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Abstract

Affine systems are reproducing systems of the form

AC = {DcTkψ
�: 1 � � � L, k ∈ Zn, c ∈ C},

which arise by applying lattice translation operators Tk to one or more generators ψ� in L2(Rn), followed by the
application of dilation operators Dc, associated with a countable set C of invertible matrices. In the wavelet litera-
ture, C is usually taken to be the group consisting of all integer powers of a fixed expanding matrix. In this paper,
we develop the properties of much more general systems, for which C = {c = ab: a ∈ A, b ∈ B} where A and B

are not necessarily commuting matrix sets. C need not contain a single expanding matrix. Nonetheless, for many
choices of A and B, there are wavelet systems with multiresolution properties very similar to those of classical
dyadic wavelets. Typically, A expands or contracts only in certain directions, while B acts by volume-preserving
maps in transverse directions. Then the resulting wavelets exhibit the geometric properties, e.g., directionality,
elongated shapes, scales, oscillations, recently advocated by many authors for multidimensional signal and image
processing applications. Our method is a systematic approach to the theory of affine-like systems yielding these
and more general features.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

There is considerable interest, both in mathematics and its applications, in the study of efficient rep-
resentations of multidimensional functions. The motivation comes partly from signal processing, where
such representations are useful in image compression and feature extraction, and from the investigation
of certain classes of singular integral operators. For example, it was pointed out in several recent research
papers that oriented oscillatory waveforms play a fundamental role in the construction of representations
for multidimensional functions and signals (cf. [3,5,8] and articles in [20]). In particular, it was shown
that, in order to be optimally sparse in a certain sense, such representations must contain basis elements
with many more locations, scales, shapes and directions than the “classical” wavelets (cf. [4]).

In this paper, we introduce a new class of representation systems which have exactly the features
we have described, as well as several other properties which are closely analogous to the properties of
systems constructed in [7] and, therefore, for the reasons explained there as well as in [4,5,8], have great
potential in applications. We call these systems affine systems with composite dilations, and they have
the form

AAB(Ψ ) = {DaDbTkΨ : k ∈ Zn, b ∈ B, a ∈ A}, (1.1)

where Ψ = (ψ1, . . . ,ψL) ⊂ L2(Rn), Tk are the translations, defined by Tkf (x) = f (x − k), Da are
the dilations, defined by Daf (x) = |deta|−1/2f (a−1x), and A,B are countable subsets of GLn(R).
By choosing Ψ , A, and B appropriately, we can make AAB(Ψ ) an orthonormal (ON) basis or, more
generally, a Parseval frame (PF) for L2(Rn). In this case, we call Ψ an ON AB-multiwavelet or a PF
AB-multiwavelet, respectively. If the system has only one generator, that is, Ψ = {ψ}, then we use the
expression wavelet rather than multiwavelet in this definition.

As we will show, the mathematical theory of these systems provides a simple and flexible frame-
work for the construction of several classes of orthonormal bases and Parseval frames. For example, in
Section 5, we construct PF AB-wavelets with good time-frequency decay properties, whose elements
contain “long and narrow” waveforms with many locations, scales, shapes and directions. These exam-
ples have similarities to the curvelets [4] and contourlets [7], which have been recently introduced in
order to obtain efficient representations of natural images. Our approach is more general and presents a
simple method for obtaining several such orthonormal bases and Parseval frames that exhibit these and
other geometric features. In particular, our approach extends naturally to higher dimensions and allows
a multiresolution construction which appears to be well suited to a fast numerical implementation. For
example, the fan filter approach developed in [7] can be used in some cases.

The paper is organized as follows. In Section 2 we introduce the study of AB-multiwavelets by
constructing some examples of such systems in L2(R2). In Section 3 we examine the conditions on
A,B ∈ GLn(R) that ensure the existence of AB-multiwavelets and present several classes of these sys-
tems for L2(Rn). In Sections 4 and 5, we describe the AB-multiwavelets generated using a generalization
of the classical MRA. Finally, in Section 6, we describe an example of a singly generated orthonormal
AB-wavelet.
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2. Example

In this paper, we shall present a variety of affine systems with composite dilations. Perhaps, the most
efficient way of entering into the study of these systems is to examine in some detail a particular example
of such a system.

Throughout this paper, we shall consider the points x ∈ Rn to be column vectors, i.e., x =
(

x1···xn

)
, and

the points ξ ∈ R̂n (the frequency domain) to be row vectors, i.e., ξ = (ξ1, . . . , ξn). A vector x multiplying
a matrix a ∈ GLn(R) on the right is understood to be a column vector, while a vector ξ multiplying a on
the left is a row vector. Thus, ax ∈ Rn and ξa ∈ R̂n. The Fourier transform is defined as

f̂ (ξ) =
∫
Rn

f (x)e−2πiξx dx,

where ξ ∈ R̂n, and the inverse Fourier transform is

f̌ (x) =
∫
R̂n

f (ξ)e2πiξx dξ.

Let a = ( 2 0
0 ε

)
, where ε �= 0, b = ( 1 1

0 1

)
and G = {(bj , k): j ∈ Z, k ∈ Z2}. Then G is a group with group

multiplication:

(b�,m)(bj , k) = (b�+j , k + b−jm). (2.1)

In particular, we have (bj , k)−1 = (b−j ,−bjk). The multiplication (2.1) is consistent with the operation
that maps x ∈ R2 into bj (x + k) ∈ R2. This is clarified by introducing the unitary representation π of G,
acting on L2(R2), defined by(

π(bj , k)f
)
(x) = f (b−j x − k) = (Dj

bTkf
)
(x) (2.2)

for f ∈ L2(R2). The observation that(
D�

bTm

)(
D

j

bTk

)= (D�+j

b Tk+b−j m

)
,

where �, j ∈ Z, k,m ∈ Z2, shows how the group operation (2.1) is associated with the unitary represen-
tation (2.2).

Let S0 = {ξ = (ξ1, ξ2) ∈ R̂2: |ξ1| � 1} and define

V0 = L2(S0)
∨ = {f ∈ L2(Rn): supp f̂ ⊂ S0

}
.

Since, for all j ∈ Z and k ∈ Z2, we have(
π(bj , k)f

)∧
(ξ) = (Dj

bTkf
)∧

(ξ) = e−2πiξbj kf̂ (ξbj ), (2.3)

and ξbj = (ξ1, ξ2)b
j = (ξ1, ξ2 + jξ1), then the action of bj maps the vertical strip domain S0 into itself

and, thus, the space V0 is invariant under the action of π(bj , k). The same invariance property holds
similarly for the vertical strips

Si = S0a
i = {ξ = (ξ1, ξ2) ∈ R̂2: |ξ1| � 2i

}
,

i ∈ Z, and, as a consequence, the spaces Vi = L2(Si)
∨ are also invariant under the action of the operators

π(bj , k). The spaces {Vi}i∈Z also satisfy the basic MRA properties:
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(1) Vi ⊂ Vi+1, i ∈ Z;
(2) D−i

a V0 = Vi ;
(3)

⋂
Vi = {0}; and

(4)
⋃

Vi = L2(Rn).

The complete definition of an MRA includes the assumption that V0 is generated by the integer translates
of a φ ∈ V0, called the scaling function, and that these translates {Tkφ: k ∈ Z2} are an orthonormal basis
of V0. In our situation, as we will discuss later on, there is an analogous property that will replace the
“scaling” property.

Let A = {ai : i ∈ Z} and B = {bj : j ∈ Z}, and W0 be the orthogonal complement of V0 in V1, that is,
V1 = V0 ⊕W0. We shall now show how to construct an ON AB-multiwavelet generated by three mutually
orthogonal functions ψ1,ψ2,ψ3 ∈ W0 of norm 1. It will be convenient to work in the Fourier domain.
Thus, V̂1 = V̂0 ⊕ Ŵ0 and, consequently, Ŵ0 = L2(R0), where R0 = S1 \ S0 = {ξ = (ξ1, ξ2) ∈ R̂2: 1 <

|ξ1| � 2}. We begin by constructing a particular orthonormal basis of W0 that it is mapped into itself by
the representation π . To do this, define the following subsets of R0 = S1 \ S0:

I1 = I+
1 ∪ I−

1 , I2 = I+
2 ∪ I−

2 , I3 = I+
3 ∪ I−

3 ,

where

I+
1 = {ξ = (ξ1, ξ2) ∈ R̂2: 1 < ξ1 � 2, 0 � ξ2 < 1/2

}
,

I+
2 = {ξ = (ξ1, ξ2) ∈ R̂2: 1 < ξ1 � 2, 1/2 � ξ2 < 1

}
,

I+
3 = {ξ = (ξ1, ξ2) ∈ R̂2: 1 < ξ1 � 2, 1 � ξ2 < ξ1

}
,

and I−
� = {ξ ∈ R̂2: −ξ ∈ I+

� }, � = 1,2,3. These sets are shown in Fig. 1. We then define ψ�, � = 1,2,3,
by setting ψ̂� = χI�

, � = 1,2,3. Observe that each set I� is a fundamental domain of Z2, that is, the
functions {e2πiξk: k ∈ Z2}, restricted to I�, form an orthonormal basis of L2(I�). It follows that the
collection{

e2πiξkψ̂�(ξ): k ∈ Z2
}

is an orthonormal basis of L2(I�), � = 1,2,3. A simple direct calculation shows that the sets {I�b
j : j ∈

Z, � = 1,2,3} are a partition of R0, that is,

3⋃
�=1

⋃
j∈Z

I�b
j = R0,

where the union is disjoint. It follows that the collection{
e2πiξkψ̂�(ξbj ): k ∈ Z2, j ∈ Z, � = 1,2,3

}
(2.4)

is an orthonormal basis of L2(R0) and, thus, by taking the inverse Fourier transform of (2.4), we have
that {

π(bj , k)ψ�: k ∈ Z2, j ∈ Z, � = 1,2,3
}

(2.5)

is an orthonormal basis of W0 = L2(R0)
∨. Notice that, since, for each j ∈ Z fixed, bj maps Z2 into itself,

the collection {e2πiξbj k: k ∈ Z2} is equal to the collection {e2πiξk: k ∈ Z2}.
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Fig. 1. Example of ON AB-multiwavelet. The sets {I�bj : j ∈ Z, � = 1,2,3} are a disjoint partition of R0.

Observe that the number of generators, three, of the orthonormal basis (2.5) of W0 is independent of
the choice of the functions ψ�. That is, if{

π(bj , k)φ�: k ∈ Z2, j ∈ Z, � = 1, . . . ,L
}
,

for some functions φ� ∈ L2(R2), is an orthonormal basis of L2(R0), then � must range through the set
{1,2,3}. This is a consequence of the following general result:

Proposition 2.1. Let G be a countable set and, for each u ∈ G, let Tu be a unitary operator acting on
a Hilbert space H. Assume that, for each Tu, there is a unique u∗ ∈ G such that Tu∗ = T ∗

u . Suppose
Φ = {φ1, . . . , φN }, Ψ = {ψ1, . . . ,ψM} ⊂ H, where N,M ∈ N ∪ {∞}. If {Tuφ

k: u ∈ G, 1 � k � N} and
{Tuψ

i : u ∈ G, 1 � i � M} are each orthonormal bases for H, then N = M .

Observe that if G is a group and Tu, u ∈ G, is a unitary representation of G acting on H, then the
assumption of this proposition are satisfied. This is the situation we encounter in the case of AB-wavelets.

Proof of Proposition 2.1. It follows from the assumptions that, for each 1 � k � N ,

‖φk‖2 =
∑
u∈G

M∑
i=1

∣∣〈φk,Tuψ
i〉∣∣2.

Thus, using the unitary property of Tu, we have

N =
N∑

‖φk‖2 =
N∑∑ M∑∣∣〈φk,Tuψ

i〉∣∣2 =
M∑∑

∗

N∑∣∣〈Tu∗φk,ψi〉∣∣2 =
M∑

‖ψi‖2 = M. �

k=1 k=1 u∈G i=1 i=1 u ∈G k=1 i=1
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In order to obtain the desired ON AB affine system for L2(R2), we apply the dilations Di
a , i ∈ Z, to

the orthonormal system (2.5). This is easily seen in the Fourier domain, since the action of these dilations
on the region R0 generates the sets

Ri = R0a
i = {ξ = (ξ1, ξ2) ∈ R̂2: 2i < |ξ1| � 2i+1

}
,

and we have that
⋃

i∈Z
Ri = R̂2, where the union is disjoint. Since the dilations Di

a are unitary op-
erators, they map an orthonormal basis into an orthonormal basis and, thus, for each i ∈ Z, the set
{Di

aπ(bj , k)ψ�: k ∈ Z2, j ∈ Z, � = 1,2,3} is an orthonormal basis of L2(Ri)
∨ = Wi . Since the spaces

L2(Ri) (and thus the spaces Wi) are mutually orthogonal, it follows that the system{
Di

aπ(bj , k)ψ�: k ∈ Z2, i, j ∈ Z, � = 1,2,3
}

= {Di
aD

j

bTkψ
�: k ∈ Z2, i, j ∈ Z, � = 1,2,3

}
(2.6)

is an orthonormal basis of L2(R2) =⊕i∈Z
Wi , that is, Ψ = {ψ1,ψ2,ψ3} is an ON AB-multiwavelet.

The number of generators of this ON AB-multiwavelet is fixed. Indeed, by Proposition 2.1, if we
could replace Ψ in (2.5) by a Φ = {φ1, . . . , φL}, then L = 3, and this applies to (2.6) as well. As we will
show in Section 5.2, the Fourier transform of the multiwavelets φ̂� need not be characteristic functions.

Recall that a countable family {ej : j ∈ J } of elements in a separable Hilbert space H is a frame if
there exist constants 0 < A � B < ∞ satisfying

A‖v‖2 �
∑
j∈J

∣∣〈v, ej 〉
∣∣2 � B‖v‖2

for all v ∈H. A frame is tight if A and B can be chosen so that A = B , and is a Parseval frame (PF) (also
called normalized tight frame) if A = B = 1. Thus, if {ej : j ∈ J } is a Parseval frame in H, then

‖v‖2 =
∑
j∈J

∣∣〈v, ej 〉
∣∣2

for each v ∈ H. This is equivalent to the reproducing formula

v =
∑
j∈J

〈v, ej 〉ej (2.7)

for all v ∈ H, where the series in (2.7) converges in the norm of H. Equations (2.7) shows that a Parseval
frame provides a basis-like representation. In general, however, a PF need not be a basis. We refer the
reader to [9,14] for more details about frames.

We will now show how we can construct MRA PF AB wavelet systems with a single generator. To do
this we modify the construction of ON systems that led to (2.6). We begin with T = T +∪T −, where T + is
the trapezoidal region with vertices (1/2,0), (1/2,1/2), (1,0) and (1,1), and T − = {ξ ∈ R̂2: −ξ ∈ T +};
let R = S0 \ S−1 = {ξ = (ξ1, ξ2) ∈ R̂2: 1/2 < |ξ1| � 1}. This is illustrated in Fig. 2. A direct compu-
tation shows that

⋃
j∈Z

T bj = R, where the union is disjoint. It follows from the Plancherel theorem
(using the fact that T is contained inside a fundamental domain) that the function χT (ξ) satisfies∑

k∈Z2 |〈f̂ , e2πi(·)kχT 〉|2 = ‖f̂ ‖2 for all f̂ ∈ L2(R), and thus the collection{
D

j

be
2πiξkχT (ξ): k ∈ Z2, j ∈ Z

}
is a Parseval frame of L2(T ). Similarly to the construction above, we have that

⋃
i∈Z

Rai = R̂2, where
the union is disjoint, and so it follows that the set
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Fig. 2. Example of PF AB-wavelet. The sets {T bj : j ∈ Z} are a disjoint partition of R.

{
Di

aπ(bj , k)ψ : k ∈ Z2, i, j ∈ Z
}= {Di

aD
j

bTkψ : k ∈ Z2, i, j ∈ Z
}

where ψ = (χT )∨ is a PF for L2(R2) =⊕i∈Z
L2(Rai)∨, that is, ψ is a Parseval frame AB-wavelet.

It is not hard to see that, by modifying the function ψ , one can obtain singly generated ON AB-
wavelets (cf. [11]). It is important to point out that, as we will discuss in Sections 5 and 6, those singly
generated ON AB-wavelets are not of MRA type. These remarks make clear that the construction of AB-
Parseval frames is simpler than the corresponding construction of ON AB-multiwavelets. Because of this
fact, and because Parseval frames are as effective as ON bases in many applications, in the following we
will concentrate mostly on the construction of Parseval frames AB-wavelets, that are not necessarily
orthonormal bases.

We end this section by stating some basic properties of the translation and dilation operators, that will
be used throughout the paper.

Proposition 2.2. Let

G = {U = DaTy : (a, y) ∈ GLn(R) × Rn
}
.

G is a subgroup of the group of unitary operators on L2(Rn) which is preserved by the action of the
operator U �→ Û , where Û f̂ = (Uf )∧. In particular, we have:

(i) DaTy = TayDa ;
(ii) Da1Da2 = Da1a2 for each a1, a2 ∈ GLn(R);

(iii) for U = DaTy , Û = D̂aM−y , where D̂af̂ (ξ) = |deta|1/2f̂ (ξa);
(iv) for a measurable set S ⊂ R̂n and L2(S) = {f̂ ∈ L2(R̂n): supp f̂ ⊆ S}, we have D̂aL

2(S) =
L2(Sa−1).
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3. The admissibility condition

In Section 2, we have examined some special cases of affine systems associated with the lattice
Zn in Rn, a countable collection C ⊂ GLn(R) containing the n × n identity matrix In, and a set
Ψ = {ψ1, . . . ,ψL} ⊂ L2(Rn), having the form

AC(Ψ ) = {DcTkΨ : c ∈ C, k ∈ Zn}. (3.1)

Our main concern here is to establish conditions on C that guarantee the existence of a finite set of
functions Ψ such that AC(Ψ ), given by (3.1), is either an orthonormal basis or a Parseval frame for
L2(Rn). When this is the case, we say that Ψ is an orthonormal (ON) C-multiwavelet or a Parseval frame
C-multiwavelet, respectively, for L2(Rn). More generally, when S ⊂ R̂n has positive Lebesgue measure
and Sc = S for each c ∈ C, we say that Ψ is an ON or a Parseval frame C-multiwavelet for L2(S)∨, if
AC(Ψ ) is an ON basis or a Parseval frame, respectively, for L2(S)∨. For example, in the construction of
Section 2, we consider affine systems on L2(Si)

∨, i ∈ Z, where the strip domains Si ⊂ R̂2 are invariant
with respect to the matrices b ∈ B .

It is an open problem to give necessary and sufficient conditions on C for which C multiwavelets for
L2(S)∨ exist. In all known cases where they exist, C satisfies a geometric condition that we call the
tiling property. Namely, if there exist measurable subsets R1, . . . ,RL of S such that a.e. ξ ∈ S ⊂ R̂n

uniquely determines an index 1 � i � L, η ∈ Ri , and a c ∈ C, for which ξ = ηc−1, we say that the sets
{R�: � = 1, . . . ,L} are S-tiling sets for the dilation set C−1. Equivalently, we have that

S =
⋃
c∈C

⋃
1���L

R�c
−1, (3.2)

where the union is disjoint in measure. If S = Rn, we simply say that the sets {R�: � = 1, . . . ,L} are
tiling sets for C−1. The property (3.2) ensures that L2(S)∨ is the orthogonal direct sum

L2(S)∨ =
⊕

c∈C, 1���L

L2(R�c
−1)∨.

Therefore, for Ψ = {ψ1, . . . ,ψL}, where ψ� = (χR�
)∨, the system AC(Ψ ) given by (3.1) is a Parseval

frame for L2(S)∨ if and only if, for each 1 � i � L, the collection{
(Tkψ

i)∧ = e2πikξχRi
: k ∈ Zn

}
is a Parseval frame for L2(Ri)

∨. By an elementary Fourier series argument, this occurs precisely if the
sets R1, . . . ,RL satisfy

(R� + k) ∩ R� = 0 for k ∈ Ẑn \ {0}, 1 � � � L, up to sets of measure zero, (3.3)

in which case we say that the sets {R�: � = 1, . . . ,L} are packing sets for Zn translations.3 Observe that
this condition implies that the measure of each set R� cannot be larger than one. Therefore we have the
following:

Proposition 3.1. Let Ψ = {ψ1, . . . ,ψL} ⊂ L2(S)∨, where ψ� = (χR�
)∨ for 1 � � � L. Ψ is a Parseval

frame C-multiwavelet for L2(S)∨ if and only if (3.2) and (3.3) hold.

3 Recall that in Section 2 we introduced the notion of “fundamental domain.” Observe that a packing set for Zn translations
is a subset of a fundamental domain for Zn.
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Whenever Ψ is of the form given by Proposition 3.1, we say that Ψ is a tiling (or MSF) C-multiwavelet
of L2(S)∨. In Section 5, we show how tiling C-multiwavelets can be smoothed off to obtain more gen-
eral C-multiwavelets. However, it is not known whether the existence of a C-multiwavelet implies the
existence of a tiling C-multiwavelet.

Note that in the example of Parseval frame AB-wavelet from Section 2, we construct a set T ⊂ R̂2

having the properties

(i)
⋃

i,j T (aibj )−1 = R̂2 \ {(0, ξ2): ξ2 ∈ R};
(ii) (T + k) ∩ T = ∅ for all k ∈ Z2 \ {0}.

This shows that Eqs. (3.2) and (3.3) are satisfied, and so it follows that ψ = (χT )∨ is a PF C-wavelet for
L2(R2), where C = {aibj : i, j ∈ Z}.

The set C is called S-admissible if tiling C-multiwavelets for L2(S)∨ exist. In case S = R̂n, we will
simply say admissible (rather than R̂n-admissible). In the following, we will briefly examine the rela-
tionship between the notion of admissibility that we have just introduced, and the theory of continuous
wavelets (Section 3.1). Next, in Section 3.2 we will show that the admissibility condition is closely related
to a condition that we call local admissibility. In Section 3.3 we examine the admissibility for dilation
sets of the form C = AB , and look at two types of examples unlike those in Section 2. In Section 3.4 we
give a complete discussion of the theory that generalizes the examples in Section 2.

3.1. Connection to the theory of continuous multiwavelets

For C and S defined as in the previous section, we say that Ψ = {ψ1, . . . ,ψL} ⊂ L2(S)∨ is a continuous
C-multiwavelet if

‖f ‖2 =
L∑

�=1

∑
c∈C

∫
Rn

∣∣〈f,DcTyψ
�〉∣∣2 dy (3.4)

for all f ∈ L2(S)∨. By a trivial extension of an argument in [16], one shows that Ψ satisfies (3.4) if and
only if it satisfies the Calderòn equation

L∑
�=1

∑
c∈C

∣∣ψ̂�(ξc)
∣∣2 = 1 for a.e. ξ ∈ S. (3.5)

It is easy to see that every tiling C-multiwavelet is also a continuous C-multiwavelet. In fact, if Ψ =
{ψ1, . . . ,ψL} where ψ� = (χR�

)∨ and the sets {R�: 1 � � � L} satisfy Eqs. (3.2) and (3.3), then (3.5)
is immediately satisfied. More generally, it is shown in [13] that, when C satisfies a technical property
called the local integrability condition (LIC), then the Calderòn equation is one of a family of equations
characterizing C-multiwavelets for L2(Rn). The LIC is satisfied, for example, when C is of the form
C = {ai : i ∈ Z} where a ∈ GLn(R) is an expanding matrix (that is, all the eigenvalues λ of a satisfy
|λ| > 1). Finally, observe that there are no known examples of C-multiwavelets which are not continuous
C-multiwavelets, i.e., do not satisfy the Calderòn equation.
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3.2. The local admissibility condition

As above, let C ⊂ GLn(R) be a countable set containing the identity matrix I . We say that C is locally
admissible if, for a.e. ξ ∈ R̂n, there is an open neighborhood U of ξ such that, for c1, c2 ∈ C with c1 �= c2,
we have that Uc−1

1 c2 ∩ U = ∅. In particular, this means that the set of points {ξc−1: c ∈ C} is discrete
in the topology of R̂n. We can assume that U is contained in a cube of side 1 centered at ξ . Then, for
S =⋃c∈C Uc−1, the set C is S-admissible and χ∨

U is a tiling wavelet for L2(S)∨.
Under certain assumptions on C, one can take S = R̂n. Consider for example the situation where

C = {ai : i ∈ Z} and a ∈ GLn(R) is an expanding matrix. C is clearly locally admissible. Let U ⊂
[−1/2,1/2]n ⊂ R̂n be an open neighborhood of the origin (this implies that U is a packing set for
Zn translations). Since a is expanding, we can pick such a U so that Ua−1 ⊂ U . Therefore, if we let
T = U \ (Ua−1), then T is a tiling set for the set of dilations C (observe that C is a group and so
C = C−1). This shows that a tiling C-wavelet for L2(Rn) exists. The following section elaborates this
situation further, by showing an example of a dilation set that is not locally admissible.

Example of a nonadmissible dilation set
Consider the set C = {2i3j : i, j ∈ Z}. This set is not locally admissible in view of the fact that ln 3/ ln 2

is irrational and so {ln(2i3j ): i, j ∈ Z} is dense in R. Using this fact, the following argument will show
that no C-wavelets for L2(R) exist.

In fact, if such a wavelet ψ exists, then it satisfies the Calderón condition∑
i,j∈Z

∣∣ψ̂(2i3j ξ )
∣∣2 = 1 a.e. ξ ∈ R̂.

We claim that no such ψ exists. If it did, then we could find an n ∈ Z and a measurable set R ⊂ [n,n+ 1]
of positive measure such that |ψ̂(ξ)| � δ for some δ > 0 and for all ξ ∈ R. Fix such n and δ. Since
‖ψ‖ � 1, it follows that

∫ n+1
n

|ψ̂(ξ)|2 dξ � δ2|R| and so

δ2 � 1

|R| � |n| + 1

|R| . (3.6)

It is easy to see that there is a countably infinite set P of elements p of the form p = 2j 3i , i, j ∈ Z, such
that

1 < p < 1 + δ2|R|
2(|n| + 1)

. (3.7)

From (3.6) and (3.7) we have that p < 1 + |R|/(2|R|) = 3/2 and, thus, 1/p > 1/2. Using this observa-
tion, (3.7) and the fact that ‖ψ‖ � 1, we have

n+1∫
n

∣∣ψ̂(pξ)
∣∣2 dξ = 1

p

p(n+1)∫
pn

∣∣ψ̂(ξ)
∣∣2 dξ � 1

2

( n+1∫
n

∣∣ψ̂(ξ)
∣∣2 dξ −

pn∫
n

∣∣ψ̂(ξ)
∣∣2 dξ

)

� 1(
δ2|R| − n(p − 1)

)
� 1(

δ2|R| − nδ2|R|/(2|n| + 1)
)
� δ2|R|

. (3.8)

2 2 4
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Thus, using (3.8) and the Calderón condition we have

1 =
n+1∫
n

∑
i,j∈Z

∣∣ψ̂(2i3j ξ )
∣∣2 dξ �

n+1∫
n

∑
p∈P

∣∣ψ̂(pξ)
∣∣2 dξ � δ2|R|

4

∑
p∈P

1 = ∞.

This contradicts the Calderón condition. It is easy to see that the same argument applies to any A =
{ajbi : i, j ∈ Z}, with a, b ∈ Z \ {0,1} relatively prime. The same argument also applies if one replaces
L2(R) by L2(S)∨, where S ⊂ R̂ is a set of positive measure.

Consider, on the other hand,

C ′ =
{(

2i 0
0 3j

)
: i, j ∈ Z

}
.

This set is locally admissible, and an argument similar to the one described in the second paragraph of
Section 3.2, where C = {ai : i ∈ Z} and a is an expanding matrix, shows that tiling C ′-wavelets for L2(R2)

exist.

3.3. Admissibility condition. The AB case

If B ⊂ GLn(R) is S-admissible and c ∈ GLn(R), then cB is Sc−1-admissible since the unitary operator
Dc maps the PF AB(ψ) for L2(S)∨ onto the PF AcB(ψ) for L2(Sc−1)∨, where ψ is a PF cB-wavelet
for L2(Sc−1)∨. In particular, this holds for c = b−1, where b ∈ B . In this case, b−1B is still S-admissible
since Sb = S, and thus there is no loss of generality in assuming In ∈ B . We will be especially interested
in the situation where B is S-admissible and there is a countable set A ⊂ GLn(R) for which S is a tiling
set for A. Then

L2(Rn) =
⊕
a∈A

L2(Sa−1)∨ =
⊕
a∈A

Da

(
L2(S)

)∨
, (3.9)

and it follows that the set C = AB = {ab: a ∈ A, b ∈ B} is admissible, and ψ is a PF AB-wavelet
whenever ψ is a B-wavelet for L2(S)∨. It is clear that a similar approach holds for multiwavelets Ψ ⊂
L2(Rn). A particular instance of this phenomenon was illustrated in Section 2, where A = {ai : i ∈ Z}
with a = ( 2 0

0 ε

)
and B = {bj : j ∈ Z} with b = ( 1 1

0 1

)
. Observe that in these examples the right action of

A doubles the first coordinate. On the other hand, the action of A on the second coordinate is irrelevant,
since the right action of B leaves the first coordinate fixed and uses the first coordinate to control the
second one.

In the following sections, will show that there are many possible choices for A and B , and that they do
not have to be subgroups of GLn(R). Unifying all these examples of admissible AB-multiwavelets that
we are going to construct is a not necessarily linear change of coordinates map φ(t, s) from R̂k × R̂n−k

onto a set of full measure in R̂n. Like in the two-dimensional example above, the action of A will be
“upper triangular,” in the sense that, for a ∈ A, φ(t, s)a = φ(ta′, s ′), where a ∈ A′ and A′ is a set (or a
group) of operators on R̂k that admits tiling sets for the A′ dilations. The action of A on the coordinate
s ∈ R̂n−k is irrelevant. On the other hand, the action of B will leave the coordinate t ∈ R̂k invariant: for
b ∈ B we have that φ(t, s)b = φ(t, σt (s, b)) for some transformation σt(·, b) on R̂n−k . As t varies over a
compact set K ∈ R̂k , we will be able to construct a set R which is an S-tiling set for the B dilations, where
S is the strip domain K × R̂n−k . This general procedure will be illustrated in Sections 3.3.1 and 3.3.2
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for the case of spherical and hyperbolic coordinates, respectively. Next, in Section 3.4, we consider the
linear coordinate systems, by generalizing the examples in Section 2.

3.3.1. Orthogonal AB-multiwavelets
Perhaps the simplest class of admissible AB-multiwavelets is obtained when B is a finite group. Such

a B is conjugate to a subgroup of the orthogonal group On(R); i.e., given any finite group B , there is
a P ∈ GLn(R) and a subgroup B̃ ⊆ On(R) such that PBP −1 = B̃ . Thus, without loss of generality, by
conjugating both A and B by P , we may assume that B ⊂ On(R). Let S0 ⊂ R̂n be a compact region,
starlike with respect to the origin, with the property that B maps S0 into itself. In many situations, one
can find a lattice L ⊂ Rn and a region U0 ⊆ S0 such that U0 is both a S0-tiling set for the B dilations and
a packing set for the Λ translations (i.e., (U0 +λ)∩U0 = 0 for λ ∈ Λ \ {0}), where Λ = {λ ∈ R̂n: λl ∈ Z,
∀l ∈ L} is the lattice dual to L. Then

ΦB = {DbTl(χU0)
∨: b ∈ B, l ∈ L

}
is a PF for L2(S0)

∨. Next suppose that A = {ai : i ∈ Z}, where a ∈ GLn(R) is expanding, aBa−1 = B

and S0 ⊆ S0a = S1. These assumptions imply that each region Si = S0a
i , i ∈ Z, is B-invariant and the

family of disjoint regions Si+1 \ Si , i ∈ Z, tiles R̂n. Thus, one can decompose L2(Rn) as in (3.9). Since
B is finite, there exist many choices of a measurable set R ⊂ S1 \ S0 for which R is a (S1 \ S0)-tiling set
for the B dilations. Since a is expanding, we can always take S0 to be contained in a small neighborhood
of the origin, and thereby ensuring that R is a packing set for the Λ translations. Then

ΨAB = {Di
aDbTl(χR)∨: b ∈ B, i ∈ Z, l ∈ L

}
is a PF for L2(Rn). On the other hand, if U0 is a tiling region for the Λ translations, that is,

⋃
λ∈Λ(U0 +

λ) = R̂n where the union is disjoint, every such tiling set has the same measure as U0. If |deta| ∈ N, then
|S1| = |deta||S0| = |deta| card(B)|U0| and it follows that no single subset R of S1 \ S0 can be both a
(S1 \ S0)-tiling set for the B dilations and a tiling set for the Λ translations. Instead, if R is a (S1 \ S0)-
tiling set for the B dilations, then one can decompose R into a disjoint union of subregions R1, . . . ,RN

(where N = |deta| − 1) each of which is a tiling set for the Λ translations. It follows that

Ψ̃AB = {Di
aDbTl(χR�

)∨: i ∈ Z, b ∈ B, l ∈ L, � = 1, . . . ,N
}

is a an ON AB-multiwavelet for L2(Rn). Moreover, in this case, the set ΦB is a ON basis for L2(S0)
∨.

Some special examples of this construction can be found in [10] and [11, Section 2.2].

3.3.2. Hyperbolic AB-wavelets
By using a nonlinear system of coordinates, we can construct a variant of the system described in

Section 2, where B does not consist of shear matrices.
Fix λ > 1 and let

B =
{
bj =

(
λj o

0 λ−j

)
: j ∈ Z

}
.

For k > 0, the set Hk = {(ξ1, ξ2) ∈ R̂2: ξ1ξ2 = k} consists of four hyperbolas. Observe that, for any ξ =
(ξ1, ξ2) ∈ Hk , every other point ξ ′ on the same hyperbola has the unique representation ξ ′ = (ξ1λ

t , ξ2λ
−t )

for some t ∈ R. We can parametrize any ξ = (ξ1, ξ2) in the first quadrant by ξ(r, t) = (
√

rλt ,
√

rλ−t ),

where r � 0, t ∈ R. Then, for any k1 < k2, the set T 1(k1, k2) = {ξ(r, t): k1 � r < k2, 0 � t < 1} is a
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hyperbolic trapezoidal region. Also observe that, for any k �= 0, the right action of B preserves the set Hk

since

ξbj = (ξ1, ξ2)

(
λj o

0 λ−j

)
= (ξ1λ

j , ξ2λ
−j ) = (η1, η2)

and η1η2 = ξ1ξ2. Therefore, the set T 1(k1, k2) is an S1(k1, k2)-tiling set for the B dilations, where
S1(k1, k2) is the hyperbolic strip {ξ(r, t): k1 � r < k2}. Proceeding similarly in the other quadrants, we
obtain that the similarly defined trapezoidal regions T �(k1, k2), � = 2,3,4, are S�(k1, k2)-tiling sets for
the B dilations. By taking unions, we have that T (k1, k2) =⋃�=14 T �(k1, k2) is a S(k1, k2)-tiling set for
the B dilations, where S(k1, k2) =⋃�=14 S�(k1, k2).

Now let A = {ai : i ∈ Z} ⊂ GL2(R), where a is diagonal with m = |deta| > 1. Then, for each k > 0,
Hka = Hmk . Thus, for any k0 > 0, S(k0/m,k0) is a tiling set for the A dilations. By choosing k0 small
enough, the set T = T (k0/m,k0) is contained in the fundamental domain [1/2,1/2)2 and, thus, ψ =
(χT )∨ is a PF AB-wavelet, where AB = {aib: i ∈ Z, b ∈ B}.

3.4. The shear group

We would like to find a general setting in which the systems {Di
aD

j

bTkψ
�: i, j ∈ Z, k ∈ Z2, � =

1,2,3} described in Section 2 are included. Observe that the matrix b satisfies (b − I2)
2 = 0. Let us first

characterize all such matrices in the n-dimensional case. We say that a matrix b ∈ Rn×n is a shear matrix
if

(b − In)
2 = 0.

Each such b has a Jordan form that consists of k blocks of the form
(

1 1
0 1

)
, with k � n/2, followed by an

(n − 2k) × (n − 2k) identity matrix. That is, b = pJp−1, where p ∈ GLn(R), J = In +∑k
j=1 e2j−1ê2j ,

and {e1, . . . , ek}, {ê1, . . . , êk} are the canonical bases vectors of Rn and R̂n, respectively. This implies that
a general shear matrix has the form

b = In +
k∑

j=1

y(j)η(j), (3.10)

where η(j)y(i) = 0 for each 1 � i, j � k and y(j) = pe2j−1, η(j) = ê2jp
−1 (observe that, for y ∈ Rn and

η ∈ R̂n, yη is the n × n matrix with entries (yiηj ), 1 � i, j � n, and ηy is the scalar
∑n

i=1 ηiyi).
Let y ∈ Rn and η ∈ R̂n. If b = In + yη, where ηy = 0, then (b − In)

2 = y(ηy)η = 0 and, thus, b is a
shear matrix. We will call an elementary shear matrix any matrix of this form. Observe that, if yη = 0
and b is an elementary shear matrix, then the mapping ξ �→ ξb = ξ + (ξy)η has the property that ξ ∈ R̂n

is fixed by b if and only if ξ lies in the hyperplane y⊥ = {z ∈ Rn: zy = 0}, otherwise ξ is translated in the
direction η ∈ y⊥ (see Fig. 3). In the examples from Section 2, y = ( 1

0

)
, η = (0,1) and so, for each j ∈ Z,

bj = In + jyη =
(

1 j

0 1

)
. (3.11)

As we observed there, in this situation, ξ ∈ R̂2 is fixed under the right action of bj if and only if ξ =
(0, ξ2), otherwise ξ is translated in the vertical direction.
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Fig. 3. Shearing transformation. Vector field induced by the right action of the shear group B = {bj : j ∈ Z}, where bj is given
by (3.11).

A direct computation shows that, when b1 = In + y(1)η(1) and b2 = In + y(2)η(2) are elementary
shear matrices, then b1b2 is a shear matrix if and only if b1b2 = b2b1. This occurs precisely when
η(1)y(2) = η(2)y(1) = 0, with b1b2 = In +∑2

i=1 y(i)η(i). Similarly, it follows that a general shear matrix b

given by (3.10) is a shear matrix, where b = b1b2 . . . bk , and the matrices bi , 1 � i � k, are commuting
elementary shear matrices.

We will say that a subgroup B of GLn(R) is an admissible shear group if B is locally admissible and
is generated by finitely many commuting elementary shear matrices. In this case, B is maximal if B is
not a proper subgroup of any other shear group in GLn(R).

Characterization of the maximal locally admissible shear groups
As we will show below in Theorem 3.3, after a change of coordinates, the general maximal locally

admissible shear group B ⊂ GLn(R) has the form{
b(j1,...,jn−k) =

(
Ik j1e1 . . . jkek jk+1ck+1 . . . jn−kcn−k

0 In−k

)
: j1, . . . , jn−k ∈ Z

}
, (3.12)

where k � n/2, {e1, . . . , ek} is the canonical basis of Rk and {ck+1, . . . , ck−n} are general nonzero column
vectors in Rk .

In the following we will illustrate some special cases of such B . Let {ê1, . . . , ên} be the dual basis of
R̂n and, for i �= j , let bi,j = In + ei êj .

(i) For k = 1, the simplest B of form (3.12) arises by choosing ci = e1 for 2 � i � n − 1. This yields
the maximal admissible shear group

B =
{
b(j1,...,jn−1) =

(
1 j1 . . . jn−1

0 In−1

)
: j1, . . . , jn−1 ∈ Z

}
,

generated by {b1,j : 2 � j � n}.
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(ii) For k = n/2, we have n − k = k and the expression of B given by (3.12) simplifies since there are
no vectors {ci} to be chosen. Then

B =

⎧⎪⎨⎪⎩b(j1,...,jk) =
⎛⎜⎝ Ik

⎛⎝ j1 . . . 0

0
. . . 0

0 0 jk

⎞⎠
0 Ik

⎞⎟⎠: j1, . . . , jk ∈ Z

⎫⎪⎬⎪⎭
is the admissible shear group generated by {bj,k+j : 1 � j � k}.

(iii) Suppose k � 2, � = �1 + · · · + �k , where �j ∈ N, and n = k + �1 + · · · + �k . For 1 � i � k, let Bi

be the subgroup of GL(�i+1)(R) of the form (i). In GLn(R) we can form the group

B =
⎧⎨⎩b =

⎛⎝β1 . . . 0

0
. . . 0

0 0 βk

⎞⎠: βi ∈ Bi, 1 � i � k

⎫⎬⎭ ,

and regard B as the outer direct product of the groups B1, . . . ,Bk . By rearranging the order of the
columns, we can recast B as the set of all matrices of the form (3.12) where �i − 1 of the column
vectors {ck+1, . . . , cn−k} are chosen to be equal to ei for 1 � i � k.

In the following, we describe some examples of groups of shear matrices that are not locally admissi-
ble, but contain locally admissible subgroups or subsets.

(iv) For n = 2, the noncommuting elementary shear matrices b1,2 = ( 1 1
0 1

)
and b2,1 = ( 1 0

1 1

)
generate

SL2(Z). It is easy to verify that SL2(Z) is not locally admissible, although subgroups of SL2(Z) not
generated by elementary shear matrices my be locally admissible. Consider, for example, the hyperbolic
shear group in Section 3.3.2 or the finite group of the isometries of the square [−1,1]2 (a special case of
the finite groups in Section 3.3.1).

(v) For n = 3, the noncommuting elementary shear matrices b1,2 and b2,3 generate the integral Heisen-
berg group

H3 =
{

b(i,j,k) =
(1 i k

0 1 j

0 0 1

)
: i, j, k ∈ Z

}
.

For ξ = (ξ1, ξ2, ξ3) ∈ R̂3, we have ξb(i,j,k) = (ξ1, ξ2 + iξ1, ξ3 + jξ2 + kξ1). If ξ1/ξ2 /∈ Q, then {jξ2 +
kξ1: j, k ∈ Z} is dense in R and thus the H3 orbit is not discrete in R̂3. Observe that H3 is not a shear
group. However, the subgroup {b(i,0,k): i, k ∈ Z} of H3 is a maximal admissible shear group of the form
given by the example (i), and the subset {b(i,j,0): i, j ∈ Z} is locally admissible. More generally, for
n � 3, let Bi be the shear group generated by bi,i+1 for 1 � i � n. Then the set product

Bn−1Bn−2 . . .B1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩b(j1,...,jn−1) =

⎛⎜⎜⎜⎜⎝
1 j1 . . . 0 0

0 1
. . . 0 0

. . .
. . .

. . .

0 0 . . . 1 jn−1

0 0 . . . 0 1

⎞⎟⎟⎟⎟⎠: j1, . . . , jn−1 ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
is locally admissible. Indeed, the set product is locally admissible for any ordering of the noncommuting
groups B1, . . .Bn−1.

The following proposition elaborates the above observations further.
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Proposition 3.2. Let B̃ be a subset of GLn(R) containing the group B generated by two noncommuting
elementary shear matrices b1 = In + y(1)η(1) and b2 = In + y(2)η(2). Then B̃ is not admissible.

Proof. Since b1b2 �= b2b1, then either η(1)y(2) or η(2)y(1) is nonzero. In the case when η(1)y(2) = 0 and
η(2)y(1) �= 0, B is isomorphic to the integral Heisenberg group H3 and is not locally admissible for the
same reason discussed in Example (iv). When both η(1)y(2) and η(2)y(1) are nonzero, we can assume that
their product is positive by replacing b1 with b−1

1 if needed. Using the rescaling yη = (ky)(η/k) for
k > 0, we may assume that η(1)y(2) = c−1 and η(2)y(1) = c, for some c > 0. Then B is isomorphic to
SL2(Z) if c = 1 and, in general, B is conjugate to the subgroup Bc of GLn(R) generated by((1 c

0 1

)
0

0 In−2

)
and

(( 1 0
c−1 1

)
0

0 In−2

)
.

It is easy to see that Bc is not locally admissible for any c. Thus, in all cases, the group B generated
by b1 and b2 is not locally admissible and, so, any subset B̃ of GLn(R) containing B is not locally
admissible. �

Observe that Proposition 3.2 does not apply to the locally admissible subgroups mentioned in Exam-
ple (iii) (that are not generated by elementary shear matrices), and does not apply to the locally admissible
sets of Example (v), obtained as products of noncommuting elementary shear matrices.

We can now state the main result of this section.

Theorem 3.3. Let B ⊂ GLn(R) be a maximal locally admissible shear group.

(a) There is a unique index k � n/2 and a change of basis matrix P such that B̃ = P −1BP is of the form
given by Example (ii).

(b) If a ∈ GLn(R) is such that P −1aP = ( c ∗
0 d

)
, where c ∈ GLk(R) is expanding and d ∈ GLn−k(R), then

AB = {aib: i ∈ Z, b ∈ B} is admissible.

Proof. (a) Let � be the minimal numbers of elementary shear matrix generators for B and {bi = In +
y(i)η(i): 1 � i � �} a particular set of such generators. For V = span{y(i): 1 � i � �} and k = dimV ,
we will show that � = n − k and {η(1), . . . , η(�)} is a basis for the V ⊥, the annihilator of V , given by
{ν ∈ R̂n: νv = 0, ∀v ∈ V }. Let W = span{η(i): 1 � i � �}. Since η(i)y(j) = 0 for 1 � i, j � �, then
W ⊆ V ⊥. For any v ∈ V , η ∈ V ⊥ \ W , the elementary shear matrix B̃ = In + vη commutes with every
member of B . Let B̃ be the shear group generated by B and b̃. Since B is locally admissible and η /∈ W ,
then B̃ is locally admissible and this contradicts the maximality of B . Hence V ⊥ = W and � � n − k.

In order to prove that � = n − k, we argue by contradiction and assume that η(1), . . . , η(�) are linearly
dependent. Let m < � be the largest index for which η(1), . . . , η(m) are linearly independent, Bm+1 be the
subgroup of B generated by {bi : 1 � i � m + 1} and Wm be the m-dimensional subspace of V ⊥ spanned
by {η(i): 1 � i � m + 1}. By assumption, η(m+1) =∑m

i=1 ciη
(i) for some scalars c1, . . . , cm. Since B is

locally admissible, so is Bm+1, that is, the orbit Γξ = {ξ − ξb: b ∈ Bm+1} is discrete in R̂n for a.e. ξ ∈ R̂n.
Since Bm+1 = {In +∑m+1

i=1 jiv
(i)η(i): (j1, . . . , jm+1) ∈ Zm+1}, then Γξ is the additive subgroup of Wm

generated by the linearly dependent vectors (ξy(i))η(i), 1 � i � m + 1, and Γξ is discrete in Wm if and
only if these vectors are linearly dependent over the rational numbers Q. It follows that, for a.e. ξ ∈ R̂n,



218 K. Guo et al. / Appl. Comput. Harmon. Anal. 20 (2006) 202–236
ξy(i) �= 0 for 1 � i � m + 1, and ciξy
(m=1) is a rational multiple of ξy(i) for 1 � i � m. By suppressing

all indices for which ci = 0 and renaming the remaining indices, we can assume that ci �= 0 for each i.
Since the quotient q(ξ) of two linear functions over R̂n can take values in Q for a.e. ξ ∈ R̂n if and only
if q is constant, it follows that y(m+1) and y(i) are linearly dependent for each 1 � i � m. By rescaling
yη = (ky)(η/y), we may then assume that y(1) = y(2) = · · · = y(m+1) = y for some y ∈ V . Then, for
all ξ ∈ R̂n, we have Γξ = (ξy)Γ , where Γ = Zη(1) + · · · + Zη(m+1). Since Γ is a lattice in W , we can
replace η(1), . . . , η(m+1) by a lattice basis ν(1), . . . , ν(m+1). This means that the elementary shear matrices
b′

i = In + yν(i), 1 � i � m, are an alternative set of generators for Bm+1 and b′
1, . . . , b

′
m,bm+2, . . . , b�

is a generating set for B with � − 1 members. This contradicts the assumption that � is the minimal
number of elementary shear matrix generators for B . Thus we conclude that {η(i): 1 � i � �} is a linearly
independent set, hence � = n − k and {η(i): 1 � i � n − k} is a basis for W = V ⊥.

By reordering the {bi}, we may assume that {y(i): 1 � i � k} is a basis for V and choose a set of vectors
v(k+1), . . . , v(n) in R̂n for which B = {y(1), . . . , y(k), v(k+1), . . . , v(n)} is a basis for R̂n with η(i)v(k+j) = δi,j

for 1 � i, j � n − k. Let P be the change of basis matrix mapping B to the standard basis {e1, . . . , en}
for R̂n. Then B̃ = P −1BP is of the form given by (3.12).

(b) By our proof of (a), there is no loss of generality in assuming B to be of the form (3.12), and (using
the hypotheses) in letting a = ( c ∗

0 d

)
, where c ∈ GLk(R) is expanding and d ∈ GLn−k(R). For notational

convenience, let ci = ei for 1 � i � k. We can regard R̂n as R̂k × R̂n−k and select a small annular
set K , about the origin in R̂k , so that R̂k =⋃i∈Z

Kc−i is a disjoint union. For ξ = (ν, η) ∈ R̂k × R̂n−k ,
with ν ∈ R̂k \ {0}, there is a unique index i ∈ Z for which ξ ′ = ξai = (ν ′, η′), with ν ′ = νci ∈ K and
η′ ∈ R̂n−k . For b = b(j1,...,jn−k) as in (3.12), we have that ξ ′′ = ξ ′b = (ν ′, η′′), where, for each 1 � i �
n − k, η′′

i = ji(ν
′ci) + η′

i is the i-component of η′′ and η′
i is the i-component of η′. Observe that, for

each i, we have ν ′ci �= 0 on a set of full measure in K . Therefore there is a unique choice of j1, . . . , jn−k

for which 0 � η′′/(ν ′ci) < 1 for each i. Finally, let Tν′ be the set of all elements η′′ ∈ R̂n−k satisfying
these inequalities. It follows that the set R =⋃ν′∈K{ν ′} × Tν′ is a tiling set for the (AB)−1-dilations.
By taking K small enough, we can ensure that R is also a packing set for the Ẑn translations. Thus
{DaibTk(χR)∨: i ∈ Z, b ∈ B, k ∈ Zn} is a PF AB-wavelet and the dilation set AB is admissible. �
3.5. The contourlets

In this section, we describe a variation of the example given in Section 2, that is similar to the con-
tourlets recently introduced by Do and Vetterli [7]. The contourlet construction, that is inspired by the
curvelets, uses a multiresolution analysis framework with the decomposition

L2(R2) = Vi0 ⊕
⊕
i<i0

Wj,

where Vi = L2(Si)
∨, Si = {ξ ∈ R̂2: ‖ξ‖�1 � 2−i}, Wi = Vi−1 ∩ V ⊥

i . In addition, for each i < i0, each
subspace Wi is subdivided into the “directional” components:

Wi =
2li⊕

j=0

W
(li)
i,j .

We will obtain a very similar construction using the general setting of the AB-wavelets.
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Fig. 4. I is an AB tiling set of the cone H and ψ = (χI )∨ is a PF ÃB-wavelet for L2(R̂2 \ [−1/2,1/2]2)∨ (see Section 3.5).

Let a = ( 2 0
0 1

)
, b = ( 1 1

0 1

)
, and T (α,β) = T +(α,β) ∪ T −(α,β), where T +(α,β) is the trapezoidal

region with vertices (α,0), (α,α), (β,0) and (β,β), and T −(α,β) = {ξ ∈ R̂2: −ξ ∈ T +(α,β)}. We
denote by H the truncated cone

H = {(ξ1, ξ2) ∈ R̂2: |ξ1| � 1/2, 0 � |ξ2/ξ1| � 1
}
,

and let I = T (1/2,1). These sets are illustrated in Fig. 4. Then a simple computation shows that the sets
{Iaibj : i � 0, −2i � j � 2i − 1} form a tiling for H . Thus, for

AB = {a−ib−j = (bjai)−1: i � 0, −2i � j < 2i − 1
}
, (3.13)

the function ψ = (χI )
∨ is a PF AB-wavelet for L2(H)∨, and the set AB is H -admissible.

Next, let ρ = ( 0 1−1 0

)
. Since this matrix produces a rotation by π/2, then V = Hρ−1 = ρH is the

truncated cone:

V = {(ξ1, ξ2) ∈ R̂2: |ξ2| � 1/2, 0 � |ξ1/ξ2| � 1
}
.

Observe that (Dρψ)∧(ξ) = ψ̂(ξρ) = χIρ−1(ξ) (the set Iρ−1 is illustrated in Fig. 4) and, thus, by the
properties of T , the sets

Ibjaiρ−1 = (Iρ−1)ρbjaiρ−1 for i � 0, −2i � j � 2i

form a tiling for V . This shows that Dρψ is a PF (ABρ−1)-wavelet for L2(V )∨. Moreover, since H ∪V =
R̂2 \ [−1/2,1/2]2, it follows that ψ is a PF ÃB-wavelet for L2(R̂2 \ [−1/2,1/2]2)∨, where ÃB =
AB ∪ ρABρ−1.

Expression (3.13) shows that when the scale index i is increased by 1, the number of directions j is
doubled. Observe that, in the contourlet construction of Do and Vetterli, as well as in the case of curvelets,
the number of directions doubles every time i is increased by 2, and this ensures that the elements of the
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systems satisfy a parabolic scaling, that is, the essential support of these systems obeys approximately
the relationship

length ≈ 2−i width ≈ 2−2i .

As shown in [4,7], this property is needed to obtain representations that are optimally sparse for functions
in a certain class. In the construction above, we made a different choice of the width-to-length ratio,
in order use to same matrices as in the example from Section 2. However, we can easily modify this
construction by choosing a = ( 4 0

0 2

)
and letting I = T (1/4,1). By doing so, we obtain a Parseval frame

of elements satisfying a parabolic scaling relation.
Finally, let us observe that the system we have obtained disregards the low-frequency region

[−1/2,1/2]2 ⊂ R̂2, where standard (nondirectional) wavelets are used (this is similar to the curvelets
and contourlets construction).

4. AB-multiresolution analysis. Part I

As we already observed in Section 2, there are examples of AB-multiwavelets that can be constructed
within a framework very similar to the classical multiresolution analysis (MRA). In this section and in
the following one we are going to develop a generalization of this theory that will be useful to construct
more examples of AB-multiwavelets, as well as examples with properties that are of great potential in
applications.

Let B be a countable subset of S̃Ln(Z) = {b ∈ GLn(Z): |detb| = 1} and A = {ai : i ∈ Z}, where
a ∈ GLn(Z) (notice that a is an integral matrix). Also assume that a normalizes B , that is, aba−1 ∈ B

for every b ∈ B . We say that a sequence {Vi}i∈Z of closed subspaces of L2(Rn) is an AB-multiresolution
analysis (AB-MRA) if the following holds:

(i) DbTkV0 = V0 for any b ∈ B , k ∈ Zn;
(ii) for each i ∈ Z, Vi ⊂ Vi+1, where Vi = D−i

a V0;
(iii)

⋂
Vi = {0} and

⋃
Vi = L2(Rn);

(iv) there exists φ ∈ L2(Rn) such that ΦB = {DbTkφ: b ∈ B, k ∈ Zn} is a semi-orthogonal Parseval
frame for V0; that is, ΦB is a Parseval frame for V0 and, in addition, DbTkφ ⊥Db′Tk′φ for any
b �= b′, b, b′ ∈ B , k, k′ ∈ Zn.

The space V0 is called an AB scaling space and the function φ is an AB scaling function for V0. If, in
addition, ΦB is an orthonormal basis, then we say that φ is an ON AB scaling function.

Observe that one could consider a more general definition, where A is not necessarily a group, but
simply a countable collection, that is, A = {ai : i ∈ Z}. Furthermore, one could consider the situation
where the set ΦB is simply a Parseval frame for V0 (not necessarily semi-orthogonal). The assumptions
that we made in the above definition are the “simplest,” and they ensure that the properties of the AB-
MRA are very similar to those of the classical MRA. Also observe that there is a basic difference in
the definition of AB-MRA that we just gave, from the definition of the classical MRA. In fact, in our
definition, the space V0 is invariant with respect to the integer translations and with respect to the B-
dilations. On the other hand, in the classical MRA, the space V0 is only invariant with respect to the
integer translation.
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Therefore, in order to examine in detail the main features of the AB-MRA, it will be useful to study
the properties of the subspaces of L2(Rn) that are invariant with respect to the integer translations and
with respect to the B-dilations. This will be done in Section 4.2. Before doing this, in Section 4.1, we
will briefly recall some basic results from the theory of shift-invariant spaces.

4.1. Shift-invariant spaces

A Zn-invariant space (or a shift-invariant space) of L2(Rn) is a closed subspace V ⊂ L2(Rn) for which
TkV = V for each k ∈ Zn. For φ ∈ L2(Rn) \ {0}, we denote by 〈φ〉 the shift-invariant space generated
by φ, that is,

〈φ〉 = span{Tkφ: k ∈ Zn}.
Given φ1, φ2 ∈ L2(Rn), their bracket product is defined as

[φ1, φ2](x) =
∑
k∈Zn

φ1(x − k)φ2(x − k). (4.1)

Let Tn be the n-torus Rn/Zn � [0,1]n and regard L2(Tn) as the space of the measurable Zn-periodic
functions t for which ‖t‖L2(Tn) = ∫[0,1]n |t (x)|2 dx < ∞. As usual, T̂n denotes the corresponding space of
row vectors. The following properties of the bracket product are easy to verify, and they can be found,
for example, in [21, Section 3].

Proposition 4.1. Let φ,φ1, φ2 ∈ L2(Rn).

(i) The series (4.1) converges absolutely a.e. to a function in L1(Tn).
(ii) The spaces 〈φ1〉 and 〈φ2〉 are orthogonal if and only if [φ̂1, φ̂2](ξ) = 0 a.e.

(iii) Let V (φ) = {Tkφ: k ∈ Zn}. Then V (φ) is a orthonormal basis for 〈φ〉 if and only if [φ̂, φ̂](ξ) = 1
a.e., and V (φ) is a Parseval frame for 〈φ〉 if and only if [φ̂, φ̂](ξ) = χΩφ

(ξ) a.e., where Ωφ = {ξ ∈
T̂n: φ̂(ξ + k̂) �= 0 for some k̂ ∈ Ẑn}.

(iv) Let [φ̂, φ̂](ξ) = χΩφ
(ξ). Then f ∈ 〈φ〉 if and only if f̂ = mφ̂ for some m ∈ L2(Ωφ) satisfying ‖f ‖ =

‖m‖L2(Ωφ).

Let U ⊆ R̂n be measurable and ΩU = ΩχU
=⋃

k̂∈Ẑn(U + k̂). If this is a disjoint union (modulo a

null set), then we say that U is a ΩU -tiling set for Ẑn translations. It is clear that this is the case if
and only if [χU,χU ](ξ) = χΩU

(ξ) a.e., or, equivalently, if and only if V ((χU)∨) = {Tk(χU)∨: k ∈ Zn}
is a Parseval frame for 〈(χU)∨〉. Observe that, for any Ω ⊆ R̂n, every Ω-tiling set for Ẑn translations is
contained in a R̂n-tiling set for Ẑn translations, and all such tiling sets have measure one. Thus, when
φ = (χU)∨ and V (φ) is a Parseval frame for 〈φ〉, then |U | � 1, with equality if and only if V (φ) is an
orthonormal basis for 〈φ〉. Also observe that when U is contained in a tiling set for Ẑn translations, then
〈(χU)∨〉 = L2(U)∨ ⊆ L2(Rn) since any f̂ ∈ L2(U) extends uniquely to m ∈ L2(ΩU) with f̂ = mχU .

Let V be a shift-invariant space of L2(Rn). Φ = {φ1, . . . , φN }, with N ∈ N∪{∞}, is a Zn-orthonormal
set of generators for V if, for each 1 � j � N , the set {Tkφ

j : k ∈ Zn} is an orthonormal basis for 〈φj 〉.
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Equivalently, we have that [φ̂i, φ̂j ] = δi,j a.e. In addition, if this is the case, we have that V =⊕N
j=1〈φj 〉

and we can show that, for each f ∈ V ,

f̂ =
N∑

j=1

[
f̂ , φ̂j

]
φ̂j , (4.2)

with pointwise a.e. convergence if N < ∞ and L2-convergence if N = ∞. In fact, if f ∈ V , then

f =
N∑

j=1

∑
k∈Zn

cj,kTkφ
j ,

where cj,k = 〈f,Tkφ
j 〉 with pointwise a.e. convergence if N < ∞ and L2-convergence if N = ∞. Next,

by taking the Fourier transform on both sides and using a periodization argument, we obtain that

f̂ =
N∑

j=1

∑
k∈Zn

〈
f̂ ,M−kφ̂

j
〉
M−kφ̂

j =
N∑

j=1

∑
k∈Zn

( ∫
Tn

[
f̂ , φ̂j

]
(ξ)e2πikξ dξ

)
M−kφ̂

j

=
N∑

j=1

∑
k∈Zn

[
f̂ , φ̂j

]
φj .

Observe that, by an application of Proposition 2.1 with G = Zn, any two Zn-orthonormal sets of
generators for the same shift-invariant spaces V must have the same number of generators.

Also observe that, while not every shift-invariant space V admits a set of generators that is Zn-
orthonormal, one can always find a semi-orthogonal set of generators Φ = {φ1, . . . , φN } for V , in the
sense that

V =
N⊕

i=1

〈φi〉,

with [φ̂i, φ̂i] = χΩi
, 1 � i � N , where Ωi = Ωφi . In this situation, N is not uniquely determined by V .

However, an extension of the argument in Proposition 2.1 shows that the multiplicity function

mV =
N∑

i=1

χΩi
: Tn �→ N ∪ {0,∞}

is independent (a.e.) of the choice of Φ .

4.2. B � Zn-invariant spaces

Let S̃Ln(Z) = {b ∈ GLn(Z): |detb| = 1}. If B is a subgroup of S̃Ln(Z), then B � Zn is a subgroup of
the integral affine group S̃Ln(Z)�Zn (= the semidirect product of S̃Ln(Z) and Zn). We define the B �Zn

invariant spaces as those closed subspaces V ⊆ L2(Rn) for which DbTkV = V for each (b, k) ∈ B � Zn.
We will show that these spaces share many properties with the classical shift-invariant spaces.

For φ ∈ L2(Rn), denote by 〈〈φ〉〉 the B � Zn invariant spaces generated by φ, that is

〈〈φ〉〉 = span{DbTkφ: b ∈ B, k ∈ Zn}.
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For b ∈ S̃Ln(Z), we have

{DbTk: k ∈ Zn} = {Tk′Db: k′ ∈ Zn}
and, as a consequence, Db〈φ〉 = 〈Dbφ〉 for each φ ∈ L2(Rn). We also have that Znb = Zn and, thus,[

D̂bφ̂1, φ̂2
]
(ξ) = [φ̂1, D̂b−1 φ̂2

]
(ξb) (4.3)

for each φ1, φ2 ∈ L2(Rn), ξ ∈ R̂n.
The following simple observations follow easily from Proposition 4.1.

Proposition 4.2. Let φ ∈ L2(Rn).

(i) The spaces 〈Dbφ〉 and 〈φ〉 are orthogonal if and only if [D̂bφ̂, φ̂](ξ) = 0 a.e.
(ii) Let VB(φ) = {DbTkφ: b ∈ B, k ∈ Zn}. Then VB(φ) is an orthonormal basis for 〈〈φ〉〉 if and only if

[D̂bφ̂, φ̂](ξ) = 0 a.e. for each b ∈ B \ {I } and [φ̂, φ̂](ξ) = 1 a.e.
(iii) If VB(φ) is an orthonormal basis for 〈〈φ〉〉, then the map f �→ ([f̂ , D̂bφ̂]), where b ∈ B , is an isom-

etry from 〈〈φ〉〉 onto the Hilbert space �2(B,L2(Tn)) = {m = (mb)b∈B : mb ∈ L2(Tn) and ‖m‖2 =∑
b∈B ‖mb‖2

L2(Tn)
< ∞}. In particular,

f̂ =
∑
b∈B

[
f̂ , D̂bφ̂

]
D̂bφ̂

for each f ∈ 〈〈φ〉〉, with convergence in L2(R̂n).

The set VB(φ) = {DbTkφ: b ∈ B, k ∈ Zn} is called a semi-orthogonal Parseval frame for the B � Zn-
invariant space 〈〈φ〉〉 if

〈〈φ〉〉 =
⊕
b∈B

Db〈φ〉

and {Tkφ: k ∈ Zn} is a Parseval frame for 〈φ〉. A simple extension of Proposition 4.2(ii) gives that VB(φ)

is a semi-orthogonal Parseval frame for 〈〈φ〉〉 if and only if [D̂bφ̂, φ̂](ξ) = 0 for each b ∈ B \ {In} and
[φ̂, φ̂](ξ) = χΩφ

a.e., where Ωφ = {ξ ∈ R̂n: φ̂(ξ + k) �= 0 for some k ∈ Ẑn}.
As a special case, consider φ ∈ L2(Rn) defined by φ̂ = χU where U ⊆ R̂n is measurable and 0 <

|U | < ∞. In this case, (Dbφ)∧ = χUb−1 and we have that [φ̂, D̂bφ̂] = 0 a.e. if and only if |U ∩Ub−1| = 0.
Also, ΩU = Ωφ =⋃

k̂∈Ẑn(U + k̂) and, therefore, [φ̂, φ̂] = χΩU
a.e. if and only if U is a ΩU -tiling set

for the Ẑn translations. It follows that {Dbφ: b ∈ B} is a semi-orthogonal Parseval frame generator for
〈〈φ〉〉 if and only if U is both an S-tiling set for B dilations, where S =⋃b∈B Ub, and a ΩU -tiling set
for Ẑn translations. In this case, |U | � 1 with equality if and only if [φ̂, φ̂] = 1 a.e., 〈φ〉 = (L2(U))∨ and
〈〈φ〉〉 = (L2(S))∨ =⊕b∈B(L2(Ub−1))∨.

Let V be a B � Zn-invariant space of L2(Rn). The set Φ = {φ1, . . . , φN }, with N ∈ N ∪ {∞}, is a
B � Zn-orthonormal set of generators for V if the set {DbTkφ

i : (b, k) ∈ B � Zn, 1 � i � N} is an
orthonormal basis for V . Equivalently, we have that [D̂bφ̂

i, φ̂j ] = δi,j δb,In
a.e. We make the following

observation.
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Proposition 4.3. Let Φ = {φ1, . . . , φN } and Ψ = {ψ1, . . . ,ψM} be two B � Zn-orthonormal sets of
generators for the B � Zn-invariant spaces V and W , respectively. If W ⊆ V , then M � N with M = N

if and only if W = V .

Proof. We first observe that

M =
M∑
i=1

‖ψi‖2 =
M∑
i=1

N∑
j=1

∑
b∈B

∥∥[ψ̂ i, D̂bφ̂
j
]∥∥2

L2(Tn)
. (4.4)

On the other hand, for each 1 � j � N , the function (
∑M

i=1

∑
b∈B[φ̂i, D̂bψ̂

j ]ψ̂ i)∨ is the orthogonal
projection of φj into W . Thus,

1 = ‖φj‖2 �
M∑
i=1

∑
b∈B

∥∥[φ̂j , D̂bψ̂
i
]∥∥2

L2(Tn)
. (4.5)

By (4.3) and the fact that b ∈ S̃Ln(Z) (this implies that the map ξ �→ ξb on R̂n is a measure preserving
map from Tn onto Tn) it follows that∥∥[D̂bψ̂

i, φ̂j
]∥∥2

L2(Tn)
= ∥∥[ψ̂ i, D̂b−1 φ̂j

]∥∥2
L2(Tn)

.

Using this observation, from (4.4) and (4.5) we obtain

M =
M∑
i=1

N∑
j=1

∑
b∈B

∥∥[ψ̂ i, D̂bφ̂
j
]∥∥2

L2(Tn)
=

M∑
i=1

N∑
j=1

∑
b∈B

∥∥[φ̂j , D̂b−1ψ̂ i
]∥∥2

L2(Tn)
�

N∑
j=1

‖φj‖2 = N,

with N = M if and only if φj ∈ W for each 1 � j � N (which is equivalent to W = V ). �
Recall that a ∈ GLn(Z) normalizes B if aba−1 ∈ B for every b ∈ B . Since B is a group, then aBa−1

is a subgroup of B . We have the following result.

Proposition 4.4. Suppose that a ∈ GLn(Z) normalizes B and that the quotient space B/(aBa−1) has
finite order N . If φ ∈ L2(Rn) satisfies the relation [D̂bφ̂, φ̂] = δb,In

a.e. for each b ∈ B , then there exists
a B � Zn-orthonormal set of generators Φ for the space D−1

a 〈〈φ〉〉 with cardinality N |deta|.
Before proving this proposition, we need to make some observations. Recall that, for a ∈ GLn(Z),

aZn is a subgroup of Zn and the quotient group Zn/(aZn) has order M = |deta|. Thus, we can choose
a complete set of representatives of Zn/(aZn), i.e., a set α0, . . . , αM−1 ∈ Zn/(aZn) so that each element
k ∈ Zn can be uniquely expressed in the form

k = ak′ + αi,

with k′ ∈ Zn and 0 � i � M − 1. This shows that, for each k ∈ Zn, we have

D−1
a Tk = Ta−1kD

−1
a = Tk′Ta−1αi

D−1
a = Tk′D−1

a Tαi
, (4.6)

with k′ ∈ Z and 0 � i � M − 1. For any φ ∈ L2(Rn) \ {0}, the space D−1
a 〈φ〉 is then the shift-invariant

space generated by Φ = {φi = D−1
a Tαi

φ: 0 � i � M − 1}. Since D−1
a is unitary, then Φ is a Zn-

orthonormal generating set for D−1
a 〈φ〉 if and only if φ is a Zn-orthonormal generating set for 〈φ〉 and
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this holds if and only if [φ̂, φ̂] = 1 a.e. Thus, if Φ is a Zn-orthonormal generating set for D−1
a 〈φ〉, we

have

D−1
a 〈φ〉 =

M−1⊕
i=0

〈φi〉, (4.7)

with [φ̂i, φ̂i] = 1 a.e. for 0 � i � M − 1.
We can now prove Proposition 4.4.

Proof of Proposition 4.4. Take a complete collection of distinct representatives β0, . . . , βN−1 for
B/(aBa−1). Thus, each b ∈ B uniquely determines b′ ∈ B and j ∈ {0, . . . ,N − 1} for which b =
(ab′a−1)βj . Then

D−1
a Db〈φ〉 = Da−1b〈φ〉 = Db′Da−1Dβj

〈φ〉 = Db′Da−1〈Dβj
φ〉. (4.8)

Take a complete collection of distinct representatives α0, . . . , αM−1 for the quotient space Zn/(aZn),
where M = |deta|. By Eq. (4.7), we have

Da−1〈Dβj
φ〉 =

N−1⊕
i=0

〈φi,j 〉,

where φi,j = D−1
a Dαi

Dβj
φ with 0 � i � M − 1, 0 � j � N − 1. We also have

D−1
a 〈〈φ〉〉 = D−1

a

(⊕
b∈B

Db〈φ〉
)

=
⊕
b∈B

D−1
a Db〈φ〉.

Thus, using (4.8), from the last expression we obtain

D−1
a 〈〈φ〉〉 =

⊕
b′∈B

⊕
j

Db′Da−1〈Dβj
φ〉 =

⊕
b′∈B

Db′

(⊕
i,j

〈φi,j 〉
)

=
⊕
i,j

〈〈φi,j 〉〉.

Since the unitary operator D−1
a maps an orthonormal basis for 〈〈φ〉〉 to an orthonormal basis for D−1

a 〈〈φ〉〉,
it follows that the set Φ = {φi,j : 0 � i � M − 1, 0 � j � N − 1} is a B � Zn-orthonormal set of
generators for D−1

a 〈〈φ〉〉. �

5. AB-multiresolution analysis. Part II

In this section, we apply the techniques developed in Section 4 to obtain a number of basic results
about AB-multiresolution analyses.

5.1. Basic results

Let {Vi}i∈Z be an AB-MRA as defined in Section 4. As in the classical multiresolution analysis, let
W0 be the orthogonal complement of V0 in V1, that is, W0 = V1 ∩ (V0)

⊥. Then, V1 = V0 ⊕ W0. We have
the following elementary result:
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Proposition 5.1. (i) Let Ψ = {ψ1, . . . ,ψL} ⊂ L2(Rn) be such that {DbTkψ
�: b ∈ B , � = 1, . . . ,L, k ∈

Zn} is a PF for W0. Then Ψ is a PF AB-multiwavelet.
(ii) Let Ψ = {ψ1, . . . ,ψL} ⊂ L2(Rn) be such that {DbTkψ

�: b ∈ B , k ∈ Zn, � = 1, . . . ,L} is an ortho-
normal basis for W0. Then Ψ is an ON AB-multiwavelet.

Proof. Define the spaces Wj as Wj = Vj+1 ∩ (Vj )
⊥, j ∈ Z. It follows from the definition of AB-

MRA that L2(Rn) = ⊕j∈Z
Wj . Since {DbTkψ

�: b ∈ B , � = 1, . . . ,L, k ∈ Zn} is a PF for W0, then
{Di

aDbTkψ
�: b ∈ B , � = 1, . . . ,L, k ∈ Zn} is a PF for Wi . Thus {DaDbTkψ

�: b ∈ B , a ∈ A, � = 1, . . . ,L,
k ∈ Zn} is a PF for L2(Rn).

The proof for the orthonormal case is similar. �
In the situation described by the hypotheses of Proposition 5.1 (where Ψ is not only a PF for L2(Rn),

but it is also derived from an AB-MRA), we say that Ψ is a PF MRA AB-multiwavelet or an ON MRA
AB-multiwavelet, respectively.

We say that the PF MRA AB-wavelet ψ is of finite filter (FF) type if there exists an AB scaling
function φ for V0 and a finite set {b1, . . . , bk} ⊂ B such that

φ̂(ξa) =
k∑

j=1

m
(j)

0 (ξ)φ̂(ξbj ), ψ̂(ξa) =
k∑

j=1

m
(j)

1 (ξ)φ̂(ξbj ),

where m
(j)

0 ,m
(j)

1 , 1 � j � k, are periodic functions. Similarly, the ON MRA AB-multiwavelet Ψ is of
finite filter (FF) type if there exists an AB scaling function φ for V0 and a finite set {b1, . . . , bk} ⊂ B such
that

φ̂(ξa) =
k∑

j=1

m
(j)

0 (ξ)φ̂(ξbj ), ψ̂�(ξa) =
k∑

j=1

m
(j)

1,�(ξ)φ̂(ξbj ), � = 1, . . . ,L,

where m
(j)

0 ,m
(j)

1,�, 1 � j � k, are periodic functions. The reader can easily check that the examples of
AB-multiwavelets presented in Section 2 are indeed MRA AB-multiwavelets of finite filter type.

It turns out that, while it is possible to construct a PF AB-wavelet using a single generator, that is, Ψ =
{ψ}, in the case of orthonormal MRA AB-multiwavelets, multiple generators are needed, that is, Ψ =
{ψ1, . . . ,ψL}, where L > 1. This situation is similar to the classical MRA case (cf., for example, [21]).
The following result establishes the number of generators needed to obtain an ON MRA AB-wavelet.

Theorem 5.2. Let Ψ = {ψ1, . . . ,ψL} be an ON MRA AB-multiwavelet for L2(Rn), and let N =
|B/aBa−1| (= the order of the quotient group B/aBa−1). Assume that |deta| ∈ N. Then L =
N |deta| − 1.

Proof. Let V0 = 〈〈ψ0〉〉 be the AB scaling space for the AB-MRA, and let ψ0 be the corresponding ON
AB scaling function. Then V1 = D−1

a V0 = V0 ⊕W0, where W0 =⊕L
�=1〈〈ψ�〉〉. Hence {ψ0,ψ1, . . . ,ψL} is

an ON B � Zn generating set for V1. By Proposition 4.4, 1 +L = N |deta| and so L = N |deta|− 1. �
In the case of the examples of ON AB-multiwavelets given in Section 2, where B = {bj : j ∈ Z}

with b = ( 1 1
0 1

)
and A = {ai : i ∈ Z} with a = ( 2 0

0 a2,2

) ∈ GL2(Z) (we need to assume a2,2 = 1 or 2 to
apply Theorem 5.2), we have used three generators. This number is confirmed by the formula given
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by Theorem 5.2. In fact, a calculation shows that |B/aBa−1| = 2|a2,2|−1 and, thus, by Theorem 5.2, the
number of generators must be L = 2|a2,2|−12|a2,2| − 1 = 3.

Observe that the condition on the number of generators described by this theorem is not needed if the
AB affine system does not come from an ON AB-MRA. In Section 6 we present an example of an ON
AB-wavelet ψ (a single generator) where A = {ai : i ∈ Z}, |deta| = 2 and N = |B/aBa−1| = 2. It is
clear, by Theorem 5.2, that this example of AB-wavelet is not of MRA type.

The following theorem describes how to construct tiling ON AB-multiwavelets arising from an AB-
MRA.

Theorem 5.3. Let B ⊂ S̃Ln(Z), a ∈ GLn(Z) with aBa−1 ⊆ B , and L = NM − 1, where N = |B/aBa−1|
and M = |deta| > 1. Suppose that U ⊂ Rn is a measurable set and φ = (χU)∨ ∈ L2(Rn) is an ON AB

scaling function for V0 = span{DbTkφ: k ∈ Zn, b ∈ B}, with V0 ⊆ D−1
a V0. Then there are sets T� ⊂ Rn,

� = 1, . . . ,L, for which Ψ = {ψ� = (χT�
)∨: � = 1, . . . ,L} is an ON MRA AB-multiwavelet, and Ψ is of

FF type.

Proof. By hypothesis, {DbTkφ: b ∈ B , k ∈ Zn} is an ON basis of V0, and, since φ̂ = χU , then V0 =
L2(S0)

∨, where S0 =⋃b∈B Ub and the union is disjoint. For i ∈ Z, let Vi = D−i
a V0 = L2(Si)

∨. Then
Vi ⊆ Vi+1 and Si = S0a

i ⊂ Si+1. It follows easily that
⋂

i�0 Si and R̂n \⋃i�0 Si are null sets. Next let
W0 = V1 ∩ (V0)

⊥ = L2(S1 \ S0)
∨. We will show that there are sets T�, 1 � � � L, such that each T� is

a tiling set for Ẑn translations and the disjoint union
⋃L

�=1 T� is a (S1 \ S0)-tiling set for B dilations. In
order to do that, let β0, . . . , βN−1 be a complete collection of coset representatives of B/aBa−1, with
β0 = In, and let U1 =⋃N−1

j=0 Uβja. Since each b ∈ B uniquely determines a b′ ∈ B and a j for which
b = βj (ab′a−1), we have

S1 = S0a =
⋃
b∈B

Uba =
⋃
b′∈B

U1b
′.

Thus U1 is an S1-tiling set for B dilations and, as a consequence, Ũ = U1 ∩ S0 is an S0-tiling set for
B dilations and T = U1 \ Ũ is an (S1 \ S0)-tiling set for B dilations. Note that |Ũ | = |U | = 1 since
|detb| = 1 for each b ∈ B . Also, |U1| = N |deta| = NM and so |T | = NM − 1 = L. By an easy cal-
culation, [χU1, χU1] = NM a.e. Thus, for a.e. ξ ∈ R̂n, there are precisely NM points in (ξ + Ẑn) ∩ T

and exactly one of these points lies in Ũ . This implies that [χT ,χT ] = L a.e. Now one can decompose
T into disjoint subsets T�, 1 � � � L, with [χT�

,χT�
] = 1 a.e. for each �. The sets T� have precisely the

properties we were looking for, and, as a consequence, Ψ = {ψ� = (χT�
)∨: � = 1, . . . ,L} is an ON MRA

AB-multiwavelet.
In order to prove the final statement, observe that T�a

−1 ⊆ U1a
−1 =⋃N−1

j=0 Uβj and Ua−1 ⊆ U1a
−1.

This implies that, for all 0 � � � L, using the notation ψ0 = φ and T0 = U , we have

ψ̂�(ξa) = χT�
(ξa) = χT�a

−1(ξ) =
N∑

j=0

χ(T�a
−1∩Uβj )(ξ)

=
N∑

j=0

χ(T�a
−1∩Uβj )(ξ)χ(Uβj )(ξ) =

N∑
j=0

m
j

�(ξ)φ̂
(
ξβ−1

j

)
,

where m
j
(ξ) is the Ẑn periodic extension of χ(T a−1∩Uβ )(ξ). �
� � j
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5.2. Well-localized AB-wavelets

Up to this point, our construction of AB-multiwavelets has been limited to systems arising from com-
pact tiling sets in the frequency domain R̂n. Such AB-multiwavelets are smooth in Rn but have slow
decay. In this section, we will give an explicit construction of smooth AB-wavelets with fast decay both
in Rn and R̂n. Systems with these properties are very important for applications since fast decay is essen-
tial for their numerical implementation. In the previous section we have seen how filters arise naturally
in AB-MRA systems. As is the case with classical MRA wavelets, the filters’ role will be even more
prominent in the constructions of this section.

5.2.1. Example 1
Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited wavelet with supp ψ̂1 ⊂ [−Ω,Ω], Ω > 0,

and ψ2 ∈ L2(R) be another band-limited function with supp ψ̂2 ⊂ [−1,1] and satisfying∑
j∈Z

∣∣ψ̂2(ξ + j)
∣∣2 = 1 a.e. ξ ∈ R. (5.1)

Recall that, since ψ1 is a dyadic wavelet, it satisfies the Calderòn equation (cf. Section 3.1)∑
j∈Z

∣∣ψ̂1(2
j ξ )
∣∣2 = 1 a.e. ξ ∈ R. (5.2)

As we will show later on, there are several choices of functions ψ1 and ψ2 satisfying these properties.
For any ω = (ω1,ω2) ∈ R2, ω1 �= 0, define ψ ∈ L2(R2) by

ψ̂(ω) = ψ̂1(2
sω1)ψ̂2

(
ω2

ω1

)
, (5.3)

where s ∈ Z satisfies 2s � 2Ω . This assumption ensures that supp ψ̂ ⊂ [−1/2,1/2]2. In fact, since
supp ψ̂1 ⊂ [−Ω,Ω] and supp ψ̂2 ⊂ [−1,1], it follows from (5.3) that ψ̂(ω1,ω2) = 0 for |ω1| > 1/2
and |ω2| > 1/2. It is now simple to show that ψ is a PF AB-wavelet, where

A =
{
ak =

(
2k 0
0 1

)
: k ∈ Z

}
and B =

{
bj =

(
1 j

0 1

)
: j ∈ Z

}
.

Indeed, observing that ωakbj = (2kω1, j2kω1 + ω2), and using (5.1), (5.2) and (5.3), we have that∑
j,k∈Z

∣∣ψ̂(ωakbj )
∣∣2 =

∑
j,k∈Z

∣∣ψ̂1(2
s+kω1)

∣∣2∣∣∣∣ψ̂2

(
2−k ω2

ω1
+ j

)∣∣∣∣2

=
∑
k∈Z

∣∣ψ̂1(2
s+kω1)

∣∣2∑
j∈Z

∣∣∣∣ψ̂2

(
2−k ω2

ω1
+ j

)∣∣∣∣2 = 1 a.e.

The fact that ψ is a PF AB-wavelet now follows from the following general observation.

Proposition 5.4. Let ψ ∈ L2(Rn) be such that supp ψ̂ ⊂ Q = [−1/2,1/2]n, and∑
j,k∈Z

∣∣ψ̂(ωakbj )
∣∣2 = 1 a.e. ω ∈ R̂n,

where a, b ∈ GLn(R). Then ψ is a PF AB-wavelet, where A = {ai : i ∈ Z} and B = {bj : j ∈ Z}.
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Proof. For i, k ∈ Z, k ∈ Zn, let ψi,j,k = Di
aD

j

bTkψ . Using the hypotheses on ψ , the change of variable
η = ξaibj and Plancherel theorem, for each f ∈ L2(Rn) we have that

∑
i,j∈Z

∑
k∈Zn

∣∣〈f,ψi,j,k〉
∣∣2 =

∑
i,j∈Z

∑
k∈Zn

∣∣∣∣∣
∫
R̂n

f̂ (ω)ψ̂(ωaibj )e2πiωaibj k|deta|i/2|detb|j/2 dω

∣∣∣∣∣
2

=
∑
i,j∈Z

∑
k∈Zn

∣∣∣∣∣
∫
Q

f̂ (ηb−j a−i )ψ̂(η)e2πiηk|deta|−i/2|detb|−j/2 dη

∣∣∣∣∣
2

=
∑
i,j∈Z

∫
Q

∣∣f̂ (ηb−j a−i )
∣∣2∣∣ψ̂(η)

∣∣2|deta|−i |detb|−j dη

=
∑
i,j∈Z

∫
R̂n

∣∣f̂ (ω)
∣∣2∣∣ψ̂(ωaibj )

∣∣2 dω = ‖f ‖2. �

As we mentioned before, there are many choices for the functions ψ1 and ψ2 that satisfy the assump-
tions we have described above. For example, we can choose ψ1 to be the Lemariè–Meyer wavelet (see
[14, Section 1.4]) defined by ψ̂1(ξ) = eiπξb(ξ), where

b(ξ) =

⎧⎪⎨⎪⎩
sin
(

π
2 (3|ξ | − 1)

)
, 1

3 � |ξ | � 2
3 ,

sin
(

3π
4

(
4
3 − |ξ |)), 2

3 < |ξ | � 4
3 ,

0, otherwise.

In order to construct ψ2, let φ be a compactly supported C∞ bump function, with suppφ ⊂ [−1,1]
(examples can be found in [19, Section 3.3] or [15, Section 1.4]), and define ψ2 by

ψ̂2(ξ) = φ(ξ)√∑
k∈Z

|φ(ξ + k)|2 .

It is clear that ψ2 ∈ C∞(R) and satisfies (5.1). It follows that ψ̂ , given by (5.3), is in C∞(R2) and this
implies that |ψ(x)| � KN(1 + |x|)−N , KN > 0, for any N ∈ N.

Finally, let us observe that it is easy to generalize this construction for n > 2. For example, let ψ1,ψ2 ∈
L2(R) be defined as above and, for any ω = (ω1, . . . ,ωn) ∈ Rn, ω1 �= 0, define ψ ∈ L2(Rn) by

ψ̂(ω) = ψ̂1(2
sω1)ψ̂2

(
ω2

ω1

)
. . . ψ̂2

(
ωn

ω1

)
, (5.4)

where s ∈ Z satisfies 2s � 2Ω. It turns out that ψ is a PF AB-wavelet, where

A =
{
ai =

(
2i 0
0 In−1

)
: i ∈ Z

}
and B =

{
bj =

(
1 j

0 In−1

)
: j ∈ Zn−1

}
,

where In−1 is the (n − 1) × (n − 1) identity matrix. The proof is exactly as in the case n = 2 once is
observed that, for j = (j1, . . . , jn−1) with j1, . . . , jn−1 ∈ Z, we have

ψ̂(ωakbj ) = ψ̂1(2
s+kω1)ψ̂2

(
2−k ω2 + j1

)
. . . ψ̂2

(
2−k ωn + jn−1

)
.

ω1 ω1
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A similar idea can be applied to more general shear groups B .
The next example shows how to construct AB-wavelets for L2(R2) of MRA type that are well local-

ized both in Rn and R̂n.

5.2.2. Example 2
Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited MRA wavelet with supp ψ̂1 ⊂ [−Ω,Ω],

Ω > 0, and let φ1 be its associated scaling function. Let m0 and m1 be the low pass and high pass
filters, respectively, associated with φ1 and ψ1, that is, m0 and m1 are the periodic functions satisfying
the equations

φ̂1(ω1) = m0

(
ω1

2

)
φ̂1

(
ω1

2

)
and ψ̂1(ω1) = m1

(
ω1

2

)
φ̂1

(
ω1

2

)
.

Let ψ2 ∈ L2(R) be defined by

ψ2(x) = ei(N+1)πx

(
sinπx

πx

)N+1

,

where N ∈ N. That is, ψ̂2 is a basic spline of order N (cf. [14, Section 4.2]). This implies that supp ψ̂2 ⊂
[0,N + 1] and ψ̂2 satisfies the so-called two scale equation

ψ̂2(ξ) =
N+1∑
k=0

d
(N)
k ψ̂2(2ξ − k), (5.5)

where d
(N)
k = 2−N

(
N+1

k

)
.

For ω = (ω1,ω2) ∈ R2, ω1 �= 0, let φ ∈ L2(R2) be defined by

φ̂(ω) = φ̂1(2
sω1)

ψ̂2
(

ω2
ω1

)√∑
m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2 ,

where s ∈ Z satisfies 2s � 4Ω(N
2 + 1). This assumption on s ensures that

supp φ̂ ⊂
{
(ω1,ω2) ∈ R̂2: |ω1| < 1

4
(N/2 + 1)−1, |ω2| < 1

4

}
. (5.6)

Also, let ψ ∈ L2(R2) be defined by

ψ̂(ω) =
N+1∑
k=0

d
(N)
k m1(2

s−1ω1)M0(a
−1ω)φ̂(ωa−1b−k),

where the matrices a and b are as in Section 5.2.1, the coefficients d
(N)
k are those in (5.5), and M0(ω) is

the Z2-periodic function which, restricted to the fundamental region [− 1
2 ,

1
2 ]2, is given by

M0(ω) =
( ∑

m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2∑

m∈Z

∣∣ψ̂2
(
2−1 ω2

ω1
+ m

)∣∣2
)1/2

, ω ∈
[
−1

2
,

1

2

]2

.

Using (5.5), we have that
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N+1∑
k=0

d
(N)
k M0(ωa−1)φ̂(ωa−1b−k)

= φ̂1(2
s−1ω1)

N+1∑
k=0

d
(N)
k

√∑
m∈Z

∣∣ψ̂2
(
2ω2

ω1
+ m

)∣∣2√∑
m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2 ψ̂2

(
2ω2

ω1
− k
)√∑

m∈Z

∣∣ψ̂2
(
2ω2

ω1
+ m

)∣∣2
= φ̂1(2

s−1ω1)

N+1∑
k=0

d
(N)
k

ψ̂2
(
2ω2

ω1
− k
)√∑

m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2 = φ̂1(2

s−1ω1)
ψ̂2
(

ω2
ω1

)√∑
m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2 .

Applying this observation, the fact that ωaibj = (2iω1, j2iω1 +ω2), and the observation that ψ1 satisfies
Calderòn equation (5.2), we obtain that

∑
i,j∈Z

∣∣ψ̂(ωaibj )
∣∣2 =

∑
i,j∈Z

∣∣ψ̂1(2
s+iω1)

∣∣2 ∣∣ψ̂2
(
2i ω2

ω1
+ j
)∣∣2√∑

m∈Z

∣∣ψ̂2
(
2i ω2

ω1
+ m + j

)∣∣2
=
∑
i∈Z

∣∣ψ̂1(2
s+iω1)

∣∣2∑
j∈Z

∣∣ψ̂2
(
2i ω2

ω1
+ j
)∣∣2√∑

m∈Z

∣∣ψ̂2
(
2i ω2

ω1
+ m + j

)∣∣2 = 1

for a.e. ω ∈ R̂2. By (5.6), it follows that supp ψ̂ ⊂ [−1/2,1/2]2. Thus, using Proposition 5.4 as in Sec-
tion 5.2.1, it follows that ψ is a PF AB-wavelet for L2(R2), where A = {ai : i ∈ Z} and B = {bj : j ∈ Z}.
Furthermore, it follows by the construction that ψ̂ ∈ CN(R̂2), so |ψ(x)| � KN(1 + |x|)1−N for some
KN > 0.

In addition, unlike the example in Section 5.2.1, we can show that ψ is a PF MRA AB-wavelet. In
order to show this, let V0 = span{DbTmφ: b ∈ B , m ∈ Z2} and Vj = D

−j
a V0, j ∈ Z. Then, using the

computation we made before, the following observation shows that V0 ⊂ V1:

m0(2
s−1ω1)

N+1∑
k=0

d
(N)
k M0(ωa−1)φ̂(ωa−1b−k) = m0(2

s−1ω1)φ̂1(2
s−1ω1)

ψ̂2
(
2ω2

ω1

)√∑
m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2

= φ̂1(2
sω1)

ψ̂2
(

ω2
ω1

)√∑
m∈Z

∣∣ψ̂2
(

ω2
ω1

+ m
)∣∣2 = φ̂(ω).

By induction, we have that Vj ⊂ Vj+1, j ∈ Z. Observe, however, that this MRA system is somewhat
different from those defined in Section 4, since the spaces V0 and W0 = span{DbTmψ : b ∈ B , m ∈ Z2}
are not mutually orthogonal.

5.3. Characterization equations

An application of Theorem 2.1 in [13] gives the following complete characterization of all functions
Ψ = {ψ1, . . . ,ψL} such that the system ΨAB , given by (1.1), is a PF AB-multiwavelet.
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Theorem 5.5. Let A = {ak: k ∈ Z} ⊂ GLn(Z), B ⊂ S̃Ln(Z) = {b ∈ GLn(R): |detb| = 1} and Ψ =
{ψ1, . . . ,ψL} ⊂ L2(Rn). Suppose that

L∑
�=1

∑
k∈Z

∑
b∈B

∑
m∈Zn

∫
supp f̂

∣∣f̂ (ξ + mbak)
∣∣2∣∣ψ̂�(ξa−kb−1)

∣∣2 dξ < ∞ (5.7)

for all f ∈ D, where D is a dense subspace of L2(Rn) contained in the set{
f ∈ L2(Rn): f̂ ∈ L∞(Rn) and supp f̂ is compact

}
.

Then ΨAB , given by (1.1), is a PF for L2(Rn) if and only if

L∑
�=1

∑
k∈Z

∑
b∈B

∣∣ψ̂�(ξakb)
∣∣2 = 1, (5.8)

L∑
�=1

∑
k�0

∑
b∈B

ψ̂�(ξakb)ψ̂�
(
(ξ + q)akb

)= 0 if q ∈ Ẑn \ (Ẑna), (5.9)

L∑
�=1

∑
k∈Z

∑
b∈B

ψ̂�(ξakb)ψ̂�
(
(ξ + q)akb

)= 0 if q ∈
⋂
k∈Z

(Ẑnak) \ {0}. (5.10)

Hypothesis (5.7) is the LIC referred to in Section 3.1. For all examples of AB-multiwavelets discussed
in this paper, one can show by lengthy computations that (5.7) is satisfied. Note that (5.8) is the Calderòn
equation to which we have often referred above. Equation (5.9) is the analogue of the so-called tq equation
for classic dyadic wavelets (cf. [14]). However, (5.10) has a different character. The striking differences
between Eqs. (5.9) and (5.10) and characterization equations for the classical dyadic wavelets were part
of the motivation that led us to formulate our first examples of AB-multiwavelets and subsequently
develop the theory presented in this paper.

6. AB-wavelet sets

In this section, we will show how to construct singly generated ON AB-wavelets. When A and B

satisfy the hypotheses of Theorem 5.2 with L > 1, these singly generated ON AB-wavelets cannot be of
MRA type. Below, we will carry out the demanding technical details for the example of Section 2, where
a = ( 2 0

0 1

)
and b = ( 1 1

0 1

)
. A much easier construction applies when a is replaced by a = ( 2 0

0 2

)
, and is

presented in [11]. In both cases, the AB-wavelets are inverse Fourier transform of characteristic functions
of fractal-like sets. Our point of view is that such ON non-MRA AB-wavelets are “pathological” and far
less useful than the Parseval frame wavelets such as those in Section 5.

Let C ⊂ GLn(R) be an admissible dilation set (cf. Section 3). A C-wavelet set is a measurable set
W ⊂ R̂n such that ψ = (χW)∨ is an orthonormal C-wavelet.

It is easy to verify (cf. [12]) that W is a wavelet set if and only if W is both a tiling set for Zn

translations and a tiling set for C−1 dilations. There are several examples of C-wavelet sets in the literature
for C = {ai : i ∈ Z}, where a ∈ GLn(R) [1,2,12,13,17,18]. Many such constructions use a technique
introduced in [6] that modifies a set T for which (χT )∨ is a Parseval frame C-wavelet to produce a
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wavelet set W of the form W = (T \ P) ∪ Q, where the union is disjoint, P ⊂ T and Q ⊂ R̂n are
measurable. For a general C ∈ GLn(R), the conditions on P and Q are the following:

(i) Q =⋃ξ∈P Qξ is a disjoint union, where Qξ is chosen so that ξC−1 =⋃η∈Qξ
ηC−1.

(ii) Let π be the projection π(ξ) = ξ + Zn from R̂n into Tn; then π|Q, i.e., the restriction of π to Q, is
one-to-one with image π(P ) ∪ (Tn \ π(T )).

In fact, since (χT )∨ is a Parseval frame C-wavelet, T is a tiling set for C−1 dilations and

R̂n =
⋃
ξ∈T

ξC−1 =
( ⋃

ξ∈T \P
ξC−1

)
∪
(⋃

ξ∈P

ξC−1

)
,

where the union is disjoint. By (i),
⋃

ξ∈P ξC−1 =⋃η∈Qξ
ηC−1. Thus (i) implies that W is a tiling set for

C−1 dilations. Next, since (χT )∨ is a Parseval frame C-wavelet, T is a packing set for Zn translations and
so π|T is one-to-one. Also,

Tn = π(T ) ∪ (Tn \ π(T )
)= π(T \ P) ∪ π(P ) ∪ (Tn \ π(T )

)
,

where the union is disjoint. Thus, W is a tiling set for Zn translations iff π maps Q one-to-one onto
π(P ) ∪ (Tn \ π(T )).

In [6], C is assumed to contain an expanding matrix a ∈ GLn(R) for which aC−1 = C−1. Since a is
expanding, then there is a tiling wavelet (χT )∨, where T ⊂ R̂n is measurable and bounded (cf. Section 3),
and a measurable set U ⊂ R̂n such that T ⊆ U , U is a tiling set for Zn translations and Ua ∩ U = ∅.
Since ξC−1 = ξaC−1 for all ξ , then for any P ⊆ T , condition (i) is satisfied by Q = Pa. Using the fact
that |deta| > 1, one can obtain a set P ⊆ T for which (ii) is also satisfied, and so W = (T \ P) ∪ Pa is a
wavelet set. This construction applies, for example, to C = AB = {aib: i ∈ Z, b ∈ B}, where a ∈ GLn(R)

is expanding and B ⊂ GLn(R) satisfies aBa−1 = B . The orthogonal and the hyperbolic AB-wavelets
described in Sections 3.3.1 and 3.3.2, respectively, are in this class.

More generally, let us consider the case C = AB = {aib: i ∈ Z, b ∈ B}, where B is a subgroup
of S̃Ln(Z), a ∈ GLn(R) is not necessarily expanding, and aBa−1 � B . These assumptions imply that
aC−1 = aBA = (aBa−1)(aA) � BA = C−1. Let N = card(B/(aBa−1)) and {b1, . . . , bN } be a complete
set of coset representatives of B/(aBa−1). Then we have that BA =⋃N

j=1 bjaBa−1A =⋃N
j=1 bjaBA.

Let U0 be a tiling set for Zn translations for which S0 =⋃b∈B U0b is contained in S1 = S0a, and let
T0 ⊂ U0 be a tiling set for (AB)−1 dilations. Thus, given P ⊂ T0, we can satisfy condition (i) by setting
Q =⋃ξ∈P Qξ , where Qξ = {ξbj (ξ)a: 1 � j � N}, and {b1(ξ), . . . , bN(ξ)} is a complete set of coset
representatives of B/(aBa−1). The dependence of the coset representatives bj (ξ) on ξ will be clari-
fied in the proof of the following theorem, where we will show the details for this construction for the
example of Section 2. A similar construction holds for more general shear group matrices B . In these
constructions, the coset representatives bj (ξ) are not bounded and, as a consequence, the wavelet set is
unbounded.

Theorem 6.1. Let A = {ai : i ∈ Z}, B = {bj : j ∈ Z} where a = ( 2 0
0 1

)
and b = ( 1 1

0 1

)
. Then AB-wavelets

exist.
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Fig. 5. (a) Construction of the sets P+
0 ,P+

1 ,P+
2 ⊂ U+

0 . (b) The triangle projection π maps P+
k

a into P+
k−1a′ ⊂ P+

k−1.

Proof. The set U0 = {ξ = (ξ1, ξ2) ∈ R̂2: 0 < |ξ1| � 1 and 0 � ξ2/ξ1 � 1} is both a tiling set for Z2

translations and an S0-tiling set for B dilations, where S0 = {ξ = (ξ1, ξ2) ∈ R̂2: |ξ1| � 1}. Let T0 = {ξ =
(ξ1, ξ2) ∈ R̂2: 1

2 � |ξ1| � 1} ⊂ U0. Then T0 is a tiling set for BA dilations and, thus, (χT0)
∨ is a PF

AB-wavelet. Let T1 = T0a, U1 = U0a.
As in the general construction outlined before, we will construct a wavelet set of the form W =

(T0 \ P) ∪ Q. As we did in Section 2, we shall denote T0 = T −
0 ∪ T +

0 , where T −
0 and T +

0 denote the
intersection of T with the half-planes {(ξ1, ξ2) ∈ R̂2: ξ1 � 0} and {(ξ1, ξ2) ∈ R̂2: ξ1 < 0}, respectively.
We will use a similar notation for any other set in R̂2. Since the construction is symmetric with respect
to reflection through the origin, it will be sufficient to construct the set W+.

Let P +
0 = U+

0 \ T +
0 and, for each k � 1, let P +

k = 2−kP +
0 + (rk,0), where rk =∑k

i=1 2−i = 1 − 2−k

and P + =⋃k�1 P +
k . The triangles P +

k are illustrated in Fig. 5a. It is clear that P + ⊂ T +
0 . For each k,

the line segment from (rk−1,0) to (rk,2−(k+1)) subdivides Pk−1 into a lower triangle L+
k−1 and an upper

triangle M+
k−1 of equal area (see Fig. 5b). Observe that rk+1 − rk = 2−(k+1). It is then easy to see that

Area(P +
k−1) = 4 Area(P +

k ) and Area(L+
k−1) = Area(M+

k−1) = 2 Area(P +
k ).

Observe that abja−1 = b2j , and so a complete set of coset representatives of the quotient group
B/(aBa−1) has the form {bj1, bj2}, where j1 is an even integer and j2 is an odd integer. For simplic-
ity, let j1 = 0 and j2 = 2j + 1 for some j ∈ Z. Thus, for any ξ ∈ R̂2, we can choose any j (ξ) ∈ Z

such that ξBA = ξaBA∪ ξb2j (ξ)+1aBA. Define Q+ = P +a ∪ {ξb2j (ξ)+1a: ξ ∈ P +} =⋃k�1 Q+
k , where

Q+
k = P +

k a ∪ {ξb2j (ξ)+1a: ξ ∈ P +
k }, and the integers j (ξ) for ξ ∈ P + will be specified later. This shows

that condition (i) is satisfied.
Next we have to show that condition (ii) is also satisfied. We shall identify T̂2 with [0,1]2 = U+

0 ∪
(U−

0 + (1,1)). Then the projection mapping π : R̂2 �→ T̂2 is given by ξ �→ [ξ ], where [ξ ] = ([ξ1], [ξ2])
and [ξj ] is the fractional part of ξj . In particular, if ξ ∈ U+

0 , then [ξ ] = ξ . A simple computation shows
that, for k � 1, ξ ∈ P +

k if and only if π(ξa) ∈ L+
k−1. Indeed, for ξ = (ξ1, ξ2) ∈ P +

k , we have rk � ξ1 �
rk+1 and 0 � ξ2 � (ξ1 − rk). Then π(ξa) = (2ξ1 − 1, ξ2) and, in view of rk−1 = 2rk − 1, we have that
rk−1 � 2ξ1 − 1 � rk with 0 � ξ2 � ξ1 − rk = 1

2((2ξ1 − 1) − rk−1).

We shall now construct a measurable map ξ �→ j (ξ) from P + to Z such that π(ξb2j (ξ)+1a) maps P +
k

onto M+ for each k � 1 modulo null sets. Note that, for each j ∈ Z and ξ = (ξ1, ξ2) ∈ P +, the map
k−1 k
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π(ξb2j (ξ)+1a) has the form (2ξ1, ξ2 + (2j + 1)ξ1 − m) for some m ∈ Z. Once we construct such a map,
then it follows that π(Q+) = π(

⋃
k�1 Q+

k ) = (U+
0 \ T +

0 ) ∪ P +, and, as a consequence, (ii) is satisfied.
This fact, together with the previous part of the proof, implies that U0 = P0 ∪ T0 is a disjoint union and
W = (T0 \ P) ∪ Q is an AB-wavelet set. Thus, it only remains to construct the measurable map that we
have described.

Fix k � 1. For j,m ∈ Z, let πj,m(ξ1, ξ2) = (2ξ1 − 1, ξ2 + (2j + 1)ξ1 − m) and let Tj,m = {ξ ∈
interior of P +

k : πj,m(ξ) ∈ interior of M+
k−1}. Let J = {(j,m) ∈ Z2: Tj,m �= ∅}. For (j,m) ∈ J , the

set Tj,m is an open triangle or an open quadrilateral in P +
k , and Sj,m = πj,m(Tj,m) is an open sub-

set of similar shape in M+
k−1, with Area(Sj,m) = 2 Area(Tj,m) since πj,k has Jacobian 2. For ξ /∈ Q,

the set {(2j + 1)ξ1 − m: j,m ∈ Z} is dense in R. It follows that the open set
⋃

(j,m)∈J Tj,m is dense
in P +

K and similarly the set
⋃

(j,m)∈J Sj,m is dense in M+
k−1. It is clear that, for ξ ∈ Tj,m, we have

that π(ξb2j (ξ)+1a) = πj,m(ξ). Let {(ji,mi): i � 1} be an enumeration of the countable set J and
let T1 = Tj1,m1 with j (ξ) = j1 on T1. Then let T2 = T1 ∪ {ξ ∈ Tj2,m2 \ T1: πj2,m2(ξ) /∈ πj1,m1(T1)}
and j (ξ) = j2 on T2 \ T1. We proceed inductively, with Tn constructed so that Tn =⋃n

i=1 Tn ∩ Tji ,mi

and Sn =⋃n
i=1 πji,mi

(Tn ∩ Tji ,mi
) have disjoint unions in P +

k and M+
k−1, respectively. Then we define

Tn+1 = Tn ∪ {ξ ∈ Tjn+1,mn+1 \ Tn: πjn+1,mn+1(ξ) /∈ Sn} and let j (ξ) = ji on Tn+1 ∩ Tji ,mi
. The sets Tn and

Sn are unions of open polygons with Area(Sn) = 2 Area(Tn). For each c ∈ (rk, rk+1), each of the maps
πj,m sends the vertical line ξ1 = c to the vertical line η1 = 2c − 1. Hence for T =⋃∞

n=1 Tn = limn→∞ Tn

and S =⋃∞
n=1 Sn = limn→∞ Sn, the segment T ∩ {(ξ1, ξ2): ξ1 = c} is a union of open intervals whose

total length �(c) coincides with the length of the segment S ∩ {(ξ1, ξ2): ξ1 = 2c − 1}. If �(c) = c − rk

and thus is equal to the length of the segment P +
k ∩ {(ξ1, ξ2): ξ1 = c} for a.e. c ∈ (rk, rk+1), then clearly

T has full measure in P +
k . Otherwise, arguing by contradiction, let us suppose that �(c) < c − rk for

some c /∈ Q. Then P +
k ∩ {(ξ1, ξ2): ξ1 = c} contains an open interval Ic of points (c, ξ2) not in T and, as a

consequence, M+
k−1 ∩ {(ξ1, ξ2): ξ1 = 2c − 1} contains an open interval Jc of points (2c − 1, ξ2) not in S.

By our comments before, it follows that πj,m(Ic) ⊂ Jc for some (j,m) ∈ J . However, this contradicts the
definition of T since (j,m) = (ji,mi) for some i, and Ic would have been included in Ti . It follows that
T has full measure in P +

k and necessarily S has full measure in M+
k−1. Observe that the map ξ �→ j (ξ)

defined in the construction of T is constant on polygonal sets and hence is measurable. This completes
the proof that condition (ii) is satisfied. �
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