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The kernel function and convolution-smoothing methods developed to estimate a probability
density function and distribution are essentially a way of smoothing the empirical distribution
function. This paper shows now one can generalize these methods to estimate signals for a
semimartingale model. A convolution-smoothed estimate is used to obtain an absolutely continuous
estimate for an absolutely continuous signal of a semimartingale model. This provides a method
of obtaining a convolution-smoothed estimate of the cumulative hazard function in the censored
case, an open problem proposed by Mack (Bulletin of Informatics and Cybernetics 21 (1984)
29-35). Asymptotic properties of the convolution-smoothed estimate are discussed 1n some detail.

convolution-smoothing * kernel functions * semimartingales * signals * smoothing

1. Imtroduction

Let X,, X5, ..., X, be identically distributed independent random variables with
density f and a distribution F. The corresponding empirical cumulative distribution
function (e.c.d.f.) is

F,,(x) = proportion of observations < x

1 n
= Z I(X;<x)
ni=
where I(A) denotes the indicator of the event A. Rosenblatt (1956) suggested that
one might es:imate the density by

1 x—t
—_ = 1
fn(x)—‘ b,,w( b, )dF,,(t) (1)

where w is a function with integral 1, called ihe kernel function, and b, is a positive
parameter (the window). For a review of existing theory of density estimation by
kerne! functions, see Bean and Tsokos (1980).
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A fundamental problem with dependent observations is estimation of certain
functionals of a “‘signal” process. In a recent paper Ramlau-Hansen (1983) focused
on the intensity estimation for a counting process by means of kernel functions. He
took as an analogy the case of kernel estimates of the hazard function for a
distribution F concentrated on [0, 0); the hazard function is

S(1) :
t)=———— fort>0with F(:)<1.
«(0=TZF (¢)
By introducing N(t)=nF,(t) and Y(t)=n— N(i-), the number at risk at time ¢,
and setting J(¢) = I[ Y(¢)> 0], he treated the kernel function estimate as

1 ® t— S) A
a1 2
a(n bL o(57) b (2)
where /§ (1), given by the Stieltjes integral

|
J; m-)' J(s)dN(s),
is the nonparametric estimator for the cumulative hazard function B(¢) =L') a(s)ds
introduced by Nelson (1972) and generalized by Aalen (1978); and it is seen that
(2) essentially is a way of smoothing the increments in ﬁ( -).

Semimartingale methods first came into prominence in survival analysis, where
the observations are often heavily and individually censored, and the theory for the
i.i.d. case does not apply. By applying the multiplicative intensity model for counting
processes and stochastic integrals, Aalen (1978) demonstrated how it is possible to
model such situations and develop nonparametric estimators for certain cumulative
intensities. Aalen’s model did not incorporate mouie¢ general jump processes or
continuous path processes. Questions involving these led to the study of inference
for a semimartingale mod¢1 which includes diffusion processes, counting processes,
gamma processes, Markov processes, semi-Markov processes etc.

In Section 2.1 we generalize to a semimartingalc model of the form

dN(y=a(t)Y(t)dR,+dM,

where M, is a locally square integrable martingale, and R, is a continuous prccess
of bounded v-.riation. Some special cases are indicated, and the kernel estimate for
a(t) is int:oduced.

The cumulative process B*(¢) is [, a(s)J(s) dR, where J(¢) = I[ Y(¢)>0]. Since
B*(1) is absolutely continuous with respect to R, it is natural to look for an zbsolutely
continuous estimator for 8*(¢). In Section 2.3 a convolution smoothed estimate for
B*(t) is defined for a semimartingale model. Asymptotic properties of the convo-
lution-smocthed estimate such as asymptotic normality and mean square uniform
consistency are stated.

As a particular case we are concerned with it.e problem of estimating ihe cumula-
tive hazard B(1) = [, a(s) ds for a counting process by applying the idea of Mack’s
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(1984) convolution-smoothed estimator for the cumulative distribution function in
the i.i.d. case when F is absolutely continuous. The question whether a convolution-
smoothed estimate for censored/dependent observations can be defined remained
open. A solution is given in Section 2.6 of this paper by applying the theory of
previous sections to the appropriate counting process.

2. Smoothed estimates for semimartingales

2.1. Kernel estimates

In the interest of generality, consider the semimartingale model of the form
]
N(t)= J‘ a(s)Y{(s)dR,+M, forte[0, T]
0

where R, is predictable and of bounded variation; M, is a zero mean locally square
integrable martingale with variance process (M), given by

(M).=I’a(5) dR;;

0

a(t) and Y(t) are non-negative predictable processes; a(f) is a deterministic
unknown function (parameter); and the cumulative intensity 8*(¢) =, J(s)a(s) dR,
with J(s) = I[ Y(s) <0] is assumed to be defined. Ramlau-Hansen (1982) considered
the above model with M, a martingale and R, =t It is of interest to note that

(i) the diflusion process miodei for which the kernel estimation is studied in
Hasminskii and Ibragimov (1981) is a special case of the above model with M, = W,
the Wiener process, and R, =t;

(ii) when M is a local martingale (martingale) the above model corresponds to
Gill’s (1980) (Aalen’s (1978)) model:

(iii) when «, R are deterministic »nd M, is an appropriately defined locally ,
square integrable martingale then th: above model corresponds to the extended
gamma process model defined in Dykstra and Laud (1981), with a(t) and R,
representing the “scale” and “shape” parameters respectively.

Definition 2.1. Let w be a continuous function having compact si:pport and integral
1. and let b be a positive parameter. The corresponding kernel estimator for the
intensity a is given by the Stieltjes integral

&(r)=~H w(—gf) df(s)

where B(1) — §5(J(s) dN(s))/ Y(s), the nonparametric estimate of B*(1).
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2.2. Mean and variance of the kernel estimator

Let

; L[ I-s *
a (t)=g‘é.0 w( b )dB (s).

The mean of &, its variance, and an unbiased estimator of the variance are contained
in the following proposition.

Proposition 2.2. Assume that

(7 2(1=s\ )
E| w< - ) 720y MY <o,

Then we have
Ea(t)=Ea™(1),
o’(t)= E[a(t)— a*(1)]’,

_i [T (=8 I
"b’-EL W( b )YZ(s)‘KM)‘

and an unbiased estimate of o*(t) is given by

oo LT z(i—s\) J(s) _als)
)= b ) Y(s) a(s)Y(s)

B2 JO w dN(s).

Proof. Follows from the properties of stochastic integrals with respect to martingales.
For a counting process with continuous compensator,
(M), =j a(s)Y(s)ds and a(s)=als)Y(s).
0
For the diffusion process mode! of the form (Hasminskii and Ibragimov (1981))
dX(t)=S(t)dt+edW(i) forO0<i<T,

the Cencov ectimate §(t) = L,T w(t—s) dX(s) corresponds to a ke.nel estimate with
the Fejer kernel

w(u)=—1—

[Sin(ﬂ-ku
2k

2
o0 .
Sin(wu)} where k>00 as e >0

It is easy to see that this is a special case of & (1) above.

2.3. Convolution smoothed estimates

Here again we consider a semimartingale model of the form

H

N{(t)= M(!ij a(s)Y(s)dR,,

0
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as in Section 2.1, where B*(t) =], a(s)J(s) dR, is the cumulative process to be
estimated for t€[0, T]. Following Mack (1984) a convolution-smocthed estimate
can be motivated heuristically by defining B(¢)=]J, &(u) dR, where d&(u) is the

kernel estimate of a(u) as in Section 1, given by

T ——
f_i(z)=f lw(’ )dﬁ(s)
. b

with ﬁ () given by

SN B C))
B(t)—L Y(s)dN(s).

Hence the convolution-smoothed estimate would be

é(‘)_.['a(u)dR ——J j w( —S)J(s)

Y(s)

] ] (5 an G enveor= |

0

which exists for example when

) J(s)
EL W( b )Y( y dAM) <00,

()45 on

2.4. Properties of the convolution-smooth estimate

where

Let

T

B**(1) = J W(’—;—") J(w)a(u) dR,.

0

Then we have the following propositicn.

Proposition 2.3. Let
r t—u\ J(u)
E w- ( ) ; < 00,
j() b ] Y(u)
Then

(i) E[B(1)]=E[B**(1)],
(ii)

T —
(a)o’= E[B(1)-B**(N)' = E j wﬁ{t%,;—

0

dN(s)dR,

(o
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(b) An unbiased estimate of o’(t) for a counting process model is

a7 1) ()
Uz(t)—J:) Wz( 5 )Yz(u)dN(u).

In general (i) implies that the convolution-smoothed estimator is not an unbiased
estimator of B*(t).

Proof
(i)
s _ar1<k | ow( =22 _
E[B(1)-B (t)]—l‘:“‘[0 W( 5 )Y(u)dM(u)—o.
Hence the result.

(ii)

T - 2

(a)oz(r)=E[é(r)—ﬁ**(r)]2=E(L W(’;—“) f,((‘;)) dM(u)) .

Using a property of the Ito stochastic integral w.r.t. a martingale the R.H.S. equals

T t—u\[ J(u)
E J Wz(T)[Yz(u)] KM

Hence the result.

The proof of (ii)b is similar to that of (i); note that when the model describes a
counting process with continuous compensator (M), =L', a(s)Y(s)ds.

Suppose we consider a sequence {N,} of one-dimensional semimartingales each
with the signal process of the form [§ a(u)Y,(u) dR,. We may for example think
of N, as the relevant counting process when the study population consists of n
individuals or items. Let J,(s)=I[ Y, (s)>0].

Proposition 2.4. Let n - o0 and b, be such that b, - 0 as n - c©. Further if the intensity
a is continuous at point t and if j, = EJ,(t) -> 1 uniformly in a neighbourhood of t, then

EB,(t)~> EB*(1). (4)

Relation (4) follows from the definition of 8**(¢), and by (i) of Proposition 2.3
and by the fact that the sequence of functions {W({t—u)/b,)) is a Heaviside
sequence as n—>00. i.e. Under the conditions stated, the convolution-smoothed
estimator is asymntotically unbiased.

2.5. Asymptotic properties

Consider a sequence of semimartingales (N,) on [0, T] with a corresponding
sequence of martingales given by

M. (1) = N,(1) - {, a(s)Y,(s) dR,,

Y
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where (']',", (a(s)Y,(s)) dR;) is the sequence of signal processes. The proofs of the
following two theorems are similar o those of Ramlau-Hansen (1983), and hence
are omitted. The first concerns asymptotic normality of the convolution smoothed
estimator.

Theorem 2.5. Assume ihai

{2\ )1
(i) (nJ,(s)/

uniformly in a neighbourhood of t as n - oo,

(i1) the functions a and o are continuous at the point t.
Then n*[ B,(1) — B¥*] converges in distribution to a normal distribution with mean
0 and variance

ri l

' I O A i \Mn)s -
L A(t—35) o(5) dQ, = JO o(5) dQ, where Q= ll’l"h Y.(5) in probability.

Note 4(t—s), a Heaviside function, is the limit of W((¢z—s)/b,) as b,~>0.
The next theorem gives mean square uniform consistency for the convolution-
smoothed estimate.

Theorem 2.6. Assume that
(i) J, -1 in probability, uniformly on [0, T] when n - oo,
(ii) a is continuous on [0, T],

E [J,.(s) d<Mn>s]

(iii) nn,(T)=n j Y.(5)

0

is bounded when n - 0o, and
(iv) W is of bounded variation.

Then
E[ sup |B.()-B(1)]’1>0 as n->co, b, where 0<a<b<T.
tefa,b]
2.6. Example

Consider independent identically distributed death or failure times X;,..., X,
with values in [0, c0) and a hazard rate «, where

F(t)=1—-exp[—J.' a(s)ds} <1.

Let T,,..., T, be corresponding independent identically distributed censoring times
with distribution G. Assume that the censoring times are independent of the failure
times. The number of failures

N,()=%F I(X;<st, X;<T)
i=1
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is then a counting process with intensity process a(t) Y, (1), where
no . .
Yo(t)= ) I(Xi=1, T;=1)

denotes the number of individuals alive just before time ¢ The estimate for the
cumulative hazard

B¥(t)= I s)I[Y,(s)>0]ds

becomes the Aalen estimate

A, r' Jn(s) «n l)j

Pall)= ], _Y,,(s) ANuS)=2 Yn(_-X})’

where D, is the indicator of death for the jth individual.
convoiution-smoothed estimate is given by

3 (4 fT..,/(i—u\J(“\ N

Ba(t) = | \%. )b )¢ dN,(u)
0
” / v\ n
_ v wli=X\_D
IS

Now Y, (s) is binomially distributed with parameters n and [1— F(s)][1-G(s-)]
(Aalen, 1976, Lemma 4.2). By the Glivenko-Cantelli theorem, the assumption (i) in
Theorem 2.5 is satisfied for ¢ such that o(t) > 0, where o(s) =[1— F(s)][1-G(s-)].

Remark. The problem of the choice of window size may be attacked various ways.
As in the case of ordinary density estimation, one may derive an asymptoticaily
optimal window or choose a window which minimizes some error criterion such as
the average squared error or the integrated square error. See Ramlau-Hansen (1983).
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