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The kernel function and convolution-smoothing methods developed to estimate a probability 
density function and distribution are essentially a way of smoothing the empirical distribution 
function. This paper shows now one can generalize these methods to estimate signals for a 
semimartinga!e model. A convolution-smoothed estimate is used to obtain an absolutely continuous 
estimate for an absolutely continuous signal of a semimartingale model. This provides a method 
of obtaining a convolution-smoothed estimate of the cumulative hazard function in the censored 
case, an open problem proposed by Mack (Bulletin of Informatics and Cybernetics 21 (1984) 
29-35). Asymptotic properties of the convolution-smoothed estimate are discussed m some detail. 

convolution-smoothing * kernel functions * semimartingales * signals * smoothing 

LetX,,X,,..., be identically distributed independent random va 
density f and a dis ution E The corresponding empirical cumulative 
function (e.c.d.f.) is 

F,(x) = proportion of observations s x 

e event ose 
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A fundamental problem with dependent observations is estimation of certain 
ionals of a “signal” ansen (1985) focused 

recess by means of kernel functions. 

took as an analog stimates of the hazard function for a 

distribution F concentrated on [0, ~0); the hazard function is 

a(t) = 
1 -F(t) 

for t>Owith F(t)< 1. 

By introducing N(t) = nF,( t) and Y(t) = n - N( P-), the number at risk at time t, 

and setting J(t) = I[ Y(t) > 01, he treated the kernel function estimate as 

where p^( t), given by the Stieltjes integral 

is the no:rparametric estimator for the cumulative hazard function p(t) = & a(s) ds 
introduced by Nelson (1972) and generalized by Aalen (1978); and it is seen that 
(2) essentially is a way of smoothing the increments in p^( l ). 

Semimartingale methods first came into prominence in survival analysis, where 
the observations are often heavily and individually censored, and the theory for the 
i.i.d. case does not apply. By applying the multiplicative intensity model for counting 
processes and stochastic integrals, Aalen (1978) demonstrated how it is possible to 
model such situations and develop nonparametric estimators for certain cumulative 
intensities. Aalen’s model did not incorporate moie general jump processes or 
continuous path processes. Questions involving these led to the study of inference 
for a semimartingale rnod~ Ii which includes diffusion processes, counting processes, 
gamma processes, arkov processes, semi-Markav processes etc. 

2.1 we generalize to a semimartingalc model of the form 

hr.4 e 
1-3 [*‘I =a(t)Y(t)dR,+dM, 

continuous prccess 
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) convolution-smoot estimator for the cumulative distribution function in 
the i.i.d. case when F is absolutely continuous. The question whether a 
smoothed estimate for censored/dependent observations can be defin 
open. A solution is given in Section 2.6 of this paper by applying the theory of 
previous sections to the appropriate counting process. 

es 

Kernel 

generality, consider the semimartingale 

I 
I 

N(t)= a(s) Y(s) CR, + for t E [0, T] 
0 

where W, is predictable and of bounded variation; 
integrable martingale with variance process ( 

is a zero mean locally square 

a(t) and Y(t) are non-negative predictable processes; ct( t) is a deterministic 
unknown function (parameter); and the cumulative intensity P*(t) = If, J(s)a(s) dR, 
with J(s) = I[ Y(s) < 0] is assumed to be defined. Ramlau-Kansen (1983) considered 
the above model with M, a martingale and R, = t. It is of interest to note that 

(i) the diflusion process model for which the kernel estimation is studied in 
asminskii and Ibragimov (1981) is a special case of the above model with 

ess, and R, = t ; 
is a local martingale (martingale) the above model corresponds to 

Gill’s (1980) (Aalen’s (1978)) model; 
(iii) when (IY, R are deterministic Pnd is an appropriately define 
uare integrable martingale then tF2 above model correspon 
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j 

‘(tj = &S(t) -a*(t)]‘, 

2 

w= 
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W u 

which exists for exa le when 

et 

9 

(ii) 
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(W n unbiased estimate of a2( t) for a counting process model is 

In general (i) implies that the convolution-smoothed 

estimator ofj3”( t). 

estimator is not an unbiased 

E[p(t)+**(t)]= E 

I-Ience the result. 
(ii) 

(a)a’(t)= E[p(t)-p**(t)12= E (I: W(~)++M(u))*. 

Using a property of the Ito stochastic integral w.r.t. a martingale the R.H.S. equals 

w(~)[~] d(M),. 

ence the result. 

The proof of (ii)b is similar to that of (i); note that when the model describes a 
counting process with continuous compensator (M), = JI, a(s) Y(s) ds. 

Suppose we consider a sequence {N,,} of one-dimensional semimartingales each 
with the signal process of the form Jk a(u) Y,(u) dZ?,. We may for example think 
of N, as the relevant counting process when the study population consists of n 
individuals or items. Let .Zn (s) = Z[ Yn (s) > 01. 

. Let n -+ 00 and b, be such that 6, + 0 as n + 00. Further if the intensity 
L# is continuous at point t and ifj,, = EJ,, ( t) -3 1 uniformly in a neighbourhood oft, then 

At) + EQ”(t)= (4) 

s from the definitio by (i) of Proposition 2.3 
at the sequence of func -u)/b,)) is a 

e as pf + 00. i.e. itions stated, the convolution-smoothed 
r is asymptotical 

erties 

3 wi a corres 
se 
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where (1; (a(s) ,) is the sequence of signal processes. 
following two theorems are similar to those of 
are omitted. +I’he first concerns asymptotic normality of the convolution smoothe 
estimator. 

ssume that 

uniformly in a neighbourhood of t as n + 00, 
(ii) the functions cy and D are continuous at the point t. 

Then n’12[pn(t)-Pz*j converges in distribution to a normal distribution with mean 
0 and variance 

Note A(t 
The next 

r-1 

A(t-s)- ’ dQs= 
a(s) J 

-1_dQS 
4s) 

where 
0 

-s j, a Heaviside function, is the limit of ((t -s)/h,) as b,+O. 
theorem gives mean square uniform consistency for the convolution- 

smoothed estimate. 

ssume that 
(i) .I,, + 1 in probability, uniformly on [0, T] when n + 00, 

(ii) a is corztinuous on [0, T], 

(iii) nq,,( T) = n 

is bounded when n + a~, and 
(iv) W is of bounded variation. 

Then 

EII SUP l~“w-Pw121+o as n+a, b,, where O<a<b< T. 
re[a,h] 

2.6. Example 

Consider independent identically distribute death or failure ti 
with values in [O,#) and a hazar 

T, be corresponding independent i 

i=l 
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is then a counting process with intensity process ay (t) 

denotes the number of individuals alive just before time t. The estimate for the 
cumulative hazard 

&)I[ Yn(s)>Q] ds 

becomes the Aalen estimate 

+$dN,,(s)=z ’ 
n K3txjl’ 

where Dj is the indicator of death for the jth individual. The corresponding 
convolution-smoothed estimate is given by 

=j, w(y)+). 
n n i 

Now Yn(s) is binomially distributed with parameters n and [ 1 - F(s)][ 1 - G(P)] 
(Aalen, 1976, Lemma 4.2). By the Glivenko-Cantelli theorem, the assumption (i) in 
Theorem 2.5 is satisfied for t such that a(t) > 0, where U(S) = [ 1 - F(s)][ 1 - G(v)]. 

mark. The problem of the choice of window size may be attacked various ways. 
in the case of ordinary density estimation, one may derive an asymptotically 

optimal window or choose a window which minimizes some error criterion such as 
the average squared error or the integrated square error. See amlau-Hansen ( 1983)e 

It is a p!essure to scknovAedge the many he1 fu!l discussions with my supervisor 
Professor ME. The son during the preparation of this paper. greatly appreciated 
her encouragemen d constructive criticism. Thanks are d also to the editor 
and the referee fo elpful suggestions. 

[ 13 0.0. Aalen, ~onpa~a~et~ic inference for a family of co~.Zi II=, processs Ann. Statist. 6 (1978) 
701-724. 

(1980) 267-287. 
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