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To Eugene Fabes, in Memoriam

We study the behaviour of the nonlinear critical p-heat equation (and the related
stationary p-laplacian equation)

{
ut&2pu=

*
|x| p |u| p&2u, x # 0, t>0, * # R

(1)
u(x, 0)=f (x), x # 0

u(x, t)=0, x # �0, t>0,

where &2pu# &div( |{u| p&2 {u), f (x)�0 verifying convenient regularity assump-
tions, 0 is a bounded domain in RN such that 0 # 0, and 1<p<N. The analysis
reveals that the behaviour depends on p. The results depend in general on the rela-
tion between * and the best constant in Hardy's inequality. � 1998 Academic Press

1. INTRODUCTION

In several reaction-diffusion problems involving the heat equation with
supercritical reaction term, it appears a stationary singular solution. For
instance, this is the case for

ut&2u=*eu, and ut&2u=*u+u:&1, where
2N

N&2
<:.

(See [19] and [23] respectively.) The linearization on this singular solu-
tion gives a linearized equation of the type

ut&2u=
*

|x| 2 u. (2)
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(See [24] for the details in the exponential case.) This linear equation is a
borderline case with respect to the classical theory of parabolic equations,
namely, the potential *� |x| 2 belongs to Lr

loc if and only if 1�r<N�2; there-
fore the standard uniqueness and regularity theories do not apply to this
case. For this reason the study of this kind of equation is interesting. The
linear equation (2) was studied by Baras�Goldstein in [5], where it was
obtained the behaviour of the solutions depending on the values of the
parameter *. More precisely Baras�Goldstein prove that the critical value
*N=(N&2)2�4, determines the behaviour of the solutions to the equation
(2). We point out that the constant *N is the best constant in the classical
Hardy inequality, see [21], and we remark that such a constant is not
attained in the Sobolev space. This remark and some applications are
pointed out in [24]. In this sense we can expect some lack of compactness.

We reformulate below a result by Baras and Goldstein in the particular
case concerning with the problem that we will discuss in this paper. (See
[5] for more details and extensions).

Theorem. (Baras�Goldstein).
Consider the initial value problem with Dirichlet boundary data,

{
ut&2u=

*
|x| 2 u, x # 0/RN, N�3, t>0, * # R

(3)
u(x, 0)= f (x), x # 0, f # L2,

u(x, t)=0, x # �0, t>0,

where 0 is a domain such that 0 # 0, then

(i) If *�*N , problem (3) has a solution.

(ii) If *>*N problem (3) has no local solution for any f >0.

In this paper we study the same kind of problems for the nonlinear
p-heat equation, namely, the nonlinear parabolic equation with diffusion
term given by the p-laplacian. More precisely we study

{
ut&2p u=

*
|x| p u p&1, x # 0, t>0, * # R

(4)
u(x, 0)= f (x), x # 0

u(x, t)=0, x # �0, t>0,

where 0 is a bounded domain in RN such that 0 # 0, 1<p<N and
f (x)�0, with convenient regularity assumptions. In this case we cannot see
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as a motivation the linearization in a strict sense, but nevertheless this
equation is interesting by itself because it provides some new phenomena.

This parabolic problem and the associated elliptic problem are critical in
a different way that the Sobolev critical exponent problems. In fact, the
potential *� |x| p belongs to Lr

loc if and only if r<N�p, that corresponds to
the same situation as in the linear case. Moreover some lack of compact-
ness appears in the associated elliptic problem, and then, the results depend
on some relation between the parameter * with p and the dimension N. For
the evolution problem (4) with *=0, it is well known that the behaviour
depends strongly on p. More precisely: (i) If p<2 the problem is singular
and then for small p there are extinction in finite time. (ii) If p>2 there are
finite speed of propagation. (See the details in the book [12]).

Assume now *>0. As one can expect, if p>2, the behaviour is in some
sense similar to the linear case, namely, in this case there are good *,
*�*N, p , and bad *, *>*N, p , where *N, p=((N& p)�p) p is the best con-
stant in the corresponding Hardy's inequality in W1, p(RN). In fact we get
instantaneous blow-up for *>*N, p in all the norm Lr (even in a stronger
sense that will be precise later). The biggest differences appear if 1<p<2.
In this case the behaviour of the problem is the same for good *, namely
there exists global solution in the classical sense, but for bad * is not so
much bad, going from better to worst as p goes from 1 to 2. We will prove
that there exists strong global solution for 1<p<2N�(N+2) and there
exists weak global solution if 2N�(N+2)�p<2N�(N+1). We can say
that in these cases the expected blow-up takes place in a weaker sense:
some Lr norms are finite for all time, while the L� norm can blow-up
instantaneously.

Finally if 2>p�2N�(N+1) we obtain that there exists solution away
from the origin, i.e., we have solution to the problem in distributions sense
in (0&[0])_[0, T], but in general the solution is not in L1

loc(0).
In some way the dependence on Hardy's inequality is weaker if p is close

to 1, while for p�2N�(N+1) Hardy's inequality plays an strong role in the
behaviour of the problem (4).

We will organize the contents of the paper in the following way. For con-
venience of the reader, in the next section we will study the Hardy
Inequality. The associated elliptic problem will be studied in Section 3. It
is interesting to emphasize that it is in some sense a critical problem for
which the classical variational approach does not apply. We give also a
Pohozaev type nonexistence result for the critical potential *|x| & p and an
existence result for subcritical potentials that makes clear the meaning of
criticallity in this context. Section 4 will be devoted to the positive result,
namely the good * case, and Section 5 to the study of instantaneous and
complete blow up in the case p>2. To prove this blow up result we use the
separation of variables method and we solve the related elliptic problem by
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using a bifurcation from infinity result that allow us to construct a con-
venient subsolution to the parabolic problem. The case of bad * and
1<p<2 will be studied in Section 6. Section 7 deals with the positive
result in the particular case *=*N, p for p�2N�(N+1), that is not solved
by the methods in Sections 4 and 6. Finally, some remarks on uniqueness
and nonuniqueness will be given in the last section. The main result in this
last section shows that in the case 1<p<2 the critical *N, p is also critical
for the uniqueness.

We point out that the blow-up discussed in this paper appears from spec-
tral properties of the elliptic operator with singular potential *|x| & p. The
blow-up depending on the relation between growth and diffusion has been
widely studied in the past years. An interesting reference could be the
recent paper [17].

2. ON A HARDY INEQUALITY

The main point of this section is to discuss the following classical result,
essentially dues to Hardy. ( See [21]). By completeness we include the
proof.

Lemma 2.1. Assume 1<p<N, then if u # W 1, p(RN)

1. u� |x| # L p(RN).

2. (Hardy Inequality)

|
RN

|u| p

|x| p dx�CN, p |
RN

|{u| p dx

with CN, p=( p�(N& p))p.

3. The constant CN, p is optimal.

Proof.

Step 1. A density argument allows us to consider only smooth func-
tions u # C �

0 (RN). Under this hypothesis we have the following identity

|u(x)| p=&|
�

1

d
d*

|u(*x)| p d*=&p |
�

1
u p&1(*x)(x, {u(*x)) d*.
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By using Ho� lder inequality, it follows that

|
RN

|u(x)| p

|x| p dx=&p |
�

1
|

RN

u p&1(*x)
|x| p&1 � x

|x|
, {u(*x)� dx d*

=&p |
�

1

d*
*N+1& p |

RN

u( y) p&1

| y| p&1

�u( y)
�r

dy

=&
p

N& p |
RN

u( y) p&1

| y| p&1

�u( y)
�r

dy

�
p

N& p \|RN

|u( y)| p

| y| p dy+
( p&1)�p

\|RN } �u( y)
�r }

p

dy+
1�p

,

And then we conclude that

|
RN

u p(x)
|x| p dx�\ p

N& p+
p

|
RN

|{u(x)| p dx.

Step 2. Optimality of the constant. Following the idea of Hardy for the
one dimensional case, we show that the best constant is CN, p=(p�N& p) p.

Given =>0, take the radial function

U(r)={AN, p, = if r # [0, 1],
(5)

AN, p, = r(p&N)�p&= if r>1,

where AN, p, == p�(N& p+ p=), whose derivative is

U$(r)={0, if r # [0, 1],
(6)

&r&(N�p)&= if r>1.

By direct computation we get

|
RN

U p(x)
|x| p dx=|

B

U p(x)
|x| p dx+|

RN&B

U p(x)
|x| p dx

=Ap
N, p, =|N \|

1

0
rN&1& p dr+|

�

1
r&(1+ p=) d+

=Ap
N, p, =|N |

1

0
rN&1& pdr+Ap

N, p, = |
RN

|{U(x)| p dx,

where |N is the measure of the (N&1)-dimensional unit sphere. We con-
clude by letting = � 0. K
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Corollary 2.2. The same result is true in the unit ball B/RN.

Proof. The proof of the first step is the same. The argument of
optimality in the case of the unit ball proceeds by approximation as
follows. First, we remark that by the invariance under dilations the optimal
constant will be the same for any ball. Second, let BR be a ball with large
radius. We take as test function v(x)=�(x)U(x) where U is one of the
approximate optimizers explicitly given above and � # C �

0 (BR) is a cutoff
function which is identically 1 on BR&1 with |{�|�m. It is easily seen that
for R>>1 the influence of � in the calculation of Step 2 is negligible. K

Remark 2.3. Sometimes the Hardy inequality in the case p=2 is
known as uncertainty principle, see [15]. We can read the Hardy inequality
saying that the embedding of W 1, p

0 (0) in L p with respect to the weight
|x| & p is continuous.

By normalizing the minimizers that we use in the proof, it is easy to see
that the inclusion is non compact. This will be the cause of many of our
difficulties.

In the sequel, we will denote *N, p=C &1
N, p .

It will be useful to compare the best constant in the Hardy inequality
with the following approximating eigenvalue problems.

Theorem 2.4. Consider *1(n) the first eigenvalue to the problem

{&2p �1=*Wn(x) |�1 | p&2 �1 ,
�1(x)=0,

x # 0/RN,
x # �0.

(7)

where Wn(x) = min[ |x|&p, n]. Then *1(n) � *N, p , and moreover
limn � � *1(n)=*N, p .

Proof. The first inequality follows immediatly from the definition of
the first eigenvalue by the Rayleigh quotient. Also, it is easy to see that
[*1(n)] is a nonincreasing sequence; then we have to prove that the limit
cannot be bigger than *N, p . Assume by contradiction that limn � � *1(n)=
*N, p+\.

Then, we can choose , # W 1, p
0 (0) such that (�0 |{,| p dx)�(�0 , p |x| &p dx)

<*N, p+\�2. But then *1(n)�(�0 |{,| p dx)�(�0 , pWn(x) dx), and this is a
contradiction because the last expression has to be smaller than *N, p+\
for n large. K

We will study in the next section the behaviour of elliptic equations
related to the Hardy inequality.
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3. ELLIPTIC EQUATIONS WITH CRITICAL POTENTIAL

The first result in this section is an easy consequence of the Hardy
inequality

Lemma 3.1. Consider the nonlinear operator

L*u#&2pu&
*

|x| p |u| p&2 u (8)

in W 1, p
0 (0). Then

1. If *�*N, p , L* is a positive operator.

2. If *>*N, p , L* is unbounded from below.

Proof. (1) It is obvious from the Hardy inequality. (2) An easy conse-
quence of the optimality of the constant and a density argument is the
existence of , # C�

0 (0) such that (L*,, ,)<0. We can assume that
&,&p=1 and then by defining u+(x)=+N�p,(+x) we have &u+&p=1 and the
homogeneity of the operator allows us to conclude that (L*u+ , u+) =
+ p(L*,, ,)<0. K

Taking into account the previous result, in this section we will study the
following problem

{L*u= f (x) # W&1, p$(0), x # 0, *<*N, p ,
1
p

+
1
p$

=1
(9)

u(x)=0, x # �0.

where 0/RN is a bounded domain. If 0 � 0 then we have a classical
problem with a bounded potential. So we will assume hereafter that 0 # 0.

Consider the energy functional,

J(u)=|
0

F(x, u, {u) dx

where F(x, u, !)=1�p |!| p&*�p (u p� |x| p)& f (x)u.
The classical results in the Calculus of Variations characterize the weak

lower semicontinuity of J if F(x, u, v ) is convex and F verifies a lower
bound: positivity, or a lower estimate by a linear combination of !, etc.
(See Tonelli [29], Serrin [28], De Giorgi [11], the book by Dacorogna
[10] and the references therein). Howewer, in our case these usual
hypotheses are not fulfilled.
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Variational Approach. The energy functional,

J(u)=
1
p |

0
|{u| p dx&

*
p |

0

u p

|x| p dx&|
0

fu dx,

by the Hardy inequality, is continuous, Gateaux differentiable and coer-
cive, namely, there exist constants #>0 and c # R such that

J(u)�# |
0

|{u| p dx&c.

Hence by the Variational Principle of Ekeland, see [14], we can find a
sequence [un]n # N such that

J(un) � inf J, and J$(un) � 0, as n � �.

As usually we say that [un]n # N is a Palais�Smale sequence. The coercivity
of J implies the boundedness of [un] in W 1, p

0 (0), so we have that for
some subsequence: (i) {un ( {u in L p; (ii) un converges in L p and a.e.;
(iii) *(u p&1

n )� |x| p are bounded as Radon measures. Under these hypotheses
we can apply the following convergence theorem by Boccardo and Murat,
see [8].

Lemma 3.2. Let [un]n # N verifying (i), (ii) and (iii) above. Then for some
subsequence,

unj
� u, in W 1, q

0 (0), q<p

and

Tk(un) � Tk(u) in W 1, p
0 (0)

for all k>0, where Tk(s)=s if |s|�k and Tk(s)=ks� |s| if |s|�k.

According with the previous Lemma, and by a density argument, we can
prove the required compactness property. We will call such a compactness
property singular Palais�Smale condition in the sense of the following
Lemma:

Lemma 3.3. Let [un]n # N be the Palais�Smale sequence obtained above.
Then [un]n # N satisfies the singular Palais�Smale condition, namely there
exists a subsequence [unj

]j # N such that

unj
� u, in W 1, q

0 (0), q<p.
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An inmediate consequence of Lemma (3.3) is that u is a solution of our
problem in the sense of distributions. Moreover by density and taking into
account that u # W 1, p

0 (0), we conclude that u is solution in the sense of
W1, p

0 (0).
Finally the homogeneity of the problem implies that u is a minimum

for J. Consider

J(uk)&
1
p

(J$(uk), uk) =\1
p

&1+ |
0

fuk

where in the last term we can pass to the limit by weak W 1, p
0 (0)-

convergence. Therefore

inf J= lim
k � �

J(uk)= lim
k � � \J(uk)&

1
p

(J$(uk), uk)+
=\1

p
&1+ |

0
fu=J(u)&

1
p

(J$(u), u) =J(u)

We would like to point out that this approach solves the minimization
problem, namely, the solution is obtained as a minimum of J. Also it is
interesting to emphasize that this approach will be used to study problems
with unbounded energy functionals in the end of this section.

Truncature Approach. We will use as an alternative to the variational
approach a truncation argument. More precisely, we consider for n # N the
problems

{&2p u&*Wn(x)u p&1=f,
u(x)=0,

x # 0
x # �0

(10)

where Wn(x)=min[1� |x| p, n] and f # W&1, p$(0). Problem (10) can be
solved by standard minimization arguments, getting a subsequence [un]n # N

which verifies:

1. {un ( {u weakly in W 1, p
0 (0), by Hardy inequality.

2. *Wn(x)u p&1
n � *u p&1� |x| p in L1.

At this point, we can use again the compactness result by Boccardo�
Murat (see [8]), and by density we get:

Theorem 3.4. Problem (9) has a weak solution u # W 1, p
0 (0).

Remark 3.5. (I) The uniqueness in the case p=2 is obvious.

(II) If p>2 the uniqueness is in general not true as the following
argument shows (see [13]). Assume B2R/0 a ball of radius 2R such that
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0 � B2R and consider u0 # C2
0(0) such that u=k>0 in BR and u0=0 in

0&B2R . Consider f (x)=L*u with *<*N, p . In this way f # W&1, p$(0)
and then we can find a solution v by minimization of J as in the Theorem
(3.4). Now it is clear that such v{u0 , because u0 cannot be a minimum for
J: in fact, taking into account that p>2 and the choice of u0 , J is twice
differentiable and we see that

(J"(u0)z, z) =( p&1) \|0
|{u0 | p&2 |{z| 2 dx&* |

0

|u0 | p&2

|x| p z2 dx+ .

Hence, in particular if z # C�
0 (0) is such that supp(z)/BR ,

(J"(u0)z, z) =&*( p&1) |
0

|u0 | p&2

|x| p z2 dx<0,

and then u0 is not a minimum for J.

(III) The uniqueness in the case 1<p<2 seems to be an open
problem. K

After the last remark we see that no comparison theorem is possible in
general. But the counterexample is for data which changes sign; however if
f �0 in 0 then we can show that the sequence un of minimal solutions is
nondecreasing, i.e., un�un+1 almost everywhere, and this implies a
stronger result, namely the strong convergence in W 1, p

0 (0). In fact, if f �0,
we have,

|
0

( |{u| p&2 {u, {Tk(u)) dx

= lim
n � � |

0
( |{un | p&2 {un , {Tk u) dx

= lim
n � � \|0

*Wn(x) up&1
n Tk(u)+ dx+|

0
fTk(u)

=\|0
*

u p&1Tk(u)
|x| p dx+|

0
fTk(u) dx+

and

|
0

|{u| p dx= lim
k � � |

0
( |{u| p&2 {u, {Tk u) dx

= lim
k � � \* |

0

u p&1Tk(u)
|x| p dx+|

0
fTk(u)+
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=* |
0

u p

|x| p dx+|
0

fu dx

= lim
n � � \* |

0
Wn(x) |un | p dx+|

0
fun dx+

= lim
n � � |

0
|{un | p dx.

The last convergence of the norms and the a.e convergence implies that un

converges strongly to u in W 1, p
0 (0).

The strong convergence in the case p=2 is straightforward.

We will use again the variational approach to study the case of unboun-
ded funcionals, more precisely the existence of solution via the Mountain
Pass Lemma. (See [2]). For instance the following result holds.

Theorem 3.6. Consider the Dirichlet problem

&2pu=* |u| p&2 u |x| &p+|u| :&2 u,

*<*N, p , p<:<Np�(N& p), u | �0=0.

There exists at least a positive solution u # W 1, p
0 (0).

Proof. The proof of this theorem follows closely the previous varia-
tional approach; instead of minimizing and using the variational principle
of Ekeland, the geometry of the energy functional allows us to use the
Mountain Pass Lemma of Ambrosetti�Rabinowitz. In fact since *<*N, p

then

J(u)#
1
p |

0
|{u| p dx&

*
p |

0

|u| p

|x| p dx&
1
: |

0
|u|: dx

�# |
0

|{u| p dx&C( p, :) \|0
|{u| p dx+

:�p

.

Then we found the required Palais Smale sequence, which is easy to show
has to be bounded in W 1, p

0 (0). Using again [8], we get the compactness
result, in the sense of the singular Palais Smale condition defined above.
Then we can found a function u # W 1, p

0 (0) which is the strong limit in
W1, q

0 (0), q<p, and therefore is a solution in the sense of distributions.
Since u # W 1, p

0 (0), by density we get that u is a weak solution. Finally, by
homogeneity, and taking into account that we have strong convergence in
L:, we can see that u�0:
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c= lim
n � �

J(un)= lim
n � �

(J(un)&
1
p

(J$(un), un) )

= lim
n � � \1

p
&

1
:+ |

0
|un |: dx=\1

p
&

1
:+ |

0
|u|: dx

and we conclude. K

The following nonexistence result shows from a different point of view
the critical character of the problem.

Lemma 3.7. Consider the problem

{&2pu=*
u p&1

|x| p +#f (u), x # 0, *>0,
(11)

u(x)=0, on �0

where 0/RN is bounded, starshaped with respect to the origin, f is a
continuous function and

# \NF(u)&
N& p

p
uf (u)+�0, F(u)=|

u

0
f (s) ds.

Then (11) has no positive solution u # W 1, p
0 (0).

Proof. We will use a Pohozaev type identity. The idea consists on mul-
tiply the equation by (x, {u) and integrate by parts. (Observe that the
regularity of u does not suffices to justify this calculus directly but as
Pohozaev points out in [25] the results are valid also for weak solutions;
an argument of aproximation which justifies the previous observation can
be seen for instance in [20]. See also [26].)

\ p&1
p + |

�0
|{u| p (x, &) d_+\N& p

p + |
0

|{u| p dx

=* \N& p
p + |

0

u p

|x| p dx+#N |
0

F(u) dx (12)

where & is the outwards normal to �0. On the other hand, multipliying the
equation by u and integrating

|
0

|{u| p dx=* |
0

u p

|x| p dx+# |
0

uf (u) dx (13)
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Both identities give

\p&1
p + |

�0
|{u| p(x, &) d_=# |

0
(NF(u)&

N& p
p

uf (u)) dx

The conclusion is now obvious. K

Notice the contrast of Lemma 12 with the results in the papers [9] and
[23] where the case p=2 with constant potential is considered. (See also
[18]).

Remark 3.8. In the case 0=RN, p=2 and f (u)=u (N+2)�(N&2) an exist-
ence result can be seen in [22], Th. I.3, pg. 179. However the previous
Lemma proves that this doubly critical problem has no positive solution in
bounded starshaped domains. This means that the term with the potential
cannot be seen as a lower order perturbation of the term with critical
Sobolev exponent, although this is the case in terms of the growth in u. We
can explain this result in an easy way: this behavior is a consequence of the
noncompactness of the term *(u p� |x| p) in W 1, p

0 (0), as we point out in
Remark (2.3).

We will prove that in fact the potential * |x|&p is critical in the sense of
the remark above by considering * |x| &q with 0<q<p.

It is known that for the potential * |x| &q, which belongs to Lr for some
r>N�p+_, there exists a first isolated and simple eigenvalue *1 , for the
corresponding Dirichlet problem. We will show that this subcritical poten-
tial produces a similar effect to the case q=0, in the sense that the lack of
compactness arises only from the highest power term. Moreover there are
also bad dimensions, p<N<p2&( p&1)q. This interval coincides with the
known result in the case q=0, and decreases when q � p, dissapearing the
solution in the limit case q= p, according to Lemma 3.7.

Theorem 3.9. Consider the Dirichlet problem

{&2p u=* |u| p&2 u |x| &q+|u| p*&2 u, *<*1

u | �0=0, 0<q<p, 1< p<N, p*=Np�(N& p).
(14)

If N�p2&( p&1)q, then there exists at least a positive solution
u # W 1, p

0 (0).

Proof. The arguments are similar to those in [18] and then we will be
sketchy. The geometry of the energy functional, J, satisfies the requirements
of the Mountain Pass Theorem as can be checked following the same
calculations as in Theorem 12. Then by using the concentration-compactness
method by P.L. Lions, see [22], we get a local Palais�Smale condition.
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More precisely, let S the optimal constant in the Sobolev embedding and
given a Palais�Smale sequence such that

J(uk) � c<
S N�p

N
, J$(uk) � 0, in W &1, p$ (0)

there exists a convergent subsequence. The only thing to check (and this is
the main point), is the existence of a Palais�Smale sequence at this subcriti-
cal energy level. To get this particular sequence it is well known that it is
sufficient to find a direction v= # W 1, p

0 (0) for which

sup
t>0

J(tv=)<c0<
SN�p

N
, (15)

because in this way the minimax critical value in the Mountain Pass
Theorem verifies c<c0 . The natural election is

v==
u=

&u= &p*

, where u==
,(x)

(=+|x| p�( p&1))(N& p)�p

are the minimizers of the Sobolev inclusion with a convenient truncation
, # C�

0 to adapt their support to 0. As usual we compute:

1. &{v=& p
prS+c1=(N& p)�p

2. �0 (vp
=� |x|q) dxrc2 =( p2&( p&1) q& p)�p if N>p2&( p&1)q.

3. �0 (vp
=� |x|q) dxrc2 =(N& p)�p |log =| if N= p2&( p&1)q.

4. �0 (vp
=� |x|q) dxrc2 =(N& p)�p if N<p2&( p&1)q.

Following the proof of Theorem 3.3 in [18] the decay as = � 0 of &{v=& p
p

must be faster than the decay of �0 (vp
=� |x|q) dx, to get the inequality (15)

and this is true if N�p2&( p&1)q. So we conclude. K

Remark 3.10. Something more can be said in the case N<p2&( p&1)q.
Following the same argument as in the proof of Theorem 3 in [4] we find
that there exists a positive solution to problem (14) if * # (*1&A, *1),
where A=S(�0 |x| &Nq�p dx)&p�N.

4. THE PARABOLIC PROBLEM: THE CASE *<*N, p

In this section we prove the following result

Theorem 4.1. Consider the initial value problem with zero Dirichlet
boundary data,

454 GARCI� A AZORERO AND PERAL ALONSO



File: DISTL2 337515 . By:CV . Date:18:03:98 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2474 Signs: 1220 . Length: 45 pic 0 pts, 190 mm

{
ut&2pu=

*
|x| p |u| p&2 u, x # 0/RN, t>0, p<N,

(16)
u(x, 0)= f (x), x # 0

u(x, t)=0, x # �0, t>0.

where *<*N, p and f # L2 (0). Then problem (16) has a global solution

u # L� ([0, �), L2 (0)) & L p ((0, T ), W 1, p (0)), for all T>0

and

ut # L2 ((=, �)_0), for all =>0.

Proof. Consider Wn (x)=min[n, 1� |x| p]. Then the solution for the
truncated problem, which we denote un , verifies

|
0

|un (x, T )|2 dx+|
T

0
|

0
|{un (x, t)| p dx dt

=|
0

| f (x)| 2 dx+* |
T

0
|

0
Wn (x) |un (x, t)| p dx dt

�|
0

| f (x)| 2 dx+* |
T

0
|

0

|un (x, t)| p

|x| p dx dt

�|
0

| f (x)| 2 dx+*CN, p |
T

0
|

0
|{u(x, t)| p dx dt,

by Hardy inequality. As a conclusion, for some :>0 we have

|
0

|un (x, T)| 2 dx+: |
T

0
|

0
|{un (x, t)| p dx dt�|

0
| f (x)| 2 dx

So we get a global solution defined as the limit of solutions of the problems
with truncated potential. In fact, we can pass to the limit by using
Theorem 4.1 in [8] and taking into account that un is nondecreasing. More
precisely we have that the limit u verifies u # L�([0, �), L2(0)) &
Lp((0, T ), W 1, p

0 (0)). The estimate for ut can be obtained by multiplying
the corresponding equations by unt and taking limits. K

Remark 4.2. It is interesting to point out that in the case of a bounded
domain, *�*N, p , and 1< p<2 the solutions have finite time of extinction.
See [1] for more details and related results for the Cauchy problem.
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5. THE CASE *>*N, p AND p>2: BLOW-UP

We will concentrate our attention in the case p>2. We will show the
complete and instantaneous blow up in the case of initial data positive close
to the origin. (We will precise below the meaning of complete blow up in
this case).

The idea is looking for subsolutions of the truncated problems by using
the method of separation of variables, i.e., considering solutions to the
equation of the type u(x, t)=T(t) X(x). By substitution into the problem
we arrive to the coupled system,

&2pX&*Wn (x)X p&1=&+X, x # 0

{X(x)=0, x # �0 (17)

T $(t)=+T p&1 (t), T(0)=T0 ,

where Wn (x)=min[n, 1� |x| p] and +>0. By integration we obtain

T(t)=
T0

(1&( p&2) +T p&2
0 t)1�(p&2)

which blows up for t=1�+( p&2)T p&2
0 . Hence, we have to study the

elliptic problems,

{&2p X&*Wn (x)X p&1=&+X,
X(x)=0,

x # 0
x # �0.

(18)

Denote :X=Y with +: p&2=*. Then we get the equivalent problem

{&2p Y=*(Wn (x)Y p&1&Y ),
Y(x)=0,

x # 0
x # �0.

(19)

For this problem, we have the following result

Lemma 5.1. Consider the problem (19). Then

(1) There exists a constant Rn>0 such that if (19) has a positive solu-
tion u, then &u&�>Rn .

(2) Consider *1 (n) the first eigenvalue of &2p with weight Wn . Then
*1 (n) is the unique bifurcation point from infinity for the problem (19).

Proof. The first assertion is an easy calculation: if there is a positive
solution Y such that &Y&�<=, then we have &2pY�*Y(n= p&2&1)<0
for = small. And this is a contradiction, because the maximum principle.
The second statement is an application of Theorem 4.1 in [3]. In this way
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the unbounded bifurcation branch (to be precise, the bifurcation continuum)
given by Theorem 4.1 in [3] cannot cross the level &u&�=Rn by the first
assertion, neither, obviously, the hyperplane *=0. Hence we get the exist-
ence of at least one positive solution to problem (19) for *>*1 (n). K

We have the following corollary:

Corollary 5.2. There exists a n0 such that for n>n0 , problem (18) has
a positive solution.

Proof. It suffices to consider a solution Y of (19) and define X=:&1Y
with +=*:2& p. In fact, if *>*N, p then for n large enough we have
*1 (n)<*, because, according Theorem (2.4), *1 (n) � *N, p as n � �. K

In the sequel we will use often the following comparison result.

Lemma 5.3. Consider the problem

ui, t&2pui =Wn (x) |ui |
p&2 ui , x # 0/RN, t>0,

{ui (x, 0)= fi (x), x # 0 (20)

ui (x, t)=gi (t), x # �0, t>0, i=1, 2.

If f1 (x)� f2 (x), g1 (t)� g2 (t) and they are bounded functions, then u1�u2

Proof. By regularity, |ui |<M, i=1, 2 and by the lipschitz condition
and the ellipticity condition for the p-Laplacian, we obtain

|
[u1�u2]

|u1 (x, t)&u2 (x, t)| 2 dx

+:( p) |
t

0
|

[u1�u2]
|{u1 (x, s)&{u2 (x, s)| p dx ds

�C(n, M ) |
t

0
|

[u1�u2]
|u1 (x, s)&u2 (x, s)| 2 dx ds,

where :( p) is a constant depending only of p, then, since the test function
(u1&u2) + is zero in the parabolic boundary, Gronwall's Lemma gives the
result. K

With these tools we have the following finite time complete blow-up
result for the truncated problems.
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Theorem 5.4. Consider the problem

ut&2pu=*Wn (x) |u| p&2 u, x # 0/RN, N>p>2, t>0,

{u(x, 0)= f (x)>0, x # 0, (21)

u(x, t)=0, x # �0, t>0.

where p>2, f # L� and *>*N, p . Assume that n is large enough, such
that *1 (n)<*. Then, there exists a T=T( f, 0, n, p, *)>0 such that the
solution to (21) blows up in the following sense: u(x, t)�,(x, t) with
limt � T ,(x, t)=� for any x # 0.

Proof. Bearing in mind the comparison lemma, and the method of
separation of variables, the idea is looking for a subsolution ,(x, t)=
X(x) T(t) with ,(x, 0)=X(x) T(0)�u(x, {), with {>0. Then, we take
X(x) the solution found in Corollary 5.2 for +=1, and a constant =>0
such that =X(x)�u(x, {)�2. Next, we consider

T(t, =)==(1&( p&2)= p&2t) &1�( p&2)

Therefore, by comparison, the blow up holds before the time T=
=2& p�( p&2). K

Now we are able to state the main result in this section. We will show
that there are instantaneous blow up, in all Lr norms, 1�r��. Even
more, we can prove that the blow up occurs in a stronger sense, that we
precise below.

Theorem 5.5. Consider the problem

{
ut&2pu=

*
|x| p |u| p&2 u, x # 0/RN, N>p>2, t>0, * # R

(22)
u(x, 0)= f (x), x # 0

u(x, t)=0, x # �0, t>0.

where p>2, *>*N, p , f # L�, f �0 and f >$>0 in a neighbourhood of the
origin. Then (22) has no local solution, in the sense that for any =>0, there
exists r(=)>0 such that limn � � un (x, t)=� if |x|�r(=) and t�=, where un

are the solutions to the problems with the truncated potentials Wn (x).

Proof. The proof lies in three steps: the bifurcation lemma, a rescaling,
and the comparison argument.
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Given =>0 the bound for the blow up time, take +>1�( p&2) =. Then,
the function T(t)#T(t, 1)=(1�(1&( p&2) +t))1�( p&2) blows up before
t==. Assume that B=[ |x|<1]/0, and take n0 such that the problem

{&2p Y&*Wn0
(x)Y p&1=&+Y,

Y(x)=0,
x # B
x # �B.

(23)

has a positive solution (in fact, it suffices to take n0 large enough in order
to have *1 (n0 , B)<*; see Theorem 2.4).

In this way, T(t) Y(x) is a solution of the equation, which blows up
before t==. But we cannot take this function as a subsolution to our
problem, because of the lack of control on the size of the initial data. The
next step is, by using a suitable rescaling, to construct a local subsolution.

In fact, taking into account that (n�n0) Wn0
((n�n0)1�p x)=Wn (x), if we

define Zn (x)=(n0 �n)1�( p&2) Y((n�n0)1�p x) then Zn is a solution to the
problem

{&2p Zn&*Wn (x)Zp&1
n =&+Zn ,

Zn (x)=0,
|x|<(n0�n)1�p

|x|=(n0�n)1�p.
(24)

Taking n large enough, since &Y&�<C, we get &Zn&�<$< f (x) in the
ball |x|<(n0 �n)1�p. (Notice that n and n0 (i. e., the radius of the ball)
depends on * and the L� norm of Y, which depends on +, which is fixed
depending on the blow up time =).

Then the function ,n (x, t)=T(t) Zn (x) is the desired local subsolution.
Finally, the last step is to use the comparison lemma in the ball
|x|<(n0 �n)1�p. K

Remark 5.6. It is interesting to emphasize that this instantaneous
regional blow up can be seen as the p>2 version of the estimates in
Theorem 2.2 of Baras�Goldstein for p=2, see [5]. We have a stronger
result due to the time dependence in the separation of variables method.
Nevertheless, in the linear case the representation of the solutions by the
Green's function implies infinite speed of propagation and this is the point
that makes easy to prove that the blow up is complete. In our case, if p>2,
the speed of propagation is finite if *=0, and the argument to prove that
limn � � un (x, t)=�, \(x, t) # 0_(0, �) must be different.

6. THE CASE *>*N, p AND 1< p<2

In this section we will show that the blow-up result by Baras and
Goldstein for p=2 does not admits an extension for 1<p<2�N. We dis-
tinguish several cases because the regularity of the solutions becames worst
as p approaches 2.
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6.1. The Case *>*N, p and 1<p<2N�(N+2)

First we restrict ourselves to the case 1<p<2N�(N+2).

Theorem 6.1. Problem

{
ut&2pu=

*
|x| p u p&1, x # 0, t>0, * # R

(25)
u(x, 0)= f (x), x # 0

u(x, t)=0, x # �0, t>0,

where f (x) # L2 (0), f (x)>0 and 1<p<2N�(N+2), has global solutions.

Proof. We can construct local solutions by using a classical device by
Fujita. (See [16].)

Step 1. Consider for M > 0 arbitrary, L = M + n and fn (x) =
min[n, f (x)]. Let w0 be the solution to the problem

w0
t &2p w0=*Wn (x)L p&1, x # 0, t>0, * # R

{w0 (x, 0)= fn (x), x # 0

w0 (x, t)=0, x # �0, t>0,

and consider T>0 for wich w0 (x, t)�L if 0<t<T. We perform the
following iteration defining wk as the solution to the problem

wk
t &2pwk=*Wn (x)(wk&1) p&1, x # 0, t>0, * # R

{wk (x, 0)= fn (x), x # 0

wk (x, t)=0, x # �0, t>0.

Then by comparison in 0_[0, T] the sequence verifies

w0�w1� } } } �wk� } } } >0

In the limit we get a maximum positive solution of the truncated problem wn ,
defined in [0, T].

Step 2. Next we construct the minimal solution by iteration: We solve
the problem

v0
t &2pv0=0, x # 0, t>0, * # R

{v0 (x, 0)= fn (x), x # 0

v0 (x, t)=0, x # �0, t>0,
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by an standard comparison argument we obtain 0<v0�w0 in 0_[0, T]
and then by iteration the solutions of the problems

vk
t &2pvk=*Wn (x)(vk&1) p&1, x # 0, t>0, * # R

{vk (x, 0)= fn (x), x # 0

vk (x, t)=0, x # �0, t>0,

verify

v0�v1� } } } �vk� } } } w0, in 0_[0, T]

hence there exists vn=limk � � vk, which can be shown easily to be the
minimal solution.

Step 3. We have the following a priori estimate. Let u be a solution to
the problem

ut&2pu=*Wn (x)u p&1, x # 0/RN, t>0,

{u(x, 0)= fn (x), x # 0 (26)

u(x, t)=0, x # �0, t>0,

then by Ho� lder and Young inequalities,

|
0

|u(x, T )| 2 dx+|
T

0
|

0
|{u(x, t)| p dx dt

=|
0

| fn (x)| 2 dx+* |
T

0
|

0
Wn (x) |u(x, t)| p dx dt

�|
0

| fn (x)| 2 dx+* |
T

0 \|0
|Wn (x)| 2�(2& p) dx+

(2& p)�2

_\|0
|u(x, t)| 2 dx+

p�2

dt

�|
0

| fn (x)| 2 dx+* \2& p
2 |

T

0
|

0
|Wn (x)| 2�(2& p) dx dt

+
p
2 |

T

0
|

0
|u(x, t)| 2 dx dt+ .

Call

y(T )#|
0

|u(x, T )| 2 dx
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and

;n (t)=|
0

| fn (x)| 2 dx+*
2& p

2 |
T

0
|

0
|Wn (x)| 2�(2& p) dx dt.

Hence

y(T )�;n (T )+*
p
2 |

T

0
y(s) ds,

and, as a consequence of Gronwall inequality, we have the estimate,

|
0

|u(x, T )|2 dx�;n (T )+|
T

0
;n (s)e:s ds (27)

where :=:(*, p)>0 is a constant. The first consequence is that u is
defined for all t>0, namely it is a global solution.

Final Step. By definition, the sequence ;n is increasing. Moreover

|
0

|Wn (x)| 2�(2& p) dx�|
0 \ 1

|x| p+
2�(2& p)

dx

and because 1<p<2N�(N+2), the last integral is convergent. In par-
ticular this implies that any solution to problem (25) is globally defined.
The existence of solution follows by passing to the limit in the following
way: if we take any sequence of solutions of the truncated problems,
un # L p ([0, T], W 1, p

0 (0)) & L� ([0, T], L2 (0)), by the last estimate we
conclude that the sequence [un] is uniformly bounded in these spaces, and
converges almost everywhere. Hence by using the convergence theorem in
[8] and the a priori estimate (27), for a suitable subsequence, there exists
the limit

lim
n � �

un=u

which is a positive global solution of problem (25). K

Remark 6.2. (I) The above result shows that a Baras�Goldstein
instantaneous complete blow-up result for small p is not true. We have in
general instantaneous L�-blow-up, as we will see. But the blow-up is
incomplete in the sense of the boundedness of some norms. Again the
Sobolev theorem seems to play an important role in this case. In fact, by
the parabolicity of the problem we have a direct L2 estimate. On the other
hand when 2>p*, or equivalently, 1<p<2N�(N+2) the potential 1�|x| p

is not too singular. Both facts imply the result. At the end of the next sec-
tion we will give a different explanation to this fact.
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(II) A result on nonuniqueness of solution to problem (25) will be dis-
cussed in the last section.

6.2. The Case *>*N, p and 2>p�2N�(N+2)

We begin this section by investigating the existence of a selfsimilar solu-
tion for the Cauchy problem in the whole RN.

6.2.1. Selfsimilar Solution

If we look for positive selfsimilar solutions to the Cauchy problem in all
RN, namely, for solutions like S(r, t)=t:f (t;r), where r=|x| , then:

St=:t:&1f +;t:+;&1rf $, Sr=t:+;f $, Srr=t:+2;f ",

and as a consequence:

(1) The similarity exponents satisfy (:&1)=:( p&1)+;p

(2) The corresponding ordinary differential equation in the variable
!=t;r is

:f +;!f $=( p&1) | f $| p&2 f "+
N&1

!
| f $| p&2 f $+

*
! p | f | p&2 f

Next we look for solutions of the form A |!| #, for which we found:

(1) #=
&p

2& p
,

(2) |A| p&2 (*)=
:+;#

( p&1) |#| p+(N& p) |#| p&2 #+*
#B

The last identity implies that B must be positive, then there exists solution
if and only if * is large enough to fulfill this condition.

In our range of parameters we have #<0 and if * is such that B>0 then
the corresponding selfsimilar solution can be considered as a solution in
the distributions sense if and only if p<2N�(N+1). It is clear that B>0
if * is large enough. More precisely, if 1<p<2, we can prove that B>0
for any *>*Np , which is the interval under study. This fact will be
sufficient if 2N�(N+2)�p<2N�(N+1) to obtain a global solution in a
weaker class for the Cauchy problem, in a bounded domain containing the
origin, and with positive and bounded initial data. This result will be
discussed in the next subsection.

463HARDY INEQUALITIES



File: DISTL2 337524 . By:CV . Date:18:03:98 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2430 Signs: 1493 . Length: 45 pic 0 pts, 190 mm

Lemma 6.3. Consider 1<p<2 and *>*N, p then B(*)>0.

Proof. It suffices to prove that

gp (N )=\N& p
p +

p

&\ p
2& p+

p&1

\(N& p)&
p( p&1)

2& p +�0.

Fixed p # (1, 2) we have

g$p (N )=\N& p
p +

p&1

&\ p
2& p+

p&1,
,

hence g$p (N0)=0 if and only if

\N0& p
p +=\ p

2& p+ .

Moreover, N0 is a point of minimum for g as can be seen directly by
calculation of the second derivative. Now

gp (N0)=0,

so we conclude that B&1=(gp (N )+(*&*N, p))�(:+;#)>0 if *>*N, p . K

Hence for all *>*N, p a selfsimilar solution in RN is

S(r, t)=A(*) \ t
r p+

1�(2& p)

.

An important consequence of the previous calculations is that the Cauchy
problem with trivial initial data has unbounded positive solution if 1<p<
2N�(N+1). The selfsimilar solution S(r, t) can be seen as the paradigmatic
example of how the L�-blow up occurs.

6.2.2. Existence of Solution
When 1<p<2N�(N+2) an a priori estimate gives the global existence

of a weak solution. Such an estimate does not work in the case
p�2N�(N+2). However, it is easy to see that the selfsimilar solution
obtained in the previous subsection can be considered as a supersolution in
the distributions sense if and only if p<2N�(N+1). And if p�2N�(N+2)
and fixed t>0, S(r, t) � W 1, p

0 (0).
In this subsection we prove that if 2N�(N+2)�p<2N�(N+1) then it is

still possible to get a global solution in a weaker class, for the problem with
positive and bounded initial data.

The first step is the construction of a suitable candidate to solve the
problem. The second step will be the proof that the function built in the
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first step is solution at less in the sense of distributions. We will work in
the setting of L1 right hand sides. (See for instance [7] and [6] for the
elliptic case and [8] for the parabolic case.)

Assume 2N�(N+2)�p<2N�(N+1) and consider the selfsimilar
solution

S* (r, t)=A(*) \ t
r p+

1�(2& p)

.

With a convenient shift in time W(x, t)=S* ( |x|, t+t0), we have that W is
a supersolution if we have positive bounded initial data, namely,
W(x, 0)� f (x), for x # 0 and W(x, t)>0 if (x, t) # �0_[0, �). Consider
the sequence of problems

u (n)
t &2pu(n)=*Wn (x)(u(n&1)) p&1, x # 0/RN, t>0,

{u(n) (x, 0)= f (x), x # 0 (28)

u(n) (x, t)=0, x # �0, t>0,

for n�1 where Wn (x)=min[n, * |x|&p] and where u0 is the solution to
the problem

u (0)
t &2pu(0)=0, x # 0/RN, t>0,

u(0) (x, 0)= f (x), x # 0

u(0) (x, t)=0, x # �0, t>0.

We have that (u(0)&W )+=0 in the parabolic boundary 1p=
(0_[0]) _ (�0_[0, �)) and (u(0)&W )t&(2p u(0)&2pW )�0. Notice
that (u(0)&W ) + can be used as a test function to integrate in this last
expression; hence u(0)�W. In the same way we prove that

u(0)�u(1)� } } } �u(n)� } } } W.

Now it is clear that W # Lq
loc if 1�q<N((2& p)�p), and this is a nonempty

interval because the hypothesis on p. We define u=limn � � u (n)�W
pointwise. By the Lebesgue Theorem we have also

&u&q
q= lim

n � �
&u(n)&q

q�&W&q
q ,

and then the convergence holds in Lq. To prove that u is a solution in the
sense of distributions we need the following lemmas that we prove by using
the ideas in [7] and [6].
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Lemma 6.4. Let [u(n)]n # N be defined above. Consider QT=0_[0, T],
then we have the following estimate in the Marcinkiewitz space M p2,

|[(x, t) # QT | |{u(n) (x, t)|>h]|�C( p, N, T )h&p2,

where 1�q<N((2& p)�p) and p2=pq�(q+1).

Proof. Fix n we have u(n)�W and then

|[(x, t) # QT : |u(n) (x, t)|>k]|�
1
kq |

T

0
|

0
W q dx dt

independently of n. Consider for k, h>0

A(k, h)=|[(x, t) # QT : |{u(n)| p>h, |u(n)|>k ]|.

It is clear that l � A(k, l ) is nonincreasing, and since from the initial
remark

A(k, 0)�C(N, p, T ) k&q

then we have

A(0, l )�
1
l |

l

0
A(0, s) ds�A(k, 0)+|

l

0
(A(0, s)&A(k, s)) ds,

but

A(0, s)&A(k, s)=|[(x, t) # QT : |{u(n)| p>s, |u (n)|�k ]|,

and multiplying in the corresponding equation by the k-truncature of u(n)

we get

1
k |

T

0
|

[ |u(n)|<k]
|{u(n)| p dx dt�M

whence

|
l

0
(A(0, s)&A(k, s)) ds�Mk.

The final conclusion is

A(0, l )�Mkl &1+C(N, p, T )k&q.
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Minimizing in k we have that the minimum is attained in k=Dl 1�(q+1).
Taking l=h p, our inequality for A(0, h) becames

|[(x, t) # QT | |{u (n) (x, t)|>h]|�C( p, N, T ) h&(pq�(q+1))

and then we conclude because p2=pq�(q+1). K

Lemma. 6.5. In the hypotheses of Lemma 6.4 we get

1. {u(n) � {u, a.e. and in measure.

2. |{u(n)| p&2 {u(n) � |{u| p&2 {u in L1

Proof. (1) Because [u(n)] converges in Lq (QT), a fortiori u(n) � u in
measure as n � �. We try to prove that {u(n) converges in measure. It
suffices to show that [{u(n)] is a Cauchy sequence in measure. For h>0
the set

[(x, t) # QT : |{u (n)&{u(m)|>h]

is a subset of the union of

1(n, A)=[(x, t) # QT : |{u (n)|>A]

1(m, A)=[(x, t) # QT : |{u (m)|>A]

4(k)=[(x, t) # QT : |u(n)&u(m)|>k]

DA, k, h=[(x, t) : |{u(n)|<A, |{u(m)|<A, |{u(n)&{u(m)|>h,

|u(n)&u(m)|<k]

for any A, k>0. From Lemma 6.4 we can choose A in such a way that
|1(n, A)|�= for all n # N. Moreover if |!|<A, |'|<A and |!&'|>h, by
monotonicity, we have ( |!| p&2!&|'| p&2', !&') �+>0 for some +>0.
Hence we get

|
T

0
|

[ |u(n)&u(m)|<k]
( |{u(n)| p&2 {u(n)&|{u(m)| p&2 {u(m), {u(n)&{u(m)) dx dt

�|
T

0
|

0
* \ |u(n)| p&1&|u(m)| p&1

|x| p + Tk (u (n)&u(m)) dx dt

�2k* |
T

0
|

0

W p&1

|x| p dx dt=C( p, N, T, *) k.
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Then

|DA, k, h |�|[ |{u(n)|<A, |{u(m)|>A, |u (n)&u(m)|<k,

( |{u(n)| p&2 {u(n)&|{u(m)| p&2 {u (m), {u(n)&{u(m)) >+]|

�
1
+ |

T

0
|

[ |u(n)&u(m)|<k]
( |{u(n)| p&2 {u(n)

&|{u(m)| p&2 {u(m), {u(n)&{u(m)) dx dt

�C( p, N, T, *)
k
+

�=,

taking k small enough; now for n, m�n0 , |4k |�=, so {u(n) � v in measure
for some measurable function v.

(2) From Lemma 6.4, it is easy to check that |{u(n)| p&2 {u(n) is
bounded in Lr for some r>1; by 1) and the Nemystskii lemma we have
|{u(n)| p&2 {u(n) � | {u| p&2{u a.e. and in measure and, as is well known by
the Vitali lemma, |{u(n)| p&2 {u(n) � |{u| p&2 {u in L1 (See [27]). K

As a consequence we obtain the following result.

Theorem 6.6. Assume 2N�(N+2)<p<2N�(N+1), then the problem

{
ut&2p u=*

u p&1

|x| p , x # 0/RN, t>0,

(29)
u(x, 0)= f (x), x # 0, f # L�, f�0,

u(x, t)=0, x # �0, t>0,

has a global solution u in the sense of distributions.
Moreover u # L�

loc((0, �), Lq (0)) and |{u| # M p2.

Remark 6.7. (i) Depending on p and N, when p2=pq�(q+1)>1, we
obtain a better regularity for u.

(ii) We can repeat the same proof for unbounded positive data,
provided u0�W for some t0 .

(iii) In the case 2>p>2N�(N+1) we can use the same kind of
arguments as in the theorem, to find a solution away from the origin.

We would like to point out a last comment about the values of p for
which the behaviour of the equation (4) changes.

(1) If 1<p<2N�(N+1) there exist solution in the distributions sense
at least for bounded data, independently of the value of *>0. It is nice to
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point out that this is the same range of p for wich the problem with *=0
has extinction in finite time, or the same range where the Harnack
inequality is false. In some sense, this means that under the influence of the
reaction term, a solution avoids the extinction but cannot reach the com-
plete blow-up.

In this case, if moreover 1<p<2N�(N+2), then the L2-estimate and the
Sobolev inclusion gives a strong solution, for data in L2.

(2) If 2>p�2N�(N+1) then there exist solution away of the origin. It
is an open problem to precise the behaviour of the solutions in this case.

(3) If p=2 we have the Baras�Goldstein result. (See [5]).

(4) If p>2 we have instantaneous blow-up in the sense stated before.
In some way the extension to a complete blow up result should imply that
the reaction term produces infinite speed of propagation.

7. EXISTENCE IN THE CASE *=*N, p

When *=*N, p , the proof of the existence result in Section 4 does not
work. In fact, the main point in the proof is an energy estimate, which
requires that *<*N, p . However, following the same kind of ideas as in
subsection (6.2), we will show the existence of solution (in the sense of
distributions) to the problem with positive bounded initial data f.

First, if 1<p<2N�(N+1) we can use as a supersolution a convenient
shift in time of the selfsimilar solution S(x, t); hence, the same iterative
method of subsection (6.2) allows us to conclude the existence of solution
in the sense of distributions.

In the range p�2N�(N+1), the argument is similar: we replace the
selfsimilar solution S(x, t) by an stationary supersolution ,(x)=
c|x| &(N& p)�p. In fact, for any c # R, this function is a solution (for x{0) to
the problem

&2p,=*N, p , p&1|x|&p.

Then, taking c large enough we have ,� f. Notice that , # W 1, q
loc for any

q<p, but , � W 1, p
loc . In other words, we cannot pass to the limit in

W1, p
0 (0); instead of this, we use the same convergence results as in section

(6.2) (see Lemma 6.4 and Lemma 6.5), passing to the limit in W 1, p&1
0 in

a sequence of solutions of the truncated problems, getting finally a solution
in the sense of distributions.

Therefore, we have proved the following theorem:

469HARDY INEQUALITIES



File: DISTL2 337530 . By:CV . Date:18:03:98 . Time:09:29 LOP8M. V8.B. Page 01:01
Codes: 2355 Signs: 1398 . Length: 45 pic 0 pts, 190 mm

Theorem 7.1. Assume 1<p<N, then the problem

{
ut&2p u=*N, p

u p&1

|x| p , x # 0/RN, t>0,

(30)
u(x, 0)= f (x), x # 0, f # L�, f �0

u(x, t)=0, x # �0, t>0,

has a global solution u in the sense of distributions.

Remark 7.2. Observe that the hypothesis of boundedness in the data f
is needed only to have that f �, for a suitable constant c. This means that
the theorem of existence holds for any initial data f # L2 satisfying this
condition.

8. SOME REMARKS ON UNIQUENESS

The uniqueness is in general an interesting open problem. However some
partial results will be explained in this section. First of all we will explain
some facts for *<*N, p in the next Lemma. The second result is on nonuni-
queness for *>*N, p and 1<p<2N�(N+1). In this sense the best constant
in Hardy's inequality is the critical value of the parameter * for uniqueness
in the range 1<p<2N�(N+1). We recall that Wn (x)=min[n, |x|&p] is
the truncated potential.

Lemma 8.1. Assume *<*N, p and consider the problem

ut&2pu=*Wn (x) |u| p&2 u, x # 0/RN, t>0,

{u(x, 0)= f (x), x # 0 (31)

u(x, t)=0, x # �0, t>0.

Then,

(1) If p�2 and f # L2 (0), there exists an unique solution to (31).

(2) For any p<2, if f #0 the problem has only the trivial solution.
Moreover, the same result is true for the unbounded potential *�|x| p.

Proof. (1) If u, v are solutions, by regularity we get |u|<M, |v|<M;
and by the lipschitz condition and the ellipticity condition for the
p-Laplacian, we obtain
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|
0

|u(x, t)&v(x, t)| 2 dx+:( p) |
t

0
|

0
|{u(x, s)&{v(x, s)| p dx ds

�C(n, M ) |
t

0
|

0
|u(x, s)&v(x, s)|2 dx ds,

where :( p) is a constant depending only of p, then, Gronwall's Lemma
gives the result.

(2) By Hardy inequality we have the estimate

|
0

|u(x, T )| 2 dx+: |
T

0
|

0
|{u(x, t)| p dx dt�|

0
| f (x)| 2 dx#0

therefore u=0. K

In the case p>2 and the hypothesis of the previous lemma the unique
solution to the aproximate problems converge to the minimal solution to
the problem with potential *|x|&p, however the uniqueness for the problem
(4) is an open question. This problem seems to be not easy because the
potential |x|&p # Lq only if 1<q<N�p.

In the case 1<p<2, the uniqueness is in general not satisfied as we will
see with the following comparison argument.

(I) In order to get a subsolution, we study the eigenvalue problem

{&2p�1=*1 (n) Wn (x) |�1 | p&2 �1 ,
�1 (x)=0,

x # 0/RN,
x # �0.

(32)

The results in Theorem (2.4) allows us to conclude that for *>*N, p fixed,
we can choose n large enough such that *1 (n)<*. Next, we define
w(x, t)=ct:�1 (x), with :=1�(2& p). Then, if c is small enough,

0<+(x, t)#
wt&2pw

* |x| &p w p&1�c1 (N, p, 0) c2& p�2& p
1 +

*1 (n)
*

<1

where c1 (N, p, 0)=CN, p :$ p
0 , CN, p being the best constant in Hardy

inequality and $0 the diameter of 0. Therefore, we have a subsolution to
the problem

ut&2pu=* |x| &p |u| p&2 u, x # 0/RN, t>0,

{u(x, 0)=0, x # 0

u(x, t)=0, x # �0, t>0.
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(II) Now, we can take as a supersolution the selfsimilar solution
in the whole space-time obtained in the previous section, S(x, t)=
A(*)(t�|x| p)1�(2& p). Then we can perform the following iteration:

u(k+1) t&2puk+1=* |x|&p |uk | p&2 uk , x # 0/RN, t>0,

{uk+1(x, 0)=0, x # 0

uk+1(x, t)=0, x # �0, t>0,

starting with u0 (x, t)=w(x, t). If we choose c small enough we can get
w(x, t)�S(x, t). Then the iterative scheme gives:

Theorem 8.2. Given the problem

ut&2pu=* |x| &p |u| p&2 u, x # 0/RN, t>0,

{u(x, 0)=0, x # 0

u(x, t)=0, x # �0, t>0,

with 1<p<2N�(N+1), and *>*N, p , then there exists a positive solution in
the sense of distributions. Moreover, if 1<p<2N�(N+2), the equation is
satisfied in the weak W 1, p

0 (0) sense.

Proof. The argument has been already used in the previous sections,
and then we will be sketchy. The only point to justify is the comparison
theorem. In the range 1<p<2N�(N+2) there is no problem, because
S( } , t) # W 1, p

0 (0). In the range 2N�(N+2)�p<2N�(N+1), this is false,
but (uk&S)+ ( } , t) # W 1, p

0 (0), and can be taken as test function in order
to prove the comparison. K

Now we explain some elementary nonuniqueness results related to the
classical ideas by Fujita. On the other hand we prove a new result for the
p-laplacian.

Lemma 8.3. Consider the problem,

ut&2pu=* |u| q&2 u, x # 0/RN, t>0, *>0

{u(x, 0)=0, x # 0 (33)

u(x, t)=0, x # �0, t>0,

where, 1<q<p�2. Then problem (33) has a positive solution.

Proof. We follow the ideas in [16]. There are two steps in the proof.
First of all, we construct a maximum solution. Second, we show that such
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a maximum solution is positive. Let M be a positive number and consider
u0 the solution of

ut&2pu=*M q&1, x # 0/RN, t>0,

{u(x, 0)=0, x # 0 (34)

u(x, t)=0, x # �0, t>0.

Let T>0 such that u0 (x, t)<M in 0_[0, T]. By iteration we construct uk

solution of

ukt&2puk=*uq&1
k&1 , x # 0/RN, t>0, p�N,

{u(x, 0)=0, x # 0 (35)

u(x, t)=0, x # �0, t>0.

The weak comparison theorem gives us that u0�u1� } } } �uk� } } } �0,
hence u� =limk � � uk is a solution of problem (33) with trivial initial data.

Now we will use the following result.

Lemma 8.4. Let u� , M be defined above. If v is a subsolution to problem
(35), such that v(x, t)<M in (x, t) # 0_[0, T] then v�u� .

Proof. Since v�M we have that

vt&2p v�*Mq&1=u0t&2pu0 ,

therefore by comparison v�u0 . By iteration of this argument, v�uk for all
k # N. Hence v�u� . K

To finish, define w(x, t)=+(=t),1 (x) where +$=+q&1, +(0)=0 and
,1>0 is the positive solution of

{&2p,1=* |,1 |q&2 ,1 ,
,1(x)=0,

x # 0/RN,
x # �0.

(36)

Direct computations give

:(x, t)=
wt&2pw

*wq&1 <1, t # [0, T]

because 0<:(x, t)�=,2&q
1 �*++(=t) p&q<1, for =>0 small enough. From

the result in Lemma 8.4 we conclude u� �w(x, t)>0. K

By the same argument as above we obtain:

473HARDY INEQUALITIES



File: DISTL2 337534 . By:CV . Date:18:03:98 . Time:09:30 LOP8M. V8.B. Page 01:01
Codes: 2143 Signs: 1081 . Length: 45 pic 0 pts, 190 mm

Corollary 8.5. Problem

ut&2pu=* |u| p&2 u, x # 0/RN, t>0, *>*1

{u(x, 0)=0, x # 0 (37)

u(x, t)=0, x # �0, t>0,

where, p<2 and *1 is the first eigenvalue of the p-Laplacian, has a positive
solution.

However, if we admit in the reaction term an exponent larger than p,
then in some cases we can prove the following uniqueness result, which
seems to be new. We emphasize that the second member is not lipschitz
continous. Also we would like to remark that in the semilinear case, when
q>2 the nonlinearity is lipschitz, hence this difficulty does not appear in
the semilinear case.

Lemma 8.6. Consider the problem

ut&2pu=* |u| q&2 u, x # 0/RN, t>0, *>0

{u(x, 0)=0, x # 0 (38)

u(x, t)=0, x # �0, t>0,

where, 2N�(N+2)<p<q�2.
Then the unique solution u # L� ([0, T]; L2 (0)) & L p ([0, T], W 1, p

0 (0))
to the problem (38) is u#0.

Proof. The idea is very elementary. The usual energy estimate gives us

|
0

|u(x, T )|2 dx+|
T

0
|

0
|{u(x, t)| p dx dt=|

T

0
|

0
|u(x, t)| q dx dt

and the hypotheses on p give that p*>2. By Sobolev and Ho� lder
inequalities we obtain

|
0

|u(x, T )|2 dx+cp |
T

0 \|0
|u(x, t)| 2 dx+

p�2

dt

�|0| (2&q)�2 |
T

0 \|0
|u(x, t)| 2 dx+

q�2

dt
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If we call y(t)#(�0 |u(x, t)| 2 dx)1�2 the above inequality can be written as

0� y2 (T )�|
T

0
( |0| (2&q)�2yq (t)&cpy p (t)) dt.

And this is impossible because limt � 0 y(t)=0. K

Note added in proof. With respect to Remark 3.5 (III), we have received a personal com-
munication by Xiao Zhong (Jyvaskyla University, Finland), proving the non-uniqueness in
the case 1< p<2, by using some convenient weighted Hardy inequalities.
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