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Spatiotemporal control of gene expression lies at the heart of generating several hundred distinct cell types
required for the development of higher order animals. Different cell types within complex organs are often
characterised by means of genome-wide gene expression profiling, but analogous information for early
developmental as well as adult stem and progenitor cells is largelymissing because their identity is commonly
unknown or they are present in prohibitively small numbers. Here we show that maximum parsimony
approaches previously used to reconstruct evolutionary trees from gene content of extant species can be
adapted to reconstruct cellular hierarchies both during development and steady state homeostasis of complex
mammalian tissues. Using haematopoiesis as a model, we show that developmental trees reconstructed from
expression profiles of mature cells are not only consistent with current experimentally validated trees but also
have predictive value in determining progenitor cell specific transcriptional programmes and lineage
determining transcription factors. Subsequent analysis across diverse developmental systems such as
neuronal development and endoderm organogenesis demonstrated that maximum parsimony-based
reconstruction of developmental trees represents a widely applicable approach to infer developmental
pathways as well as the transcriptional control mechanisms underlying cell fate specification.
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

The generation of specialised cell types from multipotent pro-
genitors underlies all metazoan development. Formation of the
several hundred distinct mature cell types present in complex
organisms occurs via a carefully orchestrated sequence of events
starting from the pluripotent fertilised egg via the three germ layers
and tissue-specific stem cells to even more restricted progenitors
ultimately culminating in the generation of terminally differentiated
mature cells that constitute the bulk of adult tissues. Maintenance and
repair of adult tissues are similarly ensured through the continuous
formation of mature cells from multipotent tissue-specific stem cells
via clearly defined intermediate stages and cell-fate choices. More-
over, perturbation of this carefully balanced tissue homeostasis
results in under- or over-production of relevant cell types and thus
contributes to the development of degenerative diseases or cancer. A
more thorough understanding of cellular differentiation trees is
therefore of fundamental importance not just to the field of
developmental biology but also to giving insight into the pathogenesis
of major human diseases.

Cell differentiation or lineage trees have been studied using a
range of techniques. The most comprehensive results have been
generated by direct observation of developing embryos in the
nematode Caenorhabditis elegans (Sulston et al., 1983). The generation
of similarly complete cell lineage trees for more complex organisms is
not only complicated by the vast increase in cell numbers, but also
because embryonic development in mammals occurs in utero and can
therefore not be observed directly in situ. Approaches such as
injection of lineage tracers (Lawson and Pedersen, 1992), genetic
single-cell labelling in utero (Tzouanacou et al., 2009) or analysis of
somatic mutations (Salipante et al., 2010; Wasserstrom et al., 2008)
have all been used successfully to clarify lineage relationships for
specific aspects of mouse development. Moreover, continuous
imaging of cultures stem and progenitor cells has provided important
insights into embryonic stem and haematopoietic progenitor cell
differentiation (Eilken et al., 2009; Rieger et al., 2009), but the
technology cannot at present be adapted for the in vivo study of
mammalian embryos or tissues. Our current understanding of cell
lineage/differentiation trees during mammalian development
remains incomplete. Thus, little is known for most tissues with regard
to the cellular differentiation trees operating during tissue homeo-
stasis, little is known for most tissues. Concerted cell biological and
molecular studies have generated deep insights for some homeostatic
tissues. Particularly for the haematopoietic system, where not only
the haematopoietic stem cell (HSC), but also a plethora of interme-
diate progenitors with increasingly restricted lineage potential as well
as more than 10 distinct mature cell types can all be isolated to near
purity using combinations of cell surfacemarkers (Bryder et al., 2006).
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Moreover, while some branchpoints during the specification of early
multipotent progenitors are still the topic of active scientific debate
(Adolfsson et al., 2005; Forsberg et al., 2006), powerful functional
assays for both stem and progenitor cells have allowed the
development of a broadly accepted view of the haematopoietic
differentiation hierarchy, with a level of detail far exceeding the
information available for any other adult stem cell system (Orkin and
Zon, 2008).

The different cellular phenotypes along a developmental matura-
tion pathway are commonly viewed as distinct gene expression states
(Enver et al., 2009) with transitions between states mediated through
interactions of extracellular signalling activities with the intracellular
transcriptional machinery (Davidson, 2006). Transitions between
gene expression states therefore involve the activation as well as the
repression of specific gene subsets, and these changes can theoret-
ically be monitored at the level of the whole genome using a number
of gene expression profiling strategies. However, immature stem and
progenitor populations are often inaccessible at acceptable high
purities or frequencies. As a result, gene expression profiling
information is often restricted to mature cell populations.

In evolutionary biology, the availability of completely sequenced
genomes for a wide range of extant species has spurred the
development of new computational approaches to simulate gains
and losses of individual genes in presumed ancestral species. The
resulting information has been used to reconstruct phylogenetic trees
based on the maximum parsimony (MP) principle (Martens et al.,
2008; Wapinski et al., 2007).

Here, we have explored maximum parsimony analysis of global
gene expression patterns (Kluger et al., 2004) to reconstruct
developmental trees fromwhich the expression states of intermediate
progenitors can be predicted, based on an analysis of gene expression
profiles of mature cell types. We validated our approach using gene
expression profiles from a range of mature haematopoietic cell types
which resulted in the prediction of intermediate level progenitors and
a differentiation tree consistent with experimental data. Moreover,
loss or gain of gene expression could be directly correlated with the
cellular function of individual haematopoietic cell types and, at a
global level highly-correlated with lineage-specific transcriptional
control mechanisms inferred from genome-wide transcription factor
binding site analysis. Subsequent reconstruction of developmental
trees for neuronal development and endoderm organogenesis
demonstrated that maximum parsimony-based analysis of gene
expression profiles represents a widely applicable approach to infer
lineage trees and transcriptional control mechanisms for a wide range
of developmental pathways.

Materials and methods

Gene expression data collection and discretization

Gene expression profiles for haematopoietic cell types (Chambers
et al., 2007), neural development (Cahoy et al., 2008) and endoderm
organogenesis (Sherwood et al., 2009) were discretized using two
discretization methods—Constant cut-off and %X Max. For the
constant cut-off method, the gene expression value in a given
condition is set to 1 if its level of expression is greater than a constant
value. We used 5 cut-offs—50, 100, 150, 200 and 250. For the X% Max
method, a gene expression value in a given condition is set to 1 if its
level of expression is in X% of the highest value (X=30, 40, 50, 60, 70).
Though each cut-off resulted in a different number of genes expressed
in each cell type, the resultant tree structure was largely unaffected by
the discretization method and the cut-off used (see Supplementary
data, Section 2 for haematopoietic differentiation trees derived using
two different discretization methods at various cut-offs). We used the
tree reconstructed using a constant cut-off of 100 (mean of expression
values across all conditions) for biological interpretation. The number
of parsimony informative sites was 5320, 5122, and 1460 for the three
datasets. The input files for tree reconstruction are provided in the
Supplementary materials.

Inference of expression states and state changes

Expression states and state changes were mapped onto the
branches of inferred cell differentiation trees using the PARS program
from the PHYLIP package (Felsenstein, 1996). Haematopoietic stem
cells were defined as the root of the tree for the haematopoiesis
datasets while forebrain was selected as a root for the neural data and
endoderm at day 8.5 for endoderm data.

Bootstrapping

Bootstrapping was performed using the SEQBOOT program from
the PHYLIP package where 100 datasets were generated by randomly
replacing a given discretized expressionmatrix. A consensus tree with
a bootstrap confidence on each branch of the tree was reconstructed
using the CONSENSE program from the PHYLIP package (Felsenstein,
1996).

Gene ontology

Gene set enrichment for each state change was calculated using
the DAVID suite of programs (Huang et al., 2008).

Transcription factors

A list of transcription factors in mouse was obtained from DBD
(Wilson et al., 2007).

State-change validation sets

ChIP-seq data: ChIP-seq data for validating the haematopoietic
developmental tree was compiled from diverse publications (Wilson
et al., 2010; Soler et al., 2010; Ouyang et al., 2009) and gene lists were
derived from peak coordinates using themethod described in (Wilson
et al., 2010), if not provided in the original paper. ChIP-seq datasets for
validating the endoderm developmental tree were obtained from
Schmidt et al. (2010). For each transcription factor, enrichment of
overlap of the candidate target gene set with each transition state
gene set was calculated using a hypergeometric test.

Phenotypic data: Phenotypic data was obtained from the Jackson
lab mouse genome informatics (MGI) database.

Normal and leukaemic progenitor datasets: 9 gene expression
signatures (d-erythroid, differentiated, d-lymphoid, d-myeloid, r-
myeolymphoid, s-erythroid, s-mpp, s-myelolymphoid and stem)
were obtained from Ng et al. (2009). Enrichment (P value) of each
signature gene set with respect to each state transition gene set was
calculated using hypergeometric test.

Gene sets differentially expressed in acute myeloid leukaemia
(AML) from two groups—high and low based on the percentage of
leukaemia stem cells were obtained from (Somervaille et al., 2009)
and enrichment for each state transition gene set was calculated using
hypergeometric test.

Results

Reconstruction of the haematopoietic differentiation tree from maximum
parsimony (MP) analysis of gene expression profiles

Recent genome-scale phylogenetic studies have illustrated the
possibility of reconstructing evolutionary history based on gene
content of extant species together with an to predict genomic content
of ancestral species (Martens et al., 2008). Following the same
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principle, we reasoned that it might be possible to reconstruct
developmental lineage trees from the expression data of mature cell
types. Just as for the phylogenetic trees, this analysis would not only
highlight the differences between distinct mature cells but also be
able to predict expression states of ‘ancestral’ progenitor cells.
Analogous to phylogenetic tree reconstruction, we used the concept
of parsimony, which assumes that the variation in gene expression
between the different mature cell types is achieved by the minimum
number of expression changes during differentiation.

To attempt developmental tree reconstruction from haematopoie-
tic gene expression data, we first discretized the gene expression
matrix from the recently published haematopoietic fingerprints
compendium (Chambers et al., 2007) into a binary matrix (see
Materials and methods for details). In the resulting matrix, each
element aij denotes whether the gene i is active in the cell type j or
not. Although discretization reduces information content of the data,
this loss of information is at least in part compensated for by the fact
that discretization can effectively reduce background noise, an
inherent problem with the low signal to noise ratio found in many
microarray datasets (Zhang et al., 2009). The haematopoietic
fingerprints dataset contains gene expression profiles for 9 mature
cell types as well as highly purified HSCs. 6093 genes were expressed
in at least one cell type but not ubiquitously across all cell types,
resulting in a discretized expression matrix of 10 columns (the 10 cell
types) and 6093 rows (number of genes).

Using this dataset, a rooted tree was reconstructed using
maximum parsimony approach from the 9 mature cell types and
HSCs assuming that the HSCs are at the root of the tree. This approach
resulted in the reconstruction of a haematopoietic differentiation tree
(Fig. 1) that is in very good agreement with the experimentally
defined consensus (Orkin and Zon, 2008). Importantly, not only were
the major divisions into the myeloid and lymphoid arms as expected
but also the prediction of intermediate precursors within these major
partitions was in good agreement with the literature. To ensure the
robustness of these results, we used a range of different discretization
methods (see Materials andmethods for details) which demonstrated
that the resultant tree structure was independent of various
discretization methods. Moreover we employed a standard bootstrap
Fig. 1. Cell lineage differentiation tree encompassing 10 haematopoietic cell types with the t
Each branch, (numbered 1–17) represents a predicted developmental state transition. At e
(blue) as well as the bootstrap value for each branch (in brackets) is indicated. Suppleme
expressed at each node.
procedure (see Materials and methods for details) to estimate
confidence at each branch point in the predicted tree. The maximum
parsimony tree splits correctly into myeloerythroid and lymphoid
lineages with 100% bootstrap confidence. Similarly, lineage separa-
tions within the myeloerythroid branch and the separation between
B-cells and T-cells were obtained with 100% bootstrap confidence
with the separation of NK cells and divisions within the T-cell lineage
having somewhat lower levels of bootstrap confidence. Taken
together, the reconstructed MP tree is consistent with the develop-
mental history, thus suggesting that reconstruction of developmental
lineage trees from expression data of mature cell types is indeed
possible. Importantly, this is inmarked contrast to trees reconstructed
from the same expression dataset using traditional microarray
analysis tools such as hierarchical clustering based on global
distance-based measures, which failed to recapitulate the develop-
mental history of haematopoietic differentiation (Chambers et al.,
2007) Moreover, discretization of the expression data was not
responsible for this apparent failure because clustering of discretized
data using several dendrogram-based methods did not improve the
grouping of related cell lineages (see Supplementary material).

Analysis of expression state changes

Cell differentiation trees, reconstructed using our new maximum
parsimony-based approach, model the developmental state transi-
tions at each branch in terms of genes activated or repressed during a
given transition (Fig. 1). The differentiation tree reconstructed from
the haematopoietic fingerprints dataset contains 17 branch points
with 17 gene expression change events (numbered 1–17 in Fig. 1).We
therefore wanted to explore whether these modelled gene expression
state changes could inform the underlying biological mechanisms at
play. One of the most notable observations was the extensive gene
expression loss from the HSCs to the two multipotent progenitor
states (branch 1, Fig. 1). Gene ontology analysis of the genes repressed
at this first transition revealed an overrepresentation of genes
involved in cell adhesion, cell–cell junction and endothelial develop-
ment (Table 1). This is consistent with the hypothesis that cell–cell
interactions may be more important for HSCs that are located in
otal number of differentially expressed active genes in each cell type shown in brackets.
ach state transition, the number of genes predicted to be activated (red) or repressed
ntary Fig. 2 shows the same tree including the total number of genes predicted to be



Table 1
Functional categories overrepresented for gene sets from inferred developmental state
transitions during haematopoiesis along with p values.

Branch On/off Functional category P value

1 Off Cell junction 7.57E−06
Focal adhesion 3.12E−04
Cell adhesion 3.70E−04
Biological adhesion 3.86E−04
Blood vessel development 2.01E−03
Vasculature development 2.52E−03
Frizzled protein 6.75E−05

2 On Defense response 2.08E−04
Chemotaxis 9.62E−05

3 On Immunoglobulin production 7.33E−05
4 On Regulation of lymphocyte activation 1.58E−02
5 On Natural killer cell mediated cytotoxity 1.38E−08
6 On Response to molecule of bacterial origin 2.25E−06

Response to lipopolysaccharide 1.01E−04
Macrophage activation 6.48E−03
Myeloid leukocyte activation 9.23E−03
Inflammatory response 4.50E−07
Defense response 3.07E−06
Innate immune response 5.56E−05
Regulation of interleukin-6 production 2.35E−06

7 Off Cell death 3.02E−04
7 On Erythrocyte development 2.02E−02

Porphyrin metabolic process 8.92E−04
8 On Blood circulation 1.61E−05

Response to wounding 2.86E−04
8 Off Cell cycle 1.09E−23

DNA metabolic process 2.71E−20
10 On T-cell receptor complex 1.15E−06
11 On B-cell receptor signalling pathway 1.67E−05
16 On Cytokine 4.50E−05
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specific niches in contrast to the more mature blood cells which are
predominantly in the circulation and also that HSCs share aspects of
their transcriptional programmes with endothelial cells (Jaffredo
et al., 2005; Silberstein et al., 2005). The prevalence of gene repression
(567) over activation (193) at this transition was also consistent with
the widely accepted notion that stem cells express a wide spectrum of
genes various mature descendents with initial lineage specification
decisions largely mediated through repressing alternative cell-fate
gene expression programmes (the concept of “multi-lineage priming”
(Hu et al., 1997).

Gene ontology analysis of the other modelled state transitions was
also consistent with known cellular phenotypes (Table 1). For
example, erythrocyte lineage-specific genes (branch 7) are overrep-
resented for erythrocyte development and heme related processes,
NK cells (branch 5) with Natural killer cell cytotoxity, T-cells (branch
10) and B-cell (branch 11) with T-cell and B-cell receptor signalling
respectively. Moreover, 8 out of 17 expression state-change gene sets
are overrepresented (Pb0.05) for 'hematopoietic system phenotype'
as annotated by the Jackson lab mouse genome informatics (MGI)
database. Taken together therefore, functional and phenotypic
enrichment provides validation for the predicted state transitions.

Comparison of predicted expression states with normal and leukaemic
haematopoietic progenitor cells

We next explored whether our predicted expression states and
expression changes for intermediate cell types were relevant when
compared with existing expression data for both normal and
leukaemic stem/progenitor cells. A recent transcriptome analysis of
HSCs and early multi-, bi- and unipotent progenitors (Ng et al., 2009)
reported 9 gene expression signatures ranging from those character-
istic for themost immature HSCs viamultilineage progenitors to those
affiliated with differentiation into the individual haematopoietic
lineages. These experimentally obtained gene signatures provided
an ideal test case to examine the relevance of the expression states for
intermediate progenitors predicted by our parsimony-based devel-
opmental tree reconstruction. Comprehensive analysis of all gene
signatures across all branch points within our MP tree demonstrated
striking correlations between experimentally and computationally
derived gene sets. For example, the HSC-specific genes from Ng et al
(their ‘stem’ signature) showed statistically significant overlap with
genes downregulated at our computationally predicted branch 1 but
no other branchpoints. Similarly, the later erythroid signature from
Ng et al. (‘d-erythroid’ signature) showed statistically significant
upregulation at our branch 7 (mature erythroid differentiation) as
well as statistically significant downregulation in the adjacent branch
6 (corresponding to maturing myeloid lineage cells). Hence, these
results suggest that the expression states and state transitions
predicted for intermediate stages within MP-reconstructed develop-
mental lineage trees encapsulate important aspects of in vivo
expression data.

To explore whether MP-reconstructed trees could also be
exploited to interrogate gene expression profiles from malignant
cells, we next analysed gene expression profiles from mouse models
of acute myeloid leukaemia (AML) that have recently been classified
into two groups based on the percentage of leukemic stem cells
(Somervaille et al., 2009). It has long been thought that AMLs are
sustained by a population of leukaemic stem cells that are phenotyp-
ically similar to normal HSCs. However, a recent study (Somervaille
et al., 2009) showed that leukemic stem cells are actually more similar
to blood progenitors located at intermediate levels within the
haematopoietic hierarchy than to the stem cells at the top of the
hierarchy. In agreement with this notion, we observed that the
expression profiles from AML samples with a high proportion of
leukaemia stem cells were not associated with the HSC expression
state in our tree but instead showed statistically significant associa-
tion with downregulation only during the later stages of myeloid
differentiation (branches 6 and 8—Fig. 1). Therefore, analysis of both
normal and malignant haematopoietic progenitor populations under-
lined the potential biological relevance of intermediate state transi-
tions predicted by cell lineage tree reconstruction.

Interrogating transcriptional mechanisms underlying developmental
state transitions

A number of transcription factors (TFs) have been demonstrated to
function as key regulators of haematopoietic differentiation (Pimanda
and Göttgens, 2010). Given that our reconstructed trees were based
on expression profiles, we next focussed our analysis on the subsets of
up/downregulated genes at inferred state transitions that encode
transcriptional regulators. Gene ontology analysis showed that the
transcription factor subsets at 14 of the 17 branches within our MP
tree were overrepresented for 'Haematopoietic system phenotype',
demonstrating that our analysis places TFs with known haemato-
poietic function into specific differentiation branch point. Moreover,
overrepresentation of known regulators suggests that some of the TFs
with unknown function are also likely to encode important haema-
topoietic regulators. For example, 33 TFs were activated at branch 7
(development of erythrocytes; see Fig. 1), and these included the
erythroid master regulators Gata1 and Klf1 (see Supplementary
Table 1 for full lists associated with all branches).

Given that our MP developmental lineage trees are reconstructed
from gene expression data and that comparisons with experimental
datasets had validated computationally predicted state transitions, we
next explored whether MP developmental lineage trees would allow
us to make inferences on the transcriptional mechanisms predicted to
underlie haematopoietic cell state transitions. Genome-wide identi-
fication of transcription factor binding events by chromatin-immu-
noprecipitation coupled to high-throughput sequencing (ChIP-Seq)
has the potential to link gene expression patterns to the binding of
candidate upstream regulators. We therefore compared the gene sets



Table 2
Expression signatures with significant overlap (P valueb0.001) with gene sets from
inferred developmental state transitions during haematopoiesis. Detailed information
on gene overlaps is provided in supplementary materials.

Branch On / off Expression signatures

1 Off Stem
3 Off Stem
7 Off s-myelolymphoid, s-mpp, s-erythroid
7 On d-erythroid
8 Off Diff
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obtained from all 17 state transitions in our MP tree (Fig. 1) with
recently published candidate target genes obtained by ChIP-Seq
analysis of 10 transcription factors in a multipotential haematopoietic
progenitor cell line (Wilson et al., 2010) as well as the Gata1 and Klf1
transcription factors in erythroid cells (Soler et al., 2010). We also
included in this analysis a 12 factor ChIP-Seq dataset from mouse
embryonic stem (ES) cells (Ouyang et al., 2009) to explore whether
candidate ChIP-Seq targets from a non-haematopoietic cell type may
show specific associations with computationally inferred state
transitions in our haematopoietic tree.

Gene set enrichment was calculated for the gene sets up- and
downregulated for each of the 17 modelled state transitions and
compared with the ChIP-Seq candidate targets from the four studies
outlined in the previous paragraph. Table 2 summarises all statisti-
cally significant associations (Pb0.001) found between transcription
factor candidate targets and specific lineage transition events. Gata1
and Klf1 are widely recognised as the major drivers of terminal
erythroid differentiation and specific association of both factors with
genes upregulated at terminal erythroid differentiation was observed
in our MP tree. Moreover, targets of five stem cell transcription factors
(Gfi1b, Runx1, Erg, Meis1 and Fli1) were associated with genes
extinguished at this same transition. Runx1, Erg, Meis1 and Fli1 are
thought to encode transcriptional activators that are downregulated
during erythroid differentiation, consistent with the downregulation
of their candidate target genes. Gfi1b on the other hand is known to
function as a transcriptional repressor (Vassen et al., 2005) with
important functions in both HSCs and during erythroid differentiation
(Khandanpour et al., 2010; Saleque et al., 2002). Association of Gfi1b
Fig. 2. Reconstruction of Neural differentiation from gene expression data using maximum
transitions. At each state transition, the number of genes predicted to be activated (red) or re
each cell type shown in brackets. Supplementary Fig. 3 shows the same tree including the
ChIP-Seq targets in progenitor cells with genes downregulated during
later erythroid differentiation therefore suggests that a substantial
number of genes repressed by Gfi1b later on in differentiation are
already bound in progenitors. Interestingly, ChIP-Seq candidate
targets from the ES cell dataset also showed statistically significant
overlaps, with a downregulation at transitions 6 and 8 being
associated with targets for C-myc, E2f1, N-myc and Zfx. Given the
known role of these factors in cell proliferation, it is likely that these
overlaps reflect the significant loss of proliferation during the
maturation of myeloid progenitors rather than any overlap with ES
cell specific function. A notion further supported by the fact that we
did not observe any statistically significant overlaps with the classical
pluripotency factors such as Nanog or Oct4. All together, this analysis
demonstrates that gene sets derived from computationally inferred
state transitions show statistically significant overlaps with candidate
target gene lists from ChIP-Seq studies that are consistent with the
known biology of the haematopoietic system.

Maximum parsimony reconstruction of non-haematopoietic
developmental lineage trees

Having demonstrated that MP lineage tree reconstruction gen-
erates information that corresponds well with experimentally
obtained knowledge for the well-defined haematopoietic system,
we next addressed how it would perform with much less character-
ised systems. We first assessed lineage tree reconstruction using an
expression dataset for neural development. Neuroepithelial stem cells
(NSCs) are thought to be capable of differentiating into neurons,
astrocytes and oligodendrocytes. NSCs differentiate into glial-restrict-
ed precursor (GRP) cells and neuron-restricted precursor (NRP) cells.
NRP cells can give rise to multiple populations of neurons, whereas
GRP cells give rise to astrocytes and oligodendrocytes (Dietrich et al.,
2006). Based on the hierarchical clustering of the expression data set
across three cell types - neurons, oligodendrocytes and astrocytes,
Cahoy et al. (2008) inferred that mature astrocytes and oligoden-
drocytes do not share a large cohort of common “glial” genes further
questioning the concept of ‘glial cell’ class. In contrast to their
observation, the differentiation tree reconstructed from the same
gene expression data (Fig. 2) strongly supports the concept of ‘glial
parsimony. At each branch, numbers 1–13 represent predicted differentiation state
pressed (blue) are indicated. The total number of differentially expressed active genes in
total number of genes predicted to be expressed at each node.

image of Fig.�2


Table 3
List of candidate transcription factors important for a given state transition in the
haematopoietic development tree. Shown are transcription factors with a significant
overlap (P valueb0.001) between its candidate target gene set and each state specific
gene set. Detailed information on gene overlaps is provided in the Supplementary
materials.

Branch On / off Transcription factors

1 Off Suz12
3 Off Gata1
7 Off Erg, Fli1, Gfi1b, Meis1, Pu1, Runx1, Stat3
7 On Gata1, Klf1
6 Off C-myc, E2f1, N-myc, Zfx
8 Off C-myc, E2f1, Erg, N-myc, Zfx
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cell’ class. Moreover, 10 out of 13 lineage-specific sets are overrep-
resented (Pb0.05) for the ‘neurological phenotype’ fromMGI with the
highest enrichment for branch 2 with a p value of 1e−19 (Table 3).

Next we analysed a recently published expression dataset for
embryonic development of definitive endoderm-derived organs
which consists of expression profiles for immature definitive
endoderm cells from embryonic day (E) 8.5 mouse embryos as well
as E11.5 intestinal, pancreatic, liver, stomach, lung and oesophagus
endodermal cells (Sherwood et al., 2009). During early separation into
the different endodermal fates, the developing endoderm is thought
Fig. 3. a. A reconstructed developmental tree for early endoderm organogenesis using maxim
transitions. At each state transition, the number of genes predicted to be activated (red) or re
expressed active genes in each cell type shown in brackets. b. and c. Overlap of gene sets a
transcription factors (Schmidt et al., 2010). p values were calculated using a hypergeometric
represent (p=0.001). Supplementary Fig. 4 shows the same tree including the total numb
to consist of expression domains arranged in an anterior to posterior
sequence where adjacent subtypes show overlapping expression
patterns (Sherwood et al., 2009). MP based analysis of the
endodermal expression dataset resulted in a developmental tree
that was largely arranged in an anterior to posterior sequence
(Fig. 3a). We next compared the gene sets obtained from all 11
state transitions in the MP tree with candidate target genes obtained
by ChIP-Seq analysis of adult liver tissue for two important
transcriptional regulators of liver development and function (Cebpα
and Hnf4) (Schmidt et al., 2010). Remarkably, this analysis showed
much more highly significant overlaps between transcription factor
targets and liver-specific genes than those of any other endodermal
gene sets (Figs. 3b and c). In summary, these results demonstrate that
Maximum Parsimony can be employed to reconstruct biologically
informative cell differentiation trees using expression data from
diverse developmental systems.

Discussion

Substantial research efforts have been invested into defining cell
lineage trees, based on the premise that the developmental history of
a cell critically influences its function within complex tissues.
Meticulous observations of developing chicken embryos more than
a century ago established the close developmental relationship
um parsimony. At each branch, numbers 1–11 represent predicted differentiation state
pressed (blue) are indicated. ED—endoderm at E11.5. The total number of differentially
t each developmental state transition with candidate target genes of Cebpα and Hnf4
test with Bonferroni correction (see Materials and methods for details).The dotted lines
er of genes predicted to be expressed at each node.

image of Fig.�3
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between blood and endothelial cells (His, 1900), which many years
later was found to be reflected in transcriptional control mechanisms
in both blood stem cells and endothelial cells (Chan et al., 2007;
Silberstein et al., 2005). Similarly, the seminal studies by Sulston et al.
not only provided the complete cell lineage tree for the nematode
C. elegans (Sulston et al., 1983), but also mademajor contributions to
other fields such as the study of programmed cell death (Ellis and
Horvitz, 1986). Compared with the very detailed knowledge of
nematode development, progress in delineating cell lineage tress for
higher mammalian organisms has been severely hampered because
of the obstacles in cell purity and frequency, tissue complexity, and in
utero development. Consequently, only small segments of mamma-
lian cell lineage differentiation trees have been defined thus far and
the nature of most intermediate cell types remains completely
obscure. In this paper we have shown that mammalian cell lineage
trees can be approximated from gene expression profiles of mature
cells; the type of information that is readily available for many
mammalian tissues.

Due to the fragmented palaeontologic record, evolutionary
biologists have long used comparisons of the anatomy, physiology
and/or molecular sequence data of extant species to infer descent
from common ancestors. More recently, comparative analysis of
entire genomes was shown to allow reconstruction of phylogenetic
trees based on inferring gene losses and gains and then using the
principle of parsimony to reconstruct phylogenetic trees (Martens
et al., 2008; Wapinski et al., 2007). Inspired by these recent studies,
we explored whether comparative analysis of whole genome expres-
sion profiling data can be used in a similar fashion to reconstruct cell
lineage trees. Analogous to the genome-wide reconstruction of
phylogenetic tress that focuses on gene gains/losses but ignore
smaller changes such as point mutations, we elected to reduce the
complexity of gene expression datasets from continuous values to
binary present/absent tables. This approach inevitably leads to the
loss of potential information but makes the problem computationally
tractable. Importantly, we were able to show that despite this
“simplification”, inferred gene gains/losses within our reconstructed
cell lineage trees correlated well with the function of individual cell
types when analysed based on gene ontology. Moreover, inferred
expression changes displayed statistically significant correlations
with candidate target gene lists obtained from recent ChIP-Seq
studies. Within the reconstructed lineage differentiation tree for
haematopoiesis for example, genes inferred as upregulated during
erythroid development correlated with Gata1 candidate targets and
genes downregulated with Gfi1b targets, which is consistent with the
fact that both these genes are critical for erythroid differentiation but
Gata1 commonly activates genes whereas Gfi1b is a known repressor.
Other observations such as the significant overlap of Suz12 targets in
embryonic stem cells with genes predicted to be turned off when
blood stem cells differentiate provide intriguing clues that may link
transcriptional control mechanisms in embryonic and adult stem
cells.

We expect that parsimony-based analysis of expression datasets
may find useful applications in addition to the reconstruction of
developmental cell lineage trees. For example, tremendous research
efforts are currently being invested into the development of protocols
that allow the reprogramming of cellular phenotypes, mostly through
ectopic expression of transcription factors to either mediate cell type
specific differentiation from multipotent progenitors (forward
programming) or the conversion of one type of mature cell into
another (lateral programming) (Séguin et al., 2008; Zhou et al., 2008).
For example, pushing pluripotent cells towards an early endodermal
fate clearly represents an important first step in the development of
clinically useful protocols for the production of pancreatic islet cells
for type I diabetes therapy. Our analysis of expression data for
different endodermal derivatives may help in identifying those genes
that primarily specify the development of pancreatic endoderm and
may instigate the development of new protocols for regenerative
medicine applications.

Parsimony-based reconstruction of cell lineage trees from expres-
sion profiling datasets may also find future applications in cancer
research. While descending from a primary lesion in a single cell,
cancers have long been recognised as heterogeneous tissues consist-
ing of multiple clones with overlapping but distinct patterns of
secondary mutations (Nowell, 1976). Thus far, there have been no
publications reporting comprehensive genome-scale analysis of
expression differences resulting from this clonal heterogeneity.
However, large-scale sequencing studies have already begun to reveal
the spectrum of distinct mutations present within different metasta-
ses of the same primary tumour (Yachida et al., 2010).With the recent
progress in generating expression profiles for single cells (Tang et al.,
2010), it may soon be possible to generate expression data for several
hundred cells of a given tumour. Subsequent maximum parsimony
analysis could then be employed to identify expression changes that
characterise the early events in tumorigenesis and may therefore
provide relevant targets for the development of future therapies
targeting the entire tumour rather than specific subclones.

Taken together, our study suggests that parsimony-based analysis
of gene expression profiles has the ability to predict transcriptional
states and developmental transitions within complex mammalian
developmental systems. Importantly, intermediate cell types com-
monly not available for experimental analysis can be inferred and
potentially novel regulators of cell fate decisions can be uncovered.
Transcriptional regulation of cell fate choice is critical for normal
organogenesis and tissue homeostasis, hence a better understanding
of the underlying mechanisms also holds great promise for the
development of effective cell-reprogramming protocols and new
cancer therapies. An ability to predict transcriptional control
mechanisms operating within experimentally inaccessible cell types
therefore should benefit many diverse areas of biomedical research.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2011.02.013.
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