On 2-extendable abelian Cayley graphs

Onn Chana, C.C. Chenb,*, Qinglin Yuc

a Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
b Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 0511
c Department of Mathematics & Statistics, Simon Fraser University, Burnaby, Canada, BC V5A 1S6

Received 5 April 1990; revised 25 April 1994

Abstract

A graph G is 2-extendable if any two independent edges of G are contained in a perfect matching of G. A Cayley graph of even order over an abelian group is 2-extendable if and only if it is not isomorphic to any of the following circulant graphs:

(I) $\mathbb{Z}_{2n}(1,2n-1)$, $n \geq 3$;

(II) $\mathbb{Z}_{2n}(1,2,2n-1,2n-2)$, $n \geq 3$;

(III) $\mathbb{Z}_{4n}(1,4n-1,2n)$, $n \geq 2$;

(IV) $\mathbb{Z}_{4n+2}(2,4n,2n+1)$, $n \geq 1$; and

(V) $\mathbb{Z}_{4n+2}(1,4n+1,2n,2n+2)$, $n \geq 1$.

1. Introduction

Let G be an (additive) group and S a generating set of G such that the identity element $0 \notin S$ and $-x \in S$ for each $x \in S$. The Cayley graph $G(S)$ over G is defined by setting its vertex and edge sets to be, respectively,

$$V(G(S)) = G \quad \text{and} \quad E(G(S)) = \{xy | x, y \in G, -x + y \in S\}.$$

An edge xy in $G(S)$ is said to be of type a (or an a-edge) if $-x + y = a$ or $-a$. Hence if xy is of type a, then either $y = x + a$ or $x = y + a$. For convenience, if $S = \{a_1, \ldots, a_n\}$, we shall denote $G(S)$ also by $G(a_1, \ldots, a_n)$. For each positive integer n we shall denote by \mathbb{Z}_n the additive group modulo n under the binary operation \oplus (i.e. for $a, b \in \mathbb{Z}_n$, $a \oplus b$ denotes the residue of $a + b$ modulo n). The cycle and the path of order n will be denoted by C_n and P_n, respectively. The product of two graphs G and H is defined to be the graph $G \square H$ with

$$V(G \square H) = V(G) \times V(H)$$
and

\[E(G \sqcup H) = \{(g_1, h_1)(g_2, h_2) | g_1 = g_2, h_1h_2 \in E(H) \text{ or } h_1 = h_2, g_1g_2 \in E(G)\}. \]

If \(T \) is a nonempty subset of a group \(G \), then \(\langle T \rangle \) will denote the subgroup of \(G \) generated by \(T \).

For each \(a \in G \), we shall denote by \(\theta_a \) the automorphism of \(G(S) \) defined by \(\theta_a(x) = a + x \). It is well known that every Cayley graph is vertex transitive (\(x \) is mapped to \(y \) by the automorphism \(\theta_{y-x} \)) and, thus, regular of degree equal to \(|S| \).

For each positive integer \(k \), a graph \(\Gamma \) is said to be \(k \)-extendable if it contains \(k \) independent edges and any \(k \) independent edges of \(\Gamma \) can be extended to a perfect matching (i.e. a 1-factor) of \(\Gamma \). The concept of \(k \)-extendability seems to have its early roots in a paper of Hetyei [3] who studied it for bipartite graphs, and papers of Kotzig (see [7]) who used it to develop a decomposition theory for graphs with perfect matchings. A graph \(\Gamma \) is said to be bicritical if \(\Gamma - x - y \) has a perfect matching for any distinct vertices \(x \) and \(y \) of \(V(\Gamma) \), and to be a brick if \(\Gamma \) is a 3-connected bicritical graph. In 1972, Lovász [5] introduced the brick decomposition to give a clearer structure for all elementary graphs (a graph is called elementary if the set of its edges which lie in at least one perfect matching forms a connected subgraph). This decomposition has also turned out to be very useful in the study of the matching polyhedra ([6]).

Because of the connection between extendability and bricks (see [8]), much attention today continues to focus on the properties of \(k \)-extendable graphs. Little et al. [4] gave a characterization of 1-extendable graphs. Plummer (see, for example, [8–10]) studied the relations between \(k \)-extendability and other graph parameters (e.g. degree, connectivity, genus, etc.). Recently, Schrag and Cammack [11] and Yu [12] classified the 2-extendable generalized Petersen graphs. As every edge of a Cayley graph over an abelian group is contained in a Hamiltonian cycle (see, for example, [1] or [2]), every Cayley graph over an abelian group of even order is 1-extendable. Characterizing 2-extendability of Cayley graphs over abelian groups is the main object of this paper.

Throughout this paper, all Cayley graphs are assumed to be defined over abelian groups.

Main Theorem. Let \(\Gamma = G(S) \) be a Cayley graph over the abelian group \(G \) of even order. Then \(\Gamma \) is 2-extendable if and only if it is not isomorphic to any of the following graphs.

(I) \(Z_{2n}(1, 2n - 1), n \geq 3 \);

(II) \(Z_{2n}(1, 2, 2n - 1, 2n - 2), n \geq 3 \);

(III) \(Z_{4n}(1, 4n - 1, 2n), n \geq 2 \);

(IV) \(Z_{4n+2}(2, 4n, 2n + 1), n \geq 1 \); and

(V) \(Z_{4n+2}(1, 4n + 1, 2n, 2n + 2), n \geq 1 \).

Note that the graph in (I) is just an even cycle of length \(2n \), whereas that in (IV) is isomorphic to \(C_{2n+1} \square P_2 \).
2. Basic lemmas

We need the following lemmas in the proof of the main theorem.

Lemma 1 (Chen and Quimpo [1]). Every Cayley graph of even order is 1-extendable.

Lemma 2. C_{2n} is 2-extendable if and only if $n = 2$.

Proof. Clearly, C_4 is 2-extendable. On the other hand, assume that $n \geq 3$. Let $C_{2n} = v_1v_2 \ldots v_{2n}v_1$. Then it is easy to see that there is no perfect matching in C_{2n} containing the edges v_1v_2 and v_4v_5. □

Let $m \geq 3$ and $n \geq 2$ be integers. Let $e_1 = (a,b)(c,d)$ and $e_2 = (u,v)(w,x)$ be independent edges in $C_m \boxplus P_n$. We say that e_1 and e_2 are perpendicular if either $(a = c$ and $v = x)$, or $(u = w$ and $b = d)$. Otherwise, e_1 and e_2 are said to be parallel.

Lemma 3. Let m and n be any positive integers with mn even, $m \geq 4$ and $n \geq 2$. Then any two perpendicular (independent) edges e_1 and e_2 of $C_m \boxplus P_n$ can be extended to a perfect matching of $C_m \boxplus P_n$.

Proof. Let $C_m = 12 \ldots m1$ and $P_n = 12 \ldots n$. Let $e_1 = (a,b)(c,d)$ and $e_2 = (u,v)(w,x)$ be two perpendicular edges of $C_m \boxplus P_n$. Without loss of generality, assume that $a = c$, $v = x$, $d = b + 1$ and $w = u + 1$. Clearly $\{(a,b),(c,d)\} \cap \{(u,v),(w,x)\} = \emptyset$.

We first consider the case when m is even. If $v = b$ or d (say d), then let $M = \{e_1,e_2,(u,b)(w,b)\} \cup \{(g,b)(g,d) \mid g \in V(C_m) \setminus \{a,u,w\}\}$. Then M is a set of independent edges containing e_1 and e_2 that can be extended to a perfect matching of $C_m \boxplus P_n$, since the subgraph of $C_m \boxplus P_n$ induced by the set of vertices not in M can be partitioned into disjoint even cycles. On the other hand, if $v \neq b$ and d, then let $M = \{(g,b)(g,d) \mid g \in V(C_m)\} \cup N$, where N is a perfect matching of the subgraph induced by $\{(g,v) \mid g \in V(C_m)\}$ containing e_2. Then M is a set of independent edges containing e_1 and e_2 that can be extended to a perfect matching of $C_m \boxplus P_n$, for the same reason as above.

We next consider the case when m is odd. Then n must be even. Assume that $v = b$ or d (say d). If d is even, then let $M = \{e_1,e_2,(u,b)(w,b)\} \cup \{(g,b)(g,d) \mid g \in V(C_m) \setminus \{a,u,w\}\}$. Then M is a set of independent edges containing e_1 and e_2 which can be extended to a perfect matching of $C_m \boxplus P_n$, since the subgraph of $C_m \boxplus P_n$ induced by the set (if $\neq \emptyset$) of vertices not in M can be partitioned into subgraphs of the form $C_m \boxplus P_2$, each of which obviously has a perfect matching. On the other hand, if d is odd, then choose a vertex $y \in V(C_m) \setminus \{a,u,w\}$ and let $M = \{e_1,e_2,(u,b)(w,b), (y,b-1)(y,b),(y,d)(y,d+1)\} \cup \{(g,b)(g,d) \mid g \neq a,u,w,y\}$. Then M is a set of independent edges containing e_1 and e_2, which can be extended to a perfect matching of $C_m \boxplus P_n$, as the subgraph of $C_m \boxplus P_n$ induced by the set of vertices not in M can be
partitioned into two even paths and subgraphs of the form $C_m \square P_2$, each of which obviously has a perfect matching.

Hence we need only consider the case that $v \neq b$ and d. Without loss of generality we may assume that $v > d$, if v is odd, then let $H = \{(g,h) \in V(C_m \square P_n) \mid h < v\}$ and $K = \{(g,h) \in V(C_m \square P_n) \mid h \geq v\}$. Then, by an argument similar to that in the preceding paragraph, H has a perfect matching M_1 containing e_1, whereas K has a perfect matching M_2 containing e_2. So $M_1 \cup M_2$ will be a perfect matching of $C_m \square P_n$ containing e_1 and e_2. On the other hand, if v is even and $v > d + 1$, then let $H = \{(g,h) \in V(C_m \square P_n) \mid h < v - 1\}$ and $K = \{(g,h) \in V(C_m \square P_n) \mid h \geq v - 1\}$. Then, H has a perfect matching M_1 containing e_1, whereas K has a perfect matching M_2 containing e_2. So $M_1 \cup M_2$ will be a perfect matching of $C_m \square P_n$ containing e_1 and e_2. Finally, if v is even and $v = d + 1$, then we choose a vertex $y \in V(C_m) \{a,u,w\}$ adjacent to u or w (say w) and let $M = \{e_1,e_2,(y,b-1)(y,b),(y,d)(y,d+1)\} \cup \{(g,h)(g,d) \mid g \in V(C_m) \{a,y\}\}$. Then M is a set of independent edges containing e_1 and e_2 which can be extended to a perfect matching of $C_m \square P_n$, since the subgraph of $C_m \square P_n$ induced by the set of vertices not in M can be partitioned into two even paths and subgraphs of the form $C_m \square P_2$, each of which obviously has a perfect matching.

Lemma 4. Let $G(S)$ be an abelian Cayley graph and T be a nonempty subset of S with $-T = T$. Then any perfect matching of $\langle T \rangle \langle T \rangle$ can be extended to a perfect matching of $G(S)$.

Proof. Since the subgraph induced by any coset of $\langle T \rangle$ in G contains a spanning subgraph isomorphic to $\langle T \rangle \langle T \rangle$, $G(S)$ also contains a spanning subgraph which can be partitioned into a finite number of copies of $\langle T \rangle \langle T \rangle$. The result thus follows.

Lemma 5. Let Γ be a Cayley graph of even order. Then every two adjacent edges of Γ lie on an even cycle of Γ.

Proof. Let $\Gamma = G(S)$ be a Cayley graph of even order. If Γ is an even cycle then the result is trivially true. Hence, we may assume that Γ is of degree k, where $k \geq 3$. Let e_1 and e_2 be two adjacent edges in Γ. We have the following cases to consider.

Case 1: e_1 and e_2 are of different types (say of type a and type b, respectively).

In this case, we may assume without loss generality that $e_1 = 0a$ and $e_2 = 0b$. Then e_1 and e_2 are in the 4-cycle $0a(a + b)b0$.

Case 2: e_1 and e_2 are of the same type (say a).

In this case, we may assume without loss of generality that $e_1 = 0a$ and $e_2 = a(2a)$. If a is of even order, then the two given edges will be in the even cycle generated by a. Hence we may assume that a is of odd order. As G is of even order, there must be another element $b \in S$, $b \notin \langle a \rangle$. Then, e_1,e_2 are in the 6-cycle $0a(2a)(2a + b)(a + b)b0$.

□
Lemma 6. Let Γ be a 1-extendable graph or a graph in which every two adjacent edges lie on an even cycle of Γ. Then $\Gamma \Box P_2$ is 2-extendable.

Proof. Let $P_2 = 01$. Let $e_1 = (a,b)(c,d)$ and $e_2 = (u,v)(w,x)$ be any two independent edges of $\Gamma \Box P_2$. We have the following cases to consider.

Case 1: $b \neq d$ and $v \neq x$.

In this case, e_1 and e_2 are contained in the following perfect matching of $\Gamma \Box P_2$:

$\{(g,0)(g,1) \mid g \in V(\Gamma)\}$.

Case 2: $b = d = v = x$.

In this case, we may assume without loss of generality that $b = d = v = x = 0$. Then e_1 and e_2 are contained in the following perfect matching of $\Gamma \Box P_2$:

$\{e_1, e_2, (a,0)(c,1)(u,1)(w,1)\} \cup \{(g,0)(g,1) \mid g \in V(\Gamma) \setminus \{a, u, c, w\}\}$.

Case 3: $b = d$ and $v \neq x$ (or vice versa).

In this case, assume that $b = d = 0$, say. Then e_1 and e_2 are contained in the following perfect matching of $\Gamma \Box P_2$:

$\{(e_1, (a,1)(c,1)) \cup \{(g,0)(g,1) \mid g \in V(\Gamma) \setminus \{a, c\}\}$.

Case 4: $b = d = v = x$.

Assume that $b = d = 0$ and $v = x = 1$, say. Then $ac, uw \in E(\Gamma)$. Let $e_3 = ac$ and $e_4 = uw$. We consider the following subcases.

Case 4.1: Γ is a 1-extendable graph.

In this case, the edges e_3 and e_4 can each be extended to perfect matchings M_1 and M_2 of Γ, respectively. Let

$M = \{(g,0)(h,0) \mid gh \in M_1\} \cup \{(g,1)(h,1) \mid gh \in M_2\}$.

Then M is a perfect matching in $\Gamma \Box P_2$ which contains e_1 and e_2.

Case 4.2: Γ is a graph in which every two adjacent edges lie on an even cycle of Γ.

If e_3 and e_4 are independent or the same, then e_1 and e_2 are contained in the perfect matching $\{e_1, e_2, (a,1)(c,1)(u,0)(w,0)\} \cup \{(g,0)(g,1) \mid g \in V(\Gamma) \setminus \{a,c,u,w\}\}$ or $\{e_1, e_2\} \cup \{(g,0)(g,1) \mid g \in V(\Gamma) \setminus \{a,c\}\}$, respectively.

If e_3 and e_4 are adjacent edges of Γ, then, by hypothesis, they are contained in an even cycle C of Γ. Let M_1 and M_2 be perfect matchings of C containing e_3 and e_4 respectively. Then e_1 and e_2 are contained in the following perfect matching of $\Gamma \Box P_2$:

$\{(g,0)(h,0) \mid gh \in M_1\} \cup \{(g,1)(h,1) \mid gh \in M_2\} \cup \{(g,0)(g,1) \mid g \in V(\Gamma) \setminus V(C)\}$.

The proof of Lemma 6 is now complete. \qed

Corollary 1. Let $e_1 = (a,b)(c,d)$ and $e_2 = (u,v)(w,x)$ be two independent edges of $\Gamma = C_n \Box P_2$, where $n \geq 3$. Then, except when n is odd, $b = d \neq v = x$ and $|\{a,c\} \cap \{u,w\}| = 1$, there exists a perfect matching in Γ containing e_1 and e_2.
Proof. If \(n \) is even, then every two adjacent edges of \(C_n \) lie on the even cycle \(C_n \). So we are done. If \(n \) is odd, then by the argument in the proof of Lemma 6, it is easy to see that \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \) except in the last case of Case 4.2, i.e. when \(b = d = v = x \) and \(|\{a,c\} \cap \{u,w\}| = 1 \). \(\square \)

From this corollary, a second corollary follows immediately.

Corollary 2. \(C_n \square P_2 \) is 2-extendable if and only if \(n \) is even.

Combining Lemmas 5 and 6, we obtain a third corollary.

Corollary 3. If \(\Gamma \) is a Cayley graph of even order, then \(\Gamma \square P_2 \) is 2-extendable.

Lemma 7. \(C_{2n} \square P_m \) is 2-extendable, for \(n \geq 2 \) and \(m \geq 2 \).

Proof. Let \(C_{2n} = 12\ldots(2n)1 \) and \(P_m = 12\ldots m \). Let \(e_1 = (a,b)(c,d) \) and \(e_2 = (u,v)(w,x) \) be any two independent edges of \(C_{2n} \square P_m \). By Lemma 3, we may assume that \(e_1 \) and \(e_2 \) are parallel. We have the following cases to consider.

Case 1: \(b = d \) (and hence \(v = x \)).

If \(b \neq v \), then \(e_1 \) and \(e_2 \) lie in two distinct 2n-cycle \(C_{2n} \square \{b\} \) and \(C_{2n} \square \{v\} \), each of which has a perfect matching (say \(M_1, M_2 \)) containing \(e_1 \) and \(e_2 \), respectively. Clearly, \(M_1 \cup M_2 \) can be extended to a perfect matching of \(C_{2n} \square P_m \), since the subgraph induced by vertices not in \(M_1 \cup M_2 \) can be partitioned into disjoint even cycles and so contains a perfect matching. On the other hand, if \(b = v \), then we choose a vertex \(y \) in \(P_m \) adjacent to \(b \). Let \(M = \{e_1, e_2, (a,y)(c,y), (u,y)(w,y)\} \cup \{(g,b)(g,y) \mid g \in C_{2m}\{a,c,u,w\}\} \). Then \(M \) is a set of independent edges containing \(e_1 \) and \(e_2 \). As the subgraph induced by vertices not in \(M \) can be partitioned into disjoint even cycles, \(M \) can be extended to a perfect matching of \(C_{2n} \square P_m \).

Case 2: \(a = c \) (and hence \(u = w \)).

If \(\{b,d\} \cap \{v,x\} = \emptyset \) then let \(M = \{(g,b)(g,d) \mid g \in C_{2n}\} \cup \{(g,v)(g,x) \mid g \in C_{2n}\} \). Then \(M \) is a set of independent edges containing \(e_1 \) and \(e_2 \). As the subgraph induced by vertices not in \(M \) can be partitioned into disjoint even cycles, \(M \) can be extended to a perfect matching of \(C_{2n} \square P_m \). On the other hand, if \(\{b,d\} \cap \{v,x\} \neq \emptyset \), then either \(\{b,d\} = \{v,x\} \) or \(\{|\{b,d\} \cap \{v,x\}| = 1 \). In the first case, \(M = \{(g,b)(g,d) \mid g \in C_{2n}\} \) is obviously a set of independent edges containing \(e_1 \) and \(e_2 \) which can be extended to a perfect matching of \(C_{2n} \square P_m \). For the second case, without loss of generality, assume that \(v = d = b + 1 \) and \(x = v + 1 = b + 2 \). As \(C_{2n} \) is of even order at least 4, there exist distinct \(k, m \in V(C_{2n})\{a,u\} \) such that \(ak \) and \(um \) are independent edges in \(C_{2n} \) and \(V(C_{2n})\{a,u,k,m\} \) is a disjoint union of two even paths (possibly empty), and so has a perfect matching \(M \). Then \(e_1 \) and \(e_2 \) are contained in the following perfect
matching of the subgraph induced by \(V(C_{2n}) \setminus \{b, b + 1, b + 2\} \):

\[
\{e_1, e_2, (k, b)(k, b + 1), (u, b)(m, b), (m, b + 1)(m, b + 2), (a, b + 2)(k, b + 2)\}
\]

\[\cup \{(p, r)(q, r) | pq \in M, r = b, b + 1, b + 2\}.
\]

We can extend this to a perfect matching of \(C_{2n} \setminus P_m \).

Now that we know enough about the 2-extendability of the 'skeleton', \(C_n \setminus P_m \), of Cayley graphs, we shall proceed to study the 2-extendability of the Cayley graphs themselves.

Lemma 8. Let \(\Gamma \) be a Cayley graph of even order. Then any two independent edges of \(\Gamma \) of different types are contained in a perfect matching of \(\Gamma \).

Proof. Let \(\Gamma = G(S) \) where \(G \) is a finite abelian group of even order. Let \(e_1 = ab \) and \(e_2 = cd \) be edges of \(\Gamma \) of type \(s \) and \(t \), respectively, where \(s, t \in S \) and \(s \neq t \) or \(-t \). As \(\Gamma \) is vertex-transitive, we may assume that \(a = 0 \) and \(b = s \). We shall consider the following cases.

Case 1: \(s \) is even order \(2n \) and \(t \notin \langle s \rangle \).

Suppose \(n \geq 2 \). Let \(H \) be the Cayley graph \(\langle s, t \rangle \langle s, -s, -t \rangle \). Then \(H \) has a spanning subgraph \(K \) isomorphic to \(C_{2n} \setminus P_m, m \geq 2 \), whose edge-set contains \(e_1 \). If \(e_2 \) is an edge of \(H \), then we may choose \(K \) so that \(e_1, e_2 \in E(K) \) and hence by Lemma 7, there is a perfect matching in \(E(H) \) containing \(e_1 \) and \(e_2 \), which can then be extended to a perfect matching of \(\Gamma \), by Lemma 4. On the other hand, if \(e_2 \) is not an edge of \(H \), then \(e_2 \in E(\langle 0 \rangle \langle H \rangle) \). There is a perfect matching \(M \) in \(H \) containing \(e_1 \) and a perfect matching \(M' \) in \(E(\langle 0 \rangle \langle H \rangle) \) containing \(e_2 \). Then \(M \cup M' \) can then be extended to a perfect matching of \(\Gamma \), as the set of vertices of \(\Gamma \) not in \(M \cup M' \) can be decomposed into a finite number of copies of \(H \). The case where \(n = 1 \) may be handled in a similar fashion.

Case 2: \(s \) is of even order \(2n \) and \(t \in \langle s \rangle \), (say \(t = ks \)).

Let \(H \) be the Cayley graph \(\langle s \rangle \langle s, -s, -t \rangle \). In this case \(n \geq 2 \). If \(e_2 \) is not an edge of \(H \), then we can settle this case as in Case 1. Hence assume that \(e_2 \) is an edge of \(H \) with \(c = c's, d = d's \) and \(c' < d' \), say. We then have the following four subcases to consider. For each case, we find a matching \(M \) containing \(e_1 \) and \(e_2 \) such that the set of vertices of \(\Gamma \) not in \(M \cup M' \) can be decomposed into even paths and so \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \).

Case 2.1: If \(k \) is odd and \(c' \) is even, then let \(M = \{e_1, e_2\} \).

Case 2.2: If \(k \) is odd and \(c' \) is odd, then let \(M = \{e_1, e_2, ((c' + 1)s)((d' - 1)s), (c' + 1)s)((d' + 1)s))\).

Case 2.3: If \(k \) is even and \(c' \) is even, then let \(M = \{e_1, e_2, ((c' + 1)s)((d' + 1)s))\).

Case 2.4: If \(k \) is even and \(c' \) is odd, then let \(M = \{e_1, e_2, ((c' - 1)s)((d' - 1)s))\).

Case 3: \(s \) and \(t \) are of odd order.

Since \(S \) generates \(G \) which is of even order, one of the generating elements, say \(r \in S \), must have been even order. Hence \(r \notin V(H) \), where \(H \) is the Cayley graph
\(\langle s, t \rangle (s, t, -s, -t) \). Let \(K \) be the Cayley graph \(\langle r, s, t \rangle (r, -r, s, -s, t, -t) \). If \(e_2 \) is not an edge of \(K \), then as in Case 1, \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \), as \(\Gamma \) can be decomposed into a finite number of copies of \(K \), each of which is 1-extendable by Lemma 1. Hence, assume that \(e_2 \in E(K) \). Note that \(K \) can be decomposed into a finite number of copies of \(L \cong H \Box P_2 \), where \(V(L) = V(H) \cup \delta(H) \). If \(e_2 \) is not an edge of \(L \), then we can settle the case as before. Hence assume that \(e_2 \) is an edge of \(L \). We note that every two adjacent edges in \(H \) lie on an even cycle. By Lemma 6, there exists a perfect matching \(M \) in \(L \) which contains \(e_1 \) and \(e_2 \) and so can be extended to a perfect matching of \(\Gamma \). □

Lemma 9. The Cayley graph \(Z_{2n}(1, 2n - 1, n) \), \(n > 2 \), is 2-extendable if and only if \(n \) is odd.

Proof. If \(n \) is even, we let \(e_1 = 01 \) and \(e_2 = (n - 1)n \). Then there is not perfect matching in \(\Gamma \) containing \(e_1 \) and \(e_2 \).

On the other hand, assume that \(n \) is odd. Let \(e_1 = ab \) and \(e_2 = cd \) be two independent edges of \(Z_{2n}(1, 2n - 1, n) \). By Lemma 8, we may assume that they are of the same type. If they are of type \(n \), then they are contained in the perfect matching consisting of all edges of type \(n \). Thus, we need only to consider the case when they are of type 1. Without loss of generality, we may assume that \(a = 0, b = 1 \) and \(d = c + 1 \). If \(c \) is even, \(e_1 \) and \(e_2 \) are contained in the perfect matching consisting of all edges \(x(x + 1) \), where \(x = 0, 2, 4, \ldots, 2(n - 1) \). So, let \(c \) be odd. Then there exists an even integer \(y \in \{2, 3, \ldots, c - 1\} \), such that \(e_1 \) lies on the cycle \(C = 012 \ldots y (y + n)(y + n + 1) \ldots (2n - 1)0 \), whereas, \(e_2 \) lies on the path \(P = (y + 1)(y + 2) \ldots (y + n - 1) \). As \(C \) is an even cycle, it has a perfect matching \(M_1 \) containing \(e_1 \). Also, as \(P \) is of even order and \(y + 1 \) is odd, \(P \) also has a perfect matching \(M_2 \) containing \(e_2 \). Then \(M_1 \cup M_2 \) will be a perfect matching of \(Z_{2n}(1, 2n - 1, n) \), containing \(e_1 \) and \(e_2 \). □

Lemma 10. The Cayley graph \(Z_{4n+2}(1, 4n + 1, k, 4n + 2 - k) \), \(n \geq 1 \) and \(k < 2n + 1 \), is 2-extendable if and only if \(k \neq 1, 2, 2n \).

Proof. Let \(\Gamma = Z_{4n+2}(1, 4n + 1, k, 4n + 2 - k) \). If \(k = 1 \), then \(\Gamma \) is not 2-extendable, by Lemma 2. If \(k = 2 \), we let \(e_1 = 01 \) and \(e_2 = 34 \). Then there is no perfect matching in \(\Gamma \) containing \(e_1 \) and \(e_2 \). If \(k = 2n \), we let \(e_1 = 01 \) and \(e_2 = (2n + 1)(2n + 2) \). Then there is no perfect matching in \(\Gamma \) containing \(e_1 \) and \(e_2 \).

Conversely, assume that \(k \neq 1, 2, 2n \). Let \(e_1 = ab \) and \(e_2 = cd \) be two independent edges of \(\Gamma \), with \(a < b \) and \(c < d \). As \(\Gamma \) is vertex-transitive, we may assume that \(a = 0 \). By Lemma 8, we may also assume that \(e_1 \) and \(e_2 \) are of the same type. We consider the following two cases:

Case 1: \(k \) is odd.

If \(e_1 = 01 \), then by symmetry we may assume that \(d \leq 2n + 2 \). Assume first there \(c \) is even, the \(M = \{(2i, 2i + 1) | i = 0, 1, \ldots, 2n\} \) is a required perfect matching.
Assume next that \(c \) is odd, then \(e_2 \) is contained in the even cycle \(C = (c - 1)c(c + 1) \ldots (c - 1 + k)(c - 1) \) which has a perfect matching \(M_2 \) containing \(e_2 \) and \(e_1 \) is contained in the even path \(P = (c + k)(c + k + 1) \ldots (4n + 1)1012 \ldots (c - 2) \) which has a perfect matching \(M_1 \) containing \(e_1 \). Then \(M_1 \cup M_2 \) will be a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \).

Next, let \(e_1 = 0k \). Then we have the following cases to consider.

Case 1.1: \(c \) is odd and \(c < b \).

Let \(M = \{e_1, e_2,(c + 1)(d + 1)\} \). The vertices of \(\Gamma \) not in \(M \) can be partitioned into even paths and so \(M \) can be extended to a perfect matching of \(\Gamma \).

Case 1.2: \(c \) is odd and \(c > b \).

Let \(M = \{e_1, e_2,(c - 1)(d - 1),(c + 1)(d + 1)\} \). Then as before \(M \) can be extended to a perfect matching of \(\Gamma \).

Case 1.3: \(c \) is even and \(c < b \).

Let \(M = \{e_1, e_2,(c - 1)(d - 1)\} \). Then \(M \) can be extended to a perfect matching of \(\Gamma \).

Case 1.4: \(c \) is even and \(c > b \).

Let \(M = \{e_1, e_2\} \). Then \(M \) can be extended to a perfect matching of \(\Gamma \). Thus Case 1 is dealt with. We now have Case 2.

Case 2: \(k \) is even.

If \(e_1 = 01 \), then \(d = c + 1 \) and by symmetry we may assume that \(d \leq 2n + 2 \). Assume first that \(c \) is even, then \(M = \{(2i,2i + 1) | i = 0, 1, \ldots, 2n\} \) is a required perfect matching. Assume next that \(c \) is odd, then let \(M = \{(c - 1)(c - 1 + k), cd, (d + 1)(d + 1 + k),(c + k)(d + k)\} \). Then \(M \) is a set of independent edges containing \(e_2 \), whereas the set of vertices of \(\Gamma \) not in \(M \) induces a subgraph which is the disjoint union of even paths with a perfect matching \(M' \) containing \(e_1 \). Then \(M \cup M' \) is a required perfect matching of \(\Gamma \).

Finally let \(e_1 = 0k \). We then have the following subcases to consider.

Case 2.1: \(c \) is odd and \(c < b \).

In this case, the set of vertices of \(\Gamma \setminus \{a, b, c, d\} \) can be partitioned into even paths and so \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \).

Case 2.2: \(c \) is odd and \(c > b \).

Then we have either \(c - b \geq 2 \) or \(4n + 2 - d \geq 2 \), say the former. Let \(M = \{e_1, e_2,(c - 1)(d - 1), (b + 1)1\} \). Then the set of vertices of \(\Gamma \) not in \(M \) can be extended to a perfect matching of \(\Gamma \), for the same reason as that for Case 2.1.

Case 2.3: \(c \) is even and \(c < b \).

Let \(M = \{e_1, e_2,(c - 1)(d - 1), (c + 1)(d + 1)\} \). Then \(M \) can be extended to a perfect matching of \(\Gamma \), as in Case 2.1.

Case 2.4: \(c \) is even and \(c > b \).

Let \(M = \{e_1, e_2,(c + 1)(d + 1), 1(b + 1)\} \). Then \(M \) can be extended to a perfect matching of \(\Gamma \). \(\Box \)

Lemma 11. The Cayley graph \(\Gamma = Z_{4n}(1,4n - 1,k,4n-k) \), \(1 \leq k \leq 2n \), \(n \geq 2 \), is 2-extendable if and only if \(k \neq 1,2 \) and \(2n \).
Proof. If \(k = 1 \), then \(\Gamma \) is not 2-extendable, by Lemma 2. If \(k = 2 \), then \(\Gamma \) is not 2-extendable, as there is not perfect matching containing 01 and 34. If \(k = 2n \), then \(\Gamma \) is not 2-extendable, by Lemma 9.

Conversely, assume that \(k \) is different from 1, 2 and 2n. Let \(e_1 = ab \) and \(e_2 = cd \) be two independent edges of \(\Gamma \) with \(a < b \) and \(c < d \). As \(\Gamma \) is vertex-transitive, we may let \(a = 0 \). By Lemma 8, we may assume that they are of the same type \(t \). We have the following cases to consider.

Case 1: \(t = 1 \).

By symmetry, we may assume that \(d \leq 2n + 1 \). If \(c \) is even, then \(\{01, 23, \ldots, (4n - 2)(4n - 1)\} \) will be a required perfect matching. Assume that \(c \) is odd. If \(k \) is odd, let \(M = \{e_1, e_2, (c - 1)(c - 1 + k)\} \). Then vertices of \(\Gamma \) not in \(M \) can be partitioned into even paths and so \(M \) can be extended to a perfect matching of \(\Gamma \). On the other hand, if \(k \) is even, let \(M = \{e_1, e_2, (c - 1)(c - 1 + k), (d + 1)(d + 1 + k)\} \). Then, as before, \(M \) can be extended to a perfect matching of \(\Gamma \).

Case 2: \(t = k \).

In this case, we construct a matching \(M \) containing \(e_1 \) and \(e_2 \) for each of the following subcases, such that the vertices of \(\Gamma \) not in \(M \) can be partitioned into even paths, and therefore \(M \) can be extended to a perfect matching of \(\Gamma \). Let

\[
M = \begin{cases}
\{e_1, e_2, (c + 1)(d + 1)\} & \text{if } k \text{ is odd, } c \text{ is odd and } c < b; \\
\{e_1, e_2, (c - 1)(d - 1)(c + 1)(d + 1)\} & \text{if } k \text{ is odd, } c \text{ is odd and } c > b; \\
\{e_1, e_2, (c - 1)(d - 1)\} & \text{if } k \text{ is odd, } c \text{ is even and } c < b; \\
\{e_1, e_2\} & \text{if } k \text{ is even, } c \text{ is odd and } c < b; \\
\{e_1, e_2, (c - 1)(d - 1)(b + 1)\} & \text{if } k \text{ is even, } c \text{ is odd and } c - b \geq 2; \\
\{e_1, e_2, (c + 1)(d + 1)(4n - 1)(b - 1)\} & \text{if } k \text{ is even, } c \text{ is odd and } c - b = 1; \\
\{e_1, e_2, (c - 1)(d - 1)(c + 1)(d + 1)\} & \text{if } k \text{ is even, } c \text{ is even and } c < b; \\
\{e_1, e_2, (c + 1)(d + 1)(b + 1)\} & \text{if } k \text{ is even, } c \text{ is even and } c > b.
\end{cases}
\]

It is easy to see that \(M \) is as required. The proof is now complete. \(\square \)

Lemma 12. The Cayley graph \(\Gamma = Z_{2\eta}(1, 2n - 1, 2, 2n - 2, n - 1, n + 1), n \geq 2 \) and \(n \neq 3 \), is 2-extendable.

Proof. Let \(e_1 = ab \) and \(e_2 = cd \) be two independent edges of \(\Gamma \) with \(a < b \) and \(c < d \). As \(\Gamma \) is vertex-transitive, we may assume that \(a = 0 \) and by Lemma 8, we may assume that \(e_1 \) and \(e_2 \) are of the same type \(t \).

Case 1: \(t = 1 \).

By symmetry, we may assume that \(d \leq n + 1 \). If \(n \) is even, then by Lemma 11, the spanning subgraph \(Z_{2\eta}(1, 2n - 1, n - 1, n + 1) \) of \(\Gamma \) is \(\epsilon \)-extendable and so \(e_1 \) and \(e_2 \) can be extended to perfect matching of \(\Gamma \). Hence we let \(n \geq 5 \) be odd. If \(c \) is even,
then e_1 and e_2 are contained in the perfect matching $\{01, 23, \ldots, (2n-2)(2n-1)\}$ of Γ. On the other hand, if c is odd, let $M = \{e_1, e_2, (c+1)(c+3)\}$. Then M can be extended to a perfect matching of Γ, as vertices of Γ not in M can be partitioned into even paths.

Case 2: $t = 2$.

By symmetry, we may assume that $d \leq n + 2$. If $c = 1$, then vertices of Γ not on e_1 and e_2 induce an even path and so Γ has a perfect matching containing e_1 and e_2. Let $c > 1$. If c is odd, let $M = \{e_1, e_2, (2n-1)(c-1)(c+1)\}$. Then vertices of Γ not in M induce even paths and so M can be extended to a perfect matching of Γ. On the other hand, if c is even, let $M = \{e_1, e_2, (2n-1)(c-1)(c+1)\}$. Then, as above, M can be extended to a perfect matching of Γ.

Case 3: $t = n - 1$.

If n is even, then by Lemma 11, the spanning subgraph $Z_{2n}(1, 2n-1, n-1, n+1)$ of Γ is 2-extendable and so Γ has a perfect matching containing e_1 and e_2. Hence assume that $n \geq 5$ is odd. In this case, we then have several subcases to discuss. For each subcase, as in the proof of Lemma 11, we construct a matching M containing e_1 and e_2 such that the vertices of Γ which are not in M can be partitioned into even paths, and hence M can be extended to a perfect matching of Γ. The desired matching M is as follows:

$$M = \begin{cases}
\{e_1, e_2, (c-1)(c+1), (d-1)(d+1)\} & \text{if } c \text{ is even and } c < b; \\
\{e_1, e_2\} & \text{if } c \text{ is odd and } c < b; \\
\{e_1, e_2, (n-2)(2n-3), (2n-4)(2n-2)\} & \text{if } c \text{ is odd and } c > b.
\end{cases}$$

We are now ready to prove our main theorem.

3. Proof of the main theorem

We first assume that Γ is isomorphic to one of the given graphs. If Γ is of type (I), then it is not 2-extendable, by Lemma 2.

If Γ is of type (II), then the edges 01 and 34 cannot be extended to a perfect matching of Γ and hence it is not 2-extendable.

If Γ is of type (III), then it is not 2-extendable, by Lemma 9.

If Γ is of type (IV), then Γ is isomorphic to $C_{2n+1} \square P_2$ and so it is not 2-extendable, by Corollary 2 of Lemma 6.

Finally, if Γ is of type (V), then Γ is not 2-extendable, by Lemma 10.

Conversely, assume that Γ is not isomorphic to any graph of the given types. We shall prove that Γ is 2-extendable.

If Γ is regular of degree 2, then it must be a 4-cycle and is so 2-extendable.

If Γ is regular of degree 3, let $S = \{a, b, c\}$. If a, b and c are of order 2, then Γ is isomorphic to the complete graph K_4 or the cube $C_4 \square P_2$ and is so 2-extendable. Otherwise, we may assume that $a + b = 0$ and $c + c = 0$. If $c \notin \langle a \rangle$, then $\Gamma \cong C_m \square P_2$.
where \(m = o(a) \). By hypothesis, \(m \) must be even and so by Lemma 7, \(\Gamma \) is 2-extendable. On the other hand, if \(c \in \langle a \rangle \), then \(a \) must be of even order \(2n \) and \(c = na \). Hence \(\Gamma \cong Z_{2n}(1, 2n - 1, n) \) and so by hypothesis, \(n \) must be odd. Hence \(\Gamma \) is 2-extendable, by Lemma 9.

If \(\Gamma \) is regular of degree 4, let \(S = \{a, b, c, d\} \). Again if \(a, b, c \) and \(d \) are of order 2, then \(\Gamma \) is isomorphic to \(K_4 \sqcup P_2 \), or the complete bipartite graph \(K_{4,4} \), or \(C_4 \sqcup C_4 \) and is so 2-extendable. If \(a, b \) are of order 2 and \(c + d = 0 \), let \(e_1 \) and \(e_2 \) be independent edges of \(\Gamma \). By Lemma 8, we may assume that \(e_1 \) and \(e_2 \) are of the same type. If they are of type \(a \) or \(b \) (say \(a \)), then the set of all \(a \)-edges will be required perfect matching. Hence, assume that they are of type \(c \). If \(a \in \langle c \rangle \), then \(c \) must be of even order \(2n \) and \(b \notin \langle c \rangle \). Hence \(\Gamma \) has a spanning subgraph which is isomorphic to \(C_{2n} \sqcup P_2 \) and contains the edges \(e_1 \) and \(e_2 \). By Lemma 7, \(\Gamma \) has a required perfect matching. Assume that both \(a \) and \(b \) are not in \(\langle c \rangle \). If \(c \) is of even order \(2n \), then \(\langle c, a \rangle \) is isomorphic to \(k_{2n} \sqcup P_2 \) which is 2-extendable. It follows from Lemma 4 that there is a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \). If \(c \) is of odd order \(k \), then \(\Gamma \) is isomorphic to \(C_k \sqcup P_2 \sqcup P_2 \), which is 2-extendable by Lemma 6, since \(C_k \sqcup P_2 \) is 1-extendable. Finally, assume that \(a + b = 0 \) and \(c + d = 0 \). At least one of \(a \) or \(c \) (say \(a \)) is of even order \(2n \). If \(c \notin \langle a \rangle \), then for any two independent edges \(e_1 \) and \(e_2 \) of \(\Gamma \), there exists a spanning subgraph of \(\Gamma \) which is isomorphic to \(C_{2n} \sqcup P_m \), \(m \geq 2 \), and contains \(e_1 \) and \(e_2 \). So by Lemma 7, \(\Gamma \) has a perfect matching containing \(e_1 \) and \(e_2 \). If \(c \in \langle a \rangle \), then \(c \neq a, na, 2a \) and \(c \neq (n - 1)a \) if \(n \) is odd. By Lemmas 10 and 11, \(\Gamma \) is 2-extendable.

Hence, we may assume \(\Gamma \) is regular of degree at least 5. Let \(e_1 \) and \(e_2 \) be any two independent edges of \(\Gamma \). By Lemma 8, we need only to consider the case when \(e_1 \) and \(e_2 \) are of the same type (say \(a \)). As \(\Gamma \) is vertex-transitive, we may assume that \(e_1 = 0a \).

Now, we need only to consider the following two cases:

Case 1: \(a \) is of even order \(2n \).

If \(n = 1 \), then all the \(a \)-edges of \(\Gamma \) will be a perfect matching of \(\Gamma \). Hence, we may let \(n \geq 2 \). The set of all \(a \)-edges forms a spanning subgraph of \(G \) which is the disjoint union of \(2n \)-cycles. If \(e_1 \) and \(e_2 \) are in two distinct cycles, then clearly they can be extended to a perfect matching of \(\Gamma \). Hence, \(e_2 = (ta)((t + 1)a) \), \(1 < t < 2n - 1 \). If \(\langle a \rangle \neq G \), then there exists \(b \in S \) such that \(b \notin \langle a \rangle \). Then \(\langle a, b \rangle (a, -a, b, -b) \) has a spanning subgraph \(H \) isomorphic to \(C_{2n} \sqcup P_m \) containing \(e_1 \) and \(e_2 \), for some \(m \geq 2 \). By Lemma 7, \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(H \), which in turn can be extended to a perfect matching of \(\Gamma \), by Lemma 4. Finally, we may assume that \(b \notin \langle a \rangle \) for all \(b \in S \). As \(\Gamma \) is of degree at least 5, by Lemma 12, we may assume that there exists \(b \in S \) with \(b \notin a,(2n - 1)a, 2a,(2n - 2)a,(n - 1)a \) and \((n - 1)a \). If \(n \) is odd, then by Lemmas 9 and 10, the subgraph induced by the set of all \(a \)-edges and \(b \)-edges is a 2-extendable spanning subgraph of \(\Gamma \). Hence \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \). Suppose \(n \) is even. If there is an element \(c \) of \(S \) other than \(\pm 2a \) and \(na \), then by Lemma 11, the subgraph induced by the set of all \(a \)-edges and \(c \)-edges is a 2-extendable spanning subgraph of \(\Gamma \). Hence \(e_1 \) and \(e_2 \) can be extended to a perfect matching of \(\Gamma \). If such a \(c \) does not exist, then we have \(\Gamma \cong Z_{2n}(1, 2n - 1, 2, 2n - 2, n) \). If \(e_2 = (ta)((t + 1)a) \) with \(t \) even, then
$M = \{(ia)((i+1)a) \mid i = 0, 2, \ldots, 2n-2\}$ is a perfect matching of Γ that contains e_1 and e_2. It remains to consider $e_2 = (ta)((t+1)a)$ with t odd. By symmetry we may take $3 \leq t \leq n-1$. Now $M = \{e_1, e_2, (2a)((n+2)a), (n+1)a((n+3)a)\}$ may be extended to a perfect matching of Γ since the set of vertices of Γ not in M may be partitioned into even paths.

Case 2: a is of odd order $2n+1$.

As G is of even order, there exists an element $b \in S$ of even order and so $b \notin \langle a \rangle$. Let m be the smallest positive integer such that $mb \in \langle a \rangle$. Then m is even. Let H be the subgraph of Γ induced by $\bigcup (ib + \langle a \rangle) \mid i = 0, 1, \ldots, m-1\}$. Then $H_i \cong C_{2n+1} \square P_2$ and is 1-extendable. Hence if e_1 and e_2 are in different H_i, there is clearly a perfect matching of Γ (by Lemma 4) containing e_1 and e_2. Hence we may assume that e_2 is an edge in H_0. By Corollary 1 of Lemma 6, we need only to consider the case

$$e_2 = (b + sa)(b + (s + 1)a) \text{ for some } 1 \leq s \leq 2n \text{ and } |\{0, 1\} \cap \{s, s + 1\}| = 1 \text{ (say } s = 1\).$$

In this case, let $(m-1)b + ta$ be the vertex in H_{m-2} such that $mb + ta = 2a$. Let $M = \{e_1, e_2, (2a)((m-1)b + ta), b(b + 2a)\} \cup \{(ka)(b + ka) \mid k \neq 0, 1, 2\}$. Then M can be extended to a perfect matching of Γ, since the subgraphs induced by $(2b + \langle a \rangle) \setminus \{2b\}$ and $(m-1)b + \langle a \rangle) \setminus \{(m-1)b + ta\}$ are even paths and the subgraph induced by $\bigcup \{ib + \langle a \rangle \mid i = 3, 4, \ldots, m-2\}$ is isomorphic to $C_{2n+1} \square P_2$, where $r = (m-4)/2$.

Finally, we need only consider the case when $m = 2$. If $e_2 = (sa)((s+1)a)$, or $(b + sa)(b + (s + 1)a)$ (for some s with $|\{0, 1\} \cap \{s, s + 1\}| = 0$), or $b(b + a)$, the as in the previous case, H has a perfect matching containing e_1 and e_2. Hence we may assume that $e_2 = (b + a)(b + 2a)$. If $\langle a, b \rangle \neq G$, then there exists $c \in S \setminus V(H)$. Let $K = V(H) \cup \{c \in V(H)\}$. Then K has the following perfect matching containing e_1 and e_2:

$$M = \{e_1, e_2, c(c + a), (c + b + a)(c + b + 2a), (2a)(2a + c), b(b + c)\} \cup \{g(g + c) \mid g \in V(H) \setminus \{0, a, 2a, b, a + b, 2a + b\}\}.$$

Hence M can be extended to a perfect matching of Γ, as the subgraph of Γ induced by the set of all vertices of Γ not in K contains a spanning subgraph which is the disjoint union of a finite copies of H. Therefore it remains to consider the case that $\langle a, b \rangle = G$.

As G is regular of degree at least 5, there exists $c \in S \setminus \{a, -a, b, -b\}$. We may let $c = ta$ or $b + ta$ for some $1 \leq t \leq n$. If $c = ta$ with $t \geq 3$, let $M = \{e_1, e_2, (2a)\ \ (2t + 1)a), b(b + ta), (ta)(t + 1)a), (b + (t + 1)a)(b + (t + 2)a)\} \cup \{(sa)(b + sa) \mid s \neq 0, 1, 2, t, t + 1, t + 2\}$. Then M is a perfect matching of Γ containing e_1 and e_2. If $c = 2a$, then let $M = \{e_1, e_2, (2a)(4a), (3a)(b + 3a)\}$. Then M is a set of independent edges containing e_1 and e_2 and the set of all vertices of Γ not in M can be decomposed into the disjoint union of even paths and so has a perfect matching M'. Hence $M \cup M'$ will be a required perfect matching of Γ. Now, we need only to consider the case where $c = b + ta$. As $c \neq b$ and $-b$, we have $t \neq 0$ and $2b \neq 2t_a$, respectively.
If \(t \geq 3 \), then let \(M = \{e_1, e_2, c(a + c), (b + a - c)(b + 2a - c)\} \cup \{x(x + c) | x \in \langle a \rangle \setminus \{0, a, b + a - c, b + 2a - c\}\}. \) Then \(M \) is a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \). If \(t = 1 \), then let \(M = \{e_1, e_2\} \cup \{x(x + c) | x \in \langle a \rangle \setminus \{0, a\}\}. \) Then \(M \) is a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \). Finally, we may assume that \(t = 2 \). Then \(2b \neq 4na = (2n - 1)a \). If \(2b \neq 0 \), then let \(M = \{e_1, e_2, (2b + a)(2b + 2a), (-b)(a - b)\} \cup \{(y + b)y | y \in (b + \langle a \rangle) \setminus \{b + a, b + 2a, -b, a - b\}\}. \) Then \(M \) is a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \). On the other hand, if \(2b = 0 \), then let \(M = \{e_1, e_2, (3a)(4a), (-c)(a - c)\} \cup \{(y + c)y | y \in (b + \langle a \rangle) \setminus \{b + a, b + 2a, -c, a - c\}\}. \) Then \(M \) is a perfect matching of \(\Gamma \) containing \(e_1 \) and \(e_2 \). \(\square \)

To end the paper, we shall like to raise the following problems.

Problem 1. Characterize 3-extendable abelian Cayley graphs and, in general, \(k \)-extendable abelian Cayley Graphs.

Problem 2. Characterize 1-extendable and 2-extendable Cayley graphs.

Acknowledgements

The authors wish to thank the referees for their helpful comments which enhanced the readability of the paper.

References

