
Theoretical Computer Science 413 (2012) 73–86

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Approximating Markovian testing equivalence
Alessandro Aldini ∗
University of Urbino, Italy

a r t i c l e i n f o

Keywords:
Markovian testing equivalence
Process algebra
Approximate equivalence

a b s t r a c t

Several approaches have been proposed to relax behavioral equivalences for fine-grain
models including probabilities and time. All of them face two problems behind the notion
of approximation, i.e., the lack of transitivity and the efficiency of the verification algorithm.
While the typical equivalence under approximation is bisimulation,wepresent a relaxation
of Markovian testing equivalence in a process algebraic framework. In this coarser setting,
we show that it is particularly intuitive to manage separately three different dimensions
of the approximation – execution time, event probability, and observed behavior – by
illustrating in each case, results concerning the two problems mentioned above. Finally,
a unified definition combining the three orthogonal aspects is provided in order to favor
trade-off analyses.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The comparison of systemmodels through equivalence checking [7] is a well-known approach to the analysis of systems
of practical interest, ranging from the model-based verification of software architectures (see, e.g., [6]) to the analysis of
noninterference based dependability properties (see, e.g., [2]). However, in practice, perfect equivalence is usually hard to
achieve, e.g., because the models to compare are specified at different abstraction levels, or else they describe alternative
implementations of the same ideal system. In order to evaluate how much the behaviors of these models fit the same
properties, quantitative aspects come into play in such a way that the comparison can result in numbers giving a flavor
of the degree of similarity.

Very often, the considered quantitative aspects are expressed in terms of probability distributions and/or temporal
durations. As a consequence, fine-grain notions of behavioral equivalences – typically bisimulation – are somehow relaxed
in order to measure the similarity between models. It is also possible to compare quantitatively models that are purely
functional. This can be done, e.g., through a benchmark of testing scenarios and some kind of mathematical function that
estimates the capability of the models in fitting the behaviors offered by the tests forming the benchmark.

In this paper, we merge these different approaches in a formal framework where models are expressed in terms of
Markovian process algebra and the comparison is based on the Markovian testing equivalence semantics. This is a novelty
in the field of approximate behavioral equivalences. The reason for this choice is that this framework provides, in a natural
and explicit way, ingredients for the definition of the degree of similarity with respect to three orthogonal aspects: time,
probability, and observed behavior.

To give some intuitive insights, testing equivalence for Markovian processes is based on the comparison of the
probabilities of observing successful test-driven computations (i.e., they somehow ‘‘pass’’ tests) that satisfy temporal
constraints concerning the amount of time needed to pass these tests. Therefore, by relaxing, in turn, each of these
parameters – durations associated with specific computations, probability distributions of these computations, and kind
of tests elucidating them – we easily obtain different definitions of approximation under the three considered dimensions.

∗ Tel.: +39 07224475.
E-mail addresses: alessandro.aldini@uniurb.it, aldini@sti.uniurb.it.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.07.019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82533562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.07.019
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:alessandro.aldini@uniurb.it
mailto:aldini@sti.uniurb.it
http://dx.doi.org/10.1016/j.tcs.2011.07.019

74 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

Formally, we first observe that the temporal behavior of a test-driven computation is described in terms of average
sojourn times in the states traversed by the computation. Hence, relaxing time in this setting amounts to matching
computations with stepwise average durations that are similar up to a threshold ϵ.

Secondly, the probabilistic behavior of a test-driven computation is defined by the product of the execution probabilities
of the transitions forming the computation. The relaxation of this aspect consists of checkingwhether the difference between
the probabilities of corresponding computations is confined by a threshold ν.

Thirdly, the observed behavior of a test-driven computation is specified explicitly by the test that guides the system
execution. The family of tests with respect to which the comparison is conducted represents the benchmark of observations
parameterizing the analysis. For instance, a family of tests may be formally characterized in terms of a modal logic formula
that must be satisfied by each test. Then, introducing approximation at this level consists of matching computations that
pass different but behaviorally similar tests in a given family, i.e. tests are used as a benchmark of testing scenarios based
on which we evaluate the similarity between different models. Such an estimation relies on two fitness functions, called
precision and recall, that are used to measure the distance between behaviorally similar tests.

For each approach,we investigate separately the properties that are preserved by the distance function resulting from the
approximation definition, e.g. conservativenesswith respect to the equivalence relation, andwe verify the complexity of the
verification algorithm. This separation of concerns favors the comprehension of the theoretical constraints imposed by every
kind of approximation. On the other hand, we also present a unifying definition joining the three levels of approximation.
This is done in order to facilitate the study of possible trade-offs among them, as typically required, e.g., in performability
analysis of real-world cases.

The remainder of the paper, which is a full and revised version of [1], is organized as follows. In Section 2, we set the
background for the definition of Markovian process algebra, in which to formalize the different notions of approximation. In
Section 3, we present the three relaxations surveyed above – which result in a unifying definition formalized in Section 3.4
– together with the related properties. In all these sections, we employ as a running example a client–server system based
on a multi-core server. Finally, in Section 4 we draw some conclusions and a comparison with related work.

2. Markovian process algebra

In this section, we recall the framework in which to formalize the notion of similarity: first, we describe a Markovian
process calculus that we call MPC; then we provide the definition of Markovian testing equivalence. For a complete survey
of the main results concerning these topics, the interested reader is referred to [3].

2.1. Syntax and semantics

In MPC, timing aspects are represented through durational actions of the form <a, λ>, where a ∈ Name denotes the
action name, while the action duration is exponentially distributed with rate λ ∈ R>0, meaning that the average duration
of the action is equal to the reciprocal of its rate, i.e. 1/λ.

Moreover, we have actions of the form <a, ∗w>, which are unspecified from the temporal standpoint, i.e. they are not
associated with any duration. The parameterw ∈ R>0 is a weight that, as wewill see, comes into play when a choice among
different nondurational actions with the same name occurs.

The set of process terms of MPC is generated by the following syntax:

P ::= 0 | <a, λ̃>.P | P + P | P ‖S P | A

where a ∈ Name (among the action names we consider also the distinguished symbol τ denoting the internal, unobservable
action), λ̃ ∈ Rate = R>0 ∪ {∗w | w ∈ R>0}, S ⊆ Namev = Name − {τ } denotes the synchronization set, and A is a process
constant defined by the possibly recursive equation A 1

= P . We denote with Act = Name×Rate the set of actions ofMPC and
with P the set of closed and guarded process terms of MPC. We do not consider other static operators (hiding, restriction,
and relabeling), which however would not alter the results of this paper. An informal presentation of the algebraic operators
is as follows.

The inactive process 0 represents a terminated process.
The action prefix operator <a, _>.P represents a process performing the durational/nondurational action with name a

and then behaving as P .
The alternative composition operator encodes choice. If several durational actions can be performed, then the race policy

is adopted: the execution probability of each durational action is proportional to its rate and the average sojourn time
associatedwith the related process term is exponentially distributedwith rate given by the sumof the rates of the durational
actions enabled by the term.

On the other hand, when several nondurational actions with the same name are enabled, the preselection policy is
adopted: each such actions is given an execution probability equal to its action weight divided by the sum of the weights of
all the actions with the same name enabled by the term.

All the other choices, among nondurational actions with different names or between nondurational actions and
exponentially timed actions, are nondeterministic.

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 75

The parallel composition operator is inspired by CSP [14] and relies on the following asymmetric synchronization policy.
A durational action can synchronize only with a nondurational action with the same visible name. The synchronization
proceeds as follows. First, a durational action is chosen according to the race policy. Second, a nondurational action with
the same name of the proposed durational action is chosen probabilistically on the basis of the preselection policy. Third,
these two actions synchronize and the resulting rate is given by the rate of the durational actionmultiplied by the execution
probability of the nondurational action.

Formally, the semantic rules for MPC are defined in the classical operational style as follows:

<a, λ>.P
a,λ

−−−→ P <a, ∗w>.P
a,∗w

−−−→ P

P1
a,λ̃

−−−→ P ′

P1 + P2
a,λ̃

−−−→ P ′

P2
a,λ̃

−−−→ P ′

P1 + P2
a,λ̃

−−−→ P ′

P1
a,λ̃

−−−→ P ′

1 a /∈ S

P1 ‖S P2
a,λ̃

−−−→ P ′

1 ‖S P2

P2
a,λ̃

−−−→ P ′

2 a /∈ S

P1 ‖S P2
a,λ̃

−−−→ P1 ‖S P ′

2

P1
a,λ

−−−→ P ′

1 P2
a,∗w

−−−→ P ′

2 a ∈ S

P1 ‖S P2
a,λ·

w
weight(P2,a)

−−−−−−−−−−−−−−−−−−→ P ′

1 ‖S P ′

2

P1
a,∗w

−−−→ P ′

1 P2
a,λ

−−−→M P ′

2 a ∈ S

P1 ‖S P2
a,λ·

w
weight(P1,a)

−−−−−−−−−−−−−−−−−−→ P ′

1 ‖S P ′

2

P1
a,∗w1

−−−→ P ′

1 P2
a,∗w2

−−−→ P ′

2 a ∈ S

P1 ‖S P2
a,∗norm(w1,w2,a,P1,P2)

−−−−−−−−−−−−−−−−−−→ P ′

1 ‖S P ′

2

A 1
= P P

a,λ̃
−−−→ P ′

A
a,λ̃

−−−→ P ′

where: weight(P, a) =
∑

{| w ∈ R>0 | ∃P ′
∈ P. P

a,∗w

−−−→ P ′
|} and:

norm(w1, w2, a, P1, P2) =
w1

weight(P1, a)
·

w2

weight(P2, a)
· (weight(P1, a) + weight(P2, a)).

The semantic model of P is a labeledmultitransition system [[P]] – i.e. a transition system taking into account the number
of instances of each transition – whose multitransition relation is described by the elements of P × Act × P satisfying
the operational semantic rules above and such that the transition multiplicity denotes the number of different proofs for
its derivation. This is necessary because the idempotent law does not hold in the stochastic setting (see, e.g., [16,8] for a
treatment of this problem). As an example, <a, λ>.P + <a, λ>.P is not the same as <a, λ>.P because of the race policy.
Instead, it is equated by <a, 2 · λ>.P .

Finally, we denote with P the set of performance closed process terms of P, i.e. they do not offer nondurational actions
to the environment. Hence, from the semantic model of P ∈ P we can derive an action-labeled continuous-time Markov
chain. This restriction will allow us to compare process terms from the probabilistic/temporal standpoint without resorting
to schedulers that would be needed to solve the nondeterminism.

2.2. Markovian testing equivalence

Markovian testing equivalence requires to compare test-driven process computations. Hence, we start by introducing the
notion of computation of a process term, which is a (possibly empty) sequence of transitions that can be executed starting
from the initial state associated with the term. The length of a computation is the number n of its constituting transitions,
where n = 0whenever the computation is empty.We denote withCf(P) themultiset of finite-length computations starting
from P ∈ P . Note that Cf(P) is a multiset because the semantics of process terms is given by labeled multitransition
systems. Then, two distinct computations are independent of each other if neither is a proper prefix of the other one. In
the remainder, we concentrate on finite sets of independent, finite-length computations. Before describing in detail the
computation attributes, we recall the notion of exit rate of a process term.

76 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

Definition 2.1. Let P ∈ P , a ∈ Name, and C ⊆ P . The exit rate at which P executes actions of name a that lead to C is
defined through the non-negative real function:

rate(P, a, C) =

−
{| λ ∈ R>0 | ∃P ′

∈ C . P
a,λ

−−−→ P ′
|}

where the summation is taken to be zero whenever its multiset is empty. �

If we sum up the rates of all the actions that a process term P can execute, we obtain the total exit rate of P as
ratet(P) =

∑
a∈Name rate(P, a, P).

We now define formally the concrete trace, the probability, and the duration of an element of Cf(P), using _ ◦ _ for
sequence concatenation and |_| for sequence length.

Definition 2.2. Let P ∈ P and c ∈ Cf(P). The concrete trace associated with c is the sequence of action names labeling the
transitions of c , which is defined by induction on the length of c through the Name∗-valued function:

trace(c) =


δ if |c| = 0

a ◦ trace(c ′) if c ≡ P
a,λ

−−−→ c ′

where δ is the empty trace. �

Definition 2.3. Let P ∈ P and c ∈ Cf(P). The probability of executing c is the product of the execution probabilities of the
transitions of c , which is defined by induction on the length of c through the R]0,1]-valued function:

prob(c) =

 1 if |c| = 0
λ

ratet(P)
· prob(c ′) if c ≡ P

a,λ
−−−→ c ′.

We also define the probability of executing a computation in C ⊆ Cf(P) as:

prob(C) =

−
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other. �

Definition 2.4. Let P ∈ P and c ∈ Cf(P). The stepwise average duration of c is the sequence of average sojourn times in
the states traversed by c , which is defined by induction on the length of c through the (R>0)

∗-valued function:

time(c) =

 δ if |c| = 0
1

ratet(P)
◦ time(c ′) if c ≡ P

a,λ
−−−→ c ′

where δ is the empty stepwise average duration. The multiset of computations in C ⊆ Cf(P) whose stepwise average
duration is not greater than θ ∈ (R>0)

∗ is defined as:

C≤θ = {| c ∈ C | |c| ≤ |θ | ∧ ∀i = 1, . . . , |c|. time(c)[i] ≤ θ [i] |}. �

We denote with C l the multiset of computations in C ⊆ Cf(P) whose length is equal to l ∈ N. Moreover, we sometimes
use shorthands of the form time(c) ≤ θ to denote that time(c) is stepwise less or equal to θ .

The other fundamental ingredient underlying Markovian testing equivalence is the notion of test. Process terms are
observed by interacting with them by means of tests, which are represented as process terms that are composed in parallel
with the process term under test by enforcing synchronization on all visible action names. Since the process term under test
is performance closed, a test can interact by offering nondurational actions only. Intuitively, in any of its states the process
term proposes the execution of a durational action and then, if such an action is visible, the test reacts either by enabling the
interaction or by blocking it (note that tests cannot block the execution of τ actions). Then, the test is passed with success
whenever a specific point during execution is reachedwith a certain probability andwithin an arbitrary sequence of average
amounts of time. Thanks to the presence of these average time upper bounds, it is enough to consider acyclic finite-state
labeled multitransition systems for the test representation. In other words, we can restrict ourselves to nonrecursive tests.

Definition 2.5. The set TR of reactive tests is generated by the syntax:

T ::= s | T ′

T ′
::= <a, ∗w>.T | T ′

+ T ′

where a ∈ Namev, w ∈ R>0, and s is a zeroary operator standing for success. �

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 77

Given P ∈ P and T ∈ TR, the interaction system of P and T is the process term P ‖Namev T , where each of its states
is called a configuration. We say that a configuration is successful if its test part is s, and that a test-driven computation
is successful if it traverses a successful configuration. We denote with SC(P, T) the multiset of successful computations
of P ‖Namev T . Note that for any sequence θ ∈ (R>0)

∗ of average amounts of time the multiset SC
|θ |

≤θ (P, T) is finite and all
of its computations have a finite length and are independent of each other. We are now ready to formalize the definition
of Markovian testing equivalence, which is based on the comparison between the probabilities of successful test-driven
time-constrained computations.

Definition 2.6. Let P1, P2 ∈ P . We say that P1 is Markovian testing equivalent to P2, written P1 ∼MT P2, iff for all reactive
tests T ∈ TR and sequences θ ∈ (R>0)

∗ of average amounts of time:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P2, T)). �

Actually, the set of tests respecting a canonical form is necessary and sufficient to decide whether two process terms
are Markovian testing equivalent [5]. Each of these canonical tests allows for one computation leading to success, whose
intermediate states can have alternative computations leading to failure in one step.

Definition 2.7. The set TR,c of canonical reactive tests is generated by the syntax:

T ::= s | <a, ∗1>.T +

−
b∈E−{a}

<b, ∗1>.f

where a ∈ E , E ⊆ Namev is finite, the summation is absent whenever E = {a}, and f is a zeroary operator standing for
failure. �

Corollary 2.8. Let P1, P2 ∈ P . Then, P1 ∼MT P2 iff for all T ∈ TR,c and θ ∈ (R>0)
∗ of average amounts of time:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P2, T)).
�

Example 2.9. Let us consider a client–server system with a dual-core server. Requests arrive at the system with rate
λ ∈ R>0. When a request finds both cores busy, it must immediately leave the system; i.e., no buffer is present. When
a request finds both cores idle, it has the same probability to be accepted by the two cores. Both cores serve incoming
requests at rate µ ∈ R>0. They can also fail to process the request with rate ϕ ∈ R>0.

In MPC, we describe the client with the following arrival process:

Arrivals 1
= <arrive, λ>.Arrivals

while the behavior of each core is modeled as follows:

Core 1
= <arrive, ∗1>.(<serve, µ>.Core + <fail, ϕ>.Core).

Hence, the overall system is given by CS 1
= Arrivals ‖{arrive}(Core ‖∅ Core), which can be equated, through ∼MT, to the

following process term representing a single-core server with a two-positions buffer:

P 1
= <arrive, λ>.P ′

P ′ 1
= <serve, µ>.P + <fail, ϕ>.P + <arrive, λ>.P ′′

P ′′ 1
= <serve, 2 · µ>.P ′

+ <fail, 2 · ϕ>.P ′

3. Approximating time, probability, and behavior

In this section, we consider approximate notions of ∼MT based on the three following dimensions: time taken to pass a
test (Section 3.1), probability with which tests are passed (Section 3.2), and syntactical form of the passed test (Section 3.3).
The goal is to estimate from different perspectives howmuch a process term P2 is similar to a given process term P1, where
we assume that P1 is the original model to be approximated through an alternative model P2. The three approximations are
then merged into a general definition of similarity (Section 3.4).

Any notion of behavioral similarity should meet a number of good properties, among which we expect it to be a
conservative extension of the behavioral equivalence that it intends to approximate. In essence, it should result into a
distance function d satisfying (i) d(P1, P2) = 0 whenever P1 ∼MT P2 and (ii) the triangular inequality, i.e. it is worth
establishing what can be ‘‘transitively’’ inferred about the distance d(P1, P3) whenever the distances d(P1, P2) and d(P2, P3)
are known.

On the other hand, if we intend to use safely the compositionality properties of ∼MT, another expected law is that
d(P,Q) = d(P ′,Q ′) whenever P ∼MT P ′ and, likewise, Q ∼MT Q ′. Finally, the similarity notion should be equipped with an
efficient verification algorithm.

All these properties will be taken into account when defining relaxations of ∼MT based on the three orthogonal aspects
mentioned before.

78 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

3.1. Approximating time

In the setting of ∼MT, the time needed to pass a test with success is expressed as the sequence of average sojourn times
in the states traversed by successful computations. Hence, introducing a tolerance at this level amounts to relaxing the
condition that requires the process terms under test to respect the same temporal constraints.

We start with a notion of ‘‘slow approximation’’ with the aim of comparing a process term P1 with a process term P2
that is slightly slower than P1 in the following sense. To explain the intuition, we point out that in the ‘‘exact’’ setting any
computation of P1 is matched by a computation of P2 with the same concrete trace and stepwise average duration. In our
‘‘approximated’’ setting any computation c of P1 is matched by all the computations of P2 with the same concrete trace and
with stepwise average duration that lies in a temporal interval whose lower bound is time(c) and whose upper bound is
described by time(c) augmented with some negligible ϵ ∈ R≥0. The intuition behind the temporal approximation above is
captured through the following relaxation of themultiset C≤θ , which is formalizedwith respect to the sequence θ of average
amounts of time modeling the temporal constraint, the tolerance ϵ, and the multiset C ′ of finite-length computations to be
approximated.

Definition 3.1. Let C, C ′ bemultisets of finite-length computations, ϵ ∈ R≥0, and θ ∈ (R>0)
∗. Themultiset of computations

of C≤θ augmented with respect to ϵ and C ′ is given by:

C≤θ+ϵ,C ′ = C≤θ ∪ {| c ∈ C | c ∉ C≤θ ∧ ∃c ′
∈ C ′

≤θ . ∀i = 1, . . . , |c|.
time(c ′)[i] ≤ time(c)[i] ≤ time(c ′)[i] + ϵ |}. �

Based on this definition, SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T) contains not only the successful T -driven computations of P2 that meet

the θ-constraint, but also the computations that are stepwise slower, up to ϵ, than those of SC
|θ |

≤θ (P1, T). Then, the relaxed
variant of∼MT states that P1 must be functionally and probabilistically equated by a version P2 with less restrictive temporal
constraints.

Definition 3.2. Let P1, P2 ∈ P and ϵ ∈ R≥0. We say that P2 is a slow Markovian testing ϵ-approximation of P1, written
P1 ∼

ϵ
MT,slow P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)

∗ of average amounts of time:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T)). �

Example 3.3. Consider a version of the running example, call it CSλ, where for simplicity all the rates are equal to λ. Now,
take a variant of CSλ, call it CSλ,10%, in which the system clock cycle is reduced by 10%, i.e. the rate λ becomes 0.9 · λ. Then,
it turns out that CSλ ∼

0.1̄
MT,slow CSλ,10%. Here the intuition is that, from the behavioral and probabilistic standpoints, every

computation of CSλ is matched by a corresponding computation of CSλ,10% which, however, is slower by a 10% factor.

The following two lemmata formalize the intuition underlying ∼
ϵ
MT,slow and establish conditions that are useful to state

that the good properties mentioned before are satisfied.

Lemma 3.4. Let P1, P2 ∈ P . Whenever P1 ∼
ϵ
MT,slow P2 then there exists c2 ∈ Cf(P2) iff there exists c1 ∈ Cf(P1) such that

trace(c1) = trace(c2) and time(c1) ≤ time(c2) ≤ time(c1) + ϵ.

Proof. We proceed by induction on |c2|, with c2 ∈ Cf(P2). Then, we can argue in the same way by exchanging the roles of
c2 and c1.

On the one hand, let |c2| = 0. Then, there trivially exists c1 ∈ Cf(P1) such that trace(c1) = δ = trace(c2) and
time(c1) = δ = time(c2).

On the other hand, let |c2| = n > 0 and suppose c2 ≡ c ′

2

a,λ
−−−→ Pn

2 . By the induction hypothesis, there exists c ′

1 ∈ Cf(P1)
such that trace(c ′

1) = trace(c ′

2) and time(c ′

1) ≤ time(c ′

2) ≤ time(c ′

1) + ϵ. As a consequence, trace(c2) = trace(c ′

2) ◦ a =

trace(c ′

1)◦a = trace(c1) and time(c1) ≤ time(c2) ≤ time(c1)+ϵ, where c1 ≡ c ′

1

a,µ
−−−→ Pn

1 belongs toCf(P1), otherwise a test
whose only trace coincides with trace(c2)would be enough to distinguish P2 and P1 when considering successful test-driven
computations of length n. �

In the following, given t ∈ Name∗ and θ ∈ (R>0)
∗, such that |t| = |θ |, letCt,θ (P) = {| c ∈ Cf(P) | trace(c) = t∧time(c) =

θ |} be the multiset of finite-length computations of P with concrete trace t and stepwise average duration θ . Then, let
Ct,θϵ (P) = {| c ∈ Cf(P) | trace(c) = t ∧ ∀i = 1, . . . , |c|. θ[i] ≤ time(c)[i] ≤ θ [i] + ϵ |} be the multiset of finite-length
computations of P with concrete trace t and stepwise average duration confined between θ and θ + ϵ.

Lemma 3.5. Let P1, P2 ∈ P . Whenever P1 ∼
ϵ
MT,slow P2 then for every Ct,θ (P1), where t ∈ Name∗ and θ ∈ (R>0)

∗, it holds that:

prob(Ct,θ (P1)) = prob(Ct,θϵ (P2)).

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 79

Proof. We proceed by induction on the number n of disjoint multisets of finite-length computations with a given trace and
stepwise average duration occurring in Cf(P1). The base case n = 0 is trivial.

Let us assume n > 0 and consider any nonemptymultiset Ct ′,θ ′(P1) such that there exist T ∈ TR, θ ∈ (R>0)
∗, and 1 ≤ i ≤

|θ | satisfying the conditions Ct ′,θ ′(P1) ⊆ SC
|θ |

≤θ (P1, T) and θ ′
[i] = max{time(c)[i] | c ∈ SC

|θ |

≤θ (P1, T)}, for which we define a

new sequence θ̄ = θ except θ̄ [i] = θ [i] − ϵ̄, with ϵ̄ ∈ R>0 such that SC
|θ̄ |

≤θ̄
(P1, T) contains all the multisets of computations

occurring in SC
|θ |

≤θ (P1, T) except Ct ′,θ ′ . By virtue of Lemma 3.4 it must be that Ct ′,θ ′
ϵ
(P2) ⊆ SC

|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T) but

Ct ′,θ ′
ϵ
(P2) ⊈ SC

|θ̄ |

≤θ̄+ϵ,SC|θ̄ |(P1,T)
(P2, T). Hence, since P1 ∼

ϵ
MT,slow P2, it holds that prob(Ct ′,θ ′(P1)) = prob(Ct ′,θ ′

ϵ
(P2)). By the

induction hypothesis, the analogous result holds for all the remaining Ct ′′,θ ′′(P1). �

Proposition 3.6. Let P1, P2 ∈ P . Then, P1 ∼MT P2 iff P1 ∼
0
MT,slow P2.

Proof. The result is a consequence of the equality C≤θ+0,C ′ = C . �

Proposition 3.7. Let P1, P2, P3 ∈ P and ϵ, γ ∈ R≥0. If P1 ∼
ϵ
MT,slow P2 and P2 ∼

γ

MT,slow P3, then P1 ∼
δ
MT,slow P3 for some

δ ≤ ϵ + γ .

Proof. Let T ∈ TR and θ ∈ (R>0)
∗. By hypothesis, we have that:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T))

and:

prob(SC
|θ |

≤θ (P2, T)) = prob(SC
|θ |

≤θ+γ ,SC|θ |(P2,T)
(P3, T)).

By virtue of Lemma 3.4, it holds that ∃c1 ∈ Cf(P1) iff ∃c2 ∈ Cf(P2) such that trace(c1) = trace(c2) and time(c1) ≤ time(c2) ≤

time(c1) + ϵ iff ∃c3 ∈ Cf(P3) such that trace(c2) = trace(c3) and time(c2) ≤ time(c3) ≤ time(c2) + γ , from which we derive
the following relation: there exists δ ≤ ϵ + γ such that ∃c1 ∈ Cf(P1) iff ∃c3 ∈ Cf(P3) such that trace(c1) = trace(c3) and
time(c1) ≤ time(c3) ≤ time(c1) + δ. We now prove the equality:

prob(SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T)) = prob(SC

|θ |

≤θ+δ,SC|θ |(P1,T)
(P3, T)).

By virtue of the relation surveyed above, for all t ′ ∈ Name∗ and θ ′
∈ (R>0)

∗ such that |t ′| = |θ ′
|, it holds that

Ct ′,θ ′(P2) ⊆ SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T) iff Ct ′,θ ′

γ
(P3) ⊆ SC

|θ |

≤θ+δ,SC|θ |(P1,T)
(P3, T). Hence, by virtue of Lemma 3.5, we derive that

prob(Ct ′,θ ′(P2)) = prob(Ct ′,θ ′
γ
(P3)) from which we obtain the equality above and, as a consequence, the expected result:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ+δ,SC|θ |(P1,T)
(P3, T)). �

Proposition 3.8. Let P,Q , P ′,Q ′
∈ P , and ϵ ∈ R≥0. If (i) P ∼

ϵ
MT,slow Q , (ii) P ∼MT P ′, and (iii) Q ∼MT Q ′, then P ′

∼
ϵ
MT,slow Q ′.

Proof. Let T ∈ TR and θ ∈ (R>0)
∗. By virtue of (ii) and (i):

prob(SC
|θ |

≤θ (P
′, T)) = prob(SC

|θ |

≤θ (P, T)) = prob(SC
|θ |

≤θ+ϵ,SC|θ |(P,T)
(Q , T)).

Now, by virtue of Lemma 3.5 and (iii), it holds that:

prob(SC
|θ |

≤θ+ϵ,SC|θ |(P,T)
(Q , T)) = prob(SC

|θ |

≤θ+ϵ,SC|θ |(P,T)
(Q ′, T))

and, again by virtue of Lemma 3.5 and (ii), it holds that:

prob(SC
|θ |

≤θ+ϵ,SC|θ |(P,T)
(Q ′, T)) = prob(SC

|θ |

≤θ+ϵ,SC|θ |(P ′,T)
(Q ′, T))

from which the result follows. �

We conclude the discussion concerning the properties of ∼
ϵ
MT,slow by observing that the alternative characterization

expressed in Corollary 2.8 is preserved in this relaxed framework.

Proposition 3.9. Let P1, P2 ∈ P and ϵ ∈ R≥0. Then, P1 ∼
ϵ
MT,slow P2 iff for all T ∈ TR,c and θ ∈ (R>0)

∗ of average amounts of
time:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T)).

Proof Sketch. We first observe that Corollary 2.8 is a consequence of an alternative characterization of ∼MT that fully
abstracts from tests by considering, instead, computations that are extended at each step with the set of visible action
names enabled by the environment at that step [5]. The same characterization applies also to ∼

ϵ
MT,slow. In particular, in the

case of SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T) it is sufficient to replace in the related proof each occurrence of the condition ≤ θ with

≤ θ + ϵ, SC|θ |(P1, T) and to extend analogously the verification of the θ-constraint according with Definition 3.1. �

80 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

After the introduction of ∼
ϵ
MT,slow, it is natural to investigate its counterpart ∼

ϵ
MT,fast that allows a process term P1 to

be approximated by a process term P2 that is ‘‘slightly faster’’ than P1. As opposite to the argument applied in the case of
∼

ϵ
MT,slow, when considering the successful T -driven computations of P2 with respect to θ ∈ (R>0)

∗, we should not count
every computation that satisfies the θ-constraint with stepwise average duration that is lower, up to a threshold ϵ ∈ R≥0,
than that of a corresponding successful T -driven computation of P1 which, instead, does not satisfy the θ-constraint. This
intuition results into the following symmetric reformulations of Definitions 3.1 and 3.2.
Definition 3.10. Let C, C ′ be multisets of finite-length computations, ϵ ∈ R≥0, and θ ∈ (R>0)

∗. The multiset of
computations of C≤θ reduced with respect to ϵ and C ′ is given by:

C≤θ−ϵ,C ′ = C≤θ − {| c ∈ C | c ∈ C≤θ ∧ ∃c ′
∈ C ′. c ′

∉ C ′

≤θ ∧ ∀i = 1, . . . , |c|.
time(c ′)[i] − ϵ ≤ time(c)[i] ≤ time(c ′)[i] |}. �

Definition 3.11. Let P1, P2 ∈ P and ϵ ∈ R≥0. We say that P2 is a fast Markovian testing ϵ-approximation of P1, written
P1 ∼

ϵ
MT,fast P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)

∗ of average amounts of time:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ−ϵ,SC|θ |(P1,T)
(P2, T)). �

By following symmetric arguments, through a trivial recasting it is possible to prove the counterparts of Lemmata 3.4
and 3.5, from which we immediately derive the counterparts of Propositions 3.6–3.8, and, similarly, Proposition 3.9.

3.1.1. Verification algorithm
The temporal approximations of Markovian testing equivalence can be decided in polynomial time by exploiting a

smooth reworking of the algorithm for ∼MT, because the main objective – i.e. equating the execution probability of certain
computations – does not change.

The original algorithmworks as follows. Firstly, we observe that∼MT coincideswithMarkovian ready equivalence, which
is verified by reducing it to probabilistic ready equivalence under a suitable transformation of the semantics of the process
terms to compare, say P1 and P2. The labeled continuous-time Markov chains underlying [[P1]] and [[P2]] are transformed
into corresponding embedded labeled discrete-time Markov chains, say [[P1]]d and [[P2]]d, in the following way:

• Turn the rate of each transition into the corresponding execution probability. This is obtained by dividing the transition
rate by the total exit rate of its source state.

• Augment the name of each transition with the total exit rate of its source state.

While the first step is needed to turn rates into probabilities, the second step is motivated by the fact that the state condition
concerning the average sojourn time imposed by ∼MT should not be lost when passing from the Markovian setting to the
probabilistic setting.

Secondly, probabilistic ready equivalence is known to be decidable [15] by applying the algorithm for probabilistic
language equivalence [17] as follows:

a. Compute the equivalence relation R equating any two states of [[P1]]d and [[P2]]d whenever the two sets of augmented
action names labeling the transitions departing from the two states are equal.

b. For each equivalence class R induced by R, consider the two probabilistic automata U1 and U2 that are obtained by
extending [[P1]]d and [[P2]]d, respectively, with the accepting set R. Then, apply the algorithm of [17] to decide probabilistic
language equivalence for these automata.

Note that, by construction, [[Pi]], [[Pi]]d, and Ui have the same number of states ni, with i ∈ {1, 2}.
Now, we elucidate item b. in detail. Let us denote with AugName the set of augmented action names labeling the

transitions of U1 and U2. The algorithm of [17] performs a breadth-first visit of the tree containing a node for each element
of AugName∗ and establishes the linear independence of state probability vectors associated with a finite subset of the tree
nodes.

To borrow terminology used in [17],U1 andU2 are equivalent iff for each σ ∈ AugName∗ the accepting probabilities of σ
for these automata are equal. Formally, ρ1M1(σ)η1 = ρ2M2(σ)η2, where for i ∈ {1, 2} we have that ρi is an ni-dimensional
row vector representing the initial state distribution, ηi is an ni-dimensional column vector such that the i-th entry is 1 if it
corresponds to an accepting state and 0 otherwise, and Mi(σ) is a matrix such that Mi(σ)[j, k] is the probability of reading
σ along paths from the j-th state to the k-th state. The equation above can be reformulated as follows:

∀σ ∈ AugName∗
: [ρ1 ρ2]

[
M1(σ) 0n1×n2
0n2×n1 M2(σ)

] [
η1

−η2

]
= 0

where 0n×m is the (n×m)-dimensional zeromatrix. The vector–matrixmultiplication in the formulation above, call it P1,2(σ),
represents the state probability vector induced by σ . The idea is to find a basis V of vectors generating all the possible state
probability vectors P1,2(σ), with σ ∈ AugName∗, and to check whether for all v ∈ V : v [η1 − η2]

T
= 0.

Initially, V is an empty set and an empty queue is initialized by adding the empty string to it. While the queue is not
empty, its first element σ is removed and if the related state probability vector v, which can be computed in time O(n2),
does not belong to the vector space generated by V – the cost of this check is O(n3) – then v is added to V and σ ◦ a to
the queue for each a ∈ AugName. Whenever a basis V of (at most) n elements is generated, the algorithm returns ‘yes’ if
v [η1 − η2]

T
= 0 for all v ∈ V and ‘no’ if at least one state probability vector fails to meet the condition.

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 81

The time complexity of the algorithm of [17] is O(n4) (where n = n1 + n2) and since it is executed once for each class
R induced by R, the time complexity of the overall algorithm is O(n5). A reworking of this algorithm applies as well in the
case of ∼ϵ

MT,slow and ∼
ϵ
MT,fast. The two modifications to consider are as follows. Firstly, replace Markovian ready equivalence

with the corresponding relaxed version that equates to the slow (resp. fast) approximation ofMarkovian testing equivalence.
Secondly, relax item a. by imposing that a state of [[P1]]d is related to a state of [[P2]]d (i.e. they are put into the same accepting
set) iff the two sets of action names labeling the transitions departing from the two states coincide and the average sojourn
time associated with the state of [[P2]]d is ≥ (resp. ≤), up to ϵ, with respect to the average sojourn time associated with the
state of [[P1]]d. These modifications do not alter the complexity of the overall algorithm, which is still O(n5).

3.2. Approximating probability

By following the same intuitions surveyed in the previous section, introducing a relaxation at the level of the probabilistic
behavior of process terms would result into the following definition.

Definition 3.12. Let P1, P2 ∈ P and ϵ ∈ R≥0. We say that P2 is a probabilistic Markovian testing ϵ-approximation of P1,
written P1 ∼

ϵ
MT,prob P2 iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)

∗ of average amounts of time:

|prob(SC
|θ |

≤θ (P1, T)) − prob(SC
|θ |

≤θ (P2, T))| ≤ ϵ. �

The good properties stating that∼ϵ
MT,prob is a conservative extension of∼MT, which are represented by an adequate recast

of Propositions 3.6–3.8, are easily guaranteed.
Unfortunately, we cannot argue similarly for the verification algorithm.We recall that in the exact setting the problem of

verifying ∼MT corresponds to checking probabilistic language equivalence for a given set of pairs of probabilistic automata
(see Section 3.1.1). By virtue of the transformations from labeled continuous-time Markov chains to probabilistic automata
described in Section 3.1.1, we derive that the verification of ∼

ϵ
MT,prob is an instance of the probabilistic language similarity

problem. However, the problem of deciding whether two probabilistic automata accept the same input strings with close
probabilities is undecidable [10], meaning that ∼

ϵ
MT,prob is undecidable.

As discussed in the related work section, in the literature several different approaches – mainly based on bisimulation
based semantics – have been proposed to overcome the limitations deriving from the introduction of a tolerance to
fluctuations in the probabilistic behaviors. As an alternative, naive approach, in the next section we will show that
decidability can be obtained by relaxing the condition over tests.

3.3. Approximating tests

While so far we have restricted the comparison between process terms to their quantitative properties, in this section
we consider a notion of approximation that is based on the exemplary behavior of the tests guiding the comparison.
The proposed approach is inspired by [9], where processes are compared with respect to an event log describing typical
behaviors. Processes are defined in terms of Petri nets, while the event log is a multiset of firing sequences. In this setting,
the degree with which an alternative model P2 approximates the original model P1 is estimated by measuring the mutual
overlap in (partially) fitting these sequences, by comparing all enabled transitions at any point in each sequence. This idea
results into two measures expressing precision and recall metrics. Precision establishes how much of the behavior of the
alternative model P2 exists in the behavior of the original model P1 (soundness of the approximation). Recall expresses the
fraction of behaviors of P1 that is covered by P2 (completeness of the approximation).

Firstly, we recast the definition of event log in the setting of Markovian testing equivalence, by observing that the notion
of typical behavior with respect to which the comparison is conducted is explicitly represented by the set of canonical
reactive tests. Therefore, while in [9] it is suggested to define the event log through simulation or by describing by hand
some behavior of interest, here we formally define an event log as a finite subset of T ∈ TR,c, call it TR,c,φ , whose elements
are tests satisfying properties described in terms of a logical formula φ of any variant of the classical Hennessy–Milner logic.
In general, tests belonging to TR,c,φ represent the set of typical behaviors parameterized by φ which guide the estimation of
the degree of similarity between process terms.

Secondly, we use a test-based formulation of the fitness notion to estimate the similarity between tests. Themotivation is
that we intend to relax ∼MT – which imposes to compare the process terms P1 and P2 under the same test T – by permitting
the comparison between P1 under a test T1 and P2 under a test T2 such that T2 is an approximation of T1. In other words, if
P1 satisfies a test with a certain probability and within a given amount of time, then we assume that P2 can approximate the
behavior of P1 by satisfying with the same probability and by the same amount of time another test that fits the first test
according to a quantitative notion of test similarity.

Wenow recast from [9] the two formulations of behavioral precision and recall for canonical test similarity. Let trace(T , s)
be the concrete trace associated with the unique successful computation of the canonical reactive test T , |T | be the length
of this trace, and Ti be the i-th process term of it, such that T1 ::= T and T|T | is the state that reaches success in one step.
Then, ∀i = 1, . . . , |T |, enabled(T , i, s) = {trace(T , s)[i]} contains the action name associated with the transition belonging
to the successful computation of T that is enabled at the i-th step. Intuitively, the similarity between two canonical tests is
evaluated in terms of their capability of fitting the same successful computation.

82 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

Table 1
Transitivity relations for prec and rec: z, w, x, y ∈ [0, 1[.

prec(T1, T2) rec(T1, T2) prec(T2, T3) rec(T2, T3) prec(T1, T3) rec(T1, T3)
z w x y ≤ 1 ≤ 1
z w x 1 < 1 ≥ w

z w 1 y ≤ 1 ≤ w

z w 1 1 z w

z 1 x y ≤ x ≤ 1
z 1 x 1 < x 1
z 1 1 y ≤ 1 ≤ 1
z 1 1 1 z 1
1 w x y ≥ x ≤ 1
1 w x 1 ≥ x ≥ w

1 w 1 y 1 < w

1 w 1 1 1 w

1 1 x y x y
1 1 x 1 x 1
1 1 1 y 1 y
1 1 1 1 1 1

Definition 3.13. The precision function prec : TR,c × TR,c → [0, 1] is:

prec(T , T ′) =
1

|T ′ |

|T ′
|−

i=1

|(enabled(T , i, s) ∩ enabled(T ′, i, s))|

while the recall function rec : TR,c × TR,c → [0, 1] is:

rec(T , T ′) =
1
|T |

|T |−
i=1

|(enabled(T , i, s) ∩ enabled(T ′, i, s))|. �

At each step the two transitions belonging to the successful computations of T and T ′ are compared, while the transitions
leading to failure in one step are not considered, because their impact upon the estimation of precision and recall would
contrast with the notion of Markovian testing equivalence, which is based on properties related to the behavior of the
successful computations.

Note that T and T ′ are not imposed to have the same length. For instance, if |T | = 2 · |T ′
| = 2 · n and the behaviors of T

and T ′ coincide in the first n steps, then prec(T , T ′) = 1 because each behavior of T ′ is possible according to the behavior of
T , while rec(T , T ′) =

1
2 because only half of the behavior of T is covered by the behavior of T ′.

Example 3.14. Consider the following tests for the running example:

T1 = <arrive, ∗1>.(<serve, ∗1>.s + <fail, ∗1>.f)
T2 = <arrive, ∗1>.(<serve, ∗1>.f + <fail, ∗1>.s)

modeling opposite reactions of the first core to the arrival of a single request. Then, prec(T1, T2) = rec(T1, T2) = 0.5. Indeed,
they coincide in the first step, while in the second step they behave in opposite ways because we distinguish transitions
leading to success from those leading to failure. Without this distinction, it would result prec(T1, T2) = rec(T1, T2) = 1.

Precision and recall are mutually symmetric, prec(T , T ′) = rec(T ′, T), and satisfy the transitivity relations reported in
Table 1. The transitivity proofs are a straightforward recast of those in [9].

By using a notion of test similarity based on the precision and recall functions, we now introduce the following relaxation
of ∼MT.

Definition 3.15. Let P1, P2 ∈ P , TR,c,φ be a finite subset of TR,c parameterized by the logical formula φ, and p, r ∈ [0, 1].
We say that P2 is a behavioral Markovian testing (p, r)-approximation of P1 with respect to φ, written P1 ∼

p,r
MT,φ P2, iff for

each T ∈ TR,c,φ there exists T ′
∈ TR,c,φ such that for each sequence θ ∈ (R>0)

∗ of average amounts of time:

1. prec(T , T ′) ≥ p and rec(T , T ′) ≥ r .
2. prob(SC

|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P2, T
′)). �

Note that ∼
p,r
MT,φ relies on the comparison between the observed behaviors expressed in terms of test-driven

computations, where instead of a single test we consider a pair of tests that fit almost the same.

Example 3.16. Consider an alternative server for the running example that offers a functionally different service, modeled
through the action name serve′ replacing the action name serve:

Core 1
= <arrive, ∗1>.(<serve′, µ>.Core + <fail, ϕ>.Core).

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 83

We call CS ′ the obtained system. Now, for instance, consider the family of tests satisfying the logical formula:
φ = ⟨arrive⟩(⟨serve⟩true ∨ ⟨serve′

⟩true)
which is finite if we restrict the alphabet of action names occurring in these tests to the set {serve, serve′, arrive, fail}. Hence,
for each test T ∈ TR,c,φ enabling the trace of action names arrive ◦ serve, there exists a test T ′ replacing the occurrence of
serve in the trace with the action name serve′ such that prec(T , T ′) ≥ 0.5 (rec(T , T ′) ≥ 0.5) and, for each θ ∈ (R>0)

∗:

prob(SC
|θ |

≤θ (CS, T)) = prob(SC
|θ |

≤θ (CS
′, T ′))

from which we derive that CS ∼
0.5,0.5
MT,φ CS ′.

Proposition 3.17. Let P1, P2, P3, P4 ∈ P ,TR,c,φ be a finite subset ofTR,c parameterized by the logical formulaφ, and p, r, p′, r ′
∈

[0, 1]. Then:

1. If P1 ∼MT P2 then P1 ∼
1,1
MT,φ P2.

2. If P1 ∼
p,r
MT,φ P2 and P2 ∼

p′,r ′
MT,φ P3 then P1 ∼

u,w
MT,φ P3 where u and w derive from p, r, p′, and r ′ by following the conditions of

Table 1.
3. If (i) P1 ∼

p,r
MT,φ P2, (ii) P1 ∼MT P3, (iii) P2 ∼MT P4, then P3 ∼

p,r
MT,φ P4.

Proof. Let T ∈ TR,c,φ and θ ∈ (R>0)
∗.

Case 1. is an immediate consequence of prec(T , T ′) = rec(T , T ′) = 1 whenever T and T ′ coincide.
Case 2.: by hypothesis, there exists T ′

∈ TR,c,φ such that:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P2, T
′)).

Similarly, we also have T ′′
∈ TR,c,φ such that:

prob(SC
|θ |

≤θ (P2, T
′)) = prob(SC

|θ |

≤θ (P3, T
′′)).

Hence, we obtain:
prob(SC

|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P3, T
′′))

from which the result follows.
To show Case 3., we have to prove that there exists T ′

∈ TR,c,φ such that:

prob(SC
|θ |

≤θ (P3, T)) = prob(SC
|θ |

≤θ (P4, T
′))

with prec(T , T ′) = p and rec(T , T ′) = r . By virtue of (i), there exists T ′
∈ TR,c,φ such that:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P2, T
′))

with prec(T , T ′) = p and rec(T , T ′) = r . By (ii), it must be:

prob(SC
|θ |

≤θ (P1, T)) = prob(SC
|θ |

≤θ (P3, T))

and, similarly, by (iii) we also have:

prob(SC
|θ |

≤θ (P2, T
′)) = prob(SC

|θ |

≤θ (P4, T
′))

from which we obtain the expected result. �

3.3.1. Verification algorithm
The algorithm for ∼MT illustrated in Section 3.1.1 can be applied to check ∼

p,r
MT,φ with the following modifications

concerning the verification of probabilistic language equivalence. The comparison between the probabilistic automata U1
and U2 does not require the computation of a basis for the set of all the possible state probability vectors P1,2(σ), with
σ ∈ AugName∗, as the definition of ∼

p,r
MT,φ is restricted to the finite set of tests parameterized by φ. In particular, the

parameter of interest is the number m of different concrete traces associated with the successful computations of tests
in TR,c,φ . Since we have one such traces for each canonical test,m corresponds (at most) to the number of tests satisfying φ.
Hence, the procedure detailing item b. in Section 3.1.1 is changed as follows.

Firstly, a node of the tree is marked whenever the projection of its string to Name∗ is equal to the concrete trace of the
successful computation of a test satisfying φ. Since tests are nonrecursive, the longest branch (from the root to a leaf) is of
length ≤ n and the string associated with each tree node is of length ≤ n, so that the cost of the additional check is O(n).
Then, the state probability vector is calculated – at cost O(n2) – only for marked nodes, while linear independence is not to
be checked anymore. Secondly, the procedure above terminates whenever all the concrete traces associated with successful
computations have been generated. Hence, the cost is O(m · n2).

Finally, for each state probability vector v, we check whether there exists a possibly different state probability vector v′

such that:
v [η1 0n2]

T
+ v′

[0n1 − η2]
T

= 0
where v, v′ are associated with two tree nodes corresponding to the successful computations of two tests T , T ′

∈ TR,c,φ

satisfying prec(T , T ′) ≥ p and rec(T , T ′) ≥ r . The cost of this check is O(n · m2). Summarizing, the overall cost of the
verification algorithm is O((m · n3) + (n2

· m2)).

84 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

3.4. Joining the three approximations

Every approximation surveyed above deals with an aspect of the similarity problem – time, probability, behavior – in
isolation. In real-world examples, this means that these orthogonal approaches can be used to evaluate limiting scenarios in
which strong requirements constraint two of the three aspects above, while one of the three is perceived as malleable. For
instance, whenever security is an issue, it is commonly accepted that the temporal behavior of programs can be artificially
made worse in order to thwart any possible timing covert channel. Ideally, the secure version of these programs should
not alter the functional and probabilistic properties of the original programs, otherwise new covert channels could arise.
On the other hand, whenever the main issue is safety, it is acceptable to change the behavior of programs in order to make
themmore robust against failures of several different combinations of components. While these changes may alter some of
the functional requirements of these programs – in a way that is controlled through the application of a logical formula φ
parameterizing the behavior approximation of interest – they are not expected to jeopardize the quality of service.

In several real cases, the objectives above can be met only at some cost in terms of trade-offs among the orthogonal
aspects we have considered in this paper. In order to investigate the dependences among these aspects and to obtain,
if possible, a balanced trade-off, it is necessary to provide a unified definition joining the conditions expressed by each
approximation. Thanks to the uniformity of the proposed approaches, the following unified definition is a natural and
obvious consequence of its constituting elements and represents the final (and most important) contribution of this paper.

For notational convenience, we assume that a positive threshold denotes slow Markovian testing approximation and a
negative threshold is used in the case of fast Markovian testing approximation.

Definition 3.18. Let P1, P2 ∈ P and TR,c,φ a finite set of tests. We say that P2 is a Markovian testing approximation of P1
with respect to φ, precision p ∈ [0, 1], recall r ∈ [0, 1], temporal threshold ϵ ∈ R, and probability threshold ν ∈ R≥0,
written P1 ∼

p,r,ϵ,ν
MT,φ P2, iff for each T ∈ TR,c,φ there exists T ′

∈ TR,c,φ such that for all θ ∈ (R>0)
∗:

1. prec(T , T ′) ≥ p and rec(T , T ′) ≥ r .
2. |prob(SC

|θ |

≤θ (P1, T)) − prob(SC
|θ |

≤θ+ϵ,SC|θ |(P1,T)
(P2, T))| ≤ ν. �

Example 3.19. Assume that the two cores of the running example are replaced by an alternative model ensuring more
efficiency from a performance standpoint but offering a slightly different service from the functional standpoint. In real
systems, this trade-off can be a consequence of the application of code optimization techniques. Such a model can be
described as follows:

Core′ 1
= <arrive, ∗1>.(<serve′, µ + ϵ>.Core′

+ <fail, ϕ − ϵ>.Core′).

Let CS ′ 1
= Arrivals ‖{arrive}(Core′

‖∅ Core′). Then, under the family of tests satisfying the logical formula:

φ = ⟨arrive⟩(⟨fail⟩true ∨ ⟨serve⟩true ∨ ⟨serve′
⟩true∨

⟨arrive⟩(⟨fail⟩true ∨ ⟨serve⟩true ∨ ⟨serve′
⟩true))

it holds that the new system CS ′ is a Markovian testing approximation of the original system CS with respect to φ, precision
0.5, recall 0.5, temporal threshold 0, and probability threshold ϵ.

All the conservativeness properties of this unifying definition are inherited from the results shown in the previous
sections.

Proposition 3.20. Let P1, P2, P3, P4 ∈ P , TR,c,φ be a finite subset of TR,c parameterized by the logical formula φ. Moreover, let
ϵ, ϵ′

∈ R, ν, ν ′
∈ R≥0, and p, r, p′, r ′

∈ [0, 1]. Then:

1. If P1 ∼MT P2 then P1 ∼
1,1,0,0
MT,φ P2.

2. If P1 ∼
p,r,ϵ,ν
MT,φ P2 and P2 ∼

p′,r ′,ϵ′,ν′

MT,φ P3 then P1 ∼
u,w,δ,γ

MT,φ P3, where δ ≤ ϵ + ϵ′, γ ≤ ν + ν ′, while u and w derive from p, r, p′,
and r ′ by following the conditions of Table 1.

3. If (i) P1 ∼
p,r,ϵ,ν
MT,φ P2, (ii) P1 ∼MT P3, (iii) P2 ∼MT P4, then P3 ∼

p,r,ϵ,ν
MT,φ P4.

Proof. Each case is a consequence of the corresponding result shown in the previous sections. �

As far as the verification algorithm is concerned, it is sufficient to add the twomodifications illustrated in Section 3.1.1 to
the reworking of the algorithm for∼MT described in the previous section. The unique additional relaxation concerns the final
condition, which becomes |v [η1 0n2]

T
+ v′

[0n1 − η2]
T
| ≤ ν. Hence, the overall complexity is the same as that determined

in Section 3.3.1.

A. Aldini / Theoretical Computer Science 413 (2012) 73–86 85

4. Conclusions and related work

In the setting of approximate notions of behavioral equivalences, two alternative research lines emerged in the formal
methods community, which we divide into pseudometric-based approaches and (intransitive) relation-based approaches.
In both cases, the typical notion of equivalence that is relaxed is bisimulation. The main difficulties behind the definition of
the approximation concern the tradeoff between efficiency of the verification algorithm and interpretation of the obtained
distance in terms of, e.g., influence of the degree of similarity on the observable differences between the quantitative profiles
of the models.

In the pseudometric approach, a function d, inspired by Hutchinson-like metrics on probability measures, is defined
that yields a (real number) distance for the models, say P and Q , such that some good properties are preserved like, e.g.,
d(P,Q) = 0 if and only if P andQ are equivalent and d satisfies the triangular inequality, i.e. d(P,Q) ≤ (P, R)+(R,Q). Then,
the classical logical characterization of bisimulation can be turned into an alternative characterization using a specific set
of functions into the reals instead of the logic. Two models are bisimilar if and only if they satisfy the same logical formulas,
if and only if they have the same values for each functional expression of the set. In the case they are not bisimilar, the set
of functional expressions induces a distance function d with the good properties mentioned above. This idea is formalized,
e.g., in [11,18].

While these approaches provide interesting results in terms of, e.g., non-expansiveness with respect to process
combinators like parallel composition (non-expansiveness is an analogue of the congruence property of bisimulation), they
suffer from some practical limitations. For instance, the pseudometrics provide a distance between process states, but do
not suggest which pairs of states would be worth comparing. This is because the process states are not compared through
any relation relaxing bisimulation. Moreover, it is not easy to establish a clear relation between the measure estimating
similarity and its interpretation in a practical, activity oriented setting.

Other approaches rely on relations approximating bisimulation equivalence (see, e.g., [4,12,13]). These relations cannot
be transitive and, for this reason, their investigation did not receive attention for many years. However, they can offer an
interesting framework for real application domains.

For instance, [4] proposes an intuitive relaxation of weak probabilistic bisimulation, which is in direct relation with
approximate lumping forMarkov chains. The characterization of lumpability is useful, because the knowledge of a lumpable
partition of the states of a Markov chain allows the generation of a (smaller) aggregated Markov chain that leads to several
results for the original one without an error. In this setting, approaches that rely on perturbation theory establish bounds
on the error made when approximating lumpability. These bounds are related to the numerical analysis of Markov chains
and, therefore, provide a clear interpretation of their impact upon the performance behavior of a system. On the other
hand, meta-heuristics search techniques are needed to make the verification algorithm of approximate weak probabilistic
bisimulation tractable in practice.

Similarly, [12] defines approximate bisimulation for probabilistic processes with logic-based and game-theoretic
characterizations, a poly-time verification algorithm, but strong usability limitations with respect to its aggregation power.
As another example, [13] introduces a relation approximating bisimulation in a framework in which the distance between
processes is measured in terms of the norm of a linear operator applied to a matrix representation of the processes with
respect to a classification operator based on the approximating relation. The computation of this relation is efficient, but the
measure strictly depends on the chosen norms and classification linear operators, with an impact on the interpretation of
the measure that is not completely intuitive.

In this paper, we have shown that in the framework of testing equivalence forMarkovian processes it is possible to define
several notions of approximation that meet good properties and can be verified efficiently. In order to compare these results
with previous approaches, it is necessary to consider a notion of bisimulation for Markovian processes, which should be
relaxed according to the orthogonal strategies proposed in this paper. In this case, it would be interesting to confirm that, as
expected, the notions of approximate Markovian bisimulation are strictly finer than the approximate variants of Markovian
testing equivalence. Finally, it is left as a future work the study of possible logic-based characterizations and, at least, sound
axiomatizations of approximate Markovian testing equivalence.

Appendix. Approximate Markovian ready equivalence

The results concerning the verification algorithms are related to Markovian ready equivalence. In this section, we show
how to approximate it, which represents a necessary condition to reduce the problem of deciding the approximate versions
of Markovian testing equivalence to a probabilistic language equivalence problem (as shown in Section 3.1.1).
Definition A.1. Let P ∈ P , c ∈ Cf(P), and α ∈ (Namev)∗. We say that c is compatible with α iff:

trace(c) = α.

We denote with CC(P, α) the multiset of computations in Cf(P) that are compatible with α. �

Definition A.2. Let P ∈ P , c ∈ Cf(P), and ρ ≡ (α, R) ∈ (Namev)∗ × 2Namev . We say that computation c is compatible with
the ready pair ρ iff c ∈ CC(P, α) and the set of names of visible actions that can be performed by the last state reached
by c coincides with the ready set R. We denote with RCC(P, ρ) the multiset of computations in Cf(P) that are compatible
with ρ. �

86 A. Aldini / Theoretical Computer Science 413 (2012) 73–86

Definition A.3. Let P1, P2 ∈ P . We say that P1 is Markovian ready equivalent to P2, written P1 ∼MR P2, iff for all ready pairs
ρ ∈ (Namev)∗ × 2Namev and sequences θ ∈ (R>0)

∗ of average amounts of time:

prob(RCC
|θ |

≤θ (P1, ρ)) = prob(RCC
|θ |

≤θ (P2, ρ)). �

In the following, we show how to relax ∼MR with respect to ∼
ϵ
MT,slow. The case of ∼

ϵ
MT,fast follows symmetrically as

expected.

Definition A.4. Let P1, P2 ∈ P . We say that P2 is a slowMarkovian ready approximation of P2, written P1 ∼
ϵ
MR,slow P2, iff for

all ready pairs ρ ∈ (Namev)∗ × 2Namev and sequences θ ∈ (R>0)
∗ of average amounts of time:

prob(RCC
|θ |

≤θ (P1, ρ)) = prob(RCC
|θ |

≤θ+ϵ,RCC|θ |(P1,ρ)
(P2, ρ)). �

Proposition A.5. Let P1, P2 ∈ P . Then, P1 ∼
ϵ
MR,slow P2 ⇔ P1 ∼

ϵ
MT,slow P2.

Proof. ⇒) The result derives by virtue of the alternative characterization mentioned in the proof of Proposition 3.9 and of
the corresponding result of [5]. ⇐) The result derives by virtue of Lemma 3.4 and of the corresponding result of [5]. �

In the case of ∼p,r
MT,φ , we can follow the same intuition if we assume a notion of precision and recall for ready pairs that

derives directly from their test-based counterparts.
Given a ready pair ρ ≡ (α, R), we assume that |ρ| denotes the length of the string α and ρ(i) is the i-th action name

occurring in α. Then, the precision and recall functions for ready pairs are defined as:

prec(ρ, ρ ′) =
1

|ρ′|

|ρ′
|−

i=1

|(ρ(i) ∩ ρ ′(i))|

rec(ρ, ρ ′) =
1

|ρ|

|ρ|−
i=1

|(ρ(i) ∩ ρ ′(i))|.

Proposition A.6. Letρ ≡ (α, R) andρ ′
≡ (α′, R′) be two ready pairs and T , T ′ be two canonical reactive tests. If trace(T , s) = α

and trace(T ′, s) = α′ then prec(ρ, ρ ′) = prec(T , T ′) and rec(ρ, ρ ′) = rec(T , T ′).

Proof. It is an immediate consequence of the definitions of the precision and recall functions. �

References

[1] A. Aldini, Approximate testing equivalence based on time, probability, and observed behavior, in: Int. Workshop on Quantitative Aspects of
Programming Languages, QAPL’10, in: EPTCS, vol. 28, 2010, pp. 1–15.

[2] A. Aldini, M. Bernardo, A formal approach to the integrated analysis of security and QoS, Journal of Reliability Engineering & System Safety 92 (11)
(2007) 1503–1520.

[3] A. Aldini, M. Bernardo, F. Corradini, A Process Algebraic Approach to Software Architecture Design, Springer, 2010.
[4] A. Aldini, A. Di Pierro, Estimating the maximum information leakage, Journal of Information Security 7 (2008) 219–242.
[5] M. Bernardo, Markovian testing equivalence and exponentially timed internal actions, in: Int. Workshop on Quantitative Formal Methods, QFM 2009,

in: EPTCS, vol. 13, 2009, pp. 13–25.
[6] C. Canal, E. Pimentel, J.M. Troya, Compatibility and inheritance in software architectures, Science of Computer Programming 41 (2001) 105–138.
[7] R. Cleaveland, O. Sokolsky, Equivalence and preorder checking for finite-state systems, in: Handbook of Process Algebra, Elsevier, 2001, pp. 391–424.
[8] R. De Nicola, D. Latella, M. Loreti, M. Massink, Rate-based transition systems for stochastic process calculi, in: Int. Colloquium on Automata, Languages

and Programming, ICALP’09, in: LNCS, vol. 5556, 2009, pp. 435–446.
[9] A.K.A. de Medeiros, W.M.P. van der Aalst, A.J.M.M. Weijters, Quantifying process equivalence based on observed behavior, Data & Knowledge

Engineering 64 (2008) 55–74.
[10] M. de Rougemont,M. Tracol, Static analysis for probabilistic processes, in: Int. Symp. on Logic in Computer Science, LICS’09, IEEE-CS, 2009, pp. 299–308.
[11] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, Metrics for labelled markov processes, Theoretical Computer Science 318 (2004) 323–354.
[12] J. Desharnais, F. Laviolette, M. Tracol, Approximate analysis of probabilistic processes: logic, simulation and games, in: Int. Conf. on Quantitative

Evaluation of Systems, QEST’08, IEEE-CS, 2008, pp. 264–273.
[13] A. Di Pierro, C. Hankin, H. Wiklicky, Quantifying timing leaks and cost optimisation, in: Conf. on Information and Comm. Security, ICICS’08, in: LNCS,

vol. 5308, Springer, 2008, pp. 81–96.
[14] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[15] D.T. Huynh, L. Tian, On some equivalence relations for probabilistic processes, Fundamenta Informaticae 17 (1992) 211–234.
[16] B. Klin, V. Sassone, Structural operational semantics for stochastic process calculi, in: Int. Conf. on Foundations of Software Science and Computational

Structures, FOSSACS’08, in: LNCS, vol. 4962, Springer, 2008, pp. 428–442.
[17] W.G. Tzeng, A polynomial-time algorithm for the equivalence of probabilistic automata, SIAM Journal on Computing 21 (1994) 216–227.
[18] F. van Breugel, J. Worrell, A behavioural pseudometric for probabilistic transition systems, Theoretical Computer Science 331 (2005) 115–142.

	Approximating Markovian testing equivalence
	Introduction
	Markovian process algebra
	Syntax and semantics
	Markovian testing equivalence

	Approximating time, probability, and behavior
	Approximating time
	Verification algorithm

	Approximating probability
	Approximating tests
	Verification algorithm

	Joining the three approximations

	Conclusions and related work
	Approximate Markovian ready equivalence
	References

