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1. INTRODUCTION 

One of the fundamental inequalities of analysis is Jensen’s inequality for 
convex functions. Essentially Jensen’s inequality is a definition of a convex 
function of one or several variables. However, series of well-known 
inequalities for convex functions of one variable, such as Jensen-Steffensen’s, 
Popoviciu’s, Brunk-Olkin’s and Ciesielski’s, do not have their analogues for 
convex functions of several variables. It was shown in [ 1 ] that these 
inequalities have their analogues for the functions with nondecreasing 
increments. These functions, i.e., functions with nondecreasing increments, 
represent the other generalization of convex functions for functions with 
several variables. 

In this paper we shall show that the well-known Majorization theorem 
holds for functions with nondecreasing increments. Using this result we shall 
obtain extension of some results from [ 1 ] and some similar results. 

In the proof we shall use the generalization of the well-known Fan- 
Lorentz inequality (see [2]). We shall use the following notation: 

The result from 121, in a slightly generalized form, is as follows: 

THEOREM A. Let H be a continuous real function depending on t and 
u, r.s.9 u,, defined fox a < t < 6, ai < ui ,< bi, for i = I,..., n, such that 

+Ah/H<-; ‘ (1-G i < k), 
u, 

$Jh/H>O (k < i < n), 
u, 

A A &hi &h. c /’ 
H>O (l<i,j<kAk<i,j<n), 

$4 H,<O 
, z uihi 

(l<i<kAk<j<n), 
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hold fir all ui, hi > 0, t, p > 0 (1 < i Q 12, t +p E [a, 61, ui + hi E [ai, b;]). 
Let A, gi: [a, b] + [ai, bi] (1 < i < n) be real continuous functions, nonin- 
creasing for i= I,..., k and nondecreasing for i = k + l,..., n, and let 
G: [a, b] -+ R be a function of bounded variation. 

j: h(t) dG(t) G ,fx g,(t) dG(t) (a < x < 6, 1 < i < k), 
a 

J: A(t) dG(t) ,< 1: g/(t) dG(t) (a < x < b, k < i < n), (1) 

!I A(t) dG(t) = J’b g,(t) dG(t) (1 <i<n), 
a 

then 

jb H(t;f,(t),...,f,,(t)) dG(t) < Jb H(t; g,(t),-., g,(t)> dG(t). 
u 0 

(2) 

(b) If H is a nondecreasing function on u, ,..., u,, and $ instead of 

(I), 

JI A(t) dG(t) G lx g,(t) dG(t) (a <x < 6, 1 < i < k), 
a 

jl” ./i(t) dG(t) G jb gi(t) dG(t) 

(3) 
(a<x<b,k<i<n) 

x 

hold, then (2) is also valid. 

Proof. Analogously to the proof which is given in [ 11, we can show that 
function H may be approximated uniformly by polynomials which satisfy the 
conditions 

B2H 
----GO 
at aui 

(1 <i<k), E>O 
at aui 

(k < i < n), 

fY2H 
-20 
aui auj 

(l<i,j<kAk<i,j<n), 

a2H 
-GO aui auj 

(l<i<kAk<j<n). 

So, there is no loss in generality in assuming that the second partial 
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derivatives exist. Now, using the method from [ 2 ] (or the result from ] 2 ]) we 
can obtain Theorem A. 

2. SOME RESULTS FOR FUNCTIONS 

WITH NONDECREASING INCREMENTS 

Let Rk denote the k-dimensional vector lattice of points x = (x, ,..., x,), xi 
real for i = I,..., k with the partial ordering x = (x, ,..., xk) < y = (y, ,..., yn) if 
and only if xi < yi for i = l,..., k. 

A real-valued function f on an interval Z c Rk will be said to have 
nondecreasing increments if 

f@ + h) -f(a) GfuJ + h) -f(b) 

whenever aEZ, b+hEZ, O,<hERk, a<b. 
For functions with nondecreasing increments the following results are 

valid (see [ 11): 

(i) If the partial derivatives 3f(x)/8xi exist for x E Z then f has 
nondecreasing increments if and only if each of these partial derivatives is 
nondecreasing in each argument. 

(ii) The second partials, if they exist, are then nonnegative. 

In the paper X(t) = (X,(t),..., Xk(t)) denotes the map from the real interval 
[a, b] into an interval Z in k-dimensional Euclidean space Rk, such that 
components Xi of X are continuous and nondecreasing. Then we say that 
X E: A. By j, XdG we understand the vector (I, X, dG,..., j, X, dG). 

2.1. Majorization Theorem 

THEOREM 1. Let G: [a, b] + R be a function of bounded variation and 
X, YEA. 

(4 If 

lb X(t) dG(t) < lb Y(t) dG(t) (Vx E la, 611, 
x x 

1” X(t) dG(t) = (” Y(t) dG(t), 
a (I 

(4) 

then for every continuous function f with nondecreasing increments on Z 

j” f VW> dW G r” f O’(t)> dW. (I (I 
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j” X(t) dG(t) < j" Y(t) dG(t) (Vx E [a, bl), 
x x 

then (5) holds for every continuous nondecreasing function f with 
nondecreasing increments on I. 

Proo$ This is a simple consequence of Theorem A. 

Remark 1. In Theorem 1 let G be a nondecreasing function. Then (5) is 
valid for every continuous function f with nondecreasing increments on I if 
and only if (4) holds; analogously (5) holds for every continuous 
nondecreasing function f with nondecreasing increments on I if and only if 
(6) holds. 

Indeed, let xt denote the larger of the two real numbers, x and 0. The 
validity of (5) for f(x) = xj, where x = (x, ,..., xk) and f(x) = -xi 
(j= l,..., k), implies the second condition in (4). Next, let, for fixed j 
(j = l,..., k) and fixed u (a < u < b), f(x) = (x.~ - Yj(u))‘. Then f(x) is 
continuous on I and with nondecreasing increments, and f(x) > 0, f(x) > 
x,~ - Yj(u). Since G is nondecreasing we have 

j* xi(t) dG(t) - yj(u) j” dG(t) G j” f (X(t)) dG(t) < I’* f (Y(t)) dG(t) 
u u a ‘0 

= j” y/(t) dG(t) - Y/(U) 1.’ dG(t), 
u ‘” 

wherefrom we obtain the first condition in (4). Similarly, we can prove the 
analogous result for nondecreasingf: For k = 1 we have the known result for 
convex functions (see, for example, [3]). 

2.2. Jensen-StefSensen Inequality 

THEOREM 2. Let G be a function of bounded variation on [a, b 1 with 
G(b) > G(a), and let XE A. 

(a> If 

G(a) < G(x)< G(b) 0’~ E (a, b)), (7) 

then for all continuous function f with nondecreasing increment on I 
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(b) If li X(t) dG(t)/J‘i dG(t) E I, and if either 

(3x1 G G(a) (Vx E (a, 6)) (9) 

or 

G(x)> G(b) (Vx E (a, b)), (10) 

then the reverse inequality in (8) holds. 

(c) If for a continuous f: I -+ R inequality (8) holds for every 
corresponding XE A and for every function of bounded variation G 
satisfying (7), then f is a function with nondecreasing increments. 

Proof (c) Puta,<t,<t,<t,<b,X(t,)=A,X(t,)=B,X(t,)=B+H 
(0 < HE Rk), G(t) = 0 (a < t < t,, t, < t ,< t3) and G(t) = 1 (t, < t < t,, 
t, < t < b), when inequality (8) reduces to f(A + H) <f(A) -f(B) + 
f(B + H). Therefore, f is a function with nondecreasing increments. 

(a), (b) Using the substitutions 

X(t) + j” X(t) dG(t) 
i 
jb dG(t), Y(t) -+ X(t), 

a a 

from Theorem 1, we have that (8) is valid if 

!” Xj(t) dG(t) i’” dG(t) < jb Xj(t) dG(t) 1” dG(t) (Vx E (a, b), 1 <j < k). 
a x x 0 

(11) 

Analogously, we have that if the reverse inequality in (11) holds, then the 
reverse inequality in (8) holds too. 

Now, (a) and (b) are simple consequences of these results and the 
following lemma: 

LEMMA 1. Let f, G: [a, b] -+ R be functions of bounded variations with 
G(b) > G(a), and let f be integrable with respect to G. The inequality 

Z(f, G; c> > 0, (12) 

where 

Z(f, G; c) = jc dG(x) lb f(X) dG(x) - lb dG(x) J’C f(x) dG(x) 
(I 0 a a 

= j” dG(x) lb f (x) dG(x) - lb dG(x) jb f (x) dG(x), 
(1 c c a 
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holds for all nondecreasing functions f and for every c E (a, b), if and only if 
(7) holds. The reverse inequality in (12) holds ifand only ifeither (9) or (10) 
hold. Iff is a nonincreasing function, then the reverse results are valid. 

Lemma is a simple consequence of the following identity (see [ 4 1): 

XL G; c) = (G(b) - G(c))/’ (G(t) - G(a)) df(t) 
0 

+ (G(c) - G(a)) (*(G(b) - WMfW. 'C 

Remark 2. Generalization of Theorem 2(a) is given in [ 1 1, 

Remark 3. It is very interesting that Theorems 2(a) and (b) contain a 
well-known Cebysev inequality for monotonic functions (functions 
f (x, y) = xy (x, y E R) and f(x) = x, ... xk (xi > 0, i = l,..., k) are with 
nondecreasing increments). 

2.3. Brunk-Olkin Inequality 

Using the substitution G(t) = g(t) + s(t), where s(t) = 0 (t E [a, t,,)) and 
s(t) = 1 - .I‘:, k(t) (t E It,, b]), we obtain, from Theorem 2, the following 
result: 

THEOREM 3. Let f: I -+ R be a continuous function with nondecreasing 
increments, X E A and let t, E [a, b] be fixed. Zf X(t,) = 0 (E R’) and tf 
g: [a, b] + R is a function of bounded variation such that 

0 < 
J 
.’ dg(t) < 1 (a < t < to), 0 < .’ dg(t) < 1 

J (to < t < b), 
(I I 

then 

f j!b X(t) MO j < i’” f GV>) &(t) + ( 1 - 1’ &W j f (0). (13) 
a a -0 

Zf li X(t) dg(t) E I, and if either 

J 
.t 
&W > 1 (a < t < t,), 

a 1 .’ dg(t) < 0 0, < t < b) 
t 

or 

1 -’ dg(t) < 0 (a < t < t,), I b dg(t) > 1 (4, < t < b), 
a t 

then the reverse inequality in (13) holds. 
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Using the substitution g(r) = h(t)/Ji I&z(t)), from the above result we can 
obtain: 

THEOREM 4. Let f and X be defined as in Theorem 3 and let 
h: [a, b] + R be a function of bounded variation such that 

I 

.I 
dh(t) > 0 (a < t < t,), i b dh(t) > 0 (to < t < b), J.h ldh(t)l > 0. 

a -I . u 

Iff(0) = 0, then 

Remark 4. For some similar results for convex functions see [ 7-101. 

2.4. Favard Inequality 

THEOREM 5. If x E A with 

1 b 
jj = - 

i b-a a 
Xi(t) dt, i = I,..., k, 

then inequality 

~~~lf(y,...,y)dy)~).bf(X(f))dt 
a 

(14) 

(15) 

holds for every continuous function f: I + R with nondecreasing increments if 
and only if 

1 
i 

x X(t) dt > 
(x-42 * 

@la)2 J 

.b 

a x(t)dt Vx E (a, b)). (16) 

If the reverse inequality in (16) holds, then the reverse inequality in (15) 
holds too. 

Proof: Since 

~~~xf(y,...,y)dy=~jbf(Y’(t))dt, 
L1 

where Y;(t) = 2.C(t - a)/(b - a) (j = I,..., k), so Y’ E A, and (15) becomes 
Iif(Y’(t)) > Ii f (X(t)) dt. Therefore, using Theorem 1 (i.e., Remark 1) we 
obtain Theorem 5. 



FUNCTIONS WITHNONDECREASING INCREMENTS 195 

THEOREM 6. Let Xi(t) (1 < i < k) be nonnegative concave functions such 
that (14) are valid, and let J I+ R be a continuous function with 
nondecreasing increments. Then (15) is valid. 

If X,(t) (1 < i ,< k) are nonnegative convex functions such that (14) and 
X,(a) = 0 (1 < i < k) are valid, then the reverse inequality in (15) is also 
valid. 

Proof. Since the function x ++ f (x)/(x - a) is nonincreasing on (a, b] for 
every concave function, using Lemma 1 we have that the condition (16) is 
satisfied. So, inequality (15) holds if f is a nondecreasing concave function. 
On the other hand, the monotonic rearrangement of positive concave 
functions is also a concave function (see, for example, [ 11 I), so using the 
result from [ 121 we have that (15) holds for arbitrary positive concave 
functions too. 

If Xi (1 < i < k) is a convex function with X,(a) = 0, then Xi is also 
nondecreasing, so from Theorem 5 we obtain that Theorem 6 holds in this 
case too. 

Remark 5. The above results are generalizations of some results from 
1131 and (141. 

3. APPLICATIONS 

Denote by 

Using the substitutions f(x) = x7’ ..- xFk (0 < cti < l,j = I,..., k), and 

Yj(t) + Xj(t)“’ 
i 
I” X,(t)“’ dG(t), xi(t) -+ Y,(t)“! dG(t), 
0 

from Theorem 1 we obtain the following result: 

COROLLARY 1. Let G: [a, b] -+ R be a nondecreasing function and let 
X, YE A have nonnegative components. If 0 < a,i < 1 (j = l,..., k) and if 

lb Xj(t)“j dG(t) jb Yj(t)*’ dG(t) < lb Y,(t)“’ dG(t) j* Xi(t)“’ dG(t) (17) 
a x a I 

(Vx E (a, b)), then 

H,(X; G) 2 H,(Y; G). (18) 
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COROLLARY 2. Let G: ]a, b] + R be a nondecreasing function and let 
X, YE A have positive components. If 0 < ai < 1 (1 <j < k) and if x -, 
Yi(t)/Xj(t) (1 <j < k) are nonincreasing functions, then (18) is valid. 

Proof Using Lemma 1, we can easily show that (17) is satisfied. So. 
from Corollary 1 follows Corollary 2. 

Using Theorem 1 for k = 1, the Fuchs generalization of Majorization 
theorem, we can obtain the generalization of results from [21, 22 1. 

COROLLARY 3. Let G: ]a, b] + R be a nondecreasing function and let 
f, g: [a, b] --f R be two continuous positive functions. u g and g/f are 
monotonous in the opposite sense, function F defined by 

F(r) = 
i; f (x)’ dG(x) I” 

s: g(x)’ dG(x) 
(r#O;/r] < +a~), 

F(O) = ev (j: log(f(x)/g(x))dG(x)~~~ dW)) 

is nondecreasing. 

Proof If g and g/f are monotonic in the opposite sense, then g and f are 
monotonic in the same sense. We shall suppose that they are nondecreasing 
functions. By substitutions f(x) = x”’ (r > s > 0), X,(t) = g(t)“/ 
jig(x)” dG(x), Y,(t) =f(t)“/jf: f (x)’ dG(x), from Theorem 1 with k = 1 we 
get that 

F(r) 2 F(s) (19) 

holds if 

lb g(t)” dG(t) !‘” f (t)” dG(t) 
x a 

< 
I 

b f (t)” dG(t) J-b g(t)” dG(t) (Vx E (a, b)). (20) 
x (I 

Now, using Lemma 1 and the fact that g/f is a nondecreasing function, we 
have that Corollary 3 is valid for r > s > 0. In the case when s --+ 0 we obtain 
that (19) is also valid. Analogously, we can prove that (19) is valid in the 
cases r202.s and O>r>s too. 

From the above proof, we have that the following result is also valid: 

COROLLARY 4. Let G: [a, b] + R be a nondecreasing function and let 
f, g: [a, b] --f R be two nondecreasing, nonnegative and continuous functions 



FUNCTIONS WITH NONDECREASING INCREMENTS 197 

(g f 0). rf r > s > 0 and if (20) holds, then (19) is also valid. If the reverse 
inequality in (20) is valid, then the reverse inequality in (19) is also valid. 

Remark 6. The result similar to Corollary 4 can be obtained in the cases 
whenr>O>sandO>r>stoo. 
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