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This paper is concerned with the three-dimensional Navier—Stokes flows excited
by a unidirectional external force and gives an explicit example of Hopf bifurcation
phenomenon occurring in the Navier—Stokes problem. Complete rigorous analysis
on the existence of this instability behavior is provided.  © 1999 Academic Press

1. INTRODUCTION

Transition of a fluid flow from the laminar to the turbulent state is a
matter of everyday experience. From the well-known criteria of Landau
[12] and Ruelle and Takens [22], the process involved is understood
through the notions of bifurcation theory. In particular, the initial stage of
the transition is commonly supposed to be the Hopf bifurcation. That is,
time-dependent periodic flows branch off a basic steady flow at a critical
Reynolds number.

Hopf bifurcation is the inherent phenomenon to be expected in nonlin-
ear dynamical systems. Mathematical theory on the appearance of such a
phenomenon for a system of ordinary differential equations was estab-
lished by Hopf [7] under the assumption that the associated non-zero
critical eigenvalue of the linear part is simple and transversal to the
imaginary axis of the complex plane (see, for example, [6, 14]).

This result has been extended to general incompressible viscous fluid
motions by Joseph and Sattinger [9]. Nevertheless, it seems difficult to
examine the eigenvalue simplicity and the eigenvalue transversality condi-
tions with respect to a linearized Navier—Stokes problem. In his review of
bifurcation theory on hydrodynamics appeared in 1975, Kirchgdssner [10]
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commented that although the possibility of Hopf bifurcation was well
established if the certain conditions on the linearization were satisfied,
they had not been realized for a single model. This comment was also
mentioned in [11], where an explicit example of Hopf bifurcation in a
rotating Bénard problem was presented. However, rigorous mathematical
analysis on the Hopf bifurcation of the Navier—Stokes equations seems
still in its early stage, and there exists a large gap in understanding the
eigenvalue conditions. Inspired by the study of Meshalkin and Sinai [16],
the gap was narrowed by [4] in connection with the two-dimensional
Navier—Stokes equations,

du — Au+ Mu-V)u + AVp = k'*(sin k'y, 0),
V-u=0,
u(t,x,y,z) =u(t,x +2m,y) =u(t,x,y + 2m), (1)

foz”foz”udxdy —0,

when k' > 1 is even. The simplicity condition with respect to this model
can be verified based on its flow invariance structure found in [4], where,
however, no complete proof is provided for the existence of Hopf bifurca-
tion phenomenon for the lack of the verification on the eigenvalue
transversality condition. Hence Hopf bifurcation was only examined in [4]
by truncating (1) reduced to a flow invariant subspace into an ordinary
differential system and by numerical experiments.

The model (1) was first formulated by Kolmogorov (see [2]). The
pioneering work on (1) is due to Meshalkin and Sinai [16] which proves the
global stability of the basic flow (sin y,0) when k' = 1, and, in fact, Hopf
bifurcation is prohibited there. With the use of the approach from Me-
shalkin and Sinai [16], instability of (1) with X’ > 2 was found to occur by
ludovich [8] on the study of steady-state bifurcation of (1). Following the
work of ludovich [8], the further steady-state bifurcation phenomena are
examined in [1, 15, 18, 19]. The relation between the above-mentioned
viscous fluid motion and the associated inviscid fluid motion is investigated
in [5, 17, 18]. One can also refer to [20] for the computational study on the
instability of the Kolmogorov’s model.

In this paper we consider the space-periodic fluid motions in R*® excited
by the unidirectional external force 4k2(sin 2kz,0,0) with k > 1 an inte-
ger. This forcing term gives rise to the unidirectional steady flow u, =
(sin 2kz,0,0). The dynamical behavior of this fluid flow system defined in
terms of velocity u and pressure p is described by the three-dimensional



NAVIER—STOKES EQUATIONS 585

Navier—Stokes equations,

du — Au + Mu-V)u + AVp = 4k?(sin 2kz,0,0),
V-u=0,

(2)

where A > 0 represents the Reynolds number characterizing the viscous
fluid motion, and u satisfies the space-periodic condition

u(t,x +2m,y,z) =u(t,x,y + 27, z) =u(t,x,y, z + 2m)

=u(t,x,y, z). (3)
The average velocity condition
2@ (2w 27
/ [ f udxdydz = 0 (4)
o ‘o ‘o

is required to ensure the uniqueness of the associated Stokes problem.
This viscous shear fluid flow system is the generalization of the two-dimen-
sional Navier—Stokes system (1).

Based on the Hopf bifurcation theorem from [9], we obtain the existence
of the time-dependent periodic solutions to (2)-(4) branching off the basic
flow u, when the Reynolds number varies around some critical values.
Thus an explicit example of Hopf bifurcation phenomenon with respect to
the Navier—Stokes problem is presented from the viewpoint of rigorous
analysis.

To state our results more precisely, we introduce the following Hilbert
space

H? = {ulu, Au € L([0, 27 R®), ¥ - = 0, u satisfies (3)~(4) ),

and its subspaces

Hl?j,k = {Ll = Hzlu = Z (gn,l! §n,2’ §n,3)5in2nkz

n=1

+ Z E (T’m,nl’nm,n,Z’nm,n,S)
m=1n=—x

xsin(mlx + mjy + mkz + 2knz) ;,

with [/ > 0 and j € Z. Here Z denotes the integer set.
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Removing the pressure p by using the divergence free condition V- u =
0, we rewrite (2)—(4) in the following form,

du — Au — AB(u) = 4k?*(sin kz,0,0),  u(t,-,-,-) € H?, (5)
where
B(u) =u-Vu — VA (.(u-Vuy) + 3,(u-Vuy) + 3,(u-Vug)).
The definition of the subspace H,?j,k ensures the invariance condition:
B(u) € H?; , whenever u € H?; , 0 W*?([0,27]°; R?).

Thus it is easy to see that the solution of (5) locally exists within H?, , (see

the proof of [4, Lemma 2.1] for details) or there holds the following flow
invariance result:

LEMMA 1.1. Let the integers | > 0, k > 1, and j € Z. Then for every
i €H},, there exists a constant T >0 such that (5) admits a unique
solution

ue C([0,7); HY; ) withu(0) = a.

In order to obtain the simplicity property, this lemma ensures us to
reduce (5) to each of H?; , as

du — Au — AB(u) = 4k*(sin kz,0,0),  u(t,",-,*) € H?; . (6)

We are now in the position to state our result on the existence of Hopf
bifurcations.
THEOREM 1.1.  Let the integer value (1, j, k) satisfy the condition,
=1 and j=0,1,-1 whenk=1,
kP<IP+j2<3k®, 1<l and jEZ whenk > 2.

Then there exists a critical Reynolds number A, ;> 0 of (6) such that
(A, j x> ug) is a Hopf bifurcation point of (6).

In approaching this result, we use the Hopf bifurcation theorem due to
Joseph and Sattinger [9]. For the reader’s convenience, we simplify this
theorem concerning (6) as

THEOREM 1.2 (Joseph and Sattinger [9]). Let (I, k) be an integer
vector. Assume that there exists a positive number A, ; , > 0, and assume that
the spectral problem, the linearization of (6) around u,

pu = Au — Muy-Vu +u-Vu, + Vp), ueH? (7)
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admits a simple eigenvalue p = p, ; , subject to the transversal crossing con-
dition:

dp(M, ;i)

# 0.
dA

Then there exist continuous functions v, ; . and A, ;. . # A for small
€ > 0 such that (6) with X = A, ; ; . admits a solution
— . 2
U=uU;re€ C([O’OO)'Hl,j,k)
satisfying

2

u,’j‘k‘e(t,-,-,-) =Upjpe|tt vyt | forsmall € > 0,

)‘l,j,k,eVl,j,k,e

Upj ke ™ Uo Aljike ™ Mg and
Vi ik e Im p()\,’j’k) as € — 0.

_1 . .
Here 2ar(\; ;. vy )" is the period of u, ; . ..

Without loss of generality, we may suppose that the spaces H? and
H,,Zj,k are complex when they are concerned with the spectral problem.

Taking Lemma 1.1 and Theorem 1.2 into account, we see that it remains
to show the existence of the eigenvalue p, ; , subject to the simplicity and
transversal crossing conditions in Theorem 1.2. Thus we are led to the
proof of the following result on spectral problem (7).

THEOREM 1.3.  Let (I, j, k) satisfy the condition in Theorem 1.1. Then the
following assertions hold true:

()  Equation (7) admits an eigenvalue p = p; ; ,(A) such that
Im p, ; «(A) <O (A>0) and |imp,jk(/\)=—lz—j2—k2_
. PR
(8)

(i) p, ; (N is smooth and is a unique eigenvalue in a neighborhood of
prj (D) for X > 0. Moreover p, ; , satisfies the monotonicity property

dp; ;i (A
Re pl,],k( ) >0

, A> 0.
dA

(iii) p, ; , satisfies positivity property
lim Re p; ; ,(A) > 0.
A—>
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(V) p, is simple in the following sense
1=dim{u € H, |Au=p,; (Mu},  A>0,

where A u denotes the right-hand side of (7).

This result gives the existence of the critical Reynolds number A, ; , and
eigenvalue p, ;, satisfying the assumption of Theorem 1.2, and so (6)
admits a time-dependent periodic solution u, ; , . branching off u, as A
varies across A, ; .. Hence Theorem 1.1 is an immediate consequence of
Lemma 1.1, Theorems 1.2 and 1.3. Consequently, it is the purpose of this
paper to show Theorem 1.3, which is to be obtained by combining the
examinations in remaining sections. Section 2 contains a result on a
formulation of the spectral problem (7). With the use of this result, the
proofs of the assertions (i)—(iv) are to be given, respectively, in Sections
3-6. The main difficulty of this paper is to show assertions (ii) and (iii).

It should be mentioned that the fluid motions governed by (6) becomes
those satisfying the two-dimensional problem (1) with k' = 2k whenever
the integer j = 0. Thus the three-dimensional problem (2)—(4) admits the
extra Hopf bifurcation points (A, ; x, ug) and (A, _; ., uo) with j # 0. Theo-
rem 1.1 implies that much more time-dependent periodic solutions branch
off the basic flow u, for the three-dimensional Navier—Stokes problem,
and provides an explicit example supporting the Prandtl’s criterion (see
[21]D on the possibility of greater instability of three-dimensional distur-
bances compared with the two-dimensional disturbance in parallel shear
fluid motions. Moreover, Theorem 1.1 shows the global existence of
regular solutions starting from some large initial data, although the global
existence of regular and large solutions to a three-dimensional Navier—
Stokes problem still remains to be an open question, which dates back to
Leray [13] in 1934,

Finally, we note that, in Section 2, we apply the Riesz—Schauder theory
to transform the three-dimensional spectral problem (7) to algebraic
equations (9)—(10), which are essentially determined by the integer func-
tions

B,(1,j. k) — 4k? = 1% + j% + (2nk + k)°

If j =0, (9-(10) become the formulation of the associated two-dimen-
sional spectral problem examined in [4]. For the two-dimensional Navier—
Stokes problem (1) with k' = 2k, the eigenvalue transversal crossing
condition is verified in [3] with the use of an approach similar to the
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present paper, and thus the rigorous analysis on the existence of the Hopf
bifurcation is shown in [3] under the assumption

Bo(1,0,k) —4k*=1>—-3k?*<0 and [>1.

However, for the three-dimensional Navier—Stokes problem (6) under the
acceptable condition

Bo(l,j, k) —4k?*=1>+j*—-3k?<0, 1<I and jeZ,

a difficulty arises in examining (9)—-(10) to show eigenvalue transversal
crossing condition as k increases. We thus impose the assumption in
Theorem 1.1,

th?<I?+j2 <3k, 1<l and jeZ,

when k > 2.

2. FORMULATION OF THE SPECTRAL PROBLEM

Let us introduce the following invariant subspace of the operator A,:
E i =1uc H?u= Y (&, m, &)sin(le +jy + kz + 2nkz) ).
n= —w

In connection with (1), it is, in fact, implied in [16] that its linearization
can be reduced to algebraic equations (see also [4] for details). In this
section, we extend this result to the three-dimensional spectral problem (5)
in the following form.

THEOREM 2.1. For the integers | > 1, j € Z, k > 1, and the complex
number Re p > —1? — j? — k?, the spectral problem (7) has the equivalent
formulation,

ZBn( Bn + p)gn + )\l( anl - 4k2)§n71 - )\l( Bn+l - 4k2)§n+1 = O'
neZzZ, (9)
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where and in what follows B, = B,(, ], k) =j*+1?> + 2nk + k)*. Addi-
tionally, (9) is equivalent to the equation

2 + 1
Bo( Bo PZ) n —i, (10)
)\l(,BO—4k ) 2B( By + p) 4 1
(B —4K7) " 2Bt p) L
(B, — ak?)
when {{,}, c , is represented explicitly as
n BO — 4k?
(=1) & =dov1 Y —age nzl,
{o = 4o (11)
g—l = igOV
(_1)nil§7n =1 n—11 nZZ’
where {, is an arbitrary complex number, and
! 0
= , n =
7T 2B,(B, + ) L

A( B, — 4k?) T 2B, (Bt t p) 1
Al( Bn+l - 4k2)

Proof.  First, we note from (7) that
—Au + pu + Asin2kz d.u + Aug duy, + AVp =0

for u = (uy, u,, uy). On substitution of

u= Y (&M, 8), with ¢, =sin(k +jy + kz + 2knz),

n=—oo

into this equation and after elementary calculations, we obtain

oo

Z (( :Bn + p)gn + %)\l( gnfl - §n+l) + Ak( gnfl + §n+1))¢n

n=—owx

= —Ad.p, (12)

Z (( Bn + p)nn + %)‘l(nn—l - nn+l))¢n = _)‘&yp’ (13)

n=—wx
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Z (( Bn + p)gn + %/\l( §n71 - §n+l))¢n = _/\azp’ (14)

n=—wx

o0

Y (1 +jm, + (k + 2nk)g,) ¢, = 0. (15)

By (12)-(13),

Z (( Bn + p)(lfn +.]nn) + %/\l(lgn—l +jnn—1 - l§n+1 _jnn+1)

n=—ow

+)\lk( gnfl + §n+l))¢n
= —IAd,p —jAd,p.

Applying the operators ¢, and —Id, —jd, to this equation and (14),
respectively, and summing the resultant equations, we have

(( Bn + p)(lgn +j7’n) + %/\l(lgnfl +j7’n71 - l§n+1 _jnn+1)
+Alk( gn—l + gn-#l))(znk + k)
=(( Bn+p){n+%Al(gnfl_§n+l))(lz+j2)’ nez.

Likewise, applying the operators 4, and —d, to Egs. (12) and (13),
respectively, and summing the resultant equations, we also have the
equations without the pressure p involved

(( Bn + p)fn + %)\l( fnfl - §n+l) + )\k( é,nfl + §n+1))j
:(( Bn+p)nn+%/\l(nnfl_nn+l))l' I’ZEZ.

Thus by (15), (7) becomes the coupled set of algebraic equations, n € Z,
2B,(B, +r) ;
Al "
2(B, + p)
A

+ (anl - 4k2)§nfl - (Bn+l - 4k2)§n+1 = O'

(lfn - lnn) + l(jgnfl - lnnfl) - l(jfnJrl - lnn+l) (16)

= _2k]( gnfl + {:nJrl)'
1&g, +jm, = —(k + 2nk)¢,. (17)

Next, we borrow a technique of [8, 16] to show that {£,}, < , and {n,}, < »
are uniquely determined by {¢,}, . , when Re p > —1% — j? — k2.
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Let {r,}, ., with ©°___|r,|° < = satisfy the coupled set of algebraic
equations

2(13”+p)7

v, Wt T, — T =0, neZ. (18)

From the reasoning of [16], we may suppose that 7, = 0 for all n € Z.
Dividing (18) by 7, yields

Tin +1
— = — : n>0  (19)
Trm-1 2Bin+P)/MFTo11)/Ts,

This together with the boundedness of |7, ,|/I7. ,_y)| implies

T+n

-0 asn — o«

Trn-1

Applying (19) repeatedly gives

+1
Ti(n—l) Z(Bin+p) + 1

Al 2(ﬁ¢(n+1)+/3) + 1
Al

which together with the simple identity (v,/7_,)"* = 7_, /7, implies

2( By + p) n 1
Al 2(B+p) " 1
Al 2( B, + p) 1
—+_
M '
B -1
B 2(B-y +p) n 1
Al 2(3—2"'13) +i

Al
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Since B_,_,; = B, this equation becomes

2(Bo + p) n 1
Al 2(By+p) n 1
Al 2(B, + p) 1
e + R
Al '

—i.  (20)

Observing that
Rep> —I*—j>—k?= =By > —B,,

we see that this equation is not true, since the real part of the left-hand
side term is positive. Thus (18) has no nontrivial solution. Using the
Riesz—Schauder theory, we see that for every {£,}, . , with X°_ [ Z|* < o,
(16) admits a unique solution {j&, — I}, , with X2_ __|j&, — In,|* < =.
This together with (17) implies that {£,),., and {n,),., are uniquely
determined by {Z }. < ,. Consequently, (7) is determined by (9).

Finally, (9) becomes

2B,(B, t p)
N(B, — 4k?) ™

0,1~ 0,11 =0, necz,

by setting o, = A(B, — 4k?){,. Thus the derivation of (20) from (18)
implies the equivalence of (9) and (10) for {¢,}, < , subject to the condition

(Bin - 4k2)§in
(:Bi(n—l) - 4k2)§i(n—l)

+1
B 2B, (B, +p) n 1 ’
M( B, —4k?) 2B+ Binsn T P) i
/\Z(Bi(n+l)_4k2)

n >0,

which gives (10) and (11). The proof is complete.

3. PROOF THEOREM 1.3()

Let us note that, in what follows, the integer vector (/, j, k) is always
supposed to satisfy the assumption of Theorem 1.1. Thus we have

By —4k*=1>+j>—-3k*<0 and B,—4k*>0 forn>1.
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With the use of Theorem 2.1, the assertion (i) of Theorem 1.3 is in fact
from [4] by using the Brouwer fixed-point theorem. However, for the
reader’s convenience, we provide a complete proof for this assertion.

It follows from Theorem 2.1 that it suffices to seek the function
p = p; ; satisfying (8) and (10). By (10), we have

AL(4Kk? — By)
~Bo— i
4k? - B, i
2By 2B Byt p)

(Bl—4k2))\l+ 2B,( B, + p) _’_i
(B k)M T

+

1 — P

Denoting by W¥,( p) the left-hand side of this equation, we have Re ¥,( p)
> —f, and

(4k% — Bo)Ix (&K% — By)( By — 4K%) 1N
2Bo 4Bo By( B, + Re p)
< (4k% = By)(A + A%)

|¥,(p) + Byl <

for all Rep> —B, and A > 0. Hence ¥, maps G into itself, provided
that

G={ceCRec> —By,lcl < By + (4k* — By)( A + A?)}.

Note that W,(p) is continuous with respect to ( p, A). By the Brouwer
fixed-point theorem, W, admits a fixed point p(A) = p, ; (M) € G.
Furthermore, noting

1(4k?% — 4k? — — 4k2)I%\?
p(A) + By +1i ( 'BO)A < ( 'BO)(Bl ) A

2B, 4B, B,( B, + Re p)
2 _
< UAZ,
4B,
we have
M(4k% —
o) = o — i B) ey,
2B,

This implies Im p(A) < 0, since 4k? — B, > 0 and (10) gives Im p(A) # 0
for all A > 0. The proof is complete.
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4. PROOF OF THEOREM 1.3(ii)

First, we use the implicit function theorem to show the smoothness and
uniqueness of p, ; .

Recall from Theorem 2.1 that the eigenvalue p(A) = p, ; ,(}) satisfies
the coupled set of the algebraic equations

ZBn( Bn + p(A))gn + Al( Bn—l - 4k2)§n—1
— M(B,,, —4k*),., =0, nez, (21)

where the sequence {{,}, . , is defined by (11). Introducing the function

=]

F(p,A) = X (—1)"B. B, + p)( B, — 4k?)?

n=—x

+ M Z (_l)n+l( Bn - 4k2)( Bn+l - 4k2)§n§n+l’
and using (21), we have F(p(A), A) = 0. Thus the smoothness and the
uniqueness of p(A) follow from the implicit function theorem, whenever
dF(p, N)/dp + 0 holds true for all Re p > — 3, and A > 0.

Indeed, by (11) and (21),

oF il
. _1\" _ 2\ 72
o = L (CUA(B -4
> n agn
+ Y, (=1)"2B,(B, + p)( B, — 4k?)¢, 7
ALY (—1)(B, - k) B, — 4K2)
(9(,1 a§n+l
X &_p§n+l+§n ap

g,
dp

f (—1)"B,(B, — 4k?) {2 + i (—-1)"(B, — 4k?)

n= —oo n= —o

(Zﬂn( Bn + p)gn + )\l( anl - 4k2)§n71 - /\l( Bn+1 - 4k2)§n+l)
L (—D)'B,(B, — 4K%)¢}

n= —oo

=2 i (-1)"B,(B, — 4k?) (2. (22)
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On the other hand, multiplying the nth equation of (21) by ( 8, — 4k?)¢{,,
and summing the resultant equations, we have

Y 2B, B, + p)( B, — 4k?)IL, I

n=—ow

+ Al Z (Bn - 4k2)( :Bn+1 - 4k2)(§nzn+l - §n+lzn) = 07

which yields, by (11),

Y B.B,+ Rep)(B, —4k*)lg,?

n=—o

= X 2B,(B, + Rep)(B, — 4k?)I,1” = 0. (23)
n=0
Using this equation, we have, for Re p + B, > 0,

> 2By(4k% = By)l ol — 2| X (—1)"B,( B, — 4Kk?) ¢}
n=1

2 [e’s}
= ———— Y BB, + Rep)(B, — 4k?)I,)?

Bo + Repn:1

-2

Z (_l)an( Bn - 4k2)£n2
n=1

w - ,
= Bo + Rep,ElB"( B+ Re p)(B" 4k )|gn|

=2 Y BB, — 461, )7
n=1

o

__ %z ~ v
—BO+Repn§lﬁn(ﬁn Bo)( B, — 4K%)IL,|

>0,

where the use is made of Theorem 2.1 on the property |¢,| > 0 for A > 0.
The proof is complete.

Next, we verify the validity of the monotonicity property.

Note that {{,}, c , together with p = p, ; , is defined by (10)—(11). From
(22), we see

Y (—1)"B.(B, — 4k?) 2 # 0.
n=0
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Take a suitable choice of ¢, to give

Z( 1)"B.(B, — 4k%)¢47 —22( 1)"B.( B, — 4k*) (7 = 2. (24)

n=—ow

In what follows, we need (23), that is,

S
L0

B.(B, — 4K?)I &, )°

Y +1Re Z B.( B, — Bo)(B, — 4k*)I, I < 0. (25)

Recall that

0= i (—=1)"B.(B, + p(N))( B, — 4k?) {2

n=—ow

+ )\l Z (_1)"+1( Bn - 4k2)( :Bn+1 - 4k2)gn§n+l' (26)

n=—ow

Differentiating this equation with respect to A yields

o—2n_2_w( 1" B.( B, + p(1)( B, — 4k )én(fii
+n_;w( 1)"B.(B, — 4k )52
+zn:z_m(—1)”“(ﬁn—4k2)(6n+1—4k2)€n§n+1
Y (=1)"" (B, = 4k?)( B,y — 4K°) %%1* "dfzn)jl

n=—wx

—2—+1 (- D" (B = 4k*)(Byvr = 4K%) 5 Gy

n=—oo

d
+ 2 Z (-1 (,8 _4k)di

n= —oo

(2Bn( Bn + p)gn + /\l( Ianl - 4k2)§n71 - )\l( Bn+l - 4k2)§n+1)
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- 2% - ;n;m(—l)"ﬁn( By + p)( B, — 4K°)5}
EPLOS (=1)"Bu( B, + p)(B, — 4K?)¢}
TR W
=2@—E(Bo+;0)—E i(—l)nﬁ(ﬁ = Bo)( B, — 4k?*)& /7,
dr A P n " "

where the use is made of (9), (10), (24), and (26). Therefore, by (25),

d = n
ARe=Z = By + Rep+ ¥ (~1)"B,(8, — B)( B, - 4k*)Re(£?)
n=1

> Bo+ Rep— X BB, — Bo)( B, — 4k?) ¢,

n=1
o0

= (Bo+Rep)|1+ ¥ B,(B, — 4k*)IL)°|.

n=0

Now we show
1+ Y BB, — 4Kk?)IL,1P > 0.
n=0
Indeed, by (25), we denote by ¢ the positive constant such that

c= - Z Bn( Bn - 4k2)|§n|2

n=0

= ﬁo("’k2 - ﬁo)|§o|2 - Z Bn( Bn - 4k2)|§n|2-
n=1

Using (24), we have
Bo(4Kk2 = Bo) (1%l + 1m(£2))
=c+ ¥ BB, — 47 (1517 + (=1)"Im(£7)),
n=1

and

Bo(4k? = Bo) (14 — Im(£3))
=c+ i B.( B, — 4k%)(14,1° = (=1)" Im(£2)).
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Taking the Schwartz inequality into account, we have
B3 (ak? — Bo)'|Re(¢7)[
= BZ(4k? — Bo) (12,7 — m(g2))(12)° + Im(£?))

ct Y B.(B, = 4k*) (14,1 + (-1)" lm(ff)))

n=1

e+ T B8, - 4k?)(1¢F = (-1)" 'm(é“f)))

n=1

o

c+ Y BB, — 4k2)|Re(£,f)|) :

n=1

2

This implies, by (24),

oo

c < Bo(4k% = Bo)|Re(¢F)| = X B.( B, — 4k?)|Re(42)]

n=1

<1+

i (—=1)"B.(B, — 4k*)Re(}2)

— ¥ B.(B, — 4k?)|Re(£2)|
n=1

<1,
since the representation of ¢, in Theorem 2.1 implies 2 # 0 for all
n > 0. The proof is complete.

5. PROOF OF THEOREM 1.3(iii)

For p = p; ; ., We set the real functions u = Re p and v = Im p. Let us
start with two technical lemmas.

LEMMA 5.1. There holds the estimate
v(A)
A

Proof. Recalling from Theorems 2.1 and the assertion (i) of Theorem
1.3 that

—-1<

<0 fori>0.

1
2B,( B, + p(A)) N 1 ’
)\I(Bn_4k2) 23n+1(Bn+1+p()\)) +i
A( B, — 4k?)

n>0

Ya(A) =
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and v(A) < 0, we see that

M( B, — 4k?%) M( B, — 4k?%)
<

Y. (A)| < < -0 asn — o, (27
(V)] 2B,( B, + (X)) ~ 2B,( B, — Bo) (27)
and
2B,lv(V)| 1
| A)=———— + Im——, >0,
mYn+l( ) Z(Bn_4k2)/\ myn(A) n=z
2lv(A 1
> lv( )|+m—, n>1.
IA %(A)
Moreover, from Theorem 2.1 we see y,(A) = —i, which yields
212+ + k*)v(X) v(A)
| A) =1+ 1 :
m7(d) B2 —F—j5)x ~ " Ia

where the assumption on the integer vector (/, j, k) given in Theorem 1.3 is
used. If »(A)/(Al) < —1 for some A > 0, we see that Im y,(A) <0, and
thus Im y,(A) > 1 for n > 2. This contradicts to (27), and completes the
proof.

Without loss of generality, from this lemma we may introduce the
constant », such that

o 2r(d)
Yo ™ Al—rﬂc A
LEMMA 5.2.  Assume that p, = lim,_ , u(A) < . Then there holds the
estimate
Bo( Bo + o) - Bi( By + o) Bovo +1 ?
4k* — B, By —4k* | 4k* - B,
2
+ v v
+Bz(/32 P;o) ﬁlo2 ﬁjoo 1l +1]
B, — 4k B, —4k°\ 4k° — B,
(28)

Proof. For convenience, we set the real functions 4 = A(A) and g =
g(A) such that
) +ig(N)  2Ba( B2+ p()) 1
A I(Bz_4k2))\ 2B3(B3+P()‘)) i '
I( B — 4k?)A
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which implies obviously

2.32( B, + u( ’\))

h(A) >
N> =06, —ar?)
Let us begin with the proof on the case
& +1=0.
4k — B,
By (10), we see that
2Bo( Bo + p)
h +ig l(4k2 - BO)/\
A _2.31(31"‘13) 2Bo( By + p) . +1,
I( By — 4k*) A\ [(4k* — By)A
which together with the assumption u, < % implies
h(A) +ig(A v
jim L) T BOY /2300 +i=0. (29)
A A 4k — B,

On the other hand, by (10),
2/30( Bo + Mo)
4k? = By
- 2.31(B1+P()\)) 1
I(By — 4K*)X*  h(A) +ig(X)
231( By + M(’\)) " h
I( By — 4Kk?)N\? h? + g2

2B+ p(N)  h | (2800 s
(B —4K*)A* h* +g* (B — k%)X h+g?

B 1
280 g\
2B( By + 1(N)) h (B, — 4k*)N*  h*+g°
I( By — 4k*)N\? * h? + g? 2B4( By + r(A)) h

I(B, — 4k*)A*  h* +g°
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2B4( By + m(A)) h
(B, — 4k2)\2 " WP+ g

2

2B,v(A) 8 (h2 +g2) -

(B, — 4k%)A2 K% + g2
h

1

231(31+M()\))+ (2B,v(A))’h ( 287 (Ng )ZE'
(B — 4k )N " (g, —akzyat \I(B—ak®)N | i

This together with Lemma 5.1 and (29) implies, by setting A — o,

2/30( Bo + Mo) - h()\) Bz( B, + Mo)
4kz—,80 _A - I(Bz 4k) '

and hence (28) is valid.
Next, we consider another case

4;5230110 +1+#0.
By (10), we see that
h(A) =R A
=R b o) I
(B, — 4k? )X 2Bo( Bo + p) N
(42 = B)r
- e 230(30+P)_l
_2B(Bitp) 1(4k* — Bo) A
(B—=4K*)A [ 2By( Byt p) \* 2607\
I(4k*—By) A I(4k*—By) A
Aa( M)

a(N)? + b(A)?’
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by setting
2/30( By + M)
2 1(4k? —
a()) = 31(531"’2:“«) N (2 Bo) A .
(B, = 4K)X [ 2B,( By + w) 267,
I(4k* — By) A 1(4k? — By) A
and
2Byv
b(2) = 2B,v . I(4k* — By) A 1
(B = 4K*)X  (28,( By + 1) 2+ 2607 ?
I[(4k* — By) A I(4k* — By) A

We thus have
Aa( L) = h(A)(a(X)? + b(1)?).
Passing to the limit as A — « in this equation yields

230( Bo + Mo)
2/31( B: + Mo) l(4k2 - Bo)
- no T 2
l( B — 4k ) ( Bovo )
+1

4k? - B,
2
v 1
= B_” = + lim h(A)
B, — 4k Bovo L1] 2
4k* — B,
2
B1vy N 1 2/32( B, + ,U~0)
B, — 4k* Bovo 41 I(B, — 4k?)
4k? — B,

which gives (28) and completes the proof.

With the aid of the above lemmas, we can now carry out the proof for
the desired assertion.
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Proof of Theorem 1.3(iii). We argue by contradiction. If there holds
A—>

it follows from Lemma 5.2 that

Boz 312 ( Bovo 41

>
4k* — B, ~— B, — 4k*\ 4k* — B,

2

. (30)

+1]+1

n 322 B1vo Bovo
B, — 4k?\ B, — 4k*\ 4k* — B,

Recalling that /=1 and j=0,+ 1 when k =1, we thus have, for
k=1,

2 +2)° (26 +j2)° ( (10 + %), [ (2 +j2)v
( J.Z)Z( J.z)( J.z)o( ].Zo_‘_l ol
2 —] 22 + 6+ 2—j
j=0, +1.
Note that, for any v,
10 +j3) vy [ (2 + v
( ],2)0( ],Z°+1 +1>0, j=0+1.
6+ 2 —j
We have

2 +j?) _ (@ +7) (. @w+He-A))

2—j2 T 22+4j? 4(6+j2)(2+j2) '
and hence

262 2

2>2—|1—-—=| >2 whenj=0,
22 12
272 11)\?

9> —|1——=—| >9 whenj= +1.
23 84

This leads to a contradiction and thus w, > 0 is true when k£ = 1.

For another case of k£ > 2, the similar contradiction is to be deduced
from (30). For convenience, we introduce the number r such that /% + j2
= rk?. Thus the assumption k2/3 < [? + j% < k?/2 implies : < r <  and
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(30) becomes

(r+ 1) y (r +9)° 2

(r+ 1wy, N 1)

3—-r  r+5 3—r
r+ 252 ((r+ v, ((r+1)v 2
+( ) (( ) (( )°+1 +1] . (31)
r+ 21 r+5 3—r

When (r + Dv,/(3 — r) + 1 > 1, this inequality implies,

3 (r +1)°
srt ="
(r +9)°

r+5

r+1)v
ey
3—r

(r+9)°
16(r + 5)
1 3
> 1—0(r+ 9) > g(r+ 1).

When (r + Dv,/(3 —r) + 1 < %, we see that
(r+9vy((r+ Dy,
r+5 3—r

3(r+9)(r+1)
~ 16(3 — r)(r + 5)
9(r + 9) 63
>1— > 1— ——.
80(r + 5) 320

+1]+1>1

This together with (31) implies

3 (r +1)°

—(r+l)=z—

5 3—r
F+ 252 ((r+ 9w, ((r+1)w 2
( ) [ ( )vo [ ( )0+1 1
r+ 21 r+5 3—r

(r + 25)° 63 \2
r+21 7 %)

v

51 63 \% 3
_—(r+25)(1——) > —(r+1).
43 320 5

We thus conclude that w, > 0 and complete the proof.
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6. PROOF OF THEOREM 1.3(iv)

Let us note that H,'zjvk is the orthogonal sum of the following three
subspaces

{u EHu= Y, Y (&, . M nlnn)sin(2mlx + 2mjy + 2nkz)},
m=0n=—o

n

{ueH2|u= Y T (b s o )sin((2m — D)k + )

m=2n=—x

+kz + 2nkz)},

{u EH?u= Y, (&,m,,¢)sin(lx +jy+kz + 2nkz)},

and each of these subspaces is invariant with respect to the operator A,.

If the spectral problem A4,u = p(Mu is reduced to the first subspace, by
taking the proof of Theorem 2.1 into account, it is readily obtained as in
ludovich [8] that only real eigenvalues possibly exist in the half complex
plane {c € CIRec > —k?}.

Note that the second subspace is the orthogonal sum of
Em—11.@m-1jx M = 2, the subspaces defined in Section 2. By Theorem
2.1 together with its proof, the spectral problem A,u = p(M)u reduced to
Em -1y, @m-1),« 1S €quivalent to the algebraic equation

Zle,O( :Bm,o"‘P) n 1
(Bm,o+4k2))\l 2, 4( .Bm,1+P) + 1
(Bm,1_4k2))\l ZBm,Z( Bm,2+P) 1
(Byo— 4N .

=i form > 2, (32)

where B, , = @m — 1)*(I? + j°) + (k + 2nk)?. 1t is readily seen that the
real part of the left-hand side of this equation is positive for any p with
Rep > —k?, since the assumption 1* + j? > k?/3 implies B,, , — 4k* >0
for all m > 2 and n > 0. This shows the absence of the complex eigen-
value p(A) in the half complex plane {c € CIRec > —k?}.

However, as far as the third subspace is concerned, we see that this
subspace is nothing more than E, ;, and thus the eigenvalue p,ijk()\)

exists. From Theorem 1.3(ii), Theorem 2.1, and the above observation on
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the first and the second subspaces it follows that

1= d|m{u S El'j'klA)‘u = pl,j,k()\)u}

= dim{u € H?; | Au = p, ; ((A)u).

The proof is complete.
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