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1. INTRODUCTION 

In his dissertation [2], the first author has studied the following 
problem. Let f be a conformal (or an analytic) mapping defined on some 
domain G in the complex plane C. G is usually assumed to be simply con- 
nected with its boundary a rectifiable Jordan curve. Let {zn : n = 1,2,...} be 
a sequence of points in G. After observations are made along the sequence 
{zn}, can one reconstruct this f? Or, at least, is the data good enough to 
determine f uniquely? To be a little more precise, let F be a space of 
analytic functions on G. Given the observations { f(.z,) + e,, n = 1,2,...} 
wherefe F and the random variables e, are always assumed to be indepen- 
dent and identically Gaussian distributed (abbreviated as i.i.d. with 
N(0, a’Z)), we denote by P,. the probability measure generated on C” by 
the observations {f(z,,) + e,; n = 1,2,...}. Is it true that Py, and Pr, are 
mutually singular to each other for any two distinct functions fi and f2 in 
F? Here we refer the readers to [4] for all the statistical terminology. 

This problem originates from biology. In the growth process of an 
organism, for example, a unicellular paramecium, its shape changes with 
time. It would not deform very drastically in a short period of time, 
however. In order to know how the paramecium changes its shape, we are 
bound to make some estimates. It would be nice if estimates on a small 
portion would tell the whole story. By the uniqueness theorem for analytic 
functions, it is therefore reasonable to assume that the deformation is a 
conformal transformation, or an analytic transformation, to say the least. 

We call the sequence (zn> F-separating, if the answer to the above uni- 
queness question is affirmative. 
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In the case that F= H(D), the space of all analytic functions in the open 
unit disk D, we need only consider the interesting situation that the infinite 
sequence {zn} approaches boundary: 

Iznl < 1 and lim Iz,I = 1. (1.1) 

It is proved in [2, 31 that Pf, and P,, are mutually singular to each other 
for any two distinct fi and f2 in H(D) if and only if 2, Ifi - 
fJz,)l* = co and we have the following 

THEOREM. Let F be a subspace of H(D). Then {zn} is F-separating if and 
only if 

2 lfk)12= OJ (1.2) 

for any nonzero function f in F. 

Therefore, from now on, we simply say that {z”} is F-separating if 
C \fl~,J/~ = co for all nonzero functions f in F. When F is an algebra, this 
is equivalent to the condition 1 1 f(z,)l = co for all f # 0 in F. Using the 
language of the function theory, this means {zn} determines f in a “strong” 
sense: the differences at all points z, cannot be summable for any two dif- 
ferent functions. 

A general characterization for a separating sequence seems difficult even 
if we assume that (zn> satisfies some simple geometric conditions. One 
such reason is that the divergence condition (1.2) is not preserved under 
any kind of closure. 

It is well known from complex interpolation theory that for any 
sequence {z,} satisfying (1.1) and any sequence { wn} of complex numbers, 
there exists an analytic function f in H(D) such that f(z,) = w,, n = 1, 2,... . 
This implies no sequence with property (1.1) can be H(D)-separating. 

On the other hand, we may consider the separating problem for 
F= H(a), the space of analytic functions in a neighborhood of the closed 
unit disk. The observation points z, accumulate to some point. This can be 
viewed as observing the evolution of the organism at some particular point. 
Without loss of generality, we may assume this point is the origin. Then the 
above theorem gives a complete description of such a separating sequence 
which says {z,} is of infinite convergence exponent; namely, C lznlP = cc 
for any p > 0, because any f E F has a Taylor series expansion about the 
origin (see [3], also). 

A reasonable and interesting candidate between thee two function spaces 
for the separating problem would be F= H”, the space of bounded 
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analytic functions on the open unit disk. In Section 2, Theorem 1 gives a 
sufficient condition for an H”-separating sequence in terms of the measure 
of its nontangential accumulation points. We then give an application to 
the case of equidistant observations. It was hoped that this sufficient con- 
dition would also be necessary. In Section 3 it turns out, however, that this 
is not so. Theorem 3 gives an example of an H”-separating sequence which 
accumulates at only one point. This example, by far the simplest of its kind, 
should deserve a further and thorough examination. In Section 4, we give 
some examples of {z,} which are not H”-separating other than the 
obvious ones such as the Blaschke sequences. 

In the last section, we give some remarks and examples on other 
function spaces, such as meromorphic functions and entire functions as well 
as the Nevanlinna class and the disk algebra, for the saparating problem. 

2. A SUFFICIENT CONDITION FOR Hoe-SEPARATING 

A sequence {z,,} is a Bluschke sequence if C (1 - lz,l) < co. It is clear 
that any two different functions in H” have different values at some z, if 
{zn} is not Blaschke, and vice versa. Therefore we see immediately that a 
Blaschke sequence (in particular, an interpolating sequence for H”) cannot 
be Ha-separating. This indicates that if the points are too “few,” then (z,,} 
fails to be H”-separating. On the other hand, if there are very “many” 
points, then {z, > may well be H”-separating. The following is one way to 
“meaure” the sequence {z~}. We denote by E the set of all points on the 
unit circle which are the nontangential accumulation points of {zn}. It is 
classical (see [6]) that for anyfE H”, the nontangential limit exists almost 
everywhere and log IfI is integrable on the unit circle unlessfis identically 
zero. Therefore we get an easy sufficient condition for Ha-separating in 
terms of m(E), where m is the linear Lebesgue measure on the unit circle. 

THEOREM 1. The sequence {z”} is Hm-separating if m(E) > 0. 

One such sequence is the dominating sequence which appeared in [l] 
and [S]. For this sequence, m(E) = 27~ 

We will have further remarks on Theorem 1 in Sections 3 and 4. We 
present an application to the case of equidistant observations at this 
moment. 

It is natural to place the points {zn} equidistant on concentric circles. 
Thus one can make the observations 

fW + e; 2 k = 1, 2 ,..., n; n = 1, 2 ,..., 
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where z; = (1 - 6,) exp(2rcik/n) with 6, decreasing to 0 and e; are i.i.d., 
N(0, a*I), and hope that f can be constructed from this data. 

If C n 6, < co, {z;} is a Blaschke sequence and therefore cannot be 
Ha-separating. This means in order to determine f from these obser- 
vations, 6, cannot go to 0 too fast. We do not know whether C n 6, = co is 
enough for {z;} to be Z-P-separating. If we choose 6, suitably, however, 
we can take exp(2niG) E E for every irrational 8, and thus m(E) = 27~. 

Fix an irrational 8 E [0, 11. In the following we use the symbol c to 
denote a positive constant, depending only on 6, which may differ at each 
occurence. It is not difficult to see that exp(2rciQ) E E if and only if there is a 
constant c such that 

1-(l-b,)cos(2noIflklqn18-~/n~)~csin(2a0~~qn18-~/n~) . . . . 

holds for infinitely many n, which is equivalent to the existence of a con- 
stant c such that 

6,,>c min 10--k/n) 
O<kQfl 

Zen-1 min (I&J-kl (mod 1)) (2.1) 
OCk<n 

holds for infinitely many n. Thus the distribution of the sequence 
no (mod 1) needs to be investigated. In this aspect, the following lemma in 
[7, p. 31 is available. 

LEMMA. Given any irrational number 8, there are infinitely many rational 
numbers h/k such that 

l&h/k1 dk-*. 

With this lemma in mind, (2.1) leads to the following result. 

THEOREM 2. If there exists a constant c such that 6, > cn-*, n = 1, 2,..., 
then the sequence (zz} = (( 1 - 6,) exp(2nik/n), 1 <k < n, n = 1,2,...} is 
H”-separating. 

We also have the following interesting corollary which should surprise 
no one. 

COROLLARY. Let E > 0 be a constant. Then for almost all 8 E [0, 11, there 
exists no constant c(0) such that 

min lo--h/k1 <c(8)k-(*+&) 
O<h<k 

holds for infinitely many k. 
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ProoJ: Otherwise m(E) > 0 for the sequence z; = (1 - nec2+‘)) exp 
(27ri+), 1 d k < n, n > 1, and (z;} is Ha-separating by Theorem 1. But this 
contradicts the fact that (z;} is a Blaschke sequence. 

3. A CLASS OF ~~~~~~~~~~~~~ SEQUENCES 

From what we have discussed in the previous section, one may guess the 
set E of an H”-separating sequence must be necessarily big. It had been 
conjectured that the set E of an Ha-separating sequence is at the least 
infinite. This is, as it turns out, not true. In this section, we present an 
Ha-separating sequence which accumulate at only one point. In the proof, 
the symbol c again stands for a positive constant depending only on the 
given function f, and not necessarily the same at each occurence. 

THEOREM 3. Let z, = I- (log log n)- ‘. Then {zn} is H”-separating. 

Proof: For any nonzero f in H, we express f = FSB, where F is the 
outer part, S is the singular inner part, and B is a Blaschke product (see 
1161). We shall estimate each of the outer and inner parts. 

For a point z in D, P=(O) is the Poisson kernel for z. It is clear that 

1 - I4 1 + I4 -<Pz(@<- 
1 + I4 1 - IZI 

Since 

we have 

F(z) = exp 
[ 
& j’, 2 log 1~1 do]; 

x 

>exp -- 
[ j 

:, 3 Ilog Ifl I do] 

>expC-c/(1- lzl)]. 

Consequently C IF( 2 C (log log n))‘= co. 
Suppose 
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where p is a singular positive measure on the unit circle. Then 

IS(z)I = ev [ -J PA@) &(e) 1 1 + l-4 >exp - - [5 1 - lz( dde) I 
2expC-clU - 14)l 

and thus again C IS(z,)l B C (log log n))c = co. 
Let 

B(z)=q$~, 

m 

where {CC,,,} is the sequence of zeros of B in the open unit disk. We may 
assume that Ic1,l is increasing to 1. For a fixed z E D, express B = B, B, as a 
factorization where B, and B, have zeros {elm} with IcI,I < IzI and 
(c(,I > IzI, respectively. Then 

PI( =n lzi an 1’“,‘;;‘, m m z 

= exp 
[ -c 1% l- IGIl I4 

I4 - lamI 1 
(I+ lzl)(l - lamI) 

I4 - la,l 1 
where d stands for the distance from a point to a set. Here we have used 
the obvious inequality log(x - 1) 6 x, x > 1, and the fact C (1 - la,l) < CO. 
Similarly, 

IBAz)l = n Is/ 2 n lia_;;-,l;;l 
m m 

= exp 
[ 

-c loi? 
l- b,l I4 
I4 - Izl 1 

(1+14)(l-l~,l) 
lamI - Izl I 
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The inequality we used here is log( 1 + x) <x, x > 0. Thus 

We need only to find a lower bound for C,, [exp -c/d,,] with d,, = d( Iz,I, 
bLl >I. 

Let t, = 1 - Jc1,1 so that t, is positive and decreases to 0. Then C t, < cc 
and d, = d((log log n))‘, {t,}) f or each n. Let b,= (log log 22N)-’ = 
(N log 2 + log log 2)-l. Then { bN} is a subsequence of {(log log n)-‘} and 
C b, is a divergent series with positive terms decreasing to 0. 

We shall need the following elementary lemma. 

LEMMA. Let C b, and C t, be two series with positive terms decreasing 
to 0. Suppose C b, = 00 and C t, < 00. Then there exists an infinite collec- 
tion of intervals {(bNir+,, b,,), k= 1, 2,...} such that {tm} nuUk(b,,,k+l, 
b,vk) = 63. 

Proof of Lemma. Suppose not. Then all but finite many intervals 
(b N+ 1, bN) would contain at least one point in {t,}. Thus 
C t, 3 C b, = cc which is a contradiction. 

We now choose the infinite collection of intervals { (bNk + , , bNk)} which 
has the property stated in Lemma. There are 

22%+’ _ 22% = pp - 1) 

many points of {(log log n)-l } lying in the interval (bNk+ 1, bNk) for each 
k = 1, 2,.... Taking Zk to be the middle third of (bNi + 1, b,,), we see easily 
that Zk should contain at least 

say, many points of {(log log n) - ’ }. 
For each point of {(log log n) ~ ’ } which belongs to Zk, we have 

d,B$(b,,-b,,,,) 

2 cN,*. 

Thus expC-c/d,] >exp[-cN:l and C, l&,Jl >E:,expC-c/dJ >Ck 
22”’ exp[ -cN:] = co since the general term of the last series even diverges 
to co. 
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Finally, 

2 c [c122Nk(iog Nk)-” exp( -c3Nz)] 

= co, 

and therefore the proof of Theorem 3 is complete. 
The above proof actually works for any sequence {zn} with lz,j = 

1 - (log log n)-‘, so we have the following extension of Theorem 3. 

THEOREM 4. Let Iz,I = 1 - (log log n)-‘. Then (zn> is Hm-separating. 

With a slight modification of the proof of Theorem 3, we can construct 
an H”-separating sequence {zn} which approaches the boundary with a 
faster rate. For instance, lz,l = 1 - (log log n)-“, p > 1, or Iz,l = 
1 -(log n)-p, 0~ p<t. We do not know whether {zn} is still 
H”-separating when Jz,I = 1 - (log n)-P, f < p < 1. 

We remark that in the proof of Theorem 3, one can take {bN) to be any 
subsequence such that {bN} is in some sense “regularly” spaced and 
C b, = co, to begin with. For example, b, = (Nlog N))‘. 

4. SEQUENCES WHICH ARE NOT Hw-SEPARATING 

In this section, we present some examples which are not H”-separating, 
other than the Blaschke sequences or interpolating sequences for H”. 

EXAMPLE 1. If z, = 1 -n-l, then {z,,} is not H”-separating. We can 
takef(z)=(l-z)~. ThenC(f(z,)(=Cn-2<cc. 

EXAMPLE 2. If z, = I - (log n)- ‘, then {z,} is not H”-separating. We 
can take f to be the singular inner function exp[ -(l + z)/(l -z)]. 
Then C If(z,)l = C exp[ - (2 - (log n))‘) log n] < C exp[ -c log n] = 
C n ~’ < cc with some constant c > 1. The power - 1 cannot be replaced by 
a greater number -p, 0 < p < 1, say, in this argument, since then 
C exp[ - c(log n)“] would be divergent with any constant c. 
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EXAMPLE 3. If {z,} is a sequence approaching 1 nontangentially with 
Iz,( = 1 --n-l or Iz,J = 1 - (log n))‘, then {zn} is not H”-separating. The 
function f can be chosen the same one as in Example 1 or Example 2. 

EXAMPLE 4. In certain cases, (zn) is still not Ha-separating even when 
(zn) approaches 1 tangentially with (z,( = 1 ---n-l. For instance, we may 
choose (z,l so that (z,( = 1 --n-l and z, is on the orocycle 

cX={l-~z(~=c(~l-z~Z), a > 0. 

We can take f to be the same singular inner function in Example 2. 

It is not just how “many” of the points in (z,} matter in characterizing 
the Ha-separating sequences. This can be illustrated by the following 
example. 

EXAMPLE 5. Let f E H” with infinitely many distinct zeros {a,} in D. 
Of course (cr,} is a Blaschke sequence. We first choose E, > 0, m = 1,2,... 
such that 1 E, < co. Let N,,, be an arbitrary positive integer with each 
m = 1, 2,... . Since f is continuous at each a,, we can find an open disk D, 
about a, such that If(z)1 d 6,/N,,, for all z e D,. In D,,,, we can choose N, 
(different) points z,. Then the total collection {z,} is not H”-separating 
since C If( GE, N,(s,/N,) = C E, < co. We can have as “many” 
points as we want in {z,,} since (N,} is arbitrary. 

Taken together, Theorems 1 and 3 leave one wondering whether con- 
sidering the set E is really the right way to study H”-separating sequences. 
We do not know whether there is a characterization of H”-separating 
sequences in terms of the rate at which Jz,I --+ 1, or in terms of anything 
else. 

It is clear that nonseparating sequences for H" must bear some 
relationship to Blaschke sequences, but the exact relationship remains to be 
determined. One might try to resolve the following attempt at a charac- 
terization. Let p(z, o) = )z -o//l 1 - Ozl be the pseudohyperbolic distance 
on D [6], and if S is a subset of D then let p(z, S) =inf(p(z, o), OGS}. 
One can speculate that a sequence {zn) is not Ha-separating if and only if 
there exists a Blaschke sequence {a,) such that C p(z,, {a,,,)) < co. The 
sufficiency of this condition is easily shown. But the necessity fails. Taking 
z, = 1 - (log n) _ ‘, which is not H”-separating in Example 3, we can apply 
a similar argument in Theorem 3 to show that C P(z*, (am}) = co for all 
Blaschke sequences {a,). Thus one is led to conjecture that a sequence 
{z,> is not Ha-separating if and only if there exists a Blaschke sequence 
ia,> such that 2, [II, P(G, a,)] < co. We do not know whether this 
condition is necessary. 
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5. SOME REMARKS 

In this section we shall be investigating the separating problem for other 
spaces. 

(1) First we consider the disk algebra A of continuous functions on 
the closed unit disk which are analytic on the open disk. Given a sequence 
{znj in D, we denote by E’ the set of all accumulation points of {zn) on 
the unit circle. Then results in previous sections can be extended easily to 
the case of disk algebra. 

THEOREM 1’. If m(El) > 0, then {z,> is A-separaring. 

The sequence {z;) in Theorem 2 is always A-separating regardless of the 
rate 6, approaches 0, since m(E’) = 27~. The sequence {zn> in Theorem 3 
and Theorem 4 is obviously A-separating since A c H”. The sequence {zn> 
in the first four examples of Section 4 are again not A-separating. In Exam- 
ple 2 and Example 4 we need to take f to be the function (1 -z) exp 
[-(1 + z)/(l -z)]. Similar to Example 5 we can also construct an 
arbitrarily “many points” sequence (z,,) which is not A-separating if we 
start with a function f~ A. 

However, there does exist a sequence {z,} which is A-separating but not 
Ha-separating. For example, one can take a Blaschke sequence {zn} which 
is dense on the unit circle. 

(2) Let N be the Nevanlinna class. Then all the results in previous 
sections still hold true with H” replaced by N. We do not know whether 
there is a sequence which is H”-separating but not N-separating. 

(3) Let S be the space of analytic functions in D except possibly 
with a pole at 0. For any f E S, there exists an integer N > 0 such that 

f(z)= f UkZk. 
-N 

The following shows that the nonregular part off, namely, I”,., akzk, 
can be determined uniquely by observing f(z,) + e,, where {z,,) is any 
sequence converging to 0 and e,, as before, are i.i.d., N(0, 0~1). 

PROPOSITION. Any sequence {zn> with z, -+ 0 is S/H(D)-separating. 

ProoJ Let f(z) = C:, ukzk, with N>O, u-N#O. Then [f(z,)\ >, 
c (z,( -N for n sufficiently large and thus C If(z 2 c C (z,( -2N = co. 

(4) Let M be the space of the entire functions which are of at most 
order 1 and minimum type (i.e., log(max,,, Gr [f(z)1 = o(r) as r -+ 00). Then 
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the sequence {z,} = (0, _+ 1, + 2,...} is M-separating as a consequence of a 
theorem of Polya [8, p. 81). 
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