Available online at www.sciencedirect.com

Cl) ADVANCES IN
SGIENCE( DIRECT*®

&8 Annlied

B, citation and similar papers at core.ac.uk brought t

provided by Elsevier - |
www.elsevier.com/locate/lyaama

Lambda-determinants and domino-tilings

James Propp

University of Wisconsin
Received 16 May 2004; accepted 15 June 2004
Available online 22 January 2005

Dedicated to the memory of David Robbins

Abstract

Consider the 2-by-2n matrix M = (mi,j)iz,’;tl with m; ; =1fori, j satisfying|2i —2n — 1| +
|2j —2n — 1] < 2n andm; ; = O for all otheri, j, consisting of a central diamond of 1's surrounded
by 0's. Whem > 4, theA-determinant of the matri# (as introduced by Robbins and Rumsey [Adv.
Math. 62 (1986) 169—-184]) is not well defined. However, if we replace the O‘shbwe get a matrix
whosei-determinant is well defined and is a polynomialiirand¢. The limit of this polynomial
ast — 0 is a polynomial im. whose value at = 1 is the number of domino-tilings of auzby-2n
square.
0 2004 Published by Elsevier Inc.

1. Lambda-determinants...

In Section 5 of their article [7], David Robbins and Howard Rumsey Jr. defined a gen-
eralization of the determinant of a matrix, which they dubbeditfteterminant. It is a
rational function of the entries of the matrix along with an extra paramegtevhena is
set equal to—1, one obtains the ordinary determinant of the matrix, at least in the case
where all matrix entries are non-zero. (For more details, see [2].)

In this article | will consider certain matrices with many vanishing entries. For these
matrices, one cannot apply Robbins and Rumsey’s definition literally, but there is still
a natural way to attempt to compute thedeterminant, by replacing the zeroes by an
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indeterminate, taking thei-determinant of the-perturbed matrix, and then taking the
limit as¢t — 0. In particular, | will give a one-parameter family of 0,1-matrices whase
member is a 2-by-2n matrix whoser-determinant, defined by this continuity method and
then specialized ta = 1, is the number of domino-tilings of aaZby-2n square.

Let us start by recalling Robbins and Rumsey’s first, recursive definition of the
A-determinant. IfM is a 1-by-1 matrix, its.-determinant is its sole entry. Now suppadde
is ann-by-n matrix, withn > 1. LetMnw, MNE, Msw, andMsg denote the.-determinants
of the (n — 1)-by-(n — 1) connected submatrices in the northwest, northeast, southwest, and
southeast corners @f, and letM¢ be ther-determinant of the central connectigd— 2)-
by-(n — 2) submatrix ofM (we takeMc = 1 in the case = 2). As long asM¢ is hon-zero,
we define the.-determinant o as

det M = (MNnwMsg+ AMNeMsw)/ Mc. 1)

Using this definition, we can calculate thedeterminant of the matrix

(%)

as 1+ X and ther-determinant of the matrix

111
(1 1 1)
111

as((14+ 1)1+ 1)+ A1+ 1)1+ 1) /1) = (1+ »)3. As was pointed out by Robbins
and Rumsey (and is easy to check by induction) ptiieterminant of the-by-n all-ones
matrix is (14 A)"+D/2,

When one is using (1) to calculatedeterminants, a subtle distinction becomes im-
portant, namely, the distinction between workingQx) throughout the recursion and
substituting a particular value afat the end (on the one hand), and using that particular
value ofA when performing the recursion (on the other). Consider, for instance, the 4-by-4
matrix whose entries are all 1's. lisdeterminant ig1 + )%, and if we puth = -1, we
get 0. However, if we were to use= —1 in carrying out the recurrence, we would run
into trouble, sinceMnw, Mne, Msw, Msg, and Mc all vanish; the(—1)-determinant of
the matrix is given by the indeterminate expressi@(0) — (0)(0)) /0. If our goal is to be
make sense of the-determinant over as broad a class of matrices as possible, clearly we
should work inQ()) whenever we can.

Robbins and Rumsey give another, non-recursive formula fok tleterminant of an
n-by-n matrix M = (m,»,j):?’j:l:

det.(M)= Y APB @+ VB ME. 2)
BeA,
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Here A, is the set ofi-by-n alternating-sign matriceB = (bi,j);{jzl, P(-) andN(-) are
integer-valued functions ad,,, and

n n b
B __ i J
u? =J1[

i=1j=1

In more detail: An alternating-sign matrix is a matrix-efl’s, —1's, and 0’s such that in
each row and column, the non-zero entries alternate in sign, beginning and ending with a
+1 (which may be the same entry). ¥ is anrn-by-n alternating-sign matrix, we define
its inversion number as(B) =) b; jb, s where the sumis over allg i, j,r, s <n with
i <randj > s (if B is a permutation matrix, this coincides with the ordinary inversion
statistic). We also defin¥ (B) as the number of negative entriesBnandP (B) asl (B) —
N(B).

The summation formula (1) for de¥ has exactly the same domain of applicability as
the recursive formula (2), if we work ovéd (i) (and if the matrix entries themselves do
not depend on); specifically, both formulas apply and give the same answer as long as the
entries ofM that are in the centrgh — 2)-by-(n — 2) submatrix are all non-zero (these are
precisely the positions in artby-n alternating-sign matrix where the entrl can occur).
However, if we use specific values bfn the recursion, the recursive formula can run into
problems where the summation formula does not. For instance, consider the 4-by-4 matrix
with all entries equal to 1; as we have seen, if we try to compute-it3-determinant using
the specialization of the recurrenceite= —1, we get an indeterminate result, whereas the
formula in terms of alternating-sign matrices gives 0.

Unfortunately, neither of Robbins and Rumsey’s two definitions works when central
entries ofM are equal to zero. Nor is a straightforward appeal to continuity going to help
us to define detM for every M. Consider for instance the family of matrices

tt ot

M.(1) = (r */c t) )

rot ot

For ¢ andt non-zero, detM.(r) = (ci + cA?) + (2x + 20213 + (1/c + 23/¢)t8, which
converges taa 4+ cA? ast — 0. This limit depends on the value Hence, if we attempt
to define thex-determinant of the three-by-three all-zeroes matrix by taking a trajectory
through that matrix in the space of three-by-three matrices and invoking continuity, the
limit will depend on the trajectory we choose, and may even fail to exist.

Clearly the principled thing to do would be to study continuity properties of the
A-determinant, and | hope others will adopt this approach and undertake a more systematic
study of what happens when different trajectories through a bad matrix are taken; this may
have some bearing on the issue of how Dodgson condensation can be applied to matrices
with vanishing connected minors (i.e., with singular connected submatrices). However, in
this article 1 will take an easier path and restrict attention to the trajectory thréugha
particular direction. Specifically, | will replace the zeroesMnby a new variablet, and
see what happens to thedeterminant of the perturbed matrix (thegerturbation of\f™”)
ast — 0. This may be unprincipled, but it is easy to compute. Moreover, for many matrices
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M, the resulting rational function inis not just a Laurent polynomial in(as it must be,
because of the summation formula), but is in fact an ordinary polynomialimthis case,
the A-determinant of\f can be defined as the constant term of this polynomial.

For example, consider the eight-by-eight matrix

00011000
00111100
01111110
11111111
1111111 1|
01111110
00111100
00011000

It has interior zeroes, so its-determinant cannot be computed by the original formulas
(1) and (2). However, if we replace all 0's bywe get a polynomial i ands with 191
terms. Replacing by 0, we get a polynomial i with a mere 17 terms, which evaluates
to 12988 816 when we sgt=1.

2. ...and domino-tilings

12988816 is also the number of ways to cover an 8-by-8 square with 32 1-by-2 rec-
tangles, commonly known as dominos. More generally, the number of ways to cover a
2n-by-2n square with 22 dominos was computed by Temperley and Fisher [9] and (si-
multaneously) by Kasteleyn [4], and is given by the double product

n n .
Tj wk
HH(4co§zn+l+4co§2n—+l>.

j=lk=1

It turns out that if one considers the sub-region of theb®-2n square that consists of
the 2 central cell in the first and last rows, the 4 central cells in the second and second-
from-last rows, the 6 central cells in the third and third-from-last rows, etc., one gets a
region whose domino-tilings are enumerated by a much simpler expression, namely

2n(n+1)/2.

This region is called the Aztec diamond of order 8, and was first studied in detail in [3],
although earlier occurrences of the shape appear in the literature. As an example, consider
the caser = 4. If we associate the 64 cells of the 8-by-8 square with the entries of the
8-by-8 matrix considered at the end of the previous section, then the entries that contain
1's correspond to the cells that belong to the Aztec diamond of order 4.

It turns out that the domino-tilings of the Aztec diamond of ondare intimately related
to theA-determinant of the genericby-n matrix. (If the meaning of “generic” is unclear,
then the reader should imagine that we are working over theQi\ga, b, c, ...), where
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a,b,c,...arethe entries of the matrix; then the entries of the matrix are perforce non-zero,
so the summation formula for thedeterminant is unproblematical in this context.) Specif-
ically, if we apply the distributive rule to the Robbins—Rumsey summation formula foy det
and ignore the fact that multiplication is commutative, each teff® (1+ 1)V B M5B ex-
pands to a sum of’*8) monomials of the form*M 2. The resulting sum hag'¢+/2
terms, and these terms can be put into 1-1 correspondence withi #é2 domino-
tilings of the Aztec diamond of order. (See [3] for details.)

If it seems paradoxical that thedeterminant of a square matrix of 1’s counts domino-
tilings of an Aztec diamond, whereas thaleterminant of the 0,1-matrix whose 1's form
an Aztec diamond counts domino-tilings of a square, it may be helpful to imagine rotat-
ing the Aztec diamond by 45 degrees. Here is one of the 64 domino-tilings of the Aztec
diamond of order 3:

We can replace the tiling problem by the dual matching problem. We define an Aztec
diamond graph whose vertices correspond to the cells of the Aztec diamond, with an edge
between two vertices when the two corresponding cells are adjacent. Then a tiling of the
Aztec diamond of ordet corresponds to a perfect matching of the Aztec diamond graph,
that is, a collection of edges with the property that each vertex of the graph belongs to
exactly one of the edges in the collection.

To illustrate, here is the Aztec diamond graph of order 3:

And here is the perfect matching of the Aztec diamond graph of order 3 that corresponds
to the domino-tiling of the Aztec diamond shown in the first figure:
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Looking back at the original figure, note that if the northwest, northeast, southwest, and
southeast tiles are removed, what's left is a domino-tiling of the 4-by-4 square. More gener-
ally, there is a one-to-one correspondence between domino-tilings ofithg-2» square

and domino-tilings of the Aztec diamond of order i&d which there are:(n — 1)/2 forced

tiles in each of the four corners (slanting from southwest to northeast in the northwest and
southeast corners, and slanting from northwest to southeast in the southwest and northeast
corners). The latter in turn correspond to perfect matchings of the Aztec diamond graph of
order 2 in which there are:(n — 1)/2 forced edges in each corner.

One way we can force some edges to be present is to force other edges to be absent,
and one way to force edges to be absent is to work in the setting of weighted enumeration.
Given an assignment of non-negative weights to the edges of a graph, we define the weight
of an individual perfect matching as the product of the weights of its edges. In the arti-
cle [6], | showed how the method of [3] could be adapted to the general problem of finding
the sum of the weights of all the perfect matchings of an edge-weighted Aztec diamond
graph. | applied this to the case of-by-2n squares, setting some edge-weights equal to 1
and the rest equal to 0, in the fashion shown below for an Aztec diamond graph of order 5
(the edges shown get weight 1, and the rest get weight 0):

v NN
/ AN
AN /
NN /S

However, what was missing from that account was an explanation of the link with
A-determinants.

A good way to understand this link, without using all the machinery of generalized
domino-shuffling, is to directly rely on Kuo’s method of graphical condensation [5]. Let
G be a weighted Aztec diamond graph of ordel_et Gyw be the weighted Aztec dia-
mond graph of ordet — 1 derived fromG by eliminating the southernmostvertices, the
southernmosts2 edges, the easternmasvertices, and the easternmost @dges. Define
GnNE, Gsw, andGsg analogously. Definé ¢ to be the weighted Aztec diamond graph of
ordern — 2 derived fromG by eliminating all of the aforementioned vertices and edges.



J. Propp / Advances in Applied Mathematics 34 (2005) 871-879 877

Lastly, definewnw to be the weight of the northwesternmost edge, and dafiig wsw,
andwsg analogously. Then Kuo's formula can be stated as

W(G)W(Gc) = wnewswW (Gnw) W (G sp) + wnwwseW (GNe) W (Gsw),

whereW () denotes the sum of the weights of the perfect matchings of the graph in ques-
tion. In our application, the edge-weighig\w, wne, wsw, andwsg are all 0's and 1's.

This formula becomes a recurrence relation if one divides both sidég(my) (though

this is only sensible i#¥ (G¢) is non-zero). If one runs the recurrence for the case at hand,
the prefactoravnewsw and wywwsg are always equal to 1. Hence the recurrence takes
the simplified form

W(G) = (W(Gnw) W (Gsp) + W(GNE)W (Gsw))/ W (Go),

which is equation (1) in the special case- 1. This gives us a combinatorial proof of the
main claim of this paper, namely, that the number of domino-tilings of #hby22: square
can be calculated as tlje-1)-determinant of the 2-by-2» matrix whosei, jth entry (for
1<i,j<2n)islif|2i —2n — 1|+ |2j — 2n — 1] < 2n and is O otherwise.
Kuo’s method also gives us a combinatorial interpretation to all the numbers that oc-
cur in the course of evaluating tl{e-1)-determinant of the matrix (by applying (1) with
A = 1): these numbers count domino-tilings of regions obtained from the Aztec diamond
by eliminating the cells that lie in certain bands bordering the boundaries of the region.
For instance, consider the process of computing(th#)-determinant of the 4-by-4
matrix

01 1
111 1
M=171 111
0110

The quantities that turn up in the recursive application of (1) are precisely-thg
determinants of all the connected submatricesviof M itself does double-duty as the
matrix of (+1)-determinants of all the 1-by-1 submatricesMf The (+1)-determinants
of the connected 2-by-2 submatricesMfform the 3-by-3 matrix

1 21
(2 2 2)
1 2 1
whose entries are given by thecondensation formula (1) in the special case +1.
Turning the crank again gives the 2-by-2 matrix

(& &)
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and turning it a final time gives the 1-by-1 matrix
(36)

whose sole entry is the number of tilings of the 4-by-4 square. The 6’s count the domino-
tilings of the region obtained from the 4-by-4 square by removing three cells from one
corner and three cells from an adjoining corner.

This combinatorial interpretation of the-1)-determinants of the connected submatri-
ces of M makes it clear that Robbins and Rumsey’s original recursive formula for the
A-determinant can be applied to all of the matrices in our one-parameter family, provided
we interpret the indeterminate expressioi @s 0 whenever it crops up; each such oc-
currence corresponds to a subgraph of the weighted Aztec diamond graph whose perfect
matchings all have weight 0.

The one thing missing from this explanation is an explicit discussion of the behavior of
the (+1)-determinant of the-perturbed matrix. We need to know that it is a polynomial
in . But this follows from the fact that it is equal to the sum of the weights of all the perfect
matchings of the weighted graph. Indeed, all the rational functiomghwdt occur during
the recursion are polynomials infor the same reason.

This takes care of the case= +1: the inclusion oft has solved the indeterminacy
problem. It follows a fortiori that for generig, inclusion ofz also lets us carry out the
recurrence (1) without encountering indeterminacy. (However, if one puts—1, one
still encounters indeterminacy, on account of the cancellations that occur.)

One consequence of the main result of this paper is that if one takesnaby-2:
alternating-sign matrid = (ai,j)ﬁ’;zl and sums those entries; for which|2i —2n — 1|+
|2j —2n — 1] < 2n, one gets a non-negative sum. A similar claim holds for odd-by-odd
alternating-sign matrices: if one takes any alternating-sign mAtﬁix(ai,A/)f”}“;ll and sums
those entries; ; for which|i —n — 1|4 |j —n — 1| < n, one gets a non-negative sum. This
allows one to use the-perturbation trick to extend the definition of thedeterminant to
the odd-by-odd matriad = (m; ;)7 with m; ; = 1 for thosei, j for which|i —n — 1|+
|j —n—1] <nandm; ; =0 for all otheri, j. (In fact, the(4-1)-determinant of this matrix
is also equal to the number of domino-tilings of thel2y-2n square. This was proved by
Trevor Bass and Kezia Charles [1].)

Moreover, if one takes the intersection of either the odd-by-odd or even-by-even dia-
mond pattern with any connected square submatrid pbne gets a smaller pattern which
also has the property that sum of the corresponding entries of an alternating-sign matrix
must be non-negative. It would be interesting to have a classification of those partial sums
of the entries of am-by-n matrix that are non-negative for all choices of an alternating-
sign matrix. It would also be desirable to extend the results of this paper to the context of
the octahedron recurrence with general initial conditions, as considered in [8].
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