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Abstract. A test set for « language L is a finite subset 7 of L with the property that each pair of
morphisms that agrees on T also agrees on L. Some resclts concerning test sets for languagces
with fair distribution of leuters are presented. The first result is that every DOL language with fair
distribution of letters has a test set. The second result shows that every language L with fair
distribution has a test set relative to morphisms g, # which have bounded balance on L. These
results are generalizations of results of Culik Il and Karhumiiki (1983).

1. Introductic,n

In recent years a lot of research has been done to study the problems of morphism
equivalence and existence of a test set for families of languages. A survey of the
results in this area may be found in [3, 12].

Given a language L, a finite set T, T < L, is called a test set for L if for each two
morphisms g, h we have g(x)= h(x) for each x in T if and only if g(xi= h(x) for
each x in L. The notion of a test set is closely related to the problem of morphism
equivalence. If, for a family of languages ¥, each Lc ¥ has eflectively a test set
(i.e., L has a test set and there exists an algorithm to find it), then the problem of
morphism equivalence is dedicable for ¥, i.e., given Le .7 and two morphisms g,
h it is decidable whether g(x) = h(x) for each x in L.

Ehrenfeucht conjectured [13, Problem 108] that for every languzge L there exists
a test set. It is known that a test set cannot effectively exist for each context sensitive
language, since the problem of morphism equivalence on these languages is undeci-
dable [8). However, the existence and effective existence of test sets have been shown
for various families of languages. In [9] it has been shown that every language over
a binary alphabet has (not effectively) a test set. A simpler proof to this result is
given in [10], where the cffective existence of a test set in the binary case is also
shown for some families of languages. It is clear from arguments in [8] that a test
set can be effectively constructed for each rcgular language, and this has been
extended to context-free languages in [1]. Turning to L-systems, the zaistence of a
test set is open for all families of languages between DOLs and indexed languages.
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Recently, two families of languages which have ‘fair distribution of letters’ have
been shown to have a test set: the family of languages with ‘bounded deviation’
and ‘fair distribution of letters’, and the family of languages which are generated
by ‘positive DOL systems [6]. For more results on the Ehrenfeucht Conjecture the
reader is referred to the survey paper of Karhumaiki [12].

In this paper we continue studying families of languages with ‘fair distribution
of letters’, and generalize the two above mentioned results of Culik I and Karhumiki
[6].

In Section 2 some definitions and notations are given. The concept of fair
distribution of letters is introduced in Section 3. A language L has fair distribution
(of letters) if there exists a ¢> 0 such that in every substring ¢ of L whose length
is larger than ¢ all the letters of X occur. Introducing this notion, the ‘connection’
between fair distribution and test sets is discussed. In Section 4 we present our
results. The first result is that every DOL language with fair distribution has a test
set. The second result shows that every language L with fair distribution has a test
set relative to morphisms g, h which have bounded balance on L. The proofs of
these results are discussed in Sections 5 and 6. Finally, in Section 7, some conclusions
are given.

2. Preliminaries

In this section we give some definitions and notations. Some background material
and addivonal definitions may, be found in [15, 11].

A free monoid generated by a finite alphabet X is denoted by X*. The elements
of X% are words or strings and its subsets are languages. The identity element of
2%, the empty word, is denoted by 2, and X' =X* - {0},

Throughout this paper let L be a language over X*, where X ={a,,a,, ..., a,}.

Let we ¥, The length of w is denoted by |w|, and the number of @,’s in w is
denoted by |w|,. The Parikh-mapping ¥:X*- N' is defined by ¥(w)=
(iw]ap. - [wl,). Consequently, the Pariich vector of a word w is denoted by ¥ (w),
The set of letters occurring in w is denoted by alph(w). A word w is primitive if
the equation w = z" implies that n =1 and z = w.

For we X*, pref(w) denotes the set of all prefixes of w, and p-pref(w) the set of
all pretixes of w whose length is less than the length of w. Similarly, suf(w) and
p-suf(w) are defined with respect to the suffixes of w. For Lc X* pref(L)=

{prefiw)|w < LY. We say that v is a subword of w if w = wrw, for some words w,
and w,. The set of all subwords of words in L is denoted by sub(L).

The central notion it this paper is a morphism of a free monoid. Throughout the
paper g and h denote morphisms from X* to 1* (where A may be ¥) and f denotes
4 morphism from X* to X*. For a language L, g(L)={g(x)|x < L}. The size of a
morphism g, denoted by | g|, is maxi|g(a)|lac X}. We say that g and h agree on
I.in symbols g =" b, if g(w)= h(w) for all w in L. For a word w. the balance of
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w with respect to g, h, in symbols B, ,(w), is defined by B, ,(w)=|g(w)|—|h(w)|.
Wz say that a pair (g, h) has bounded balance on L if there exists a constant k such
that |8, ,(w)|< k for all we pref(L). Otherwise, (g, h) has unbounded balance on L.
(Note that this definition relates to the language pref(L) rather than to L.) For a
language L, let B(L)={(g, h)|(g, h) have bounded balance on L} and UB(L)=
{(g, h)|(g, h) have unbounded balance on L}. Moreover, let H,(L)=1{(g, h)|
|g(x)|=|h(x)| for each x in L}.

Given a language L and a set of pairs of morphisms D, we say that L has a test
set for D if there exists a finite set T, T < L, such that for each pair (g, h)e D we
have g ="h if and only if g =' h. We say that L has a fest set if L has a test set
for the set of all pairs of morphisms (g, h). The Ehrenfeucht Conjecture states: Every
language has a test set. We say that a family of languages .# has effectively a test
set if each L in & has a test set and therc cxists an algorithm which, given L in %,
finds its test set. A finite set V, V< L, is called a length test set for L if for each
(g, h) we have (g, h)e H/(V) if and only if (g, h)e H,(L).

The notion of a DOL system is also needed. A DOL system G is a triple (X, f, x),
where X is a finite alphabet. f: 3% - 3* a morphism and x¢ 3 '. The sequence of
G, E(G), is the sequence of words x, f(x), 7 (x),.... The language L(G)=
{"(x)|n =0} is the DOL language which is generated by G. We say that E(G) is
strictly monoteric «f |f'''(x)|>|f'(x)| for each i=0. A decomposition of a DOL
system G =(&,/x) is a set of DOL systems G, 0<j<n, defined by G, =
(X, 1", F1{x)). ~ouce that IJ:'f{(,' L(G;)= L(G). For a string ve 3", the language
L., with respect to a tixed DOL svstem G =(3, f, x), is L(G,), where G, = (X, f. v).

The following remarks concerning test sets are relevant.

The notion of ‘test set for D' where D is a set of pairs of morphisms, turns out
to be useful when proving that a language L has a test set: if D, u D, equals the
set of all pairs of morphisms and L has test sets for D, and for D,, then L has a
test set.

Dealing with !ength test set, one can verify that every language L< 3* has a
length test set. (A rnaximal set of words wy, ..., w, € L, such that ¥(w,),..., ¥(w,)
are linearly independent, is a length test set.)

Throughout the paper, dealing with existence of a test set for L= £*, we assume
that X < sub(L).

3. Fair distribution of letters and test sets

In this section we present the notion of fair distribution of letters and illustrate
its connection to test sets. The results concerning these .concepts are given in the
following sections.

The notion of fair distribution of letters was presented in [6]. A language L < X*
has fair distribution (of letters) if there exists a ¢ > 0 such that, for each ve sub(L),
if {rl - e, then alph(v) = X.
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As this paper deals with test sets for languages with fair distribution, we try to
show the connection between these two concepts.

As a matter of fact, the notion of balance is the one which connects test sets and
languages with fair distribution.

The balance is useful when dealing with morphism cquivalence and test sets.
Actually, when proving most (if not all) of the results concerning these problems,
the notion of balance is crucial. In particular, some results only deal with pairs of
morphisms which have bounded balance on a given language L. For example, it
follows from [8, Theorem 2.1] that given a DOL language L and (g, h)e B(L), it is
decidable whether g =" h. Note that for an arbitrary pair of morphisms the decidabil-
ity of this problem is open.

On the other hand, the notion of fair distribution is related to bounded balance
The balance measures the difference between |g(w)| and |h(w)]| for words w. When
L has fair distribution, it turns out that the ratio between |g(w)| and |h(w)| for
w < sub(L) is bounded. This bound does not imply a bounded balance. Yet it
distinguishes languages with fair distribution from arbitrary languages, as the
property of ‘bounded rat:‘o’ does not hold for arbitrary languages. The ‘bounded
ratio’ property is shown 12 the following lemma, which appears in [6, proof of
Theorem 6.1].

Lemma 3.1 (Culik Il and Karhumiki [6]). Let Lc X* be a language with fair
distribution, and let ¢ be the constant of distribution. There cxists a k = 1 which depends
only on L such that the following is satisfied: for each (g, h)e H/(L) and every
we sub(L) where |w|z ¢ we have |g(w)|=< k|h(w)| and [h(w)|< k|g(w)].

The fair distribution is necessary in this claim. Consider, for example, the following
language L and morphisms (g, h)e H(L):

L={a"b"n=0}, gla)=d. g(b)=10, h(a)=€, h(b)=d.

One can verify that no constants ¢ and k satisfy the requirements of Lemma 3.1.
A sketch of the proof of Lemma 3.1, which sheds some light on languages with
fair distribution, is given below.

Proof of Lemma 3.1. The following claims, which are not difficult to verify, are
needed to prove this lemma.

Claim 1. Let ¢ X¥ such that alph(z) = X. There exists a k, > 1, which depends only
on z, such that the following is satisfied: for each g, h such that |g(z)| = {h(z)
have k|lgl| = [|h|| and k,|[h]| = ]|g]|.

. we

Claim 2. Let L2 X* be a language with fair distribution. There exists a 0< k,< 1,
which depends oniy on L, such that for each morphism h and for each w < sub( L) with
alphtw) = X the following is satisfied : kw|- jthll<|h(w)|.
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Turning to the proof of Lemma 3.1, letze 3" such that alph(z) =3, and let k,
and k, be the numbers which are guaranteed by Claims | and 2, respectively. Set
k as k,/ k,. To show that k satisfies the requirements of Lemma 3.1, let (g, 1) € H,(L)
and w e sub(L) where |w|=c. We have

1 ,
|8(W)I$|W|‘ "gI}SIW|-k,- Ilhlls;;'krlh(w)l-

Similarly for |h(w)|. Since k, =1 and 0 < k, < 1, it follows that k = 1, which completes
the prooi. LI

Note that there exists an L < 2* with fair distribution and morphisms g, h which
agree on L such that (g, h)e UB(L). A simple example is the following language
and morphisms: L={(ah?)"(ba®)"|n=0}, and g, h:{a, b}* - {d}* such that g(a) =
0O g(b)=d h(a)=d, h(b)= 1.

4. Main results

In this section we present two theorems which were proved by Culik II and
Karhumaki [6] Then we give our generalizations to these results. We also try to
show the contribution of our results to the siudy of test sets for languages with
fair distribution. The proofs of these results are discussed in the next two sections.

To present the results of [6] the following definition is needed A DOL system
G = (%, /, x) is positive if for each be 3, alpli(f(b))=2. A DOL language L is a
positive language if there exists a positive DOL system G such that L= L(G). It is
easy to verify that if L is a positive DOL language, then it has fair distribution.

The following definition is also needed. A language L < X* has a bounded prefix
deviation if for each (g, h) e H,(L) we have (g, h) e B(L). (Note that this definition
is equivalent to the definition which is introduced in [6]. We do not give the original
definition since it requires some additional concepts.)

The following theorems are proved by Culik Il and Karhumadki in [6].

Theorem 4.1 ([6]). Let L< X* be a language which has bounded prefix deviation and
Jair distribution. Then L has a test set.

Theorem 4.2 ([6]). Let G = (X, f,x) be a positive DOL system. Then L(G) has a test

zel.

Theorem 4.2 is a result of the following theorems of [6].

Theorem 4.2.1 ([6]). Let G =(X,f x) be a positive DOL system. Then L(G) has a
test set for B(L(G)).

Theorem 4.2.2 ([6]). Let G =(X, /. x) be a positive DOL system. Then L(G) has a
test se: for UB(L(G)).
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Theorems 4.2.1 and 4.1 have much in common, as both deal mainly with morphisms
with bounded balance on a given language. Yet these results are incomparable:
there are, of course, languages which have bounded prefix deviation and fair
distribution, and which are not DOLs; and one can find a positive DOL system G
such that L(G) does not have bounded prefix deviation (see [6, Example 5.1]).

Our first result is the following theorem.

Theorem 4.3. A language L < X* which has fair distribution has a test set for B(L).

Theorem 4.3 generalizes Theorem 4.2.1, but it does not generalize Theorem 4.1.
To obtain a theorem which generalizes both Theorems 4.1 and 4.2.1, one can add
to the test set which is guaranteed by Theorem 4.3 a length test set (see Section 2),
and get the following theorem.

Theorem 4.3. A language L < X* which has fair distribution has a test set T for B(L)
which satisfies the following: for each g, h, g ="' h implies that (g, h)e H,/(L).

One can verify that Theorem 4.3' generalizes both Theorems 4.1 and 4.2.1.

The proof of Theorem 4.3, which is a generalization of the proofs of Theorems
4.1 and 4.2.1, is discussed in Section S. The following lemma, which is useful in
this proof, is given here, as we believe that it has importance of its own.

Lemma ¢4. Let L XY There exists a finite set U, U < prett L), such that for each
(g, h)c B(L) we have

{Bon(w)|wepref(l)}= {Ben(w)|we Ul

The above lemma shows the existence of a finite sct U which “presents’ the
balances on pref(L) of all pairs of morphisms (g, h) in B(L). Such a set may be
useful when dealing with test sets for larger’ families of languages in the "bounded
balance case’.

Theorem 4.3 may be viewed as a step towards proving that a “large’ tamily 7 of
languages which have fair distribution has a test set. To show that such an Z has
a test set one has to prove that there exists a test set for UB(L) tor cach L¢ /. The
technique of dividing proofs concerning test sets and morphism equivalence into
the "bounded balance case’ and ‘unbounded balance case’ is useful. This technique
is exphlicitly used in [6,9]. In many results it is used implicitly, as the "'unbounded
balunce case’ is reduced to the “bounded balance case’ (see. for example, [4, 8]).
Note that the "unbounded balance case’™ turns out to be the more ditheult cite n
these proofs.

Our «ccond result, which deals with DOL languages, is the following theorem.
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Theorem 4.5. Let G = (2, f, x) be a DOL system such that L(G) has fair distribution.
Then L(G) has a test set.

Theorem 4.5 shows a property of languages which causes a DOL language to have
a test set, while Theorem 4.2 gives a property of DOL systems which causes the
generated languages to have a test set. One can see that Theorem 4.5 is a strict
generalizaiion of Theorem 4.2. For example, consider the DOL system G,=
({a, b}, f, a), where f(a) = aba and f(b) = b. This system is not positive. Yet, Theorem
4.5 implies that L(G,) has a test set, as L(G,) has fair distribution. (It is easy to
verify that L(G,) < (ab)*a.)

Theorem 4.5 generalizes Theorem 4.2 even when we turn to the families of
languages, because the family of positive DOL languages is strictly contained in the
family of DOL languages with fair distribution. To verify it, consider a DOL system
G = (X, f, x) such that L(G) has fair distribution, and where the following conditions
are satisfied: (i) E(G) is strictly monotonic, and (it) there exists an i,= 0 for which
LFor oo < | X f(x)]. (For example, let G = ({a, b, c}, f, a) where f(a) = bc, f(b) =
abc, and f(c)=ade) The following arguments show that if L =L(G’) where G'=
(X, 1. x")is a DOL system, then G’ is not positive. Assume, for the sake of contradic-
tion, that such a G’ is positive. Since f'(d; = 72 for each d X, and E(G) is strictly
monotonic, it follows that E1 G) = E(G’). Therefore, | f*'(x)| < |X|-|f"(x)|, which
contradicts the assumption that G' is positive.

The above arguments fail if we allow decomposition: if G may be decomposed
into a finite set of positive DOL systems, then we can use Theorem 4.2 and conclude
that L{G) has a test set. The following lemma implies that this technique is not
applicable for the DOL languages with fair distribution.

Lemma 4.6. There exists an infinite DOL language L, with fair distribution that contains
no infinite positive DOL language.

It follows from Lemma 4.6 that there are no finite 1 and positive DOL languages
Ly, L, ..., L, satisfying L.,:—U:_ , L. In particular, if L,= L(G,), G, may not be
decomposed into positive DOL systems.

The main idea in the proof of Theorem 4.5 is to generalize the concept of a
positive DOL as follows. An almost positive DOL system is one in which the cond:tion
alpiit f(h)) = X must hold only for symbols b which generat= infinite languages. It
is shown that, given an DOL system G such that L(G) has faiv distribution, G may
be decomposed inio almost positive DOL systems. Then, generalizing the proof of
Theorem 4.2 for positive DOLs [6], it is shown that an alinost positive DOL system
has a test set, which proves Theorem 4.5. The proof of Theorem 4.5 is discussed in
Scction 6, along with a proof of Lemma 4.6.

Dealing with test sets for DOL languages, the following result of Culik Il and
Karhumaki is important.
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Lemma 4.7 ([5]). If a DOL language has a test set, then it has effectively a test set.

This result implies that Theorems 4.2 and 4.5 may be strengthened to show effective
existence of a test set. Thus, introducing the proofs concerning DOLs, no effort is
made to show effective existence of a test set.

5. Proef of Theorem 4.3

In this section we discuss the proof of Theorem 4.3. The proof is deeply based
on the proofs of Theorems 4.1 and 4.2.1, which are due to Culik 1l and Kurhumiiki
[6]. These proofs are similar, and are, in (urn, a generalization of another proof
which deals with test sets in the *bounded balance case’ for languages over a binary
alphabet, which appears in [9]. We first sketch the proofs of Theorems 4.1 and 4.2.1
and then we turn to the proof of Theorem 4.3.

Analyzing the proofs of Theorems 4.1 and 4.2.1 in [6], it follows that there exist
two properties which imply existence of a test set for a given language L: “existence
of representatives’ and “overlap’. These two concepts, together with some notations,
are given below. ( Note that these definitions do not appear explicitly in [6].)

For a set of words X < X™*, and morphisms g, h, let B.k.‘,,(X):{BK‘,,(.\'H.\‘z X}
Let M be a language and D a set of pairs of morphisms. We say that M has
representatives for D if there exists a finite set U, U < M, such that foreach (g, h)e D
we have B, ,(U) = B,,(M). We say that M has overlap for D if there exists a constant
N such that for each wv ¢ pref(M) with |¢|= N, the following holds: For any pair
(g, h)e D, we have |h(v)|=|B.u(u)| and |g(v)]| = B nlte)].

Note that the property of overlap is deeply connected to fair distribution and to
cxistence of representatives. This is illustrated in the following lemma, which may
be considered as a restatement of [6, C'laim I in the proof of Theorem 5.1].

Lemma 5.1 ({6]). Let L be a language viith fair distribution and such thar pret(L) has
representatives for B(L). Then L has cverlap for B(L)~ H,(L).

The following lemma of Culik 1 and Karhumiiki [6], which deals with representa-
tives, overlap and test sets, is crucial in the proots of Theorems 4.1 and 4.2.1.

Lemma 5.2 ([6]). Let L< X* and let D be a set of pairs of morphisms. Assume thai
the following is satisfied: (1) Eacl: subset of pref(L) has representatives jor D, and
tity L has overlap for D. Then L has a test set for D.

Note that it instead of condition (1), it is known that each subset of pref( L) has
representatives for D, where 1), 2 D, then the lemma still holds (i.e.. L has a test
set for D).
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The proof of Lemma 5.2 may be found in [6]. (Note that this lemma does not
appear explicitly in [6], but it is proved when proving [6, Theorem 3.2])

The usefulness of Lemma 5.2 in proving [6, Theorems 4.1 and 4.2.1] may be
described as follows.

Dealing with a language L with bounded prefix deviation (see Theorem 4.1), it
is shown that each subset of pref(L) has representatives for H,(L). Using the fair
distribution, it is shown that such L has overlap for H,(L). Now, by Lemma 5.2, L
has a test sct for H,(L). Adding a length test set, it follows that L has a test set,
which proves Theorem 4.1.

Turning to Theorem 4.2.1, let L be a DOL language. It is shown that a ‘large
enough’ (but partial) set of subsets of pref(L) has representatives for B(L)~ H,(L).
This proof is based on a result of Culik 11 [2], which roughly shows that there exist
a vector v and matrices M,,..., M,, M such that

d(pref(L)={v- M, - M, -...- M, -M|k=0,1<i=<1}

In addition, results of Mandel and Simon [14], which deal with matrices, are used.
Now, using the fair distribution, it is shown that a positive DOL language L has
overlap for B{L, H/(L). Appealing to Lemma 5.2 again and adding a length test
set, it follows that L has a test set for B(I), which proves Theorem 4.2.1.

Note that the above-mentioned proofs concerning existence of representatives
are deeply based on properties of the families of languages in consideration.

Our result, which is crucial in proving Theorem 4.3, is the following.

Lemma 5.3. For an arbitrary language L, each subset of pref(L) has representatives
Jfor B(L).

Notice that Lemma 5.3, together with Lemmas 5.1 and 5.2, implies Theorem 4.3,
i.e., the existence of a test set for B(L) for an arbitrary language L with fair
distribution. To verify this, consider a language L and let D, = k(L) and D= B(L)n
H,(L). By the remark which appears after Lemma 5.2, it follows that L has a test
set for B(L)n H,(L). Adding a length test set we achieve a test set for B(L). Thus,
in order to prove Theorem 4.3, it suffices to prove Lemma 5.3.

Lemma 5.3 is a corollary of the following lemma.

Lemma S4. Let M < X*. Then M has representatives for {(g, h)]ﬁg‘,,(M) is a finite
set}.

To verify that Lemma 5.4 implies Lemma 5.3, let M be a subset of pref(L) and
(g, h)< B(L). Then the set B,,(M) is a finite set, which, by Lemma 5.4, implies
Lemma 5.3.
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Proof of Lemma 5.4. Assume that X ={a,,..., a,}. For a pair of morphisms g, h,
let n,, be

sy,

(lg(ap|=|hta)l,...,|g(a)|~|h(a)].

Let A={(g,, hy), (g hs),...,(g, h)} be a finite set of pairs of morphisms which
satisfies the following conditions: (i) for each i, I<i=<|, B, , (M) is a finite set,
and (ii) for each (g, h) such that B, ,(M) is a finite set, n,, is linearly dependent
ON Mg s+ Nghr

Such a set always exists.

For a word we M, let veca(w)= (B, u(X), ..., Ben(x)). By condition (i),
vec,( M) is finite, where vec (M) = {vec,(w)| we M}. Therefore, there exists a finite
set U, U < M, such that vec (M) =vec,(U).

Claim. For each (g, h) such that B, ,( M) is a finite set, we have B, ,(U) = B, ,(M).

Proof of the Claim. Let (g, h) be a pair of morphisms such that 8, ,(M) is a finite
set. The choice of A (condition (ii)) implies that there exist numbers k|, ..., k, such
that

Mo = Ko Mg om0 H K Mg
Therefore, for each ze X*,

,Bg,h(:): ‘[I(:) . ng,h = l[/(:) ' [l\l ' ngl,h, teet kl. 7’\';14,]
=ky - Bealz)+e - +k- Benlz) =k oo k) veca(o. (n

Now, et we M. The fact that vec (M) - vec,( U) implies that there exists a w'
in U such that vec,(w) = vec,(w'). Theretore, using (1), we have

Benlw)=(ky, ... k) -vecw)= (k... &) vec (w') =B ,w.

This implies that 8., (M) < B, (U), which completes the proof of the above claim

h

and the proof of Lemma S.4. 7

6. Proof of Theorem 4.5

In this section we sketch the proof of Theorem 4.5, As it is deeply based on the
proot ¢f Theorem 4.2, which is due to Culik 11 and Karhumiiki [6]. we first sketch
this proof, and then present the required generalizations. Note that the proof of
Theorem 4.2 is complicated, and we believe that its sketch contributes to better
understanding it.

Theorem 4.2 is a result of Theorems 4.2.1 and 4.2.2. The proof of Theorem 4.2.1
has been described in Section 5. Therefore, we sketch here only the proof of Theorem
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Sketch of the proof of Theorem 4.2.2

Let G =(2, f, x) be a positive DOL system and L= L(G). We have to show that
L has a test set for UB(L).

Main idea

The main idea in this proof is ‘periodicity’. One chooses a ‘large enough’ but
finite set T, T < L, such that the following is satisfied. For each (g, h)c UB(L), if
g =" h, then there exists a primitive word p such that g(L) and h(L) are contained
in (sub(p*))*, where k =|x| (ignoring a finite set of words of L).

Note that if it is known that g(L) and h(L) are contained in sub( p*) (i.e., k=1),
then the task of proving that g(w) = h(w) for each w € L (which means proving that
T is a test set for L) becomes easier: For we L, it happens that g(w) = p, p'p, and
h(w)=p}p'p where p,. p\ € p-suf( p), p,, p>c p-pref(p) and i, i'>0. One only has
to show that p, = p}, i =i’ and p, = p;. Similar information is useful when it is known
that g(L) and h(L) are contained in (sub( p*))~.

Structure of the proof and main claims

The main claims of the proof are given below. A discussion concerning the validity
of these ¢.aims 5 given later. Note that the claims in [6] are presented differently.

The first step in the proof is to choose a ‘large enough’ number M, and let
T =1x, ' (x),...,f™(x)}. The set T is chosen such that it includes a length test set
for L. It is claimed that T is a test set for UB(L). To prove this, let g, h be a fixed
pair of morphisms of UB(L) such that g ="h. The following claims show that
g ="' h, which implies that T is a test set for UB(L).

Claim 6.1. There exist words w and p, where p is primitive, and an integer i << M,,
such that the following is satisfied :
(i) for each ¢, d € X such that ¢d € sub(l_,,, «
(ii) g(w)esub(p*) and h(w)e sub(p*), and
(iii) |g(/"(a)|=]p| and |h(f'(a))|=|p| for each a€ 3.

L,), f(cd) € sub(w),

From Claim 6.1 one derives the following.

Claim 6.2. Let, for each ac X, L,=L,~{f"(a)|j<i}. Then g(L,) =sub(p*) and
h(L,)<=sub(p*) for each ac 3.

Recall that L, = L(G,), where G, =(2, /, a).

From Claim 6.2 it follows that for w=f"(x)e€ L, where r=|, g(w,)e(sub(p*))“
and h(w) e (sub( p*))*, where k =|x|. This information, the choice of T, and the
assumption that g ="' h are sufficient to imply the following.

Claim6.3. g="h.
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Relevant properties of positive DOLs

The proofs of the above claims are based on the assumption that L = L(G) where
G is a positive DOL system. Relevant properties of positive DOLs are listed below.
Some intuition concerning these properties is given later.

Property |—relatively small balances: Let G = (2, f, x) be a positive DOL system,
and r an integer. There exists an integer N such that the following is satisfied: for
every pair of morphisms (g, h)e H(L(G)), n= N and be X, we have

lg(f"(b))|= r MAX{B,4(w)|w e pref(f™(x)),0< m < n}.

Roughly, this property says that the balances are small with respect to the lengths
of words in L.

Property 2—density of pairs of letters: A positive DOL system may be decomposed
into positive DOL systems which have ‘density of pairs of letters’. A DOL system
G = (2, f, x) has density of pairs of letters, if for each ¢, d € 3 suchthatedel J,, L
it is the case that ¢d € sub(f(b)) for each be 3.

Note that, proving that L(G) has a test set where G is a positive ¥2L system,
the first step (before choosing the number M,) is to decompose G into systems with
density of pairs of letters. Then a test set is found to each one of these languages,
and the union of these test sets is a test set for L(G).

Property 3—different values of balance: Let G = (X, f, x) be a DOL system, and r
an integer. There exists an n,= 1, which depends only on G and r, such that the
following is satisfied: for each (g, h) € UB(L(G)) there exists an n, r<n<r+n,,
and a string u € pref(f"(x)), such that the balance on u is ‘new’. By ‘new’ we mean
that

(¢}

Ben(u) & {Boniw)|wepref(£7(x)), 0= m< n}.

Note that, given a DOL system G = (2, f, x), an integer number r, and (g, h) e
UB(L(G)), there exist n and u ¢ pref(f"(x)), such that B, ,,(u) is ‘new’ in the above
sense, where n depends on G, r and g, h. This is an immediate consequence of the
assumption that (g, h) € UB(L(G)). However, Property 3 gives a range for this n,
which is valid for all pairs of morphisms (g, h) ¢ UB(L(G)).

Note that Property 3 holds for any DOL system (not only for positive systems).

On the proofs of Claims 6.1, 6.2 and 6.3

Sketch of rhe proof of Claim 6.1. Requirement (i) in Claim 6.1 is, roughly, a result
of the density of pairs of letters in positive DOLs (see Property 2).

To prove Claim 6.1(ii) one shows that there exist two words »,wu, and UsWis in
T (i.e., words with a common substring w) such that w is ‘long enough’ to guarantee
Claim 6.1(i), und such that B,,(v,) = B,,(r:). Since, by our assumption, g = h,
the situation may be illustrated as in Fig. 1.
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Fig. 1.
If the relations between the lengths of the strings are as in Fig. 1, then h(w) = z,w, =

w.2,, where w, € pref(g(w)), w.e suf(g(w)) and z,, z, are two strings, as is illustrated
in Fig. 2.
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Fig. =

Denoting a preiix of g(w) by p as in Fig. 2, one can show that g(w) e sub( p™)
and h(w)e sub(p*). Moreover, |p| =|£..(v)| +|Ben(vs)|. Using some length argu-
ments onc can show that, even when the relations between the lengths of the above
strings are different, there exists a ‘long enough’ string w (which is a substring of
w) such that the relevant p satisfies g(w)esub(p*), h(w)esub(p*) and |p|<
|Beniv)] +1Bon(v:)]. These length arguments show, among other properties, that in
Fig. 2 the two occurrences of g(w) are really laid out on each other (a property
which implies the periodicity). To show that these strings are laid out on each other,
one shows that |g(w)| = |B,x(v))] +|Bex(v2)|, a length relation which is a consequence
of the relatively smal’ balances in positive DOLs (see Property 1).

Note that we may assume that g(w), h(w) € sub(p*) where p is a primitive word,
by considering p in the case that p=p' for > 0.

An important point in the above arguments is that the chosen words v,wu, and
vawu, where B, (1)) # Bou(vs) are included in T. The ability to define T such that
it includes such words for all the pairs of morphisms (g, h)e UB(L) is guaranteed
by Property 3. This property enables us, given (g, h)e UB(L), to consider a word
vywuy = f™(x), and to find a word v,wu, = f"(x) which satisfies: (i) B,.(v))#
B.n(0:), and ii) {my—m\| < n, for some n, which only depends on L and m,. This
situation enables us, given a language L, to define T such that the relevant words
vywu, and v,wu, may be found in T for all pairs of morphisms (g, h)e UB(L).

The above arguments sketch the proof of Claim 6.1(ii).

Turning to Claim 6.1(iii), the idea is to take i to be ‘large enough’. Trying to
choose i, the following problem arises. The number i is required to be less than M,,
where M, is chosen a priori and depends only on L; meanwhile, Claim 6.1(iii)
presents a condition which involves both i and a pair of morphisms g, h. One may
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overcome this problem by using, again, the property of relatively small balances of
positive DOLs (Property 1). One chooses M, ‘large’ and i less than M, but such
that |f*(a)| is *big’ for each a € X. Using the property of relatively small balances,
one can derive that |g(f'(a))| =|Bei(v1)] +|Ben(v,)|, and similarly for h. But, as was
noted before, |B,,(v1)|+|Ben(v2)|=|pl, which implies that Claim 6.1(iii) holds
true. Ll

Skeich of the proof of Claim 6.2. To prove Claim 6.2, consider y =f™"(x)e L, for
ac X. Since m=iwe have y=f'( r z,, where z,€ . Consider
a pair z,z;,, for some j, | <j<r—1.Since zz;,, € sub(,, + L,) one can apply Claim
6.1 and derive that g(f‘(z_,-z,- +1)) € sub( p*). Hence g(f'(z,2,)) € sub( P*), g(f (zaz3)) €
sub( p*}, and so on. To prove that g(f'(z,z,, . . ., z,)) € sub( p*) (i.e., g(») € sub( p*)),
it is enough to show that, for each z;, g(f'(z;)) hdS exactly one representation as a
substring of p* (i.e., if g(f'(z) )~p,pp3= p.p'ps for p,, piep-suf(p) and p.,
p>€ p-pref( p), then p, = p}, | =1' and p, = p3). One can verify that if x € sub( p*) for
a primitive word p, and |x|=|p|, then x has exactly one representation as a substring
of p*. But, by Claim 6.1, |g(f'(z,))| = | p| for each j and p is primitive, which completes

the proof. [}

Sketch of the proof of Claim 6.3. Since i << M, (see Claim 6.1), it is enough to shew
that g( f™(x))=h(f"(x)) for m =i Consider such m. By Claim 6.2 we have

gUf™(x))=g(f"(a))...g(f"Ca N =p, ppipp ps. . ppt i

where p, ¢ p-suf(p), p,cp-pref(p), i, =0 and x=a,d,...a, aq ¢ X Similarly for
(™ (x)). Our aim is to prove that g( f™(x)) = h(f™(x)). The main ldcd here is that
there is a finite number of possible combinations for the strings py, . .., Pao Pls -« Pi
for g and for i1 over all the words in L, because p,|<<|pl. Using this property,
one can choose a large enough but finite set U/ < L such that all the possible
combinations of py, ..., pu, pi.-- ., prinboth g(f™(x)) and h( ™ (x)) occur in words
17 x) which are included in U. Refinement of this idea enables choosing T such
that if g ="h, then g(f™(x))=h(f™(x)) for cach m.

The main problem in choosing a number M, where T ={x, f'(x), ..., (X))} is
that M, is chosen a prior, while the string p depends on g, h. One can overcome
this problem using Claim 6.1(111), which gives a connection between the number ¢
which is less than M, and the length of p, a conneetion which holds for every
relevant string p. LU}

Betore turning to the properties of positive DOLs, the following remark is in order.
Consider Claim 6.1(i) and notice that sub,(lJ,  L,) < sub,(L), where sub,(U) =
subl U)~ X7 and the inclusion may be strict. It Claim 6.1(i) were true for each
cd - subyt L, then we could derive that gt L) and h(L) are contained in sub( p™)
tignoring a finite set of words of L). Having Claim 6.1(i) only for ed < sub-(UJ, . L,),
implies thatonly gt L,) and h(L,) are contained in sub( p*) for each a ¢ 3. Therefore,
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one can only conclude that g(L) and h(L) are contained in (sub( p*))* where k = |x]|
(ignoring a finite set of words of L).

On the properties of positive DOLs

Property 1—relatively small balances: The intuition behind this property may be
roughly explained as follows.

Consider, firsi, a language L< X* with fair distribution. Let g, h be a pair of
morphisms, and assume that there exists a z€ X * such that 8, ,(z: =0 (i.e, |g(z)|=
|h(:)|). The fair distribution implies that there exists a ¢'>0 such that for every
vesub(L), if |v]= ¢, then Y(v) = ¢(z). 1 et we pref(L), |w|=c'l+1, where I =0 and
0= r<C¢". The choice of ¢’ implies that ¢y(w) = If(z) +¢(u) for some string u. Since
Ben(2) =0, Ben(w) =B, (u). This shows that if w is ‘long’, then there are many
letters in w on which the total balance is zero. This, of course, causes the balance
to be small.

In order to prove Property | for L(G), where G=(2X, f, x) is a positive DOL
system, one has to retine these arguments. This refinement is a consequence of the
positiveness. Cunsidering f(h) for b X all the letters of X occur in it, and, for
each letter « = sub( f(b)), all the letters of X occur in f(a), and so on. One can show
that this ‘rapid growth™ implies that, 1oi wepref(f'(x)), &(w)=d(w')+d(w"),
where B, ,(w') =0 for each (g, h) ¢ H,(L), and where [w"| is *small’. Actually, it turns
out that

Ll L 0] S .

This fact shows that, for (g, h)e H,(L), B.,(w) is 'small’ with respect to LF(x)],
which enables to prove Property 1.

Property 2—density of pairs of letters: This property is a fairly easy consequence
of the definition of a positive DOL system.

Property 3—different values of balance: This result, which relates to an arbitrary
DOL language L(G), is combinatorial in nature, and uses the fact that pref(L(G)) =
(L(G')) for a DTOL G' and a morphism 7, a result of Culik 11 {2].

On the proof of Theorem 4.5

Turning to Theorem 4.5 we have to prove that a DOL language L with fair
distribution has a test set. The existence of a test set for B(L) is a result of Theorem
4.3, (Actually, it is also u result of the proof in [6] of Theorem 4.2.1.) Therefore, it
suffices to prove that L has a test set for UB(L).

The following characterization of DOLs with fair distribution, which appears in
[6, Lemma 4.1], motivates our proof in the unbounded case.

Lemma 6.4 ([6]). Let G = (23] f, x) be a DOL system such that L(G) is irq/irlite;. Let
3, ={aeX|L,is finite} and 3, =X ~ 3. L(G) has fair distribution if and only if the

following two conditions are satisfied
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(i) there exists an integer n, such that, for every a € X, alph(f"(a)) =X for n = n,,
and «
(ii) the languages 3°f npref(L,) and X nsuf(L,) are finite for every a€ X.

Adapting the partition of 2 into 2, and %, we define the notion of ‘almost
positiveness’. A DOL system G := (X, f, x) is said to be almost positive if the following

conditions are satished:

SRPIARIILIVVEAIS K8 Qi3 he.

(i) L(G) has fair distribution,

(ii) for each ae X, alph(f(a})= 2%, and

(iii) E(G) is strictly monotonic.

A DSL language L is an almost positive language if there exists an almost positive
DOL system G such that L= L(G).

Notice that 2 positive DOL system G = (X, f, x) is an almost positive DOL system
where X, = ¢ (unless I.’.I =1 and L(G) is finite, in which case monotonicity is not
satisfied).

The following observation is crucial in the proof of Theorem 4.5.

LLemma 6.5. Let G be a DOL system such that L(G) is an infinite language with fair
distribution. Then G may be decomposed into a finite set of almost positive DOL systems
Gy, ..., G, such that \J] |, L(G,) = L - V for some finite language V.

Corollary 6.5.1. Proving Theorem 4.5 it is enough to prove that every almost positive
DOL language has a test set.

Proof of Lemma 6.5. It is easy to verify that, given a DOL system G'= (X", /", x')
which satisfies conditions (i) and (ii) of the definition of an almost positive system,
G’ may be ‘decomposed’ into almost positive DOL systems G, ..., G, such that
U7, L(G,)) = L(G’) - V', where V'is a finite set of words. Hence it suffices to prove
that the DOL system G of Lemma 6.5 may be decomposed into DOL systems which
satisfy conditions (i) and (ii) of the definition of almost positive. Now, let G =
(2, f x), let n, be the number which is guaranteed by Lemma 6.4, and consider the
DOL systems G, = (X, f™, f/(x)) where 0 st j < n,,. It is easy to verity that these systems
satisty the above-mentioned conditions (i) and (i), which completes the proof. (]

By Corollary 6.5.1, and since the existence of a test set for B(L) is guaranteed
by Theorem 4.3, the following theorem implies Theorem 4.5,

Theorem 6.6. Let (5= (X, f, x) he an almost positive DOL system. Then L{G) has a
test set for UB(L).

arguments which are similar to those of the proof of Theorem 4.2.2 are useful, as

almost positive DOL systems are “similar’ to positive systems. One can say that the
set X, iy the one which “determines the nature of a DOL language L(G)” when
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dealing with test sets. This and the fact that the letters of 3, satisfy the requirement
of positiveness (i.e., for a € X, alph(f(a)) = X), imply that almost positivz DOLs are
‘similar’ to positive DOLs.

However, trying to generalize the proof of Theorem 4.2.2 to deal with almost
positive DOLs, some problems arise which require some modifications in the proof.
We first give the properties of almost positive DOLs and the claims which prove
Theorem 6.6. Then we discuss the changes that have been made with respect to the
proof of Theoiem 4.2.2, and discuss the validity of the ‘new’ properties and claims.

Structure of the proof of Theorem 6.6 and main claims

The following definition is needed. Let G = (2%, f, x) be a DOL system. The set of
blocks of L, BL(L), is {z € sub( L)l:e YF3.3*}, i.e., the substrings of L in which a
letter of X, occurs exactly once. Notice that if L(G) has fair distribution, then BL(L)
is a finite set.

Turning to the proof of Theorem 6.6, let G = (23, f, x) be an almost positive DOL
system, L= L(G). The first step in the proof is, again, to choose M,, and let

T {x, f'(x),..... fM(x)}. To prove that T is a test set for UB(L), let (g, h)c UB(L)
such that g =" 1.

Claim 6.1'. There exist words w and p, vhere p is primitive, and an integer i < M,
such thai the jollowing is satisfied
(i) for each a, B ¢ BL(L) such that af ¢ sub({_J
(ii) g(w)esub(p*) and h(w)e sub( p*), and
dii) g tan) =|p| and |h(f (@))|=]p| for each a € BL(L).

L,), /"(aB)esub(w),

A
v =

Claim 6.2". For each ac X, g(L,)<sub(p*) and h(L,)< sub( p*), where L, =
L,-{f(a)]j<i}

Claim 6.3'. g =" h.

Relevant properties of almost positive DOLs

We claim that the following properties hold true for almost positive DOLs. (A
sketch of the proofs is given later.)

Property 3 holds true for almost positive DOLs. (Actually, it holds for each DOL
language.)

Let Property 1’ be similar to Property 1, the only difference is that letters b in 3,
are considered, instead of letters b in 3. Property 1" holds true for almost positive
DOLs.

Instead of Property 2, the following Property 2’ holds true: An almost positive
DOL system may be decomposed into almost positive DOL systems which have
‘density of pairs of blocks for X;". A DOL system G = (X, f, x) has density of pairs
of blocks for X, if for each a, 8 € BL(L) such that af € Uaa.‘.’, L,, it is the case that
aB € sub( f(b)) for each be X,
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Ncte that the density of blocks generalizes, in some sense, the density of letters
which is introduced in Property 2. Yet, Properties 1’ and 2’ are weaker than Properties
| and 2 as they deal only with X, and no information is given concerning X,

The differences between the proofs of Theorem 4.2.2 and Theorem 6.6

The main problems in generalizing the proof of Theorem 4.2.2 is that Properties
I and 2 do not hold true for each almost positive DOL language. Only weakened
versions of these properties, Properties 1" and 2, which deal with X; and ignore X,
are satisfied.

The fact that Property | does not hold true motivates us to consider the blocks
BL(L) instead of letters. This technique solves the ‘length problem’: The estimation
that |g( f"(k))| is ‘larger than the balances’ for b e X, which appears in Property |’
(and which does not hol for b in X)), holds true for blocks, as in each block of
3L(L) a letter of X, occurs.

The fact that Property 2 is ot satisfied implies the weak version of Claim 6.1'(i):
>nly blocks «, B in sub(lJ,,, v L,) are considered, and substrings of U s, L, are
ignored. This, in turn, implies the weak version of Claim 6.2": languages L, are
considered only for a € X, The *lack of information” about L, for a ¢ X, complicates
the proof of Claim 6.3', and, comparing its proof to the proof of Claim 6.3, som.
additional arguinents are needed.

Validity of the properties and claims

Consider, first, Property 2'. It deals with density of pairs of blocks instead of
letters, but it turns out that the same proof shows density of blocks. The almost
positiveness causes this property te deal only with X, but, turning to X, the proof
is exactly as the proof of Property 2.

Having density of blocks, it turns out that the proofs of Claims 6.1" and 6.2 are
similar to those of Claims 6.1 and 6.2.

Turning to Claim 6.3, the ‘lack of information® concerning L, tor ac Y, compli-
cate s its proof. To see this, recall the proof of Claim 6.3. In this proof, letting x be
aya. ... aq, the fact that g(L, ), h(lj,,,)gsub( p*) for 1< j= k was crucial in the
proof. Now, if x=ha,...ab,, for a2 and b« XF, then gl l_..,,), h(La) <
subt p*) for each j, but this is not true for L,,L,...., L, . where L, -
LG -4/ by im - i}, G, = (X, . b,). The main idea in solving this problem is
that the languages Ly, ..., L, are finite languages (as b, ¢ XF for each j). This
implies that there exists a finite set W such that, for each v L, g(v) equals
wopp piwapapps .. owy . where p ¢ p-suf(p), p, < p-pref(p), i, =0 and w; ¢ Wu
142}, Similarly for h(y). Recall that the arguments in the proof of Claim 6.3 are
buased on the fact that the number of different strings p,, ..., p., pi..... pi over all
the words in L is finite. This finiteness implies that a finite number of checks suffices
to guarantee that ¢ = ' h, and one has to include these checks in T. Turning to Claim
6.3 we use also the finiteness of W and take a larger but still finite set T which
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includes all the necessary checks. Arguments which are similar to those of Claim
6.3 show that if g =Th, then g ="' h, which completes the proof.

The above discussion ‘explains’ Claims 6.1°, 6.2°, 6.3 and Property 2'. Note that
Property 3 deals with arbitrary DOLs. So it is only left to sketch the proof of Property
1’ for almost positive DOL languages.

Property 1’ of relatively small balances only deals with 2. It turns out that, limiting
ourselves to X, the proof of Property 2’ for almost positive DOLs is similar to the
proof of Property 2. The modifications which are needed in proving Property 2’ are
that some length arguments must ignore the letters of 2. More precisely, we consider
|w|y, instead of |w|, where |w|y, is the number of occurrences of letters of X in w.
However, given an almost positive DOL system G = (2, f, x), the fair distribution
of L(G) implies the existence of a consiant I; =1 such that I;|w|; =|w| for each
w e sub(L(G)). Therefore, (1/1;)|w|<|w|s <|w|, so that length arguments which
ignore 3, are enough to derive Property 1'.

This completes our discussion concerning the proofs of Theorem 6.6 and Theorem
4.5.

To complete the discussion about DOLs, Lemma 4.6 needs to be proved.

Proof of L >mma -1.6. Let G, = ({a, b}, f. a), where f(a)=aba and f(b)=b, and let
L,= L(G,;. Then L,={(ab)*" 'a|n =0} is an infinite DOL language with fair distri-
bution. We claim that L, contains no infinite positive [3)L language.

Assume, for the sake of contradiction, that L'c L, is an infinite language which
is generated by a positive DOL system G'=({a, b}, f', x"). The positiveness of 7'
and the fact that L'c(ab)*a implies that E(G’) is strictly monotonic
(|f'(a)],| £ (b)|=2). In addition, we claim that f’(a) = (ab)*a and ['(b) = (ba)'b for
some k, 1= 0. To verify this, consider first f’(a). Since each word in E(G’) begins
and ends with the letter a, and since L'< (ab)*a, it follows that f'(a) = (ab)*a for
k=0orf'(a)= {2 Since G'is positive, f'(a) = (ab)*a. Now, the faci that L' < (ab)*a
implies that f'(b) = (ba)'b for some /=0,

The following claim proves that f'(b) = b, which contradicts the assumption that
G’ is positive.

Claim. 1 = 0.

Proof. Let E(G')=w,, w,,.. W, .... Since E(C’) and E(G,) are strictly
monotonic, it follows that for each 1 = 0 there exists an n; = | such that w,,, = f™(w,),
where f is the morphism of G,,.

Let X = {a, b}. Since f'(a) = (ab)'a and f'(b) = (ha)'b, it .ollows that the matrix
which is induced by G’ is

(k+l k)
! 1+1)

while the matrix which is induced by G, is

(G 1)
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Thercfore, the following equation holds for each i=0:

(lw.-lu,lw.»tb)(k;rl k>:(1w,l,,,|w,-],,)(2 ')

[+1 0 1

One can verify that

G -G )

Since, for each i, |w|, = [w|, — 1, we can denote |w,|, by m; and achieve the following:

k+1 k 2" 2" -]
(m,,m,—l)[( i H—l)_(O [ )]-—(0,0).

Therefore,

k+1-2" k+1-=-2"\
(m, m;, - l)( l i ) =(0,0),

which implies that
m(k+1=2")+(m,—1)=0.
We may assume that m,>> 1. Therefore, for each i =0,

2% =1(m,—V)/m, +k +1. (2)

This equality must be satisfied for tixed numbers k ¢ N U{0}, and an infinite
sequence of pairs (m,, n,), where m, »' " X,

Now, by (2) we have 2" - [+ Kk + 1, which impiies that tn,li =0} is a finite sel.
Since | and k are fixed, and {m,/(m, ~ 1i =0} is an infinite set (as m, =»' " X),
the only possibility to satisfy (2) is that [ =0 (and k+1=2" for each i), which
completes the proof of the claim anst of Lemima 4.6, [

7. Conclusions and open problems

The results of this paper may be viewed as another step towards proving the
Ehrenfeucht Conjecture: the existence of test sets for languages. However, we regard
these results as another step in the 'study of test sets for languages with fair
distribution. We believe that this study may be fruitful, and that the notion of fair
distribution is closely related to test sets.

- By Theorem 4.3, given a family of languages ¥ with fair distribution, if one
proves that each Le '/ has a test set for UB(L), then it tfollows that L has a test set.

Turning to Theorem 4.5, its prooi is based on the properties of DOLs with fair
distribution. Trying to isolate these properties from the claims for existence of a .
test set, the following may be derived.
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Claim 7.1. Let Lc 3*, B(L)c sub(L) and let g, h be a pair of morphisms. Assume
that the following is satisfied:

(1) Foreach xe L, x =x,x,...x for x;e B(L).

(2) There exist words w and p, where p is primitive, such that: (i) for each a,
B € B(L) such that af € sub(L) we have aB € sub(w), (ii) g(w) € sub( p*) and h(w) e
sub( p*), and (iii) |g(a)|=|p| and |h(a)|=|p| for each a € B(L).

Then h(I)c sub(p*) and g(L) < sub( p*).

Note that this technique to show periodicity is taken from [6].

Showing ‘periodicity’ may be useful for finding a test set for L, as in Theorems
4.2.2 and 4.5. Note that a situation of ‘periodicity’ in some sense appears again and
again in the ‘unbounded balance case’ of proofs of morphism equivalence and test
sets (see, in addition to [6], the proofs in [8,9]).

In [6] simple DOL systems are discussed. A DOL system G = (2, /, x) is simple if,
for each b, ce X, b is generated from ¢ in a number of steps (i.e., besub(f"(c))
for some n). It is shown that, given a simple DOL system G =(Z, f; x) where |x| =1,
it may be decomposed into positive DOL systems G, ..., G,, and hence L(G) has
a test set. Notice that L(G)=J] ., L(G,), i.e.,, L(G) is a union of a finite set of
DOLs with fair distribution.

The notion of a simple DOL system is a generalization of the notion of a positive
DOL system. This leads to a conjecture of [6] that the technique of the proof of
Theorem 4.2 may be useful in showing existence of test sets for simple DOLs.

Notice that, given a simple DOL system G = (2, f, x), X, = @ (like in a positive
system), but L(G) does not necessarily have fair distribution. For example, consider
G,=({a, b}, f, ab) where f{a)=bb and f(b)=aa. The language L(G,} does not
have fair distribution. Moreover, one can verify that there exist no finite 1 and
languages L,, ..., L, with fair distribution such that L(G,) = Uf;, L, In this sense,
given a simple DOL system G = (%, f, x), the length of x influences the distribution
of letters of L(G).

One can say that an important difference between positive and simple DOLs is
the lack of fair distribution in simple DOL languages. The fact that the technique
of the proot of Theorem 4.2 was not yet used for simple DOLs strengthens our belief
that the property of fair distribution is crucial for existence of test sets for DOLs,
as well as for other familics of languages.
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