ~ and .7  n_ 1, the set of (0, 1) 

matrices of dimension n - 1. Specifically, there exists an injection t h from 
"Tn- 1 into ~n which preserves the relative sizes of determinants. The function 
th can be described as follows: 

Given M in . 7  n_ 1, let M' be the n × n block matrix 

0 - 2 M  " 

th(M) is obtained by adding the first row of M '  to each other row. The 
resulting matrix is clearly a +__ 1 matrix, and the passage from M'  to th(M) 
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doesn ' t  change the value of  the determinant .  Thus it is clear that  

det  ~b(M)  = ( - 2 ) n - l d e t  M. 

Let  J~ denote  the n × n matrix all o f  whose entries are 1. The  map  ~b 
can also be  descr ibed as follows: 

(0 o) 
The image of  ~b is the set ~ of  matrices N = (nij) in ~ such that  

nlj  = 1 for all 1 ~<j ~<n and n~l = 1 for all l ~ < i ~ < n .  The  s e t , , ~ '  is a 
sufficiently large subset  of  ~ for our  purposes,  since for every matrix 
M E ~  n we can find suitable diagonal matrices e = (Pij) and Q = (qij) with 
Pi~, q~ ~ {+1} such that PMQ ~ n "  Since det  P = ___1 = det  Q, we have 
Idet M I = Idet PNQI. 

I f  we write m ( ~ )  for max{det M IM ~ ~}, then the above remarks show 
that 

m(~n) = m(~n' ) = 2 n - l m ( . ~ n _ l ) .  

In particular, m(.7~_ 1) <~ nn/2/2n-  I, and the (0, 1) matrices which attain 
this bound  are the preimages  under  ~b of  Hadamard  matrices. F rom another  
point o f  view they can be regarded as the incidence matrices of  H a d a m a r d  
designs; a class of  symmetr ic  designs with parameters  (4m - 1, 2 m  - 1, 
m - 1). (See [2], [4], or [1] for more  details.) 

1.2. What Is Known When n ~ 0 (mod 4)? 
The  first reference  to the case n ~ 0 ( m o d 4 )  seems to be  Colucci [10] in 

1926. The  following lemma,  concerning the cases n = 1 (mod2) ,  was dis- 
cussed by Barba [3] and proved, independent ly  of  Barba, by Ehlich [13, Satz 
4.1]. 

LEMMA A (Barba, Ehlich). Suppose that n = 1 (mod 2). For all N ~ ~,~, 

det N ~< ( 2 n  - 1 ) 1 / 2 ( n  -- 1) (n- l ) /2 ,  (2) 

That is, m(~,) <~ (2n - 1)1/2(n - 1) ~"- 1)//2. Equivalently, for all M ~ ,7  n_ 1, 

2 n - l d e t  M ~< ( 2 n  - 1 )1 /2 (n  - 1) (n- l ) /2 .  (3 )  
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In 1937 T. Popoviciu [22], apparent ly  unaware of  [3], gave a weaker  
bound.  Curiously enough, J. Brenner  [5] claims Popoviciu's bound  to be  
sharper  than (2). Nei ther  [3] nor [22] addresses the case n =-- 2 ( rood4)  
separately; rather  than use Hadamard ' s  bound  for n = 0 (mod 4) in this case 
as well, though it was known that Hadamard ' s  bound  can only be  attained for 
n =  1 , 2 o r  n = 0 ( m o d 4 ) .  

It  seems that H. Ehlich and, independently,  M. Wojtas were the first to 
address the case n = 2 ( rood4)  [13, 28]. They  also seem to have been  the 
first to address the question of  the structure of  matrices of  maximal determi-  
nants. 

PROPOSITION A (Ehlieh, Wojtas). Suppose that n -- 1 (rood 4). For all 
N ~ X~, the inequality (2) holds, and in orderfi~r equality to hold in (2) it is 
necessary that 2n  - 1 be a square and that there exists an N ~ with 
N N  r = (n  - 1)I ,  + J,,. 

PROPOSITION B (Ehlieh, Wojtas). Assume n = 2 (rood 4). For all N ~ 

det N < ( 2 n  - 2 ) ( n  - 2) ~"-1 (4) 

Moreover, equality in (4) holds i f  and only i f  there exists N ~ ~ such that 

o) 
0 

where  L = (n  - 2) I  + 2]  is an ( n / 2 )  × ( n / 2 )  matrix. A fur ther  necessary 
condition f o r  equality to hold is that 2 n - 2 is the sum o f  two squares. 

H. S. E. Cohn  gave an independen t  p roof  of  L e m m a  B above and 
provided fur ther  information on the structure of  maximal examples [12, 
The o rem 2]. 

In a sequel to [13] Ehlich investigated the ease n ~ 3 (mod 4) [14]. 

PROPOSITION C [Ehlich]. Assume n - 3 ( m o d 4 )  and n >1 63. For all 
N ~ ,  

~/ 4 × 116 
det N ~< 77 ( n  - 3 ) " - V n  v . (5)  
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Moreover,  f o r  equality to hold it is necessary that n = 7m and that there 
exists' N ~ Ye~, with 

N N  ~ = I v ® [ ( n  - 3)1  m + 4Jm ] - j , .  

The  corresponding bounds for all values n = 3 (mod 4), n < 63, are also 
given in [14], as are structures of  N N  r for normalized maximal examples N. 
The  theme  for values n < 63 is the same as for the above example: A + 1 
matrix N has maximal de terminant  if N N  r has block structure with the 
blocks along the diagonal of  the form (n - 3 ) I  + 3J  and the off-diagonal 
blocks equal to - J .  

Though it is well known that the Hadamard  bound  in the case n = 0 
(mod 4) is at tained infinitely often and has to be considered sha W in this 
sense, it was not known if the bounds given in Proposition A, Proposition B, 
and Proposition C are sha W in this sense. The  object of  this paper  is to show 
that this is indeed the case for n ~ 1 (mod 4) and n = 2 (mod  4). For  n = 3 
(mod 4) we provide an infinitely family of  examples which asymptotically have 

of  the bound of  Proposition C. The  case determinants  slightly larger than 3 
n = 1 (rood 4) is crucial to everything, and so we provide our  own version 
and proof  of  Proposition A to keep the exposition self-contained. We  then 
extend the known results to show that the bound of  Proposition A is sharp, 
i.e., it is at tained infinitely often. 

THEOREM A. Suppose that n = 1 (mod 4). For all N ~ ~n the inequality 
(2) holds. In order f o r  equality to hold in (2) it is necessary that 2 n - 1 be a 
square and that N N  T = (n  - 1)I ,  + R where  rank R = 1 and Irifl = 1 f o r  
all i, j .  

Furthermx~re, i f  n = 2(q "2 + q) + 1 f o r  some odd prime power  q, then 
there exist matrices N ~ ~n f o r  which equality holds in (2), i.e., 

m ( ~ )  = ( 2 n  - 1)1/2(n - 1 )  ( n - l ) / 2  (6) 

f i)r all n = 2(q 2 + q) + 1, q an odd prime power.  In particular the bound in 
(2) is sharp f o r  infinitely many  values o f  n. 

The p roof  of  Theorem A naturally divides into two parts. In Section 2 we 
prove the inequality (2). In Section 3 we build an infinite family of  examples 
to prove that 

~q~,, = {N ~,¢~.ln = 1 ( m o d 4 )  and N attains equal i ty in  (2 ) }  

is nonempty  whenever  n = 2 q 2 + 2 q + 1 and q is an odd pr ime power. 
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I. Kaplansky [181 claims that the bound in (2) can be attained only if there 
exists a design with parameters (2q 2 + 2q + 1, q2, (qZ _ q)//2). 

The particular values n = 17 and n = 21 for which the bound cannot be 
attained are discussed in [21] and [8] respectively. 

The examples that we construct can be used to give an infinite family of 
examples which attain the bound of Proposition B. 

THEOREM B. I fn  = 4(q 2 + q) + 2 for some odd prime power q, then 
there exists a matrix N ~ ~ for which equality holds in the inequality (4) of 
Theorem A. In particular, equality holds in (4) for infinitely many values 
ofn. 

This was already observed by Whiteman [27], who gave the same proof as 
given below. He presented his results in the context of D-optimal designs. 
For a definition of D-optimal designs and other optimality criteria see [24]. 
In [19] another infinite family of matrices is given whose determinants attain 
the bound in (4). 

Proof of Theorem B. Suppose n = 1 (mod 4) and that N ~ ~'~. After a 
suitable change of basis we may assume, by Theorem A, that NN T = (n - 
1)I n + J,. Now define 

where S is Sylvester's matrix defined above. It is easy to show that 

~l~r = ( (2n - 2)I~ + 2J, 0 ) 
0 ( 2 n - 2 )  I n + 2 J n  ' 

(8) 

which implies that det A 7 = (2n - 2)(n - 2 )  ~ n -  1 ([13], [28], or [12]). • 
Unfortunately, we were unable to construct an infinite family of examples 

which attain the bound of Proposition C. In fact, we do not even know of a 
single example for which the bound in Proposition C is attained. Neverthe- 
less, our efforts yielded an infinite family of examples whose determinants 
asymptotically take on values slightly larger than ½ of the bound of Proposi- 
tion C. This shows that the bound of Proposition C is of the correct order. 
This is a significant improvement over the lower bound given in [9]. 
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THEOREM C. There exists an infinite fami ly  o f  examples N n ~ ~ such 
that 

det N o 1 7 3 

2irn h n 7 (aT) v~- = 0.34, 

where  h2, = (4 x 11~/77)(n - 3)"-7n 7. 

A proof of Theorem C is given in Section 4. 
At this point it remains unresolved if the bound in (5) can ever be 

attained. We have no doubt that for a particular value of n = 3 (mod 4) an 
efficient computer search is likely to produce examples whose determinants 
have larger values than the ones given by us in Section 4. The real challenge, 
however, is to find an infinite family of examples whose determinants take on 
the bound in (5) or to show that the bound in (5) can be improved. It is 
conceivable that it is not sharp. The methods used by Ehlich in [14] study the 
maximum of the values of the determinant on a subset of positive definite 
matrices. This subset is defined by certain necessary condition its elements 
have to satisfy if they are to be of the form N N  ~ for some N ~ X n. It is 
certainly possible that this subset contains many positive definite matrices 
which are not of the form N N  T for some N ~ ~n" Hence the bound derived 
from this subset might be larger than the actual bound. 

Having said that, we mention that B. Solomon [23] has provided us with 
examples for n = 11, n = 15, and n = 19, believed on the basis of computer 
experiments to be maximal, which seem to show that maximal examples tend 
to exhibit the behavior forecast in [14]. 

Some interesting comments on determinants of + 1 matrices in the 
context of D-optimal designs can be found in [15]. 

2. THE PROOF OF THE INEQUALITY OF THEOREM A 

The next lemma is proved in [10]. For completeness we include a (slightly 
shorter) proof. 

LEMMA 2.1. Suppose that T ~ Mn(R) is a symmetric ,  diagonalizable 
matrix wi th  the fol lowing properties: it has 0 on the diagonal, I n + T is 
positive definite, and the root mean square o f  its off-diagonal elements is c. 
Then 

de t ( I .  + T)  < [1 + c ( n  - 1)](1 - c) "-1.  (9) 
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Proof• Let zl, 2;2, • Z n be the eigenvalues of T. We know that E n • . ~ i = l Z i  

= 0 and 

z~ Et~ = n ( n  - 1 ) c  z .  (10) 
i=1 i,j 

Split the eigenvalues into two classes according to their sign; let xl, x 2 . . . . .  x k 
be the nonnegative ones, Yl, Y2 . . . . .  Y,-k the negative ones. Set ~ = 
(Ekxi)/k, and ~ = (E~-kyi) /(n - k). Now 

k n - k  

de t ( I  n + T)  = l - I ( 1  + x , ) .  1 7 ( 1  + y , )  
i = 1  i = 1  

(1 + ~)k(1 + ~)n-k, (11) 

where the inequality is just the arithmetic-mean-geometric-mean inequality. 
Thus if we define g :(k, x, y) ~ k ln(1 + x) + (n - k)ln(1 + y), we have 
that lnde t ( I  n + T) <-K g(k, ~, ~). We want a bound on g(k, ~, ~) given that 
k~ + ( n - k ) ~  = 0  and k~ 2 + ( n - k ) ~  2 = n ( n -  1)c 2. For convenience 
we denote this last quantity by S. Solving for £ and t] in terms of k, we get 

~ - k  ~- 
~ = ~ - -  ~= - ~  

Therefore the quantity we wish to estimate is 

g ( k )  = k l n  1 + ~ ~n-----~ + ( n - k ) l n  1 -  ~ ~ ¢ - d - ~  " 

The function g(k) is of course defined for all real k ~ (0, n), but condition 
(10) ensures that k ~ [1, n - 1]. We will show that g(k) is decreasing on 
(0, n). Indeed, differentiating we get (writing ~ and ~ for the above 
functions of k), 

1 1 )• (12) 
g ' (k )  = ln(1 + ~ )  - ln(1 + ~ )  - ½ ( 2 - ~ )  1+-----~ + 1 +--~ 

To show that g'(k) < 0 we need only prove that 

1 1(1 1) 
x y l + t  2 l + ~  1 + ~  
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This is an immedia te  consequence  of  the strict convexity of  the function 
t ~ 1 / (1  + t). Therefore ,  for all k ~ [1, n - 1] we have g(k)  <~ g(1), where  

( ) ( ; ' )  g ( l )  = I n  1 + v~- 1 ~  + ( n -  1) In 1 + v~- n ( n  1) 

= In[1 + e(n - l ) ]  + ( n  - 1 ) ln (1  - c ) .  (13) 

The  result follows immediately.  

Next we prove a result which is analogous to L e m m a  1 of  [12]. It  is 
slightly more  general  than is needed  here  but  the p roof  makes the result 
natural. Def ine  the function 

f : ( n , h )  ~ ( u + h -  1 ) ( h -  1)" ~. (14) 

LEMMA 2.2. Suppose that M is a positive definite symmetric matrix of 
the form (h - D I  n + R ~ Mn(R), where h > 1 and R = (rij) has ]rij[ ~> 1 
a n d  vii = 1. Then: 

1. Idet M] <<.f(n, h). 
2. Equality holds if  and only if  Ir, jl = 1 Vl  < i, j <~ n and rank R = 1. 

Proof. First notice that if M = (h - D I  n + R with R as in part  2, then 

( 1 ) 
d e t M =  ( h -  1)" 1 + ~ _  1 t r a c e R  

n 

= ( h  - 1 ) n - ~ ( h  - 1 + n) = f ( n ,  h).  

We prove the theorem by induction on the dimension n. The  case n = 2 
is a straightforward computat ion.  Assume then that n > 2 and that the result 
holds for smaller  values of  n. 

Now det  M = det[(h - l ) [  n + R ]  = de t [h I  n + (R - I,,)] = h" det[I,, + 
h - l ( R -  I,)],  and the matrix T = h - ~ ( R -  I,,) satisfies the conditions of  
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Lemma 2.1 with c 2 = [1/n(n - 1)]F,i, jr;2j/h 2 >~ 1 /h  2. Thus 

det M = h n det(  I n + T)  

h) "-1 
= ( n  + h - 1 ) ( h  - 1 )  n - 1  

= f ( n , h ) .  (15) 

It is clear that if Im~jl > 1 for some pair ( i , j ) ,  i ¢ j ,  then c > 1/h  and 
the inequality becomes strict. Thus for equality to occur it is necessary that 
qmijl= 1 for a l l l  K i ,  j ~<n. 

After a suitable base change we may assume that the entries of  the last 
row and the last column of  M are all equal to 1, i.e., min = m n j  = 1 for all 
l<<.i, j K n .  

Now subtract 1/h  times the last row from the first n - 1 rows and then 
subtract 1/h  times the last column from the first n -  1 columns. The  
resulting matrix is 

 :(M1 0) 
0 h ' 

where M 1 = (m'ij), 1 ~ i, j ~ n - 1, is a symmetric, positive definite matrix 
[of size (n 1) × (n - 1)] such that 

h + 1 if i = j ,  

( 1 )  -1 1 if ,n,) = 1, (16) 
1 - ~ m;j = h + 1 

h -  1 if m~j = - 1 .  

Note that (h  + 1 ) / ( h -  1 ) >  1. 
h det M 1, we see that 

Since d e t M  = f ( n , h )  and d e t M  = 

f ( n , h )  (h  + n - 1 ) ( h  - 1) n-1 
det M I h h (17) 
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On the o ther  hand, applying the induction hypothesis to the matrix ~/I~ = 
(1 - 1 / h ) - l M 1 ,  we get 

n 1 

(18) 

( h  + n - 1 ) ( h  - 1) " -1  

h 
(19) 

Thus d e t  z~/ll = f i r / ,  - 1, h + 1). By induction this implies that  M~ = h i  n_ 1 
+ / ~  where  rank R = 1 and [?ijl = 1. Hence,  by (16), we conclude that 
m~j = 1 for all 1 ~< i, j ~< n, i.e., P = ( h  - 1)1 n + R with rank R = 1 and 
I r~jl 1. • 

The s ta tements  of  T h e o r e m  A pertaining to the inequality follow from 
L e m m a  2.2. We  summarize  this in the next result. 

COROLLARY 2.3. Le t  N ~ i ~ , .  Then Idet NI <~ V/-fln, n )  w i th  equali ty i f  
and  only i f  N N  r = (n  - 1)I ,  + R wi th  Irijl = 1 and  rank R = 1. 

Proof.  Ins tead of  working with the _+ 1 matrix N, we consider the matrix 
M = N N  T. I f  N is singular, there  is nothing to prove. I f  N is invertible, then, 
because n is odd, it follows that 

M =  ( n  - 1 ) I  n + R 

is symmetric,  positive definite, with Ir~jl ~> 1. Since det M = (det  N )  z, the 
corollary now follows from L e m m a  2.2. • 

3. AN I N F I N I T E  FAMILY OF MAXIMAL EXAMPLES 

In this section we construct  an infinite family of  _ 1 matrices which yield 
equality in (2). Using the function qb, we can construct  from these an infinite 
family of  (0, 1) matrices which yield equality in (3). The  construction is very 
close to one by A. E. Brouwer  [6]; we include the details for completeness .  

Recall that, by Proposition A, we are trying to construct,  for some n -- 1 
(rood4),  a matrix N ~ such that N T N  = (n  - D I  n + Jn. We will show 
that this is possible whenever  n = 2q  2 + 2 q  + 1 and q is an odd pr ime 
p o w e r .  
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Down to work. Let  q be  an odd pr ime power. By the Paley construction 
[20] there  exists a Hadamard  matrix H2,¢+ 2 of  size 2q + 2, which we may 
assume is normalized; i.e., its first row and column are all l 's.  We use H2q ÷ 2 
to define matrices E and A, of  dimension q X 2 q  and (q + 1) × 2 q  
respectively: after a suitable rear rangement  of  rows we may assume that 

H,2q+2 = 

1 1 1 ... 

1 1 

E 

1 1 

1 - 1  

1 - 1  

A 

The  matrices E and A are + 1 matrices satisfying the following (where Jm, t 
is an m × 1 matrix of  l 's): 

= - J , , ,  2q, ( 2 0 )  

.... = - 2 J q  ..... ( 2 1 )  

J ,n ,q+,A  = 0, (22) 

AJ2,, .... = 0, (23) 

ETE + ATA = (2q  + 2)I2q - J 2 q .  (24) 

Let  C be a (q + 1) x (q + 1) conference  matrix. That  is, C is a (0, + 1) 
matrix w i t h C i j  = 0  ~ i = j ,  and 

C r C  = CC r = qI .  (25)  

Such a matrix can be constnlcted,  for instance, by enumera t ing  the elements  
Fq = {x 1, x 2 . . . . .  Xq}, the field with q elements ,  then adding a row and 
column of  l ' s  to the matrix (X(X~ - xj))~'j= 1, and finally changing the first 
entry on the diagonal back to 0. Here  X : F, I -~ {0, + 1} is the quadratic 
character.  

Let  L be the qZ × q ( q  + 1) incidence matrix of  points and lines in affine 
F~. Then  lines in Fq 2 can be split into q + 1 parallel classes according to their  
slope, and two lines are disjoint if they are parallel, and mee t  in one point if 
they are not. Thus if we group the columns of  L by their  slope we find that L 
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is a (0, 1) matrix satisfying 

LTL = ( J q + l  - -  Iq+l) ® Jq + Iq +1 ® qlq, 

J.,,q2L = qJm,q(q+ 1). 

We are now ready to give the example promised; define 

= 1 

-i 

-I 

L(Iq+ 1 ® E) 

C ® A - l q +  1 ®Jq+l.eq 

(26) 

(27) 

(2s) 

Jl,qeL(Iq ® E) = qJl,q(q+l)(Iq+l ® E) 

= J l , q + l  ® (qJl,q E) 

=J,  ~+1 ® ( -q j ,  . . )  

= --qJ1,2q2+2q (29) 

- j , , ( q + , , ~ ( c  ® A - Iq+, ® Jq+l,2q) = -(J~,q+,C) ® (Jl.q+,A) 

+ J , , , ,+ ,  ® (q  + 1)J1,2q 

= (q + ~)J1.2~2+~q- (30) 

Now let M v be Nq with its first column removed. We want to prove that 
MrMq = (2q 2 + 2q)I,2q~+2 v + J.gq2+ev. We calculate as follows, using the 

and 

It is straightforward to check that Nq ~i~2q2+2q+V First let's see that the 
first column of Nq has inner product  1 with each of  the others: simply note 
that 
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properties of E, A, C, and L established above in (20) through (30): 

MTMq = ( Iq+l ~ ET)LTL( Iq+l ~ E) 

+(c~  ® a "  - 1~+1 ® I ~ , , . ~ + 1 ) ( c  ® A - I,,+~ ®./,,+,~.~,,) 

= (~+~ ® ~ ) [ ( j , , + ~ -  ~q+~)®J,, + ~,,+, ® q~](~+~ ® ~) 

+ CrC ® ArA - C ® (J2q,q+lA) -- C T ® (ArJq+l,2q) 

+ Iq+l ® (q + 1)J2v 

= ( J q + l -  Iq+l) ® (ErJq E)  + Iq+i ® q ErE + qlq+, ® (ArA)  

+ Iq+ 1 ® (q  q- 1)J2( , 

= ( J q + l -  Iq+l)  ® (--ETJq,2q) + qlq+l ® ( ETE + ATA) 

+ ( q  + 1)Iv ®J2u 

= (Jq+, -- Iq+,) ® J2q + qIq+l ® [(2q + 2)I2q -J2q]  

+ ( q  + 1)Iq ®J,eq 

= q I ~ + l  ® [{2v + 2)I~, -j~,,] + (qI~+~ +Jq+J ®J~ 

= (2q z + 2q)Izq2+2q +J2q2+,2q • 

From this it follows immediately that NfNq = (2q 2 + 2q)Izd+2q+ l + 
J2q2+eq+l and thence that Nq EU~Zq2+2q+ 1. 

4. T H E  PROOF OF T H E O R E M  C 

Let N E ~'k, k = 2q 2 + 2q + 1, be one of the examples constructed 
Section 3, i.e., we may assume NN r = (k - 1)I k + Jk. Recall that each row 
and each column of such an N has qZ entries i and (q + 1) 2 entries - 1. 
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Let 

B = 

1 1 .-- 1 1 ... 
1 

N N 

1 

- - i  

- 1  

N - N  

(31) 

Then B ~ , ,  where n = 2 k  + 1 = 4 q  2 + 4 q  + 3 .  We note that n = 3  
(mod 4). It is easy to see that 

B B  r = 

n - 4 q  - 1 . . . .  4q - 1 - 1  . . . .  1 

- 4 q  - 1 

( n - 3 )  I k + a J k  - Jk  

- 4 q  - 1 

- 1  

- 1  

- Jk  ( n - 3 )  I k + 3 J k  

(32) 

Let 

/ 4  × 116 
h,, = ~f (n  - 3 ) " -7n  7 (33) 

be the bound in (5) of Proposition C. 

LEMMA 4 . 1 .  

1. 

d ,  

Assume that B is as in (31). Then: 

= det BB T 

= [ n - y - k t ( 4 q  + y  + X)][n + k ( 3 - y )  - 2 ]  

× ( n  + 3k -- 2 ) ( n  -- 3) ° - ~ ,  
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where 

k 

Y = 5 ( k  - 1) 

and 

t = 
4 q + y + l  

,, + k ( 3  - y )  - 3 "  

2. 

det B 
lim ~ 3 .  

. 

V h,, - ~ ( ~ )  v ~  = o.s4.  

Proof. 1: The  formula for d,, is obtained by first zeroing out the - J  
matrix in the upper  right-hand corner  of  BB r and secondly zeroing out the 
first row of  the matrix that remains in the upper  left-hand comer .  

2: The  critical te rm in the formula for d,, occurs in the first factor. We  see 
that  

1 lim y = :g 

and 

lira qt '~ 
q - ~  

The analysis of  the remaining terms is straightforward. 
3: This follows directly from part  2 of  this l emma  and (1.2) of  [14]. 

T heo rem C is now a consequence of  L e m m a  4.1. 

We would like to thank Bruce Solomon for  providing us with examples of  
large-determinant (0, 1) matrices for many values of n <~ 20. 
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After having read a preprint of this paper, I. Kaplansky pointed out more 
recent work on the problem, and he provided us with the references [7], [8], 
[15], [17], [19], [21], and [27]. This improved the paper considerably. 
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