
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 32, 91-96 (1986)

Time-Space Trade-offs for Branching Programs

INGO WEGENER *

FB 204zformatik, Johann Wolfgang Goethe-UniversitSit,
6000 Frankfurt a.M., Federal Republic of Germany

Received October 1, 1984; revised July 9, 1985

Branching program depth and the logarithm of branching program complexity are lower
bounds on time and space requirements for any reasonable model of sequential computation.
In order to gain more insight to the complexity of branching programs and to the problems of
time-space trade-offs one considers, on one hand, width-restricted and, on the other hand,
depth-restricted branching programs. We present these computation models and the trade-off
results already proved. We prove a new result of this type by presenting an effectively detined
Boolean function whose complexity in depth-restricted one-time-only branching programs is
exponential while its complexity even in width-2 branching programs is polynomial. ,f” 1986

Acadermc Press, Inc.

1. INTRODUCTION

We assume that the reader is familiar with the basic concepts of Boolean
networks and formulae for the computation of Boolean functions. Here we consider
branching programs.

DEFINITION 1, A branching program is an acyclic labelled graph with one source
and arbitrarily many sinks. Each node has out-degree 0 (sink) or 2 (computation
node). One successor of each computation node can be reached via a O-edge (an
edge labelled 0) and the other via a l-edge. The sinks are labelled by Boolean con-
stants and the computation nodes by Boolean variables. The computation for the
input vector a starts at the source. At a computation node labelled xi we use the
edge labelled by a,. The program computes the Boolean function f, where f(a)
equals the label of the sink we reach for input a. The depth of a program is the
length of the longest path and the complexity is the number of computation nodes.
The proper complexity measures are denoted by BPD(f) and BP(f).

The logarithm of the complexity of branching programs is often called capacity.
It has been shown already by Cobham [4] that depth and capacity are lower
bounds on time and space requirements for any reasonable model of sequential
computation. Pudlak and Zak [9] proved more tight connections between capacity
and space requirements.

* Supported in part by DFG Grant We 1066/1-l.

91
0022-0000/86 $3.00

Copyright c> 1986 by Academic Press. Inc.
All rights of reproductmn in any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82534674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

92 INGO WJIGENJZR

Many results are known on the depth of branching programs (see, e.g., Bollobas
[11) but only few results on the complexity of branching programs. Although most
of the Boolean functions have exponential BP-complexity the largest known lower
bound for effectively defined Boolean functions is an IR(n2/log2 n) bound by
Nechiporuk [7]. Nechiporuk proved his result for contact schemes but one may
easily translate it to branching programs.

In order to gain more insight to the problem of proving lower bounds and
time-space trade-offs one has investigated more restricted models. This has been
done at first for Boolean networks by the pioneering paper of Furst, Saxe, and
Sipser [S] who introduced depth restricted circuits and proved nonpolynomial
lower bounds for the parity function, the exactly-half function and other functions.

In order to examine space (or capacity) restricted branching programs one could
investigate branching programs whose complexity is bounded by BP(j) of k BP(f)
for some constant k. This seems to be very difficult since it is already hard to com-
pute BP(f). Borodin, Dolev, Fich, and Paul [2] introduced width restricted
branching programs. These are levelled branching programs where the number of
nodes on each level is bounded by some constant k, in [2] k = 2. In the following
sense width-restricted branching programs may be considered as capacity restricted
branching programs. While the capacity of any branching program of depth d is at
least log d the capacity of a width-k branching program of depth d is at most
log(kd). Further papers on width restricted branching programs (even for k > 2) are
Chandra, Furst, and Lipton [3], Pudlak [S], and Yao [12].

Already Masek [6] introduced for k = 1 k-times-only branching programs
(BP/, -s), where each variable may be tested on each path of computation only k
times. For BP, -s one may compute efficiently the complexity of symmetric
functions (Wegener [lo]). One can prove exponential lower bounds for clique
functions (Wegener [111) and functions related to clique functions (Pudlak and
Zak [9]). We motivate this restriction in Chapter 2 where we also refer the trade-
off results obtained until now. Our main purpose is to compare width an depth
restricted branching programs. On the one hand it is already known (Yao [12])
that some functions may have polynomial BP,-complexity and non-polynomial
width-2 BP-complexity. On the other hand we define effectively in Chapter 3 a
Boolean function whose BP,-complexity is exponential but whose width-2 BP-
complexity is polynomial.

2. A DISCUSSION OF TRADE-OFFS

For width-restricted branching programs one tries to minimize the depth of
branching programs, where the capacity is minimum with respect to the depth. For
BP, -s and BP, -s we try to minimize the capacity, where the depth is bounded.
For BP,, - s the depth is bounded by kn, where n is the number of variables. One
may ask why one does not investigate branching programs whose depth is restric-

TIME-SPACE TRADE-OFFS 93

ted by BPD(f) or k BPD(f). This seems to be more natural. But similarly to the.
discussion of width restricted branching programs BPD(f) is often not known.
More significant is the following argument. The depth may be large since we have
to test all variables on some branch of the program, but all other branches may be
short. On these paths the depth restriction is not important. In BP, -s each path
has an individual depth restriction. One is not allowed to gather computation paths
if one is forced to separate them again by repeating an old test. We give an example
for this effect. Let fzXhc, be the function on N = (;) variables corresponding to the
possible edges of an n-vertex graph which computes 1 iff the graph consists of an
n/2-clique and n/2 isolated vertices. Pudlak and Zak [9] have shown an exponen-
tial lower bound on the BP,-complexity of the function while Wegener [111 proved
a polynomial upper bound on the BP,-complexity of this function. Furthermore
Wegener [lo] proved that for this and many other functions the models of
branching programs of minimum depth and BP, -s coincide. The following
function on 2N + 1 variables is essentially an exactly half clique function and should
behave like it. It does so for BP, -s but not for branching programs of minimum
depth; g2N+ 1(x1 ,..., xN, Y, ,..., y,, z) computes the conjunction of the x and y
variables if z = 1 and computes f&,(~~ ,..., x,,,) if z =O. It is easy to prove that
BPD(g,, + 1) = 2N+ 1. Its BP,-complexity is exponential since f&i is a sub-
function. In branching programs of minimum depth we may test at first z. If z = 1,
2N nodes are sufficient to compute g,, + , . If z = 0, we have to compute fen&, and
the allowed depth is 2N. By the efficient BP, mentioned above we compute g2N+ 1
with a polynomial number of nodes.

The following property should be fulfilled for any significant complexity measure
C. If f’ is a subfunction off, i.e., f’ results from f by replacing some variables by
constants, then C(f’) 6 C(S). This property is indeed fulfilled for the complexity of
BPk -s, but as we have seen by the example above it is not fulfilled for branching
programs of minimal depth. Thus BP, -s are the proper model of depth restricted
branching programs.

We mention now two trade-offs for branching programs proved earlier.

THEOREM 1. The BP,-complexity of the exactly half clique function is exponential
(Pudhik and Zcik [91) while its BP,-complexity is polynomial (Wegener [111).

This result leads to the open problem whether the classes BP,(P) of funtions with
polynomial BP,-complexity build a proper hierarchy.

The majority function computes 1 iff the number of ones in the input is at least
n/2.

THEOREM 2. The widh-2 branching program complexity of the majority function
is not polynomial (Yao [121) while its BP,-complexity is polynomial (see, e.g.,
Wegener [lo]).

94 INGO WEGENER

3. A NEW TIME-SPACE TRADE-OFF

We prove the counterpart of Theorem 2. We define effectively a function whose
complexity with respect to width-2 branching programs but also to Boolean for-
mulae and depth-2 circuits is polynomial while its BP,-complexity is exponential.
We have no theory for the construction of efficient width-2 branching programs.
But the width-2 branching program complexity is bounded by the length of a
minimal polynomial for J: Therefore we choose for the proposed trade-off a
function where the number of prime implicants is polynomial.

DEFINITION 2. f;,,,: (0, 1 }” + (0, 1 }, where 36k(n)<n and N=(i) is a
function where the variables correspond to the possible edges of an n-vertex graph.
fkl, computes 1 iff the graph specified by the variables contains a k(n)-clique on
vertices i, ,..., ikCnJ such that ii+, = , i + 1 mod n for 1 < j< k(n) - 3, that means
k(n) - 2 vertices build a successive sequence mod n.

THEOREM 3. The complexity off ;I-(,,, in width-2 branching programs and depth-2
circuits is at most O(n3k(n)2) = O(n5) and therefore polynomial. The BP,-complexity
of fj!(,,, for k(n) = Ln’13 J is at least 52(2”‘“‘), where m(n) = n213/4 - ~(n~‘~) and
therefore exponential.

Proof: The cliques corresponding to prime implicants of f &, are called special
cliques. There are n positions where the successive sequence of k(n) - 2 vertices may
start. For the other two vertices of a special clique we have less than (‘;)
possibilities. Thus f i(n) has O(n3) prime implicants of length (ky)) each. This proves
the upper bound of the theorem.

For the lower bound we show that after at most m(n) arbitrary tests we do not
know the value of the function and that two different nodes v and w cannot be
merged in a BP, for f;(,, if some path from the source to v (resp. w) has length at
most (99/2 = m(n). Thus we can conclude that a BP1 for f &,,) has exactly 2’ nodes
in distance 1 <m(n) from the source and the lower bound follows.

In order to know that ficn, q e uals 1 we must have tested all ($cn)) edges of a k(n)-
clique positively. This is not the case after at most m(n) tests. After at most m(n)
negative tests there are at most n213/2 vertices where some adjacent edge is already
tested negatively. Thus there is a subsequence of (n - n2/‘/2)/(n2j3/2) = 2n’13 - 1 >
k(n) - 2 vertices, where no adjacent edge has been tested negatively. The existence of
a special clique is still possible and we do not know that f zCE, equals 0.

Let v and w be different nodes such that some path p(u) from the source to v and
some path p(w) from the source to w has length at most (“y))/2 = m(n). It remains
to prove the following claim. If we merge v and w the BP, does not compute f zcnj.
We may assume that u is not a successor or predecessor of w because in this
situation we would create a cycle if we merge v and w. Let G(v) and G(w) be the
partial graphs which contain the edges tested positively on p(v) (resp. p(w)). The
edges tested negatively are called forbidden, the edges not tested yet are called

TIME-SPACE TRADE-OFFS 95

variable. Since u and w do not lie on the same path there exists some edge e such
that e belongs to one of the graphs, w.1.o.g. G(v), and is forbidden in the other
graph, G(w). Since f&,,, is symmetric with respect to the vertices we assume w.1.o.g.
that e = (1,2). Let us assume that we merge u and w. Having reached this node we
are allowed to test only the edges variable in G(u) and in G(w). If we declare the
edges not tested on p(v) or p(w) in an arbitrary way as existing or forbidden the
following must hold if the BP, still computes j&,. Either the completion of G(u)
and the completion of G(w) contain a special clique (not necessarily the same) or in
both completions any special clique has been destroyed by forbidden edges. We
derive a contradiction by declaring the edges variable for G(u) and G(w) in such a
way as existing and forbidden that the completion of G(u) contains a special clique
and the completion of G(w) does not.

Let A be the set of vertices z 4 { 1,2} adjacent to some edge tested on p(u) or
p(w). By our assumption on the lengths of p(u) and p(w) we conclude that
Ml d d3. Thus B : = (l,..., n} -A has cardinality at least n - n2’3. B consists of at
most n213 successive subsequences mod n. The longest subsequence has length at
least (n - n2’3)/n2’3 = n113 - 1. Thus we may choose a sequence i,..., i + k(n) - 3
(mod n) of vertices all in B. Let D be any k(n)-subset of B containing the vertices 1
and 2 and i,..., i + k(n) - 3 (mod n). In G(u) and in G(w) all edges on D with the
only exception of e = (1, 2) are variable. The edges tested already in G(u) and G(w)
and containing one node in D are incident with 1 or 2. We declare all edges on D
with the only exception of e = (1,2) as existing and all other variable edges as
forbidden.

G*(u), the completion of G(u), contains the special clique consisting of the ver-
tices in D. G*(w), the completion of G(w), does not contain this clique since
e = (1,2) is forbidden. Since G(w) does not contain any special clique and since
only edges on D are declared as existing a special clique of G*(w) has to contain a
vertex z ED - { 1,2} and by our considerations above a vertex z’ 4 D. But the edge
(z, z’) does not exist in G*(w). Thus G*(w) does not contain any special clique. Our
assumption that we may merge u and w in a BP, for f&) leads to a contradiction.

Q.E.D.

REFERENCES

1. B. BOLLOBAS, “Extremal Graph Theory,” Academic Press, New York, 1978.
2. A. BORODIN, D. DOLEV, F. E. FICH, AND W. PAUL, Bounds for width two branching programs, in

“15th Sympos. on Theory of Computing,” 1983, pp. 87-93.
3. A. K. CHANDRA, M. L. FURS, AND R. J. LIPTON, Multiparty protocols, in “15th Sympos. on Theory

of Computing,” 1983, pp. 94-99.
4. A. COBHAM, The recognition problem for the set of perfect squares, in “7th Sympos. on Switching

and Automata Theory,” 1966, pp. 78-87.
5. M. L. FURS, J. B. SAXE, AND M. SIPSER, Parity, circuits, and the polynomial time hierarchy, in

“22nd Sympos. on Foundations of Computer Science,” 1981, pp. 260-270.
6. W. MASEK, “A Fast Algorithm for the String Editing Problem and Decision Graph Complexity,”

M.Sc. thesis, MIT, 1976.

571/32/l-7

96 INGO WEGENER

7. E. I. NECHIPORUK, A Boolean function, Sou. Math. Dokl. 7 (1966), 999-1000.
8. P. PUDL~K, A lower bound on complexity of branching programs, preprint, Univ. Prague, 1983.
9. P. PUDLAK AND S. Z~K, Space complexity of computations, preprint, Univ. Prague, 1983.

10. I. WEGENER, Optimal decision trees and one-time-only branching programs for symmetric Boolean
functions, Inform. and Control 62 (1984), 129-143.

11. I. WEGENER, On the complexity of branching programs and decision trees for clique functions, J.
Assoc. Comput. Mach., in press.

12. A. C. YAO, Lower bounds by probabilistic arguments, in “24th Sympos. on Foundations of Com-
puter Science,” 1983, pp. 420-428.

