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ABSTRACT 

Analysis on the set of positive definite matrices is involved in many engineering 
problems. We develop a differential geometric theory of the set of positive definite 
matrices by means of a specific class of connections introduced into it. Consequently, 
various dualistic aspects of the set are elucidated. Next, using the theory, we derive 
new results and interesting geometrical interpretations for matrix approximation, 
positive definite matrix completion, and linear matrix inequality problems. 
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0. NOTATION 

Sym(n) 
PD(n) 
GL(n) 
R 
*PA 
1 
A1 
Ami,( A) 
td A) 
s;i 
N 
m 

argmin A E pf( A) Matrix A in the set 9 that minimizes the function f(A) 

Set of n by n real symmetric matrices 
Set of n by n real positive definite symmetric matrices 
Set of n by n real nonsingular matrices 
Set of real numbers 
Tangent vector space of the manifold J% at a point P EM 
Identity matrix of appropriate size 
Transpose of the matrix A 
Smallest eigenvalue of the symmetric matrix A 
Trace of the matrix A 
Kronecker’s delta 
Dimension of PD(n) and Sym(n) [ = n(n + 1)/2] 
Dimension of submanifold 9 c PD(n) defined in 
Section 4 

We adopt Einstein’s summation convention for the indices which appear 
twice as sub and superscripts, e.g., ck = aijbijk automatically means ck = 
Ci Cj aijb’jk. We use i, j, k, and 1 to run from 1 to N; LY, p, y, and S from 
1 to m; and K and /J from m + 1 to N. 

1. INTRODUCTION 

It is widely known that positive definite matrices often play important 
roles in various aspects of mathematical analysis for signal processing, control 
theory, numerical analysis, and operator theory via the Lyapunov stability 
theorem, the Riccati equation, covariance analysis, and so on (see the 
references). Hence, studying properties of the set of positive definite 
matrices, which itself has mathematical interest, gives important insights into 
the above fields. 

The set of positive definite matrices has been studied as not only a convex 
cone [ll, 21, but also a Riemannian manifold [lo, 8, 161 in the context of 
differential geometry. While these differential geometric analyses give many 
fundamental and fruitful results, the main tool used there has been limited to 
Riemannian geometry, where metric-preserving (Levi-Civita) connection [ 131 
is essential. Hence, by introducing other specific connections, we have a 
possibility to investigate more abundant properties and geometric structures 
of the manifold, which are deeply related to several applications in 
engineering. 
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In this paper, we first define and exploit a new geometry of the manifold 
of positive definite matrices by means of dual connections, which have been 
introduced by Amari [l] in statistical analysis. As a result, we feature the 
dualistic nature of the manifold and its information theoretic implications. 
Specifically, dual coordinate systems and divergence functions, introduced 
here, are found to be fundamental tools of geometrical analysis of the 
manifold. Next, we discuss the relations or applications of the theory to 
matrix approximation (MA) [6,5], positive definite matrix completion (PDMC) 
]:i’, 12, 91, and linear matrix inequality (LMI) [3, 41 problems. Consequently, 
we can give new results and geometric interpretations of existing results for 
these problems from the point of view of the dualistic differential geometr;v. 

As a related work, we should refer to the interesting paper [8], which 
discusses the Kahler structure of the set of positive definite matrices. The 
point of view of this paper is quite different, but its relation to our present 
results, which is not clear now, will make the geometry of the set more 
attractive. 

2. RIEMANNIAN METRIC A13D DUAL CONNECTIONS ON 
PD(n) 

2.1. Riemunnian Metric 
Let {.I$}, i = 1,. . . , N, be linearly independent basis matrices of Sym(n). 

then P E PD(n) can be represented as 

P = P(0) := f3’E, E PD(n). (I) 

Hence, we can regard 13 = (0’) as a global coordinate system for PD(n) and 
di := d/de’ as a tangent vector field on PD(n). 

Denote the tangent vector space of PD(n) at a point P by T,,PD(n). 
Since T,PD(n) is isomorphic to Sym( n) for each P, we will identify, E, with 
the natural basis (aijp := (a/de”&, of T,PD(n). Then tangent vectors X, in 
T,PD(n) can be represented by matrices X in Sym(n): 

T,PD( n) 3 X, := ui( Ji) p = X := a’E, E Sym( n) , (d) E R”. (2) 

Here, the symbol 3 denotes the identification. 
Now, we will consider the following Riemannian metric g on PD(n) 1161 

defined by 

gij( 0) = gp(di, dj) := tr( P-lEiP-‘Ej). (3) 
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The above Riemannian metric g can be proved invariant under the inverse 
transformation L : P e P-’ and the congruent transformations or : P e 
TPTT for all T E GL(n), i.e., the two diffeomorphism L and or are 
isometries on (PD(n), g> [16]. This follows from the fact that the differential 
of L 

L.+ : T,PD( n) 3 X, = X - -P-‘XP-’ = L*( X,) E T,,,,PD( n) (4) 

and the differential of rr 

or* : T,PD(n) 3 X, = X - TXTT = T&X,) E TTTcp,PD(n), (5) 

which are described in the matrix representation (2), satisfy 

&(XP’YP) = g‘,,,(L*(xP)~L*(yP))~ 

&4XPJP) = g,,(P)(TT*(xP))TT*(yP)). (6) 

2.2. Dual Connections 
For any smooth curve c : P(t) on PD(n) where t belongs to a certain 

interval I, c R, parallel displacement [14, p. 701 along the curve c defines 
linear mappings from T,(,,,PD(n) to Tpc,2,PD(n> for all t,, t, E I,. Using the 
matrix representation (2) again, we introduce the following two specific 
parallel displacements. 

B, : x = X&) - XP&) := n,x,,,,, = x, (7) 

=: : X = XQt,) e XP(t>) := qx,,,,, = P(t,)P(t,)-‘XP(tJIP(t,). 

(8) 

Note that II, and II: do not depend on the curve c they follow, but only on 
P(t,> and P(t,). 

Let V and V* denote connections [13, p. 631 corresponding to the above 
parallel displacements, respectively. The components of each connections 
represented in the 0 coordinate system are as follows (see Appendix A): 

rijk(e) ‘= g(‘d, dj> ‘k) = O, (9) 

I$(e) := g(V;dj, dk) = -2tr(P-‘E,P-‘EjP-‘Ek). (10) 
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Mihile these connections do not preserve the Riemannian metric g (non- 
metric connection [13, p. 158]), they have the following properties: 

THEOREM 1. 

(i) The connections V and V* satisfy 

Ag(B,C) =g(vAB,C) +g(ww) (11) 

for any vectorfields A, B, C on PD(n). 
(i> The torsion and curvature with respect to the connection V are zero. 

(iii> The torsion an,d curnative with respect to the connection V* are zero. 

Proof. First, note that since all the matrices P, Ei belong to Sym(n), 
then we have 

tr(P-‘E,P-‘E,P-‘E,) = tr(P-‘E,P-‘E,P-‘E,) 

= tr( P-‘E,Pm’EjP-‘Ek). (12) 

Here, we have used a formula tr(FG) = tr(GF) = tr( FrGr) for the first 
equality with F := P-‘E, P- ’ with G := E, Pm ‘E,, and for the second equal- 
ity with F := P-‘E, P-‘E, and G := P-‘E,i. For any constant matrices F, we 
also have 

di tr( P-‘F) = -tr( P.-‘EiP-‘F) VF E Sym( n). ( 13) 

using the differentiation of the matrix inverse. 
(i): By direct differentiation of (31, we get 

Jigjk( 6)) = -2 tr( P-‘E,P~m’EjP-‘Ek). (14) 

Then from (9) and (10) we have 

This implies (11). 

d, gjk = lyjk + rig,. ( 15) 

(ii): Obvious from Fijk = 0. 
(iii): Let 2’,$(8) be the components of torsion tensor with respect to V*: 

then 

Tiyk := g(V; dj - V; d,, dk) = r,Tk - r,Tk = 0. cm 
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Further, when P(t,> = P(t,), (8) implies the parallel displacement fIz does 
not change tangent vectors for any closed curve c. Hence, the curvature 
tensor with respect to Q* vanishes. a 

A pair of connections Q and Q* that satisfy (11) are called mutually dual 
[l]. By virtue of statement (ii) [(iii)], we shall say PD(n) is Q-fZat [Q*--at]. 

For general Riemannian manifold (A’, g>, Amari has shown the following 
results: 

LEMMA 1 [l, pp. 80-821. If the Riemannian manqold (A, g) is Q- and 
V”-jlat with respect to a certain pair of dual connections Q and Q*, then: 

(i) There exist two specific coordinate systems 8 = (8 i, and 77 = (7~) on 
I which satisfy 

g(a,, dj) = s;i, where dj := a/aqj. (17) 

(We will call such a pair of coordinate systems mutually dual.) The 
coordinate system 0 [T] is affine for the connection Q [Q*], i.e., rijk(tI> = 
g<Qa, dj, a,> = 0 IYr *+(q> = g(Q; dj, @> = 01. 

(ii) There exist potential functions +( 0) and (b(q) on A? such that 

vi = 0) = JilCl(e), 8" = ei(7j) = de(q), (18) 

gij( e> = ai ajt+qe) = dqj/dei, g”j(q) = a9jqq) = aej/aqi, (19) 

gi1(7))gjkCe) = ‘ia at any point p(e) = p(v) EA. (20) 

Further, they are related to each other via Legendre transformation (note the 
relation (18)): 

w) + +(7)) - e%i = 0 atanypoint p =p(e) =p(q) EA. 

(21) 

Here, the quantities g”(v) and lY*“jk(q> denote the components of the 
Riemannian metric g and the connection Q* represented in the 77 coordinate 
system. 
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Since (PD(n), g) is both V- and V*-flat by Theorem 1, we can apply the 
above lemma. Actually, the dual coordinate system n and the potential 
functions 4(e) and G(v) satisfying th e 1 emma can be defined as follows: 

Let {E’} be another basis matrices for Sym(n) biorthogonal to {Ei}, i.e., 

-tr( E’E,) = tilt, (22) 

and represent P using {E’} as 

p = P(v) := (qE’)-‘. (23) 

Then n = (q) can be also regarded as a global coordinate system of PD(n). 
As a result, we find the obtained coordinate system 71 is dual to 0 defined by 
(1) and satisfies F*‘jk(v) = 0 (cf. Appendix B). 

Further, define two potential functions, 

I)(O) = @(P(e)) := -1ogdet P(B) -c+, 

4(q) = $(P(v)) := -1ogdet f’(v) 
-I 

- c+, (24) 

where c+ and c1 are any constants that satisfy cti + c+ = n. Then the 
statements in Lemma l(ii) are verified (cf. Appendix B). 

REMAHK 1. Using the pair of dual connections (V, V*>, we can define 
the one parameter family of connections 

t; := 
1-U 1 +a 
-v+ 

2 
- v*, a E R. 

2 (25) 

The pair of connections ( $, 
-a 

V ) are found to be mutually dual. In particular, 
0 
V is self-dual, i.e., coincides with the Riemannian (Levi-Civita) connection 
on (PD(n), g). 

3. GEODESICS, SUBMANIFOLDS, AND DIVERGENCES 

For use in the following sections, we introduce some important concepts 
or tools derived from the dualistic geometric structures of PD(n) as simply as 
possible. For more details, consult [l, Chapter 31. 
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First, since connections are given to (PD(n), g), we can define a special 
curve called the geodesic, whose tangent vectors are parallel with respect to 
the connection in question. We call geodesics with respect to the connections 
V and V*, respectively, V- and V*-geodesic. In the 0 coordinate system, V- 
and V*-geodesics are characterized, respectively, as the solutions of the 
following differential equations with proper initial conditions [13, p. 1461: 

Ii+(t) = 0, (26) 

gLj(e(t))Zjj(t) + r;,(e(t))ij(t)c?(t) = 0. (27) 

On the other hand, in the q coordinate system, they are characterized as the 
solutions of the following differential equations: 

g”‘(77(t))tij(t) + rijk(r)(t))tij(t)fik(t) = O, 

iii(t) = 0. (29) 

The equations (26) and (29) f 11 o ow 
r*+C7> = 0, respectively. 

from the facts that rij,(e> = 0 and 

We should note that from Lemma l(i) or (26) and (29), the coordinate 
curves 8” and vi are examples of V- and V*-geodesics on PD(n), respec- 
tively. 

Next, let d be an m-dimensional smooth submanifold in PD(n). We 
denotebyZa,$, a,@=1 ,..., m, tangent vector fields whose vectors at 
each P E d form a basis for Tp@‘; and by i;*, or. = m + 1, . . . , N, tangent 
vector fields whose vectors at each P E d form a basis for Tp@’ i [the 
orthogonal complement of Tp d in Tp PD(n>]. 

The Euler-Schouten imbedding curvature tensors (or second fundamental 
forms) of the submanifold d with respect to V and V* are defined by 

These quantities show how curved the submanifold B is in PD(n) in the 
sense of the connection V or V*. When Hap, ( H,*pr) is zero, the submani- 
fold @ is said to be V-autoparallel (V*-autoparallel). In particular, a one- 
dimensional V- (V *-)autoparallel manifold is a V- (V *-Igeodesic. 
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Finally, consider the following functions PD(n) X PD(n) 
via potential functions. 

D(P,> PZ> := @(Pi) + HP21 - %Zr 

= logdet P, - logdet P, + tr(P,‘P,) 

D*( P,, Pz) := 4( P,) + !I( P2) - 77,ie; 

_ 

39 

+ R defined 

n, (391 

= log det P, - log det P, + tr( PT’P,) - n 

= D( p,, P,), (31) 

where (0:) and (qi) [(0;) and (qZi)] are the 0- and n-coordinates of P, [P,]. 
These functions are called V- and V*-divergences. In particular, D(P,, P,) 
coincides with the well-known Kullback-Leibler information (or relative 
entropy) between two zero-mean Gaussian distributions whose covariances 
are P, and P,, respectively. 

While the divergences do not satisfy the definition of a distance function, 
they play the role of a measure for closeness in PD(n) because of (i>, (ii> and 
(iii> in the following lemma: 

LEMMA 2 (Properties of divergences [l, pp. 84-931). 
(i) For all P, and P,, D( P,, P,) >, 0. The equality holds only when 

P, = P,. 
(ii) If P, = (tZi) = (rl,) and P, = (fZi + de’) = (a + dq), i.e.. in- 

finitesimal displacement of P,, then 

gij de’ dej 
D(P,,P,) = 2 

g” drl, dvj 
+ O(ldeiI”) = 2 + o(ld7#). (32) 

(iii) (Pythagorean theorem) Let c+ and c_ be the V-geodesic connecting 
P, with P, and V*-geodesic connecting with P, with P,, respectively. Then 
D(P,, P,,> - D(P,, Pz) - D(P,, P,) is positive, zero, or negative according 
CLS the angle between tangent vectors of c+ and c_ at P, is greater than, 
equal to, or less than 7r/2. 

(iv) For a given smooth submanifold @ and point P,, in PD(n). let 9 be 
a set of points P E d such that V-geodesics connecting P, u>ith P are 
orthog%nal to Tp@ (such points are called V-projections of P,, to ~9). Then a 
point P := arg mine E a D( P,, Q) is included in 9. In particular if d is 
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V*-autoparallel, the V-projection of P, to d uniquely exists (and hence P^ 
does). 

REMARK 2. For D*( Pi, P,), the above statements also hold if we swap V 
and V *. Statement (iv) implies that a local property (orthogonality) deter- 
mines a global one (minimality of divergences) when d is V- or V*- 
autoparallel. This fact is found useful for constructing practical algorithms to 
obtain optimal approximation of P to @ via optimization methods. More 
generally, when d is V*- (V-) convex, the uniqueness of V- (V*-)projection 
can be assured via (iii) [l, p. 911. 

4. SUBMANIFOLD OF LINEARLY CONSTRAINED MATRICES 
IN PD(n) 

For given E,, . . . , E, E S+(n), where {E,}, (Y = 1,. . . , m < N, are 
linearly independent, consider an m-dimensional submanifold 2 in PD(n) 
defined by 

_5?:= {P(x) I P(r) = E, + xaEu E PD(n)}. (33) 

We can regard x = ( x 01) as a coordinate system of the submanifold 2. 
For this submanifold _5?, we can formulate the following problems: 
(a) Find a certain point P ??_.5? (or equivalently, check whether 2 is 

nonempty). ,. 
(b) Find an approximate point P ~9 for P G.3’ with some distance 

measures. 
(c> Parametrize _5?. 
Problem (a) is referred to as a linear matrix inequakty [4, 31 or positive 

definite matrix completion [7, 9, 123 problem, and problem (b) as a matrix 
approximation [5, 61 p ro bl em. Many mathematical and engineering problems, 
such as approximation by Toeplitz or Hankel type matrices in signal process- 
ing or the LMI approach for control system synthesis, can be cast into the 
above forms (see the above references). In the rest of the paper, we will 
exploit geometric properties of 2 using the dualistic geometry introduced in 
the previous sections to apply to the above problems. We treat mainly 
problems (a> and (b). The consideration of problem (c) via the dualistic 
geometry will be given in another place. 
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In this section we first consider the case 5? # 0 to treat problem (b). 
Now we define the Riemannian metric and dual connections on 22 

induced from PD(n). Represent E, and each E,, CY = 1, . . . , m, as a linear 
combination of Ei: 

E, := 8;Ej, E, := BA E, , where Bj is a constant. 

Then the &coordinate of P(x) and the tangent vector field 6” := d/dx” on 
2 are represented as 

Hence, the components of the in&en Riemannian metric and dual connec- 
tions on 2 are calculated from those of PD( n) as 

r&(r) = B; BJ B,krijk( 6( x)) + (da ~$)B,kg~~( e( x)) =0. (36) 

= BABjB;r&(@(x)). (37 

Here, we use Pij,< 0) = 0 and a, B1; = 0. These are fundamental quantities 
that determine the dualistic structures of 2. 

Let &,d*, K,/.L=?Tt+l,..., N, be tangent vector fields whose vectors 
at each P(x) ~2 form a basis for T,2’ . The following theorem is the kev 
result for geometric analysis of 2: 

THEOREM 2. The submanifold L? is V-autoparallel in PD(n). 

Proof. Let 5:(r) := $0” I pcxJ. Then the components of the Euler- 
Schouten imbedding curvature of 9 are calculated by 

because Pii, = 0 and 2, B$ = 0. 
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From this theorem, the following result follows: 

COROLLARY 1. The submanifold _Y is itself V- and V”-fat. 

Proof. From (36), we immediately find 2 is itself V-flat. 
It is easy from (37) to see 2 is torsion-free with respect to V*. Further, it 

is known the components of Riemannian curvature tensor of 2 with respect 
to V*, denoted by R&s, satisfy the following equation [19, 11: 

R& ( x) = B; B$ BY” B; R;,,( 0( x)) 

where g’Y0) is the inverse of g,, = g(&, a,>, and Ri.,,*(8) are the 
components of the Riemannian curvature tensor of PD( n) witk respect to V*. 
Since PD(n) is V*-flat, i.e., RTjkl(0) = 0 and _Y is V-autoparallel, i.e., 
H,,,(x) = 0 we obtain REPvs (x) = 0. Thus, 2 is itself V*-flat. ??

For problem (b), we have to choose a distance measure for approxima- 
tion. The most popular measure to approximate P, by P, is the Frobenius 
norm 

l[P, - PzllF := {tr[(P, - P,)“])~‘~, P,, P, E PD(n). 

In many applications to engineering, the matrices P, and P, represent 
quadratic physical quantities, e.g., correlations. Hence, measures for approxi- 
mations are often required to satisfy the invariance under the congruent 
transformations 7r, which physically corresponds to scalings or change of 
units for the quantities. Since the Frobenius norm does not generally satisfy 
it, i.e., 

IIP, - P2llF + IITT( P,) - 7*( P2)llF, 

we have to use the other measures for this purpose. 
Several distance measures derived from the Riemannian metric g satisfy 

the requirement because g is invariant for or. Among them, the Riemannian 
distance function [ 161 

dist( P,, P2) := (tr[(log P~1~zP2P,‘/2)2])1’z 
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rnay be the most natural, because it satisfies the definition of a distance 
function. While the primal divergence D(P,, Pz) does not satisfy the defini- 
tion of distance function, it may be also suitable for special purposes because 
it coincides with the Kullback-Leibler information, which implies the approxi- 
mation with D has a statistical meaning: maximum likelihood estimution or 
minimum relative entropy approximation. However, to find the best approxi- 
mation in _!F with these distance measures dist(o, ??) or D(o, ??> is difficult in 
general because the extreme points are not always unique and do not alwavs 
constitute the global minimum. 

To the contrary, from Theorem 2 and Remark 2, we find the dual 
divergence D*( P, , Pn> has the following nice properties for treating problem 
(b): 

CpOLLARY 2. For given P 62, the best approximation point with D*, 
i.e., P := arg mine E P D*( P, Q), uniquely exists and is characterized a.s thr 
V*-projection of P to L?. 

REMARK 3. As in the previous section, the equation of the V*-geodesic is 
represented by ii,(t) = 0 in the 77 coordinate system. Hence, the V*-geodesic 
connecting a given point P = (13~) = (vi) and any point P(x) = (0’(x)> = 
(77i(x)) E_!SY is 

77,(t) := 77i + t[l7,( x) - 77i] J t E R, (38) 

and its tangent vectors are [g(x) - n,]di. To obtain the V*-projection, we 
have to solve the orthogonality condition at P(x) for x : 

g:(‘a> [77i(x) - 77,1di) =g(Bb’dj, [Vi(‘) - 77,1ai) 

= B$J( x) - 77,] = 0. (39) 

As the above corollary states, this is equivalent to obtaining the minimiz- 
ing point of D*( P, P(x)). Actually, the extreme condition a, D*(P, P(Z)) = 0 
can be modified to the orthogonality condition (39) using (181, (31): 

&[+(e(x)) - vj’j(x)] =‘A ‘>[J/(‘(x)) - T!“(X)] 

= Ri[qJ X) - q,] = 0. 

Further, D*( P, P(x)) is a convex function on _F because 
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is positive definite. Thus, we find the extreme point is the global minimum. 
Consequently, one practical way to obtain the best approximation with D* is 
to use suitable convex programming algorithms. The condition (39) can be 
used to check the convergence. 

5. ANALYTIC CENTER FOR TAND ANCILLARY 
SUBMANIFOLD 

To develop the theory further and apply it to problem (a), we introduce a 
special point called the analytic center (AC) [3] maximum entropy comple- 
tion (MEC) [7, 9, 123, or ancillary submanifold [ll. 

First, we extend the coordinate system x to all of PD(n). Let {E,], 
K = m + l,..., N, be complementary basis matrices for (E,}, i.e., {E,; E,) 
form a basis of Sym(n), and x0” and ~0” be constants that satisfy 

E, = r,“E, + x,“E,. 

Since any P E PD(n) can be represented as 

P = P( xa; x”) := E, + xUEa + xKE, = ( xa + x;)E, + ( xK + xgK)E,_ 

we can regard X := (x a; x “) as a global coordinate system of PD(n), and 
(x a; 0) specifies points on 2. 

As we have seen in Section 2.2, the coordinate system 4 = ( yol; yK) that 
is dual to 2 can be defined by 

a 
where a, := - 

dx”’ 
a, := --$. (49) 

Conversely, we find that f is represented in 9 using x0” and x0” due to the 
definition of 2: 

x*(G) = Fy(P(ij)) -x0”, x”(G) = a”+(P($)) -x0”, 

where da:== d 
dY,’ 

d”:= a 
dy . (41) 

K 

We should note that vector fields d” := d/dy, are orthogonal to Tp2? at 
each P ~2’ because of Lemma l(i). 
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Now let 2 be bounded. The AC for 2, denoted by PAc, is defined as the 
point that maximizes the function log det P( n-1 on 9 and plays an important 
role in an LMI or PDMC problem. 

Some results about the matrix form of PQ (what is called the irrcersr 
,~ttern) have been obtained and discussed for the case of band matrices [?‘I 
or matrices whose diagonal entries are specified [9]. We find each of them to 
be a special case of 9 by choosing appropriate basis matrices E, in (33). \Ve 
first generalize these results to the case of 9, using the geometric approach 
in the previous sections. 

THEOREM 3:. Let {E”}, K = m + 1,. . . , N, he the hi orthogonal basis 
for (E,; E,} such that - tr( EKE,) = 0 and - tr( EKE,) = 8:. Thw the AC 
fk 2 is characterized by its inrjerse a.s 

PAi1 = c,EK, 

where c, is the solution of equutions for yK: 

ov( 9) 1 y=(o;y,) - x(; = 0. 

Proof. Since PAc i s c h aracterized by the potential function I/J(P): 

P AC := arg ?Es log det P = arg pig I,!J( P) , 

we find PAc for 9 uniquely exists because I)J( P(x)) is a strictly convex 
function on 27 [or equivalently, a, + $( P(X)) = g,,( 2) is positive definite] 
and 2 is bounded. Hence, PAc is the extreme point that satisfies 

i.e., the dual coordinate Q of PA<; is of the form (0; c,), where each c, is 
constant. These c, can be determined by the condition that P,*(: belongs to 

9. This implies, from (41), solving N - ~TL equations 

for yK. w 
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Finally, we will discuss the relation with the dualistic geometry and the 
convex algorithm ([S], [5], etc.) to solve LMI or PDMC problems, or check 
the nonemptiness of 9. Let us introduce two new subsets in PD(n). 

First, we define the set 9” for some fixed A E R by 

9* := {P I P = P(x) - Al = E, - Al + xmE, E PD(n)}. 

If A is smaller than A,,,(E,), then 9* is necessarily nonempty. 
We should note that 9 # 0 iff A* := sup{ A lZh # 0) > 0, and in this 

case A* = supp E 3A,i,( P>. H ence, we will concentrate on getting A* to 
check the nonemptiness of 9. One of the solutions for LMI can be obtained 
through this process. 

Next, assume 9A # 0, and let Z*’ (P) denote the family of V*-geodesics 
that pass through P •2~ and are orthogonal to 3A at P. According to 
Lemma 2 (iv), PA’ (P) is just the set of all the points in PD(n) whose 
V*-projections to 3A are identical to P. 

An (N - m)-dimensional submanifold PA’ (P) has the following 
properties: 

THEOREM 4. Assume ZA # 0. Then 
(i) for each P EP~, PA’ (P> is V*-autoparallel; 

(ii> each x’(P) df e ones a foliation structure in PD(n), i.e., 

PD(n) = U -%‘(P), PAL(P) f39A’(P’) =0 if PZP’. 
PEY 

Proof. Statement (i) follows similarly to Theorem 2. To prove (ii>, we 
follow [IS, p. 101. Let 8 be the distribution generated by vector fields 16~ “], 
K=VS+l ,***, N. Using (i), i.e., g(V$ d“, a,) = 0, we find 

Since V* is torsion-free, 

[X,Y]=V,*Y-V,*XEz? 

Thus, 8 is involutive. It is easy to see its maximal integrable manifold is 
PA’ (P). Hence, statement (ii) follows. ??
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The above theorem implies that if we assume the 4 coordinate for P is 
( p,; pK), then every point Q( yK) E-Y-’ (P) is specified by ( p,; yK ) in the 9 
coordinate, and any tangent vector of 9*’ (P) at o( yK) is a linear combina- 
tion of (a”),, K = m f 1, . . . . N. 

For each A where A < A*, we can define the AC for _YA, denoted by, 
P,,(A). The curve PAc( A) in PD(n) for the parameter A < A* is called the 
path of AC for PA. As shown in the proof of Theorem 3, the $ coordinate of 
P,c, (A) is just (0; cK( A)). H ence, if we simply denote 9A1 ( PAc( A)) by _!-.Y _ , 
which is actually independent of A from Theorem 4, then we find I’%(: (A) is 
contained in 9’ for all A < A*. 

Moreover, note that 9* is V-autoparallel (which is proved in the same 
way as Theorem 2) and that 9’ is V*-autoparallel, then we obtain the 
following important characterizations for P& (A): 

COROLLARY 3 [Characterizations of PAc (A]. For each A < A*, kt 9, E 
2: and Q2 E_YL. Then 

(i) PAc(A) =pA n_Y’ ; 
(ii) PA<:(A) is the V-projection of Qi to 2’ ; 

(iii) PAc (A) is the V*-projection of Q2 to PA. 

Since 9A # 0 iff P,,(A) exists, to obtain A* we only have to follow the 
path of AC in the direction of A increasing from A,,. This is the basic idea of 
the pnth following method in general convex programming problems [15]. 

The algorithm on the basis of the above idea is as follows: For the sake of 
simplicity, we assume that a constant A,, such that -i;“h,, # 0 and an AC for 

Yh,, denoted by P,, are given. 

ALGOKITHM. As initial conditions, substitute A(“) := A,, and PAc:(A(())) := 
P,,, and let E, and es be sufficiently small positive constants. 

Step 1. Let A(‘) := A(‘-‘) + A,,,(P,,(A’“~“)) - E,. 

Step 2. Find the AC for _Y+,, and let P,,z(A”)) denote it. 

Step 3. If A,,,( P,,,(A(‘))) < e2, then stop and let A* := A”‘. Otherwise, 
continue. 

Step 4. Return to step 1. 

REMAHK $5. If A(‘) > 0, a point P ~9 is obtained as P := ctc (A”‘) + 
h’9. 
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The most important part in the above algorithm is step 2. According to 
Corollary 3, we can find PAc (A(‘)) by the following two methods: 

(I) Let Qf) be any point in _.Y’ [e.g., Qp) = P,c(A(‘-l’)], and find the 
V*-projection of Q!$’ to J$I, Then it is P,,(A(“) . 

(II) Let Q ‘1”) be any point in _5$1) [e.g., Q$) = PAc(A(‘-‘)) - (A”’ - 
A(‘- ‘))Z], and find the V-projection of Qi’) to _.Y’ . Then it is PAc(A”‘). (See 
Figure 1.) 

Method (I) is based on Corollary 3 (iii). As described at the end of Section 
4, finding each PAc (A’“) as the V*-projection is cast to a convex program- 
ming problem to find P that minimizes D*(Q$‘, P) on =.Y$, using the primal 
coordinate xa, cx = 1,. . . , m. The algorithm with method (I) is essentially 
equivalent to that proposed by [3]. On the contrary, method (II) corresponds 
to Corollary 3(ii). From (30) and (19), 

d” rP‘D(Q1, P( ij)) = d” d”4( P( 4)) = g”“( ij) 

is positive definite for given Q1 E PD(n). Hence, finding each Z’,,(A(“) as 
the V-projection, which is equivalent to finding P that minimizes D(Q’,“, P> 
onpi, is also a convex programming problem using the dual coordinate yK, 

\ 

\ PAC (A”‘) V*-projection 
%XAl/) 

V-projection 

% 

P*c U(‘+l)) 
Y,;*G;J, \r ’ PD 61) 

FIG. 1. Following the path of the analytic center by V- and V*-projections. 
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K = m + l,..., N. The algorithm with method (II) using this dual coordi- 
nate system q may be new. Considering the dimension of the variables, we 
can easily guess that the algorithm with method (I) [method (II)] is faster 
when m -=K N/2 [m >> N/2]. 

Thus, by means of the dualistic geometry,, we can solve problem (al and 
8give geometric interpretations of the above two algorithms. The remarkable 
point is that the Hesse matrices of the objective function in the above two 
convex programming problems coincide with the Riemannian metrics gcYa 
and gKfi, respectively. 

6. CONCLUSIONS 

We have exploited the theory of dualistic differential geometry for the set 
of positive definite matrices. We find that several kinds of duali exist and 
play essential roles in the theory. 

In addition, we have elucidated relations between the theory and some 
mathematical problems, i.e., MA, PDMC, and LMI. For these problems, the 
theory can provide new results and nice geometrical insight. Since positive 
definite matrices appear in various fields of the engineering, there is possibil- 
ity of its further applications to practical problems. 

We are grateful to anonymous reviewers and the corresponding editorfor 
their constructive suggestions. 

APPENDIX A. THE COMPONENTS OF THE CONNECTIONS 
V AND V* 

Let c : P(t) be any smooth curve which passes through a given point 
P = P(O), and II,(t) and II:(t) denote the parallel displacements from 
T,PD(n) to Tpc,,PD(n> along th e curve c defined in (7) and (8). Then 
couariant derivative of a vector field X to the direction P(O) is derived from 
parallel displacement as 

VpcO,X = lim 1 (II,(t)p’X,,,, - Xp). 
t-0 t 
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Since the parallel displacement II,(t) does not change tangent vectors, we 
get Vai Jj = 0. Hence, (9) follows. 

To obtain I’&;(e), consider a specific curve C : P(t) defined by 

P(t) := P112 exp( Xt) p112. 

The curve C is found to satisfy 

P(0) = P and P(O) = P1/‘XP1/‘. (42) 

Hence, to calculate the covariant derivative V$ dj using the curve E, we shall 
set 

X := P-l/aE,P-‘/a t 

Then P(0) = (a,)r = Ej and from the definition of covariant derivative, we 
can obtain 

(V:C~)$)~ =(V$ aj)p c F$ f  (n~(t)-l(aj)p(t) -(dj)p)' (43) 

Using the matrix representation of II:(t) in (81, its inverse 
II:(t)-‘: Z’,(,,PD(n) + T,PD(n) is 

‘~C~~‘( dj> p(t) 
= PP(t)-‘EiP(t:-‘P 

= P112 exp( -Xt) P- 1/2EjP-1/2 eq( -Xt) Pl/‘, 

Hence, we substitute this expression in (43) to get 

P1/’ exp( -Xt) P- 1/2EjP-1/e exp( -Xt) P’/2}lt=o 

= _p’/2Xp-‘/2Ej _ Ejp-1/2Xp1/2 

= -E,P-‘Ej - EjP-‘E,. 

Thus, (10) follows from (12). 
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POSITIVE DEFINITE MATRICES Sl 

VERIFICATION OF THE PROPERTIES IN 
LEMMA 1 FOR THE DUAL COORDINATE 
SYSTEM n AND THE POTENTIAL FUNCTIONS 
+(0> AND @(r/I DEFINED 
IN (23) AND (24) 

By means of the representation (2), the basis tangent vector d’ at Pm ’ is 
identified as 

(ai)p-i E I’-lPD(n) = E’ E Sym(n). 

If we pull back (d i)p I E Tp - I PD(n) to Tp PD( n) via the differential L * , then 

(c+ = (L+.-~E’ = -PE’P. 

Hence, 

g(a,, dj) = tr{P-‘E,P-‘( -PEjP)} = S,j. 

Using L*, similarly, we find (8) implies I’*ijk(n> = 0. 
Next, note the relations 77, = -tr(P-‘E,) and 0” = -tr(PE’) hold. Then 

(18) and (19) are derived from Taylor expansion of I,!J(P) for dP = E, do’: 

lL( P + dP) - qq P) = -log 
det( P + dP) 

det P 
= -logdet( I + P-’ dP) 

= -trlog( I + P-l dP) 

= tr jj K’( -l)k( P-ldP)k 
k=l 

and that of 4(P) for dP- ’ = E’ dq similarly. The equation (20) is obvious 
from (19). 
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Finally, at any point P = P(8) = P(q), the equation (21) follows from 
the identity 

trP(B)P-‘(77) = trZ=n 

= tr[(8’E,)(qjE-i)] = Oivj tr( E,Ej) = - ~‘T,I~. 
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