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Branching program depth and the logarithm of branching program complexity are lower 
bounds on time and space requirements for any reasonable model of sequential computation. 
In order to gain more insight to the complexity of branching programs and to the problems of 
time-space trade-offs one considers, on one hand, width-restricted and, on the other hand, 
depth-restricted branching programs. We present these computation models and the trade-off 
results already proved. We prove a new result of this type by presenting an effectively detined 
Boolean function whose complexity in depth-restricted one-time-only branching programs is 
exponential while its complexity even in width-2 branching programs is polynomial. ,f” 1986 

Acadermc Press, Inc. 

1. INTRODUCTION 

We assume that the reader is familiar with the basic concepts of Boolean 
networks and formulae for the computation of Boolean functions. Here we consider 
branching programs. 

DEFINITION 1, A branching program is an acyclic labelled graph with one source 
and arbitrarily many sinks. Each node has out-degree 0 (sink) or 2 (computation 
node). One successor of each computation node can be reached via a O-edge (an 
edge labelled 0) and the other via a l-edge. The sinks are labelled by Boolean con- 
stants and the computation nodes by Boolean variables. The computation for the 
input vector a starts at the source. At a computation node labelled xi we use the 
edge labelled by a,. The program computes the Boolean function f, where f(a) 
equals the label of the sink we reach for input a. The depth of a program is the 
length of the longest path and the complexity is the number of computation nodes. 
The proper complexity measures are denoted by BPD(f) and BP(f). 

The logarithm of the complexity of branching programs is often called capacity. 
It has been shown already by Cobham [4] that depth and capacity are lower 
bounds on time and space requirements for any reasonable model of sequential 
computation. Pudlak and Zak [9] proved more tight connections between capacity 
and space requirements. 
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Many results are known on the depth of branching programs (see, e.g., Bollobas 
[ 11) but only few results on the complexity of branching programs. Although most 
of the Boolean functions have exponential BP-complexity the largest known lower 
bound for effectively defined Boolean functions is an IR(n2/log2 n) bound by 
Nechiporuk [7]. Nechiporuk proved his result for contact schemes but one may 
easily translate it to branching programs. 

In order to gain more insight to the problem of proving lower bounds and 
time-space trade-offs one has investigated more restricted models. This has been 
done at first for Boolean networks by the pioneering paper of Furst, Saxe, and 
Sipser [S] who introduced depth restricted circuits and proved nonpolynomial 
lower bounds for the parity function, the exactly-half function and other functions. 

In order to examine space (or capacity) restricted branching programs one could 
investigate branching programs whose complexity is bounded by BP(j) of k BP(f) 
for some constant k. This seems to be very difficult since it is already hard to com- 
pute BP(f). Borodin, Dolev, Fich, and Paul [2] introduced width restricted 
branching programs. These are levelled branching programs where the number of 
nodes on each level is bounded by some constant k, in [2] k = 2. In the following 
sense width-restricted branching programs may be considered as capacity restricted 
branching programs. While the capacity of any branching program of depth d is at 
least log d the capacity of a width-k branching program of depth d is at most 
log(kd). Further papers on width restricted branching programs (even for k > 2) are 
Chandra, Furst, and Lipton [3], Pudlak [S], and Yao [12]. 

Already Masek [6] introduced for k = 1 k-times-only branching programs 
(BP/, -s), where each variable may be tested on each path of computation only k 
times. For BP, -s one may compute efficiently the complexity of symmetric 
functions (Wegener [lo]). One can prove exponential lower bounds for clique 
functions (Wegener [ 111) and functions related to clique functions (Pudlak and 
Zak [9]). We motivate this restriction in Chapter 2 where we also refer the trade- 
off results obtained until now. Our main purpose is to compare width an depth 
restricted branching programs. On the one hand it is already known (Yao [12]) 
that some functions may have polynomial BP,-complexity and non-polynomial 
width-2 BP-complexity. On the other hand we define effectively in Chapter 3 a 
Boolean function whose BP,-complexity is exponential but whose width-2 BP- 
complexity is polynomial. 

2. A DISCUSSION OF TRADE-OFFS 

For width-restricted branching programs one tries to minimize the depth of 
branching programs, where the capacity is minimum with respect to the depth. For 
BP, -s and BP, -s we try to minimize the capacity, where the depth is bounded. 
For BP,, - s the depth is bounded by kn, where n is the number of variables. One 
may ask why one does not investigate branching programs whose depth is restric- 
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ted by BPD(f) or k BPD(f). This seems to be more natural. But similarly to the. 
discussion of width restricted branching programs BPD(f) is often not known. 
More significant is the following argument. The depth may be large since we have 
to test all variables on some branch of the program, but all other branches may be 
short. On these paths the depth restriction is not important. In BP, -s each path 
has an individual depth restriction. One is not allowed to gather computation paths 
if one is forced to separate them again by repeating an old test. We give an example 
for this effect. Let fzXhc, be the function on N = (;) variables corresponding to the 
possible edges of an n-vertex graph which computes 1 iff the graph consists of an 
n/2-clique and n/2 isolated vertices. Pudlak and Zak [9] have shown an exponen- 
tial lower bound on the BP,-complexity of the function while Wegener [ 111 proved 
a polynomial upper bound on the BP,-complexity of this function. Furthermore 
Wegener [lo] proved that for this and many other functions the models of 
branching programs of minimum depth and BP, -s coincide. The following 
function on 2N + 1 variables is essentially an exactly half clique function and should 
behave like it. It does so for BP, -s but not for branching programs of minimum 
depth; g2N+ 1(x1 ,..., xN, Y, ,..., y,, z) computes the conjunction of the x and y 
variables if z = 1 and computes f&,(~~ ,..., x,,,) if z =O. It is easy to prove that 
BPD( g,, + 1 ) = 2N+ 1. Its BP,-complexity is exponential since f&i is a sub- 
function. In branching programs of minimum depth we may test at first z. If z = 1, 
2N nodes are sufficient to compute g,, + , . If z = 0, we have to compute fen&, and 
the allowed depth is 2N. By the efficient BP, mentioned above we compute g2N+ 1 
with a polynomial number of nodes. 

The following property should be fulfilled for any significant complexity measure 
C. If f’ is a subfunction off, i.e., f’ results from f by replacing some variables by 
constants, then C(f’) 6 C(S). This property is indeed fulfilled for the complexity of 
BPk -s, but as we have seen by the example above it is not fulfilled for branching 
programs of minimal depth. Thus BP, -s are the proper model of depth restricted 
branching programs. 

We mention now two trade-offs for branching programs proved earlier. 

THEOREM 1. The BP,-complexity of the exactly half clique function is exponential 
(Pudhik and Zcik [ 91) while its BP,-complexity is polynomial ( Wegener [ 111). 

This result leads to the open problem whether the classes BP,(P) of funtions with 
polynomial BP,-complexity build a proper hierarchy. 

The majority function computes 1 iff the number of ones in the input is at least 
n/2. 

THEOREM 2. The widh-2 branching program complexity of the majority function 
is not polynomial (Yao [ 121) while its BP,-complexity is polynomial (see, e.g., 
Wegener [ lo] ). 
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3. A NEW TIME-SPACE TRADE-OFF 

We prove the counterpart of Theorem 2. We define effectively a function whose 
complexity with respect to width-2 branching programs but also to Boolean for- 
mulae and depth-2 circuits is polynomial while its BP,-complexity is exponential. 
We have no theory for the construction of efficient width-2 branching programs. 
But the width-2 branching program complexity is bounded by the length of a 
minimal polynomial for J: Therefore we choose for the proposed trade-off a 
function where the number of prime implicants is polynomial. 

DEFINITION 2. f;,,,: (0, 1 }” + (0, 1 }, where 36k(n)<n and N=(i) is a 
function where the variables correspond to the possible edges of an n-vertex graph. 
fkl, computes 1 iff the graph specified by the variables contains a k(n)-clique on 
vertices i, ,..., ikCnJ such that ii+, = , i + 1 mod n for 1 < j< k(n) - 3, that means 
k(n) - 2 vertices build a successive sequence mod n. 

THEOREM 3. The complexity off ;I-(,,, in width-2 branching programs and depth-2 
circuits is at most O(n3k(n)2) = O(n5) and therefore polynomial. The BP,-complexity 
of fj!(,,, for k(n) = Ln’13 J is at least 52(2”‘“‘), where m(n) = n213/4 - ~(n~‘~) and 
therefore exponential. 

Proof: The cliques corresponding to prime implicants of f &, are called special 
cliques. There are n positions where the successive sequence of k(n) - 2 vertices may 
start. For the other two vertices of a special clique we have less than (‘;) 
possibilities. Thus f i(n) has O(n3) prime implicants of length (ky)) each. This proves 
the upper bound of the theorem. 

For the lower bound we show that after at most m(n) arbitrary tests we do not 
know the value of the function and that two different nodes v and w cannot be 
merged in a BP, for f;(,, if some path from the source to v (resp. w) has length at 
most (99/2 = m(n). Thus we can conclude that a BP1 for f &,,) has exactly 2’ nodes 
in distance 1 <m(n) from the source and the lower bound follows. 

In order to know that ficn, q e uals 1 we must have tested all ($cn)) edges of a k(n)- 
clique positively. This is not the case after at most m(n) tests. After at most m(n) 
negative tests there are at most n213/2 vertices where some adjacent edge is already 
tested negatively. Thus there is a subsequence of (n - n2/‘/2)/(n2j3/2) = 2n’13 - 1 > 
k(n) - 2 vertices, where no adjacent edge has been tested negatively. The existence of 
a special clique is still possible and we do not know that f zCE, equals 0. 

Let v and w be different nodes such that some path p(u) from the source to v and 
some path p(w) from the source to w has length at most (“y))/2 = m(n). It remains 
to prove the following claim. If we merge v and w the BP, does not compute f zcnj. 
We may assume that u is not a successor or predecessor of w because in this 
situation we would create a cycle if we merge v and w. Let G(v) and G(w) be the 
partial graphs which contain the edges tested positively on p(v) (resp. p(w)). The 
edges tested negatively are called forbidden, the edges not tested yet are called 
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variable. Since u and w do not lie on the same path there exists some edge e such 
that e belongs to one of the graphs, w.1.o.g. G(v), and is forbidden in the other 
graph, G(w). Since f&,,, is symmetric with respect to the vertices we assume w.1.o.g. 
that e = (1,2). Let us assume that we merge u and w. Having reached this node we 
are allowed to test only the edges variable in G(u) and in G(w). If we declare the 
edges not tested on p(v) or p(w) in an arbitrary way as existing or forbidden the 
following must hold if the BP, still computes j&,. Either the completion of G(u) 
and the completion of G(w) contain a special clique (not necessarily the same) or in 
both completions any special clique has been destroyed by forbidden edges. We 
derive a contradiction by declaring the edges variable for G(u) and G(w) in such a 
way as existing and forbidden that the completion of G(u) contains a special clique 
and the completion of G(w) does not. 

Let A be the set of vertices z 4 { 1,2} adjacent to some edge tested on p(u) or 
p(w). By our assumption on the lengths of p(u) and p(w) we conclude that 
Ml d d3. Thus B : = (l,..., n} -A has cardinality at least n - n2’3. B consists of at 
most n213 successive subsequences mod n. The longest subsequence has length at 
least (n - n2’3)/n2’3 = n113 - 1. Thus we may choose a sequence i,..., i + k(n) - 3 
(mod n) of vertices all in B. Let D be any k(n)-subset of B containing the vertices 1 
and 2 and i,..., i + k(n) - 3 (mod n). In G(u) and in G(w) all edges on D with the 
only exception of e = (1, 2) are variable. The edges tested already in G(u) and G(w) 
and containing one node in D are incident with 1 or 2. We declare all edges on D 
with the only exception of e = (1,2) as existing and all other variable edges as 
forbidden. 

G*(u), the completion of G(u), contains the special clique consisting of the ver- 
tices in D. G*(w), the completion of G(w), does not contain this clique since 
e = (1,2) is forbidden. Since G(w) does not contain any special clique and since 
only edges on D are declared as existing a special clique of G*(w) has to contain a 
vertex z ED - { 1,2} and by our considerations above a vertex z’ 4 D. But the edge 
(z, z’) does not exist in G*(w). Thus G*(w) does not contain any special clique. Our 
assumption that we may merge u and w in a BP, for f&) leads to a contradiction. 

Q.E.D. 
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