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0. Introduction

Suppose that Φ is a reduced irreducible root system, R is an associative commutative ring with
unity, G(Φ, R) is the corresponding adjoint Chevalley group, and E(Φ, R) is its elementary subgroup
(see Section 5).

There are a lot of results (see, e.g., [Wat80,Pet82,GMi83,HO’M89,Abe93,Che00,Bun07], and refer-
ences therein1) asserting that, under some conditions, all automorphisms of Chevalley (or similar)
groups are standard in some sense (depending on what a particular author succeeded to prove). In
this paper, we use the most universal and natural definition of standardness suggested by A.E. Za-
lesskii [Zal83]: an automorphism of an adjoint Chevalley group is called standard if it is induced by
an automorphism of the corresponding Lie algebra. More precisely, this means the following. Clearly,
E(Φ, R) and G(Φ, R) embed naturally into the automorphism group of the corresponding Lie alge-
bra L(Φ, R) over R . A slightly less obvious fact is that (under some conditions, see Section 5) both
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groups are normal in AutR L(Φ, R) and even in the larger group AutZ L(Φ, R) = AutZ R � AutR L(Φ, R)

consisting of the automorphisms of this algebra considered as a Lie ring. Thus, each automorphism
f ∈ AutZ L(Φ, R) of the Lie ring induces an automorphism f ′ : g �→ f g f −1 of the Chevalley groups
G(Φ, R) and E(Φ, R). The main results of this paper are the following theorems.

Automorphism theorem. For any reduced irreducible root system Φ of rank � 2, there exists an integer m
such that, for any associative commutative ring R without additive torsion, with unity and 1

m , all auto-
morphisms of the Chevalley group G(Φ, R) and its elementary subgroup E(Φ, R) are standard; the groups
AutZ L(Φ, R), AutZ R �AutR L(Φ, R), Aut G(Φ, R), and Aut E(Φ, R) are isomorphic; the map AutZ L(Φ, R) �
f �→ f ′ ∈ Aut G(Φ, R) is a group isomorphism; a similar map AutZ L(Φ, R) → Aut E(Φ, R) is a group iso-
morphism also.

Isomorphism theorem. For any reduced irreducible root system Φ of rank � 2, there exists an integer m
such that, for any associative commutative rings R and R ′ without additive torsion, with unity and 1

m , there
are natural one-to-one correspondences between the following three sets:

{
group isomorphisms G(Φ, R) → G

(
Φ, R ′)}, {

group isomorphisms E(Φ, R) → E
(
Φ, R ′)}, and{

Lie ring isomorphisms L(Φ, R) → L
(
Φ, R ′)},

i.e., each group isomorphism G(Φ, R) → G(Φ, R ′) maps E(Φ, R) onto E(Φ, R ′); each group isomorphism
E(Φ, R) → E(Φ, R ′) can be extended uniquely to an isomorphism G(Φ, R) → G(Φ, R ′); each ring iso-
morphism f : L(Φ, R) → L(Φ, R ′) induces a group isomorphism AutZ L(Φ, R) ⊇ G(Φ, R) → G(Φ, R ′) ⊆
AutZ L(Φ, R ′) by the formula ϕ �→ f ϕ f −1; each group isomorphism G(Φ, R) → G(Φ, R ′) is induced by such
a way by a unique ring isomorphism.

Each ring isomorphism f : L(Φ, R) → L(Φ, R ′) is semilinear, i.e., f (rx) = α(r) f (x) for some ring isomor-
phism α : R → R ′ uniquely determined by f .

In particular, these theorems allow us to describe the automorphisms of all adjoint Cheval-
ley groups of rank at least 2 over any commutative Q-algebras. Similar results were obtained by
Yu Chen [Che95,Che96] (see also [Che00]), but he assumed additionally that R is an algebra over Q
without zero divisors.

The idea of describing the automorphisms of linear groups by the passage to the Lie algebras was
first introduced and applied by V.M. Levchuk [Lev83] and E.I. Zelmanov [Zel85]. We use this general
idea, but our approach is quite different.

The above theorems reduce the problem of finding automorphisms/isomorphisms of Chevalley
groups to an (easier) analogous problem for Chevalley algebras. The automorphisms of Chevalley al-
gebra are explicitly described in Section 7. Each automorphism of L(Φ, R) is a composition of an
inner automorphism (i.e., a conjugation by an element of G(Φ, R)) and automorphisms induced by
symmetries of the corresponding Dynkin diagram.

Our proofs are completely calculation-free and use only few properties of Chevalley groups. Thus,
this approach can work in a more general setting. An elementary group scheme E is a subgroup of
SLn(Z[z1, z2, . . .]) generated by some matrices {xi(z j); i ∈ I, j = 1,2, . . .}. For an elementary group
scheme E , the symbol E(R) denotes the subgroup of SLn(R) consisting of all matrices of the form
a(r1, r2, . . .), where a ∈ E and r j ∈ R . We say that E(R) is an n-dimensional R-group. Clearly, E(R) is
generated by the matrices {xi(r); i ∈ I, r ∈ R}. For an R-group E(R) we consider the following condi-
tions:

(EX) Exponentiality: xi(z1)xi(z2) = xi(z1 + z2) for all i ∈ I .
(AL) Algebraicity: E(R[t]) is a normal subgroup of a linear algebraic group G ⊆ SLn(R[t]) defined by

some polynomial equations with integer coefficients. The group E(R[t]) is the normal closure
of its subgroup E(R).

(PCS ) Power conjugacy: two matrices xi and xs
i are conjugate in E(R) for each i ∈ I and each s ∈ S ,

where S ⊆ Z is a set of integers.
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Example. In Section 5, we show that, under the assumption of the above theorems, an adjoint ele-
mentary Chevalley group E(Φ, R) has Properties (EX), (AL), and (PCS ), where S = Z ∩ {a2; a ∈ R∗}.

1. Nullstellensatz

Recall that an ideal is called radical if the corresponding factor ring has no nonzero nilpotents. We
use the following form of Hilbert’s Nullstellensatz.

Nullstellensatz. Suppose that g, f1, . . . , fl ∈ Z[y1, . . . , ym] are some polynomials and the quasi-identity

∀r1, . . . , rl ∈ R f1(r1, . . .) = 0 & . . . & fl(r1, . . .) = 0 �⇒ g(r1, . . .) = 0

holds for R = C. Then there exists positive integer b such that the quasi-identity

∀r1, . . . , rl ∈ R f1(r1, . . .) = 0 & . . . & fl(r1, . . .) = 0 �⇒ (
g(r1, . . .)

)b = 0

holds for any associative commutative ring R with unity and without additive torsion. If the ideal of
Z[y1, . . . , ym] generated by f1, . . . , fl is radical, then we can take b = 1.

2. Unipotence

A matrix A is called unipotent if A − 1 is a nilpotent matrix. We say that an automorphism of an
R-group E(R) is unipotent if it sends all xi(r) to unipotent matrices. An automorphism ϕ is said to be
m-unipotent if (ϕ(xi(r)) − 1)m = 0 for all i ∈ I and r ∈ R .

Proposition 1. Suppose that an associative commutative ring R with unity has no additive torsion. Then, for
any integers n � 1, p � 2, and d � 1, there exist positive integers q and m such that any automorphism of an
n-dimensional R-group with Property (PC{p,qd}) is m-unipotent.

Proof. If the R-group satisfies Property (PC{p,qd}), then, for any automorphism ϕ , the matrices

ϕ(xi(r)), ϕ(xi(r))p , and ϕ(xi(r))qd
are conjugate. Thus, Proposition 1 is a corollary of the following

lemma.

Lemma 1. For any integers n � 1, p � 2, and d � 1, there exist positive integers q and m such that, if the

characteristic polynomials of matrices A, A p, Aqd ∈ SLn(R) over an associative commutative ring R with unity
and without additive torsion coincide, then (A − 1)m = 0.

Proof. First, assume that R = C. Then, these three matrices have the same set of eigenvalues and
raising to the power p acts as a permutation of these eigenvalues. Hence, for any eigenvalue λ,

λpn!−1 = 1 and, by the same reason, λqdn!−1 = 1.

Clearly, these equalities imply λ = 1 if we take, e.g., q = pn! −1 (then pn! −1 and qdn! −1 are coprime).
So, the assertion is proven for the case R = C.

The condition

det A = 1 and the characteristic polynomials of A, Ap, and Aqd
coincide (∗)

is a system of integer-coefficient polynomial equations on entries of matrix A. Each complex root
B ∈ Mn(C) of this system is unipotent (if q is chosen as above). By Nullstellensatz, this implies that,
if a matrix A over R satisfies (∗), then each entry ci j of the matrix C = (A − 1)n satisfies the equality
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cb
i j = 0 for some integer b. Hence, Cbn2 = (A − 1)bn3 = 0. This completes the proof of Lemma 1 and

Proposition 1. �
3. Curves

Take an R-group E(R). We say that the group E(R[t]) is the group of curves on the group E(R).

Clearly, for any curve g(t) ∈ E(R[t]) and any polynomial f (t) ∈ R[t], the curve REP f (g)
def= g( f (t))

also belongs to E(R[t]). We say that g( f (t)) is the reparametrisation of the curve g by means of the
polynomial f . Thus, REP f : E(R[t]) → E(R[t]) is an endomorphism of the group of curves.

Performing fairly standard calculations

(
1 + t X + t2Y + o

(
t2))−1 = 1 − (

t X + t2Y
) + (

t X + t2Y
)2 + o

(
t2) = 1 − t X + t2(X2 − Y

) + o
(
t2),

[(
1 + t X1 + t2Y1 + o

(
t2)), (1 + t X2 + t2Y2 + o

(
t2))]

= (
1 + t X1 + t2Y1 + o

(
t2))(1 + t X2 + t2Y2 + o

(
t2))

× (
1 + t X1 + t2Y1 + o

(
t2))−1(

1 + t X2 + t2Y2 + o
(
t2))−1

= 1 + t2(Y1 + Y2 − Y1 − Y2 + X2
1 + X2

2 + X1 X2 − X2
1 − X1 X2 − X2 X1 − X2

2 + X1 X2
) + o

(
t2)

= 1 + t2(X1 X2 − X2 X1) + o
(
t2),

we obtain a fairly standard formula:

[(
1 + t X1 + o(t)

)
,
(
1 + t X2 + o(t)

)] = REPt2

(
1 + t � X1, X2 � + o(t)

) + o
(
t2), (1)

where [x, y] def= xyx−1 y−1 is the group commutator and �x, y� def= xy − yx is the ring commutator.

4. Continuity and smoothness

The set of matrices T (E(R)) = {X ∈ Mn(R) | 1+ t X + t2Y ∈ E(R[t]) for some Y ∈ Mn(R[t])} is called
the tangent module of an R-group E(R). Clearly, this set is an R[E(R)]-module, i.e., it is closed with
respect to

– addition: (1 + t X + o(t))(1 + tY + o(t)) = 1 + t(X + Y ) + o(t);
– multiplication by scalars: REPrt(1 + t X + o(t)) = 1 + t Xr + o(t);
– the action of the group E(R): g(1 + t X + o(t))g−1 = (1 + tg X g−1 + o(t)) (in what follows, we put

g ◦ X
def= g X g−1).

If the tangent module is a Lie algebra, i.e., if it is closed with respect to ring commutator � A, B � =
AB − B A, we call this module the tangent algebra. We say that an n-dimensional R-group E(R) is
adjoint if T (E(R)) is a Lie algebra isomorphic as an R[E(R)]-module to Rn (with the natural action
of E(R)).

We say that an automorphism ϕ of an R-group E(R) is quasicontinuous if it can be extended
to an automorphism ϕ̃ of the group of curves such that ϕ̃ commutes with all integer-coefficient
reparametrisations: ϕ̃(REP f (g)) = REP f (ϕ̃(g)) for all g ∈ E(R[t]) and all f ∈ Z[t]. The automor-
phism ϕ is called continuous if it is quasicontinuous, the automorphism ϕ̃ is quasicontinuous, the
automorphism ˜̃ϕ is quasicontinuous, and so on (infinitely many times).

Put Ek(R)
def= E(R[t]) ∩ (1 + tk Mn(R[t])). Since ker REP0 = E1(R), we have the equality ϕ̃(E1(R)) =

E1(R) for any continuous automorphism ϕ . We say that a continuous automorphism ϕ is smooth (two
times differentiable) if ϕ̃(Ek(R)) = Ek(R) for k = 1,2,3. Note that the continuity [smoothness] of an
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automorphism implies the continuity [smoothness] of the inverse automorphism. In Section 5, we
show that any continuous automorphism of a Chevalley group is smooth (under some conditions).

Proposition 2. Any smooth automorphism ϕ of a group E(R) induces an automorphism dϕ (the differential
of ϕ) of the tangent module considered as an abelian group. In addition, we have

ϕ̃
(
1 + t X + o(t)

) = 1 + tdϕ(X) + o(t) and dϕ(g ◦ X) = ϕ(g) ◦ dϕ(X)

for all g ∈ E(R) and X ∈ T
(

E(R)
)
.

If T (E(R)) is a Lie algebra, then dϕ is an automorphism of this algebra considered as a Lie ring.

Proof. If X ∈ T (E(R)), then 1 + t X + t2Y ∈ E(R[t]) for some Y ∈ Mn(R[t]) and ϕ̃(1 + t X + t2Y ) =
1 + t Z + o(t) for some Z ∈ Mn(R) (because E1(R) is an invariant subgroup). Put dϕ(X) = Z . This is
well defined, because ϕ̃ leaves invariant the subgroup E2(R). The bijectivity of dϕ follows from the
smoothness of ϕ−1. The equalities

ϕ̃
((

1 + t X + o(t)
)(

1 + tY + o(t)
)) = ϕ̃

(
1 + t(X + Y ) + o(t)

) = 1 + tdϕ(X + Y ) + o(t)

||
ϕ̃

(
1 + t X + o(t)

)
ϕ̃

(
1 + tY + o(t)

) = (
1 + tdϕ(X) + o(t)

)(
1 + tdϕ(Y ) + o(t)

)
= 1 + t

(
dϕ(X) + dϕ(Y )

) + o(t)

show that dϕ is an endomorphism of the additive group. A similar argument

ϕ̃
(

g
(
1 + t X + o(t)

)
g−1) = ϕ̃

(
1 + tg X g−1 + o(t)

) = 1 + tdϕ
(

g X g−1) + o(t)

||
ϕ(g)ϕ̃

(
1 + t X + o(t)

)
ϕ(g)−1 = ϕ(g)

(
1 + tdϕ(X) + o(t)

)
ϕ(g)−1 = 1 + tϕ(g)dϕ(X)ϕ(g)−1 + o(t)

proves the equality dϕ(g ◦ X) = ϕ(g) ◦ dϕ(X).
The automorphism ϕ̃ commutes with integer-coefficient reparametrisations, leaves invariant E3(R),

and, hence, maps equality (1) to

[
ϕ̃

(
1 + t X1 + o(t)

)
, ϕ̃

(
1 + t X2 + o(t)

)] = REPt2 ϕ̃
(
1 + t � X1, X2 � + o(t)

) + o
(
t2).

Therefore,

[(
1 + tdϕ(X1) + o(t)

)
,
(
1 + tdϕ(X2) + o(t)

)] = REPt2

(
1 + tdϕ

(� X1, X2 �) + o(t)
) + o

(
t2).

Applying formula (1) to the left-hand side, we obtain

REPt2

(
1 + t

�
dϕ(X1),dϕ(X2)

� + o(t)
) + o

(
t2) = [(

1 + tdϕ(X1) + o(t)
)
,
(
1 + tdϕ(X2) + o(t)

)]
= REPt2

(
1 + tdϕ

(� X1, X2 �) + o(t)
) + o

(
t2).

Thus, �dϕ(X1),dϕ(X2)� = dϕ(� X1, X2 �). This proves that dϕ is an endomorphism of the tangent al-
gebra. �

If E(R) is adjoint, then it embeds naturally into the automorphism group AutZ T (E(R)) of its tan-
gent algebra considered as a Lie ring.
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Proposition 3. Any smooth automorphism of an adjoint R-group E(R) is standard, i.e., it has the form ϕ(g) =
αgα−1 , where α is an automorphism of the Lie ring T (E(R)) normalising the subgroup E(R).

Proof. This follows immediately from Proposition 2, we can take α = dϕ . �
Proposition 4. Suppose that a commutative associative ring R with unity and 1

q! has no additive torsion, an

R-group E(R) has Properties (EX) and (AL), and ϕ and ϕ−1 are mutually inverse q-unipotent automorphisms
of E(R). Then these automorphisms are continuous.

Proof. Take a matrix a(t) ∈ E(R[t]). Clearly, a(r) ∈ E(R) for any r ∈ R . Let us prove that

the matrix ϕ
(
a(k)

)
depends polynomially on the number k ∈ Z,

i.e., there exists a matrix ba(t) ∈ SLn(R[t]) such that ϕ(a(k)) = ba(k) for all k ∈ Z. (Note that the
absence of additive torsion implies the uniqueness of such matrix ba(t).)

Indeed, it is sufficient to prove this for a(t) = xi(rtl), because these matrices generate the group
E(R[t]). So,

ϕ
(
xi

(
rkl)) = (

ϕ
(
xi(r)

))kl

by Property (EX).

But (ϕ(xi(r)))m depends polynomially on m, as the matrix ϕ(xi(r)) is unipotent:

(
ϕ

(
xi(r)

))m = (1 + A)m = 1 + mA + m(m − 1)

2
A2 + · · · + m(m − 1) · · · (m − q + 1)

q! Aq.

Thus, we can extend the automorphism ϕ to the group E(R[t]) putting ϕ̃(a(t))
def= ba(t).

Let us prove that ϕ̃(a(t)) = ba(t) lies in E(R[t]). For each integer k, the matrix ba(k) belongs to
E(R) and, hence, belongs to the group G defined by integer-coefficient polynomial equations (see
Property (AL)). Therefore, the matrix ba(t) satisfies the same equations. Thus, ba(t) ∈ G and we have

E(R) = ϕ̃(E(R)) ⊆ E(R[t])

⊆ ⊆

ϕ̃(E(R[t])) ⊆ G

and

E(R[t]) = 〈〈E(R)〉〉E(R[t]) ⊆〈〈E(R)〉〉G ⊇ 〈〈E(R)〉〉ϕ̃(E(R[t])) = ϕ̃(E(R[t]))

=

(by Property (AL))

E(R[t]),

where 〈〈X〉〉H means the normal closure of a set X in a group H . Thus, ϕ̃(E(R[t])) ⊆ E(R[t]).

The automorphism ϕ−1 also can be extended to the group of curves and ϕ̃(̃ϕ−1)(a(k)) =
(̃ϕ−1)ϕ̃(a(k)) = a(k) for any k ∈ Z and any a(t) ∈ E(R[t]). Clearly, this implies the equalities

ϕ̃(̃ϕ−1)(a(t)) = (̃ϕ−1)ϕ̃(a(t)) = a(t) (because R has no additive torsion) and the bijectivity of ϕ̃ .
By the construction, the automorphism ϕ̃ commutes with all integer-coefficient reparametrisations.

So, ϕ is quasicontinuous. Clearly, ϕ̃ is also q-unipotent and, hence, quasicontinuous. Thus, an obvious
induction argument completes the proof of the continuity of ϕ . �
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5. Chevalley groups

Suppose that Φ is a reduced irreducible root system, L(Φ) is the corresponding simple complex Lie
algebra. The algebra L(Φ) has a basis h1,h2, . . . , x1, x2, . . . (the Chevalley basis) such that the structure
constants are integer and the matrices of the operators (ad xi)

k/k! are integer and nilpotent for all
k ∈ N. The Chevalley algebra is the Lie R-algebra L(Φ, R) with the same structure constants.

Suppose that N(Φ) = AutC L(Φ) is the automorphism group of the algebra L(Φ), and G(Φ) =
(AutC L(Φ))◦ is the connected component of the identity of this group. The algebraic groups G(Φ) ⊆
N(Φ) ⊆ GL(L(Φ)) ⊂ SLn(C) are defined over Z. Let R be an associative commutative ring with unity
and let N(Φ, R) and G(Φ, R) be the groups of R-rational points of N(Φ) and G(Φ), i.e., the subgroups
of SLn(R) (where n = 1 + dim L(Φ)) defined by the same integer-coefficient polynomial equations as
the groups N(Φ) and G(Φ), respectively (in the Chevalley basis). Note that N(Φ, R) = AutR L(Φ, R),
because the property of being an automorphism can be written as a system of integer-coefficient
polynomial equations (depending on the structure constants). The group G(Φ, R) is called the (adjoint)
Chevalley group. The group E(Φ, R) ⊆ G(Φ, R) generated by the matrices xi(r) = exp(ad rxi), where
r ∈ R , is called the elementary subgroup of the Chevalley group G(Φ, R).

Example. For the root system Al , we have L(Al) = sll+1(C) is the Lie algebra consisting of all trace-
less matrices, L(Al, R) = sll+1(R), G(Al, R) = PGLl+1(R), and E(Al, R) = PEl+1(R) is the subgroup of
PGLl+1(R) generated by the images of the transvections 1 + rEi j , where i �= j and r ∈ R . (Note that,
for some rings, this group PGLl+1(R) can be large than the central quotient of the general linear
group GLl+1(R).)

In the following lemma, we summarise some (probably) known properties of Chevalley groups and
algebras.

Lemma 2. Let Φ be a reduced irreducible root system of rank � 2 and let R be an associative commutative
ring without additive torsion, with unity and 1

6 . Then

(i) the group E(Φ, R) is an R-group with Properties (EX) and (PCS), where S = Z ∩ {a2; a ∈ R∗};
(ii) for each subgroup H of G(Φ, R) normalised by E(Φ, R), there exists a unique ideal J of R such that H is

contained in G(Φ, R) ∩ (1 + Mn( J )) and contains the normal closure 〈〈{xi(r); r ∈ J }〉〉E(Φ,R) of the set
{xi(r); r ∈ J };

(iii) E(Φ, R) is an automorphism invariant (i.e., characteristic) subgroup of G(Φ, R);
(iv) E(Φ, R) satisfies Property (AL);
(v) AutZ L(Φ, R) � AutZ R � AutR L(Φ, R);

(vi) in the group AutZ L(Φ, R), the subgroups G(Φ, R) and E(Φ, R) are normal and their centralisers are
trivial.

Proof. (i) Property (EX) follows immediately from the definition. Steinberg’s relation R5,
hi(s)xi(r)hi(s)−1 = xi(s2r) (see, e.g., [VPl96]), where r ∈ R , s ∈ R∗ , and hi(s) ∈ E(Φ, R) are some par-
ticular matrices, shows that Property (PCS ) holds too.

(ii) Taking into account that G(Φ, R) is centreless in the adjoint case [AHu88], we see that (ii) is a
slightly weakened form of the well-known theorem on subgroups of Chevalley groups normalised by
the elementary subgroups [Vas86] (see also [ASu76,Abe89,Gol97,CKe99,VGN06]).

(iii) This was also proven by Vaserstein in [Vas86]. Note that, in [HaV03], it was in fact proven the
endomorphism invariance of the elementary subgroup of a Chevalley group.

(iv) The normality of E(Φ, R[t]) in the linear algebraic group G(Φ, R[t]) defined by polynomial
equations with integer coefficients follows immediately from (iii). The equality 〈〈E(Φ, R)〉〉E(Φ,R[t]) =
E(Φ, R[t]) follows from (ii). Indeed, put H = 〈〈E(Φ, R)〉〉E(Φ,R[t]) . The inclusion E(Φ, R) ⊆ H ⊆
G(Φ, R[t]) ∩ (1 + Mn( J )) implies J = R[t]. Therefore, E(Φ, R[t]) = 〈〈{xi( f ); f ∈ R[t]}〉〉E(Φ,R[t]) =
〈〈{xi( f ); f ∈ J }〉〉E(Φ,R[t]) ⊆ H and H = E(Φ, R[t]).
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(v) Let U be the algebra L(Φ, R) considered as a left module over itself. Then

EndL(Φ,R) U = R, i.e., all endomorphisms are scalar multiples of the identity. (∗∗)

Indeed, this is true for R = C, because the algebra L(Φ,C) is simple. Therefore, (∗∗) holds for any R
without additive torsion, because both conditions on a matrix, being an endomorphism of U and be-
ing a scalar multiple of the identity, are integer-coefficient systems of linear equations on the entries
of the matrix.

Note that (∗∗) remains valid if we consider U as a module over Lie ring L(Φ, R), i.e., each endo-
morphism f of U must be R-linear. Indeed, for any u ∈ U , there exist yi ∈ L(Φ, R) and ui ∈ U such
that u = ∑

(ad yi)(ui), because L(Φ, R) = [L(Φ, R), L(Φ, R)]. Therefore,

ru =
∑

(ad ryi)(ui) and

f (ru) = f
(∑

(ad ryi)(ui)
)

=
∑

(ad ryi) f (ui) = r
∑

(ad yi) f (ui) = r f (u).

Now, take an automorphism ϕ of the ring L(Φ, R) and consider the algebra L(Φ, R) as an L(Φ, R)-
module Uϕ with action (y, u) �→ (adϕ(y))u. The mapping u �→ ϕ(u) is an isomorphism between
the modules U and Uϕ over the Lie ring L(Φ, R). This isomorphism induces an isomorphism

of endomorphism rings R = EndL(Φ,R) U
αϕ−−→ EndL(Φ,R) Uϕ = R . Thus, we have a homomorphism

AutZ L(Φ, R) → AutZ R , ϕ �→ αϕ , whose kernel is AutR L(Φ, R). The right inverse homomorphism
AutZ R → AutZ L(Φ, R) maps α ∈ AutZ R to the obvious automorphism of the Lie ring L(Φ, R) =
L(Φ,Z)⊗ R induced by α. So, we obtain the required decomposition of AutZ L(Φ, R) into the semidi-
rect product.

(vi) Normality. By virtue of (iii), it is sufficient to prove the normality of G(Φ, R). For R = C, this
property is well known, see, e.g., [VOn88]. Let F N (yij) = 0 and FG(yij) = 0 be systems of integer-
coefficient polynomial equations that define the groups N(Φ, R) = AutR L(Φ, R) and G(Φ, R) (these
systems do not depend on R). We assume that the ideals of Z[y11, y12, . . . , ynn] generated by the sets
of polynomials F N (yij) and FG(yij) are radical. For R = C we have the quasi-identity

FG(Y ) = 0 & F N(Z) = 0 �⇒ FG
(

Z Y Z−1) = 0. (2)

Since the ideal of Z[y11, y12, . . . , ynn, z11, z12, . . . , znn] generated by FG(Y ) and F N (Z) is radical, Null-
stellensatz implies that quasi-identity (2) holds for all rings R without additive torsion. Thus, G(Φ, R)

is a normal subgroup of N(Φ, R).
Centralisers. For R = C, the centraliser of the set {xi(1)} in AutR L(Φ, R) is trivial. Therefore, the

same is true for any ring R without additive torsion (by Nullstellensatz). Thus, the centraliser of
the set {xi(1)} in the group AutZ L(Φ, R) = (AutZ R) � AutR L(Φ, R) coincide with AutZ R . On the
other hand, each nontrivial ring automorphism α ∈ AutZ R induces a nontrivial automorphism xi(r) �→
xi(α(r)) of E(Φ, R). Therefore, the centraliser of E(Φ, R) in the group AutZ L(Φ, R) is trivial. This
completes the proof of Lemma 2.

Proposition 5. Let Φ be a reduced irreducible root system of rank � 2 and let R be an associative commu-
tative ring without additive torsion, with unity and 1

6 . Then any retraction π : E(Φ, R[t]) → E(Φ, R) (i.e.,
a homomorphism such that π2 = π ) has the form E(Φ, R[t]) � a(t) �→ a(r) ∈ E(Φ, R) for some r ∈ R. In
other words, π = REPr .

Proof. According to Lemma 2 (ii),

〈〈{
xi( f ); f ∈ J

}〉〉 ⊆ kerπ ⊆ E
(
Φ, R[t]) ∩ (

1 + Mn( J )
)

for some ideal J of R[t].
E(Φ,R[t])
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The right-hand inclusion and the equality E(Φ, R[t]) = E(Φ, R) � kerπ show that t − r ∈ J for some
r ∈ R; the left-hand inclusion and the equality E(Φ, R) ∩ kerπ = {1} show that J = (t − r)R[t]. There-
fore, kerπ = E(Φ, R[t]) ∩ (1 + Mn( J )) and π = REPr . �

Thus, we have a natural one-to-one correspondence between the ring R and the set of retractions.
Clearly, the ring structure on R can also be described in terms of retractions and integer-coefficient
reparametrisations:

REPr+r′ : E
(
Φ, R[t]) t→t+t′−−−−→ E

(
Φ, R

[
t, t′]) t→r−−−→

t′→r′ E(Φ, R),

REPrr′ : E
(
Φ, R[t]) t→tt′−−−→ E

(
Φ, R

[
t, t′]) t→r−−−→

t′→r′ E(Φ, R). (3)

Proposition 5 and these formulae imply that any continuous automorphism ϕ ∈ Aut E(Φ, R) induces
a ring automorphism ϕ̂ ∈ AutZ R by the formula ϕ REPr ϕ̃−1 = REPϕ̂(r):

E(Φ, R[t])
REPr

ϕ̃
E(Φ, R[t])

REPϕ̂(r)

E(Φ, R)
ϕ

E(Φ, R).

For each ideal J � R we have two normal subgroups of E(Φ, R), namely, E( J )max
def= E(Φ, R) ∩ (1 +

Mn( J )) and E( J )min
def= 〈〈{xi(r); r ∈ J }〉〉E(Φ,R) .

Lemma 3. Let Φ be a reduced irreducible root system of rank � 2 and let R be an associative commutative ring
without additive torsion, with unity and 1

6 . Then ϕ(E( J )min) = E(ϕ̂( J ))min and ϕ(E( J )max) = E(ϕ̂( J ))max
for any continuous automorphism ϕ of the group E(Φ, R).

Proof. Clearly, it is sufficient to define E( J )min and E( J )max in terms of retractions. The subgroup

E1(Φ, R)
def= E(Φ, R[t]) ∩ (1 + tMn(R[t])) can be defined as E1(Φ, R) = ker REP0 (hence, this subgroup

is ϕ̃-invariant). Then,

E( J )min = 〈〈{
REPr

(
a(t)

); r ∈ J , a(t) ∈ E1(Φ, R)
}〉〉

E(Φ,R)
.

The inclusion ⊇ follows from the equality E1(R) = 〈〈{xi(rtk); i ∈ I, r ∈ R, k = 1,2, . . .}〉〉E(Φ,R[t]) ,
which is valid for any R-group with Property (EX).

E( J )max = the (unique) maximal subgroups among all normal subgroups H

such that E( J )min ⊆ H and E
(

J ′)
min � H for any ideal J ′ � J .

The correctness of this definition of E( J )max follows from Lemma 2 (ii) and the equality E( J1 +
J2)min = E( J1)min · E( J2)min. �
Lemma 4. Let Φ be a reduced irreducible root system of rank � 2 and let R be an associative commutative
ring without additive torsion, with unity and 1

6 . Then any continuous automorphism ϕ of E(Φ, R) is smooth.

Proof. We have to prove that the subgroups Ek(Φ, R)
def= E(Φ, R[t])∩ (1 + tk Mn(R[t])) are ϕ̃-invariant.

This is true for k = 1, because E1(Φ, R) = ker REP0. On the other hand, E1 = E(t R[t])max. Hence, the
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ideal t R[t] � R[t] is ̂̃ϕ-invariant by Lemma 3. Then, the ideal (t R[t])k is ̂̃ϕ-invariant and the subgroup
Ek(Φ, R) = E((t R[t])k)max is ϕ̃-invariant. �
Proposition 6. The tangent module of a Chevalley group coincide with the corresponding Lie algebra:
T (E(Φ, R)) = L(Φ, R).

Proof. Suppose that X ∈ T (E(Φ, R)), i.e., 1 + t X + o(t) ∈ E(Φ, R[t]). Let us express this element via
the generators:

1 + t X + o(t) =
∏

j

xi j

(
r jt

k j
)
. (4)

Clearly, we can assume that k j ∈ {0,1}. Also, the substitution t = 0 shows that

∏
j

′
xi j (r j) = 1, where the prime means that the product is taken over all j such that k j = 0.

Therefore, the expression (4) can be rewritten in the form

1 + t X + o(t) =
∏

l

glxil (rlt)g−1
l , where gl ∈ E(Φ, R).

Hence, X = ∑
gl ◦ rlxil ∈ L(Φ, R) and T (E(Φ, R)) ⊆ L(Φ, R).

Let us prove the opposite inclusion. Clearly, T (E(Φ, R)) contains the nilpotent part {xi} of the
Chevalley basis: xi(t) = exp(txi) = 1 + txi + o(t). The remaining basis vectors hi lie in T (E(Φ, R)) also,
because hi = xi(1) ◦ x−i + xi − x−i (see, e.g., [Bor70]). This completes the proof. �

In particular, Proposition 6 shows that any adjoint Chevalley group is adjoint in the sense of Sec-
tion 4.

6. Proof of the main theorems

The automorphisms of E(Φ, R). By Lemma 2 (vi), we have the natural injective homomorphism
Π : AutZ L(Φ, R) → Aut E(Φ, R). By Proposition 1 and Lemma 2 (i), each automorphism of E(Φ, R) is
unipotent (for a suitably chosen m) and, hence, continuous (by Proposition 4 and Lemma 2 (i) and (iv))
and, therefore, smooth by Lemma 4. Then the map Π is surjective by Propositions 3 and 6. Thus,
Aut E(Φ, R) � AutZ L(Φ, R) � AutZ R � AutR L(Φ, R) (the latter isomorphism holds by Lemma 2 (v)).

The automorphisms of G(Φ, R) are the same as of E(Φ, R). Indeed, each automorphism of E(Φ, R)

is standard and, hence, can be extended to an automorphism of G(Φ, R) by Lemma 2 (vi). Thus, the
natural map Aut G(Φ, R) → Aut E(Φ, R) is surjective (and well defined by Lemma 2 (iii)). This map is
also injective, because of Lemma 2 (vi) and the following general fact.

Lemma 5. If A is an automorphism invariant subgroup of a group B and the centraliser of A in B is trivial,
then the natural map ρ : Aut B → Aut A is injective.

Proof. For any ϕ ∈ kerρ , a ∈ A, and b ∈ B , we have bab−1 = ϕ(bab−1) = ϕ(b)ϕ(a)ϕ(b−1) =
ϕ(b)aϕ(b−1). Therefore, b−1ϕ(b) centralises A. Hence, b = ϕ(b) for any b ∈ B . This completes the
proof of the automorphism theorem. �

The isomorphism theorem is an easy corollary of the automorphism theorem. Each isomorphism
of Chevalley groups σ : G(Φ, R) → G(Φ, R ′) induces an automorphism ϕσ of the group G(Φ, R × R ′),
because this group is isomorphic to G(Φ, R) × G(Φ, R ′) and we can put ϕσ (g, g′) = (σ−1(g′),σ (g)).
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The standardness of ϕσ implies that σ is induced by an isomorphism of the corresponding Lie rings.
A similar argument applies to elementary subgroups.

7. Automorphisms of Chevalley algebras

Recall that an inner automorphism of a Chevalley algebra L(Φ, R) is a conjugation x �→ gxg−1 by
an element g of the corresponding Chevalley group G(Φ, R). Clearly, the inner automorphisms form
a group isomorphic to G(Φ, R).

Let 
 = {δ1, . . . , δd} be the symmetry group of the Dynkin diagram of Φ (the number d can be 1,
2, or 6, depending on Φ) and let R = R1 ⊕ · · ·⊕ Rd be a (possibly trivial) decomposition of the ring R
into a direct sum of ideals. Suppose that f i ∈ AutRi L(Φ, Ri) is the automorphism induced by the
symmetry δi (see [VOn88]). The automorphism f of the algebra L(Φ, R) = L(Φ, R1) ⊕ · · · ⊕ L(Φ, Rd)

that sends x1 + · · · + xd to f1(x1) + · · · + fd(xd), where xi ∈ L(Φ, Ri), is called a diagram automorphism
of the algebra L(Φ, R). Clearly, diagram automorphisms form a group isomorphic to the subgroup

D(Φ, R) =
{∑

eiδi
∣∣ ei ∈ R, e2

i = ei, eie j = 0 for i �= j,
∑

ei = 1
}

of the group of units of the group algebra R
.

Theorem 1. Let R be an associative commutative ring without additive torsion, with unity and 1
6 and let Φ be

a reduced irreducible root system. Then any automorphism f of the Lie R-algebra L(Φ, R) can be expressed
uniquely as a composition of diagram and inner automorphisms, AutR L(Φ, R) � D(Φ, R) � G(Φ, R).

Proof. Let n be the dimension of the Lie algebra L(Φ). Consider the ideal J in Z[x11, x12, . . . , xnn]
defining the group AutC L(Φ). The ideal J decomposes into a product J = J1 J2 · · · Jd of prime ideals
J i corresponding to irreducible (= connected) components hi G(Φ) of the group AutC L(Φ), where

hi are integer matrices of diagram automorphisms. Take a matrix A = (apq) ∈ AutR L(Φ, R). Then
f (apq) = 0 for f ∈ J . Put Ii = { f (apq); f ∈ J i} � R . Then

(i)
∏

Ii = {0};
(ii) Ii + I j = R for i �= j (otherwise we take the factor ring by a maximal ideal M ⊇ Ii + I j and

obtain a matrix AM belonging to the intersection of two irreducible components of the group
AutR/M L(Φ, R/M), but this intersection is empty, because R/M is a field).

These conditions (i) and (ii) imply that the ring R is the direct sum R = ⊕
R/Ii [Bou61, Ch. 2 §1,

Proposition 5]. So, A = ∑
AIi and the entries of the matrix AIi ∈ Mn(R/Ii) satisfy the equations

f (apq) = 0 for f ∈ Ii . Therefore, AIi = hi gi ∈ hi G(Φ, R/Ii) and A = (
∑

eihi)(
∑

gi), where ei is the
unity of the ring R/Ii . This completes the proof. �

Another approach to describing the automorphisms of Chevalley algebras was suggested in [Pia02].
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