On the Excluded Minors for Quaternary Matroids

J. F. Geelen
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl
E-mail: jfgeelen@math.uwaterloo.ca

J. G. Oxley and D. L. Vertigan

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918
E-mail: oxley@math.lsu.edu, vertigan@math.lsu.edu
iew metadata, citation and similar papers at core.ac.uk

G. P. Whittle

School of Mathematical and Computing Sciences, Victoria University, PO Box 600, Wellington, New Zealand E-mail: whittle@kauri.vuw.ac.nz

Received August 19, 1997

This paper strengthens the excluded-minor characterization of GF(4)-representable matroids. In particular, it is shown that there are only finitely many 3 -connected matroids that are not $\mathrm{GF}(4)$-representable and that have no $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}$-, or $\left(F_{7}^{-}\right)^{*}$-minors. Explicitly, these matroids are all minors of $S(5,6,12)$ with rank and corank at least 4 , and $P_{8}^{\prime \prime}$, the matroid that can be obtained from $S(5,6,12)$ by deleting two elements, contracting two elements, and then relaxing the only pair of disjoint circuit-hyperplanes. © 2000 Academic Press

1. INTRODUCTION

Kahn and Seymour had conjectured that the excluded minors for the class of $\mathrm{GF}(4)$-representable matroids are $U_{2,6}, U_{4,6}, P_{6}$, the non-Fano matroid (F_{7}^{-}), and its dual; see [4, p. 205]. It turns out that the complete set of excluded minors for GF(4)-representability contains two more matroids, namely P_{8} and $P_{8}^{\prime \prime}$; see [1]. However, Kahn and Seymour were almost right, as we show in the following theorem.

Theorem 1.1. If M is a 3 -connected non-GF(4)-representable matroid, then either
(i) M has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}$-, or $\left(F_{7}^{-}\right)^{*}$-minor,
(ii) M is isomorphic to $P_{8}^{\prime \prime}$, or
(iii) M is isomorphic to a minor of $S(5,6,12)$ with rank and corank at least 4.
$S(5,6,12)$, which is discussed in detail in [4], is the matroid that is represented over $\mathrm{GF}(3)$ by the following matrix.

$$
\left(\begin{array}{r}
I_{6} \\
\end{array} \quad \left\lvert\, \begin{array}{rrrrrr}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{array}\right.\right) \text {. }
$$

Evidently $S(5,6,12)$ is self-dual. Moreover, it has a 5 -transitive automorphism group. P_{8} is the matroid that is obtained by deleting two elements and contracting two elements from $S(5,6,12)$. Now P_{8} has a unique pair of disjoint circuit-hyperplanes and $P_{8}^{\prime \prime}$ is obtained from P_{8} by relaxing both of these circuit-hyperplanes. These observations and those made before the theorem imply that the matroids satisfying (i), (ii), or (iii) are not quaternary.

The following corollary is a reformulation of Theorem 1.1. For a collection \mathscr{M} of matroids, we denote by $E X(\mathscr{M})$ the class of matroids that have no minors isomorphic to a member of \mathscr{M}.

Corollary 1.2. $E X\left(U_{2,6}, U_{4,6}, P_{6}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$ can be constructed by taking direct sums and 2 -sums of copies of $P_{8}^{\prime \prime}$, minors of $S(5,6,12)$, and quaternary matroids.

We obtain Theorem 1.1 as a consequence of the excluded-minor characterization for quaternary matroids [1].

Theorem 1.3. A matroid M is $G F(4)$-representable if and only if M has no minor isomorphic to any of $U_{2,6}, U_{4,6}, P_{6}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}, P_{8}$, or $P_{8}^{\prime \prime}$.

Theorem 1.1. is an immediate consequence of Theorem 1.3 and the following two theorems. Let \mathscr{M} be a minor-closed family of matroids. A matroid M in \mathscr{M} is called a splitter for \mathscr{M} if no 3-connected matroid in \mathscr{M} has a proper M-minor.

FIG. 1. Some rank-3 matroids.

Theorem 1.4. $\quad P_{8}^{\prime \prime}$ is a splitter for $\operatorname{EX}\left(U_{2,6}, U_{4,6}, P_{6}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$.

Theorem 1.5. If M is a 3-connected matroid in $E X\left(U_{2,6}, U_{4,6}, P_{6}, F_{7}^{-}\right.$, $\left.\left(F_{7}^{-}\right)^{*}\right)$, and M has a P_{8}-minor, then M is isomorphic to a minor of $S(5,6,12)$.

Using Seymour's Splitter Theorem [5, 4], Theorems 1.4 and 1.5 can be proved by a finite case check. While we use this approach, we have endeavoured to find elegant techniques to reduce the number of cases.

Theorem 1.6 (Splitter Theorem). Let M and N be 3-connected matroids such that M is neither a wheel nor a whirl, N has at least four elements, and M contains a proper N-minor. Then M has an element x such that either $M \backslash x$ or M / x is 3 -connected with an N-minor.

We assume that readers are familiar with elementary notions in matroid theory, including representability, minors, duality, connectivity, and 1- and 2 -sums. We use the notation and terminology of [4]. Figure 1 depicts some well-known matroids that are referred to in the paper. We will describe P_{8} and $P_{8}^{\prime \prime}$ in more detail in the next section.

2. DEALING WITH P_{8}

In this section, we prove Theorem 1.5. We begin by describing some useful properties of P_{8}. This matroid has a very natural geometric representation; see Fig. 2. This representation is obtained by rotating a face of the cube by 45 degrees. It is obvious from this description that P_{8} has a transitive automorphism group. (However, there are automorphisms of P_{8} that are not apparent from this description.) By this transitivity, all single-element contractions of P_{8} are isomorphic to $P_{8} / 8$, which is isomorphic to the matroid P_{7} depicted in Fig. 2. It is also not difficult to see that P_{8} is self-dual; its dual is obtained by rotating the twisted face a further 90 degrees. Therefore every single-element deletion of P_{8} is isomorphic to the dual of P_{7}.

FIG. 2. Some interesting matroids.
$P_{8}^{\prime \prime}$ is the matroid obtained from P_{8} by relaxing the circuit-hyperplanes $\{1,2,3,4\}$ and $\{5,6,7,8\}$. From this, it is readily seen that $P_{8}^{\prime \prime}$ is self-dual and has a transitive automorphism group, and that every single-element contraction is isomorphic to P_{7}^{\prime} (which is depicted in Fig. 2).

We use the following lemma [4, Proposition 11.2.16] and theorem [3] (see also [4, p. 367]). The matroid J is a rank-4 self-dual matroid that is not isomorphic to P_{8}.

Lemma 2.1. Let M be a 3 -connected matroid having rank and corank at least three. Then M has a $U_{2,5}$-minor if and only if it has a $U_{3,5}$-minor.

Theorem 2.2. If M is a 3-connected matroid in $\operatorname{Ex}\left(U_{2,5}, U_{3,5}, M\left(K_{4}\right)\right)$, then either M is a whirl, M is isomorphic to J, or M is isomorphic to a minor of $S(5,6,12)$.

Corollary 2.3. If M is a 3 -connected matroid that is not isomorphic to a minor of $S(5,6,12)$, and M has a P_{8}-minor, then there is a minor N of either M or M^{*} and an element x of $E(N)$ such that $N \backslash x$ is isomorphic to P_{8}, and N contains either a $U_{2,5^{-}}$or an $M\left(K_{4}\right)$-minor.

Proof. Let M^{\prime} be a minimal 3 -connected minor of M that has a P_{8} minor and a $U_{2,5^{-}}, U_{3,5^{-}}$, or $M\left(K_{4}\right)$-minor. By the Splitter Theorem, M^{\prime} has an element x such that $M^{\prime} \backslash x$ or M^{\prime} / x is 3 -connected and has a P_{8}-minor. By duality, we may assume that $M^{\prime} \backslash x$ is 3-connected and has a P_{8}-minor. By minimality, $M^{\prime} \backslash x$ has no $U_{3,5^{-}}, U_{2,5^{-}}$, or $M\left(K_{4}\right)$-minor. Therefore, by Theorem 2.2, $M^{\prime} \backslash x$ is isomorphic to a minor of $S(5,6,12)$.

As M^{\prime} has rank and corank at least 3, by Lemma 2.1, M^{\prime} has either a $U_{2,5^{-}}$or $M\left(K_{4}\right)$-minor. Suppose that M^{\prime} has rank at least 5 . Then there exists $y \in E\left(M^{\prime}\right)-x$ such that M^{\prime} / y has a $U_{2,5^{-}}$or $M\left(K_{4}\right)$-minor. Now $M^{\prime} \backslash x / y$ is isomorphic to a minor of $S(5,6,12)$ with rank and corank at
least four. Hence, as $S(5,6,12)$ has a 5 -transitive automorphism group, $M^{\prime} \backslash x / y$ is 3-connected and has a P_{8}-minor. Now M^{\prime} / y is an extension of the 3 -connected matroid $M^{\prime} / y \backslash x$, and, since $M^{\prime} / y \backslash x$ has no $U_{2,5^{-}}$ or $M\left(K_{4}\right)$-minor, x is not in parallel with any element of M^{\prime} / y. Hence M^{\prime} / y is 3 -connected. Moreover, M^{\prime} / y has a P_{8}-minor and a $U_{2,5^{-}}$or $M\left(K_{4}\right)$-minor, contradicting the minimality of M^{\prime}. Therefore, M^{\prime} has rank 4.

An argument similar to that in the last paragraph establishes that the corank of M^{\prime} is 5 . Therefore, taking N to be equal to M^{\prime}, we see that the theorem holds.

Theorem 1.5. is implied by Corollary 2.3 and the following two results.
Lemma 2.4. If $M \backslash x=P_{8}$ and M has an $M\left(K_{4}\right)$-minor, then M has a $U_{2,5^{-}}, F_{7}^{-}-$, or $\left(F_{7}^{-}\right)^{*}$-minor.

Lemma 2.5. If $M \backslash x=P_{8}$ and M has a $U_{2,5}$-minor, then M has a $U_{2,6^{-}}$, $U_{4,6^{-}}, P_{6}, F_{7}^{-}-$, or $\left(F_{7}^{-}\right)^{*}$-minor.

Proof of Lemma 2.4. Suppose that M is in $\operatorname{Ex}\left(U_{2,5}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$. Since M has no $U_{2,5}$-minor and M has rank and corank at least 3, Lemma 2.1 implies that M has no $U_{3,5}$-minor.

We show next that $E(M)-x$ contains an element y such that M / y has an $M\left(K_{4}\right)$-minor. Suppose not. Then, as M has corank $4, M / x$ has an $M\left(K_{4}\right)$-minor. Therefore, $E(M)-x$ contains elements a and b such that $M / x \backslash a, b \cong M\left(K_{4}\right)$. Now $M \backslash a, b, x$ is isomorphic to a matroid obtained from P_{7}^{*} by deleting an element. Thus $M \backslash a, b, x$ has either two or three disjoint series pairs. Now $M \backslash a, b$ has no series pairs, otherwise we could contract an element other than x leaving an $M\left(K_{4}\right)$-minor. Therefore, x is in either two or three 3-element cocircuits of $M \backslash a, b$, and any two such cocircuits have only x in common. Thus, as $M \backslash a, b, \mid x \cong M\left(K_{4}\right)$, it follows that $M \backslash a, b$ is isomorphic to F_{7}^{*} or $\left(F_{7}^{-}\right)^{*}$. Now M certainly has no $\left(F_{7}^{-}\right)^{*}$-minor. Thus $M \backslash a, b \cong F_{7}^{*}$ and so, for every y in $E(M) \backslash\{x, a, b\}$, the matroid M / y has an $M\left(K_{4}\right)$-minor. This contradiction implies that there is, indeed, an element y of $E(M)-x$ such that M / y has an $M\left(K_{4}\right)$-minor. As P_{8} has a transitive automorphism group, we may assume that $y=8$.

Now $M / 8$ is an extension of P_{7} that has no $U_{3,5}$-minor. Furthermore, as P_{7} has no $M\left(K_{4}\right)$-minor and $M / 8$ has an $M\left(K_{4}\right)$-minor, $M / 8$ is 3 -connected. It is not difficult to check that there are just three 3-connected extensions of P_{7} that have no $U_{3,5^{-}}$and hence no $U_{2,5}$-minor; these are depicted in Fig. 3. Note that $M_{2} \backslash a \cong F_{7}^{-}$, and M_{3} has no $M\left(K_{4}\right)$-minor. Hence $M / 8 \cong M_{1}$. Thus, in M, the element x lies on the intersection of the planes spanned by the circuit-hyperplanes $\{2,4,5,8\}$ and $\{1,3,7,8\}$ of P_{8}. We may assume that x is not in the plane of M spanned by $\{1,2,3,4\}$,

FIG. 3. Extensions of P_{7} with no $U_{3,5}$-minor.
otherwise $M \backslash 1,2 \cong\left(F_{7}^{-}\right)^{*}$. To see this, observe that if x is in the plane spanned by $\{1,2,3,4\}$, then the planes $\{1,2,3,4, x\}$ and $\{2,4,5,8, x\}$ of M imply that $\{2,4, x\}$ is a circuit of M. Similarly, the planes $\{1,2,3,4, x\}$ and $\{1,3,7,8, x\}$ of M imply that $\{1,3, x\}$ is a circuit of M. We deduce that $\{2,4,6,7, x\},\{1,3,5,6, x\},\{3,4,5,7\}$, and $\{5,6,7,8\}$ are hyperplanes of M, and it is now not difficult to obtain the contradiction that $M \backslash 1,2 \cong\left(F_{7}^{-}\right)^{*}$.

Next we show that either $M / 1$ or $M / 3$ is 3 -connected. Assume the contrary and note that $M / 1 \backslash x$ is isomorphic to P_{7}, which is 3-connected. Now, as x lies on the plane spanned by $\{1,3,7,8\}$, since $M / 1$ is not 3 -connected, x is parallel to 3,7 , or 8 in $M / 1$. However, as x is not in the plane spanned by $\{1,2,3,4\}$, the element x is not parallel to 3 in $M / 1$. Also x is not parallel to 8 in $M / 1$ since $M / 8$ is 3 -connected. Thus x is parallel to 7 in $M / 1$, and hence $\{1, x, 7\}$ is a line in M. By symmetry, as $M / 3$ is not 3-connected, $\{3, x, 7\}$ is a line in M. Thus $\{1,3,7\}$ is a line in P_{8}. This contradiction completes the proof that either $M / 1$ or $M / 3$ is 3-connected. But P_{8} has an automorphism that swaps 1 and 2 with 3 and 4 , respectively, while fixing all other elements. Therefore, we may assume that $M / 1$ is 3 -connected.

Now $M / 1$ is a 3 -connected extension of P_{7} with no $U_{3,5}$-minor. Furthermore, the point x of the extension is on a 4 -point line with the tip of P_{7}. Thus, $M / 1$ is isomorphic to M_{2} of Fig. 3. However, $M_{2} \backslash a \cong F_{7}^{-}$; a contradiction.

To prove Lemma 2.5, we employ methods used in [1]. For a field \mathbf{F}, two $r \times n$ matrices over \mathbf{F} whose sequences of column labels coincide are equivalent \mathbf{F}-representations of a matroid if one matrix can be obtained from the other by elementary row operations, column scalings, and applying automorphisms of \mathbf{F}. A matroid is uniquely representable over \mathbf{F} if any two F-representations of it are equivalent. If the $r \times n$ matrix $\left(I_{r} \mid D\right)$ with columns labelled $e_{1}, e_{2}, \ldots, e_{n}$ represents a matroid M over \mathbf{F}, it is common to abbreviate this \mathbf{F}-representation by specifying just the matrix D labelling
its rows and columns by $e_{1}, e_{2}, \ldots, e_{r}$ and $e_{r+1}, e_{r+2}, \ldots, e_{n}$, respectively. Such a matrix D will be called a standard \mathbf{F}-representation of M.

A matroid is stable if it cannot be expressed as the direct sum or 2 -sum of two nonbinary matroids. For our purposes, the most important examples of stable matroids are those matroids which simplify to 3-connected matroids. Kahn [2] proved that a quaternary matroid has a unique GF(4)-representation if and only if it is stable. The following corollary of Kahn's theorem is established in [1].

Proposition 2.6. Let M be a matroid, and u, v be a coindependent pair of elements of M such that $M / u, M / v$, and $M / u, v$ are all stable, and $M / u, v$ is connected and nonbinary. If M / u and M / v are both quaternary, then there is a unique quaternary matroid N such that $N / u=M / u$ and $N / v=M / v$.

Proof of Lemma 2.5. Since M has rank four, $E(M)-x$ contains an element a such that M / a has a $U_{2,5}$-minor. Now M / a is isomorphic to an extension of P_{7}. We assert that $E(M)-x-a$ contains an element b such that $M / a, b$ has a $U_{2,5}$-restriction. Suppose not. Then $M / a, x$ has a $U_{2,5}$-restriction. Hence there are at least three elements of M / a that are not on a 3- or 4-point line with x. Let b be one of these points, other than the tip of $M / a \backslash x$. Then $M / a, b$ has a $U_{2,5}$-restriction, as asserted.

We may assume that M has no $U_{2,6}$-minor, so $M / a, b$ simplifies to $U_{2,5}$. Hence $M / a, b$ is stable. Now M / a and M / b are both isomorphic to extensions of P_{7}. Hence M / a and M / b are both stable. We may assume that M / a and M / b are both quaternary. Then, by Proposition 2.6 , there is a unique quaternary matroid N such that $N / a=M / a$ and $N / b=M / b$.

Every pair of points of P_{8} is equivalent, under automorphism, to either $(1,2),(1,3)$ or $(1,8)$. Now $P_{8} / 1,3$ is binary, so no extension of $P_{8} / 1,3$ has a $U_{2,5}$-restriction. Hence we may assume that (a, b) is either $(1,2)$ or $(1,8)$.

Case 1. Suppose that $a=1$ and $b=2$. Note that $M \backslash x / 1, M \backslash x / 2$, and $M \backslash x / 1,2$ are all stable, and that $M \backslash x / 1,2$ is connected and nonbinary. So, by Proposition 2.6, $N \backslash x$ is the unique quaternary matroid such that $N \backslash x / 1=M \backslash x / 1$ and $N \backslash x / 2=M \backslash x / 2$. Therefore, $N \backslash x$ has the following standard GF(4)-representation (where $w^{2}=w+1$).
$\left.\begin{array}{c} \\ 1 \\ 2 \\ 6 \\ 8\end{array} \quad \begin{array}{cccc}3 & 4 & 5 & 7 \\ 0 & 1 & 1 & w \\ 1 & 0 & w & 1 \\ 1 & 1 & 1 & 1 \\ w+1 & w+1 & 1 & 1\end{array}\right)$.

Recall that $N / 1,2$ has a $U_{2,5}$-minor, so a $\operatorname{GF}(4)$-representation for N can be obtained by appending the column $(\alpha, \beta, 1, w)^{T}$ to the above matrix, where α and β are yet to be determined.

First suppose that $\alpha=\beta=0$, and consider the following standard GF(4)-representation of $N \backslash 6$.

1
2
x
8

0 \& 1 \& 1 \& w

1 \& 0 \& w \& 1

1 \& 1 \& 1 \& 1

1 \& 1 \& w+1 \& w+1\end{array}\right)\).

We see that $N \backslash 6 / 1, N \backslash 6 / 2$, and $N \backslash 6 / 1,2$ are all stable, connected, and nonbinary. Furthermore, $N \backslash 6 / 1=M \backslash 6 / 1, N \backslash 6 / 2=M \backslash 6 / 2$, and $N \backslash 6 / 1,2=$ $M \backslash 6 / 1$, 2. So, by Proposition 2.6, $N \backslash 6$ is the unique GF(4)-representable matroid such that $N \backslash 6 / 1=M \backslash 6 / 1$ and $N \backslash 6 / 2=M \backslash 6 / 2$. Now, $\{x, 6,8\}$ is a triangle of N. It is also a triangle of M otherwise both $\{1, x, 6,8\}$ and $\{2, x, 6,8\}$ are circuits of M implying the contradiction that $\{1,2,6,8\}$ is dependent in M. Moreover, $\{5,6,7,8\}$ is a circuit in M but not in N. Hence, $\{5,7, x, 8\}$ is dependent in $M \backslash 6$ although it is independent in $N \backslash 6$. In particular, $N \backslash 6 \neq M \backslash 6$, so, by uniqueness, $M \backslash 6$ is not GF(4)-representable. Now $M \backslash 4,6,7 / 1=N \backslash 4,6,7 / 1 \cong U_{3,5}$, so $M \backslash 6$ is not isomorphic to P_{8} since the last matroid is ternary. Also $M \backslash 6, x \cong P_{7}^{*}$, so $M \backslash 6$ is not isomorphic to $P_{8}^{\prime \prime}$. Therefore, by Theorem $1.3, M \backslash 6$ has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}$, F_{7}^{-}, or $\left(F_{7}^{-}\right)^{*}$-minor, as required.

We may now assume that either $\alpha \neq 0$ or $\beta \neq 0$. Using the automorphism of P_{8} that swaps 1,4 , and 5 with 2,3 and 7 , respectively, we may assume that $\alpha \neq 0$. Then, it is easy to check that $N \backslash 4 / 1, N \backslash 4 / 2$ and $N \backslash 4 / 1,2$ are all stable, connected, and nonbinary. Furthermore, $N \backslash 4 / 1=M \backslash 4 / 1, N \backslash 4 / 2=$ $M \backslash 4 / 2$, and $N \backslash 4 / 1,2=M \backslash 4 / 1,2$. So, by Proposition $2.6, N \backslash 4$ is the unique $\mathrm{GF}(4)$-representable matroid such that $N \backslash 4 / 1=M \backslash 4 / 1$ and $N \backslash 4 / 2=M \backslash 4 / 2$. Now, $\{5,6,7,8\}$ is a circuit in $M \backslash 4$ but not in $N \backslash 4$. In particular, $N \backslash 4 \neq M \backslash 4$, so, by uniqueness, $M \backslash 4$ is not GF(4)-representable. However, $M \backslash 4, x \cong P_{7}^{*}$, so $M \backslash 4$ is not isomorphic to $P_{8}^{\prime \prime}$. Also $M \backslash 4,5 / 1,2=N \backslash 4,5 / 1,2 \cong U_{2,5}$, so $M \backslash 4$ is not isomorphic to P_{8}. Therefore, by Theorem 1.3, $M \backslash 4$ has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}-$, or $\left(F_{7}^{-}\right)^{*}$-minor, as required.

Case 2. Suppose that $a=1$ and $b=8$. Note that $M \backslash x / 1, M \backslash x / 8$, and $M \backslash x / 1,8$ are all stable, and that $M \backslash x / 1,8$ is connected and nonbinary. So, by Proposition 2.6, $N \backslash x$ is the unique quaternary matroid such that
$N \backslash x / 1=M \backslash x / 1$ and $N \backslash x / 8=M \backslash x / 8$. Therefore, $N \backslash x$ has the following standard GF(4)-representation.

1
2
6
8

0 \& 1 \& 1 \& w

1 \& 0 \& w+1 \& 1

1 \& 1 \& 1 \& 1

w \& w \& 1 \& 1\end{array}\right)\).

Recall that $N / 1,8$ has a $U_{2,5}$-minor, so a $\mathrm{GF}(4)$-representation for N can be obtained by appending the column $(\alpha, w, 1, \beta)^{T}$ to the above matrix, where α and β are yet to be determined.

Now, $N \backslash 5, x / 1$ and $N \backslash 5, x / 8$ are both 3 -connected. So, it is easy to check that $N \backslash 5 / 1, N \backslash 5 / 8$ and $N \backslash 5 / 1,8$ are all stable, connected, and nonbinary. Furthermore, $N \backslash 5 / 1=M \backslash 5 / 1, N \backslash 5 / 8=M \backslash 5 / 8$, and $N \backslash 5 / 1,8=$ $M \backslash 5 / 1,8$. So, by Proposition $2.6, N \backslash 5$ is the unique GF(4)-representable matroid such that $N \backslash 5 / 1=M \backslash 5 / 1$ and $N \backslash 5 / 8=M \backslash 5 / 8$. Now, $\{2,4,6,7\}$ is a circuit in $M \backslash 5$ but not in $N \backslash 5$. In particular, $N \backslash 5 \neq M \backslash 5$, so, by uniqueness, $M \backslash 5$ is not $\mathrm{GF}(4)$-representable. However, $M \backslash 5, x \cong P_{7}^{*}$, so $M \backslash 5$ is not isomorphic to $P_{8}^{\prime \prime}$. It is left to the reader to check that, for any $\alpha \in G F(4)$, the matroid $N / 8 \backslash 5$ is not isomorphic to P_{7}. Hence, $M / 8 \backslash 5$ is not isomorphic to P_{7}, so $M \backslash 5$ is not isomorphic to P_{8}. Therefore, by Theorem 1.3, $M \backslash 5$ has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}$, or $\left(F_{7}^{-}\right)^{*}$-minor, as required.

3. DEALING WITH $P_{8}^{\prime \prime}$

In this section, we prove Theorem 1.4. The techniques are very similar to those used in the previous section.

Since $P_{8}^{\prime \prime}$ is self-dual, it suffices to prove that every 3 -connected singleelement extension of $P_{8}^{\prime \prime}$ contains a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}$, or $\left(F_{7}^{-}\right)^{*}$-minor. Suppose not. Then there is a 3-connected matroid M in $\operatorname{Ex}\left(U_{2,6}, U_{4,6}, P_{6}\right.$, $\left.F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$ such that $M \backslash x=P_{8}^{\prime \prime}$.

3.1. $M / 1,3$ has no $U_{2,5}$-restriction.

Suppose to the contrary that $M / 1,3$ has a $U_{2,5}$-restriction. It is readily seen that $M / 1, M / 3$, and $M / 1,3$ are all stable, connected, and nonbinary. Then, by Proposition 2.6, there is a unique quaternary matroid N such that $N / 1=M / 1$ and $N / 3=M / 3$. It is easily checked that $N \backslash x$ is uniquely

Recall that $N / 1,8$ has a $U_{2,5}$-minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, 1, w, \beta)^{T}$ to the above matrix, where α and β are yet to be determined.

Now, $N \backslash 2, x / 1$ and $N \backslash 2, x / 8$ are both 3 -connected. So, it is easy to check that $N \backslash 2 / 1, N \backslash 2 / 8$ and $N \backslash 2 / 1,8$ are all stable, connected, and nonbinary. So, by Proposition 2.6, $N \backslash 2$ is the unique $\mathrm{GF}(4)$-representable matroid such that $N \backslash 2 / 1=M \backslash 2 / 1$ and $N \backslash 2 / 8=M \backslash 2 / 8$. Now, $\{3,4,5,7\}$ is a circuit in $M \backslash 2$ but not in $N \backslash 2$. In particular, $N \backslash 2 \neq M \backslash 2$, so, by uniqueness, $M \backslash 2$ is not GF(4)-representable. However, $M \backslash 2, x \cong\left(P_{7}^{\prime}\right)^{*}$, so $M \backslash 2$ is not isomorphic to P_{8}. Therefore, by Theorem 1.3, either $M \backslash 2$ is isomorphic to $P_{8}^{\prime \prime}$, or $M \backslash 2$ has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}-$, or $\left(F_{7}^{-}\right)^{*}$-minor. Thus, we may assume that $M \backslash 2$ is isomorphic to $P_{8}^{\prime \prime}$. In particular, $M \backslash 2 / 1$ is isomorphic to P_{7}^{\prime}. It is left to the reader to check that this implies that $\beta=w+1$. Then $M / 1,3$ has a $U_{2,5}$-restriction, contradicting (3.1). This proves (3.2).

Let R be the matroid depicted in Fig. 4.
3.3. If $M / 1$ is 3-connected, then it is isomorphic to R, where the 4 -point line is either $\{3,7,8, x\}$ or $\{3,5,6, x\}$.
Suppose $M / 1$ is 3 -connected. Then it is isomorphic to a 3 -connected extension of P_{7}^{\prime}. Now 2 and 4 are each on only one 3-point line of $M / 1 \backslash x$. So, since neither $M / 1,2 \backslash x$ nor $M / 1,4 \backslash x$ has a $U_{2,6}$-restriction, each of 2 and 4 is on some 3 - or 4 -point line of $M / 1$ with x. By (3.1), 3 is also on some 3- or 4-point line of $M / 1$ with x. By (3.2) and symmetry, each of 5 , $6,7,8$ is on some 3 - or 4 -point line of $M / 1$ with x. Hence x is on some 3 - or 4-point line with every other element of $M / 1$. It follows that x is on one 4-point line and two 3-point lines in $M / 1$. There is, up to isomorphism, just one such extension of P_{7}^{\prime}, namely R. This proves (3.3).

If x lies on three 3 -point lines in M, say $\left\{x, a_{1}, a_{2}\right\},\left\{x, b_{1}, b_{2}\right\}$ and $\left\{x, c_{1}, c_{2}\right\}$, then $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\},\left\{a_{1}, a_{2}, c_{1}, c_{2}\right\}$, and $\left\{b_{1}, b_{2}, c_{1}, c_{2}\right\}$ are all hyperplanes of $P_{8}^{\prime \prime}$. However, $P_{8}^{\prime \prime}$ has no three such hyperplanes, so x is

FIG. 4. An extension of P_{7}^{\prime}.

Recall that $N / 1,8$ has a $U_{2,5}$-minor, so a GF(4)-representation for N can be obtained by appending the column $(\alpha, 1, w, \beta)^{T}$ to the above matrix, where α and β are yet to be determined.

Now, $N \backslash 2, x / 1$ and $N \backslash 2, x / 8$ are both 3 -connected. So, it is easy to check that $N \backslash 2 / 1, N \backslash 2 / 8$ and $N \backslash 2 / 1,8$ are all stable, connected, and nonbinary. So, by Proposition 2.6, $N \backslash 2$ is the unique $\mathrm{GF}(4)$-representable matroid such that $N \backslash 2 / 1=M \backslash 2 / 1$ and $N \backslash 2 / 8=M \backslash 2 / 8$. Now, $\{3,4,5,7\}$ is a circuit in $M \backslash 2$ but not in $N \backslash 2$. In particular, $N \backslash 2 \neq M \backslash 2$, so, by uniqueness, $M \backslash 2$ is not GF(4)-representable. However, $M \backslash 2, x \cong\left(P_{7}^{\prime}\right)^{*}$, so $M \backslash 2$ is not isomorphic to P_{8}. Therefore, by Theorem 1.3, either $M \backslash 2$ is isomorphic to $P_{8}^{\prime \prime}$, or $M \backslash 2$ has a $U_{2,6^{-}}, U_{4,6^{-}}, P_{6^{-}}, F_{7}^{-}-$, or $\left(F_{7}^{-}\right)^{*}$-minor. Thus, we may assume that $M \backslash 2$ is isomorphic to $P_{8}^{\prime \prime}$. In particular, $M \backslash 2 / 1$ is isomorphic to P_{7}^{\prime}. It is left to the reader to check that this implies that $\beta=w+1$. Then $M / 1,3$ has a $U_{2,5}$-restriction, contradicting (3.1). This proves (3.2).

Let R be the matroid depicted in Fig. 4.
3.3. If $M / 1$ is 3-connected, then it is isomorphic to R, where the 4 -point line is either $\{3,7,8, x\}$ or $\{3,5,6, x\}$.
Suppose $M / 1$ is 3 -connected. Then it is isomorphic to a 3 -connected extension of P_{7}^{\prime}. Now 2 and 4 are each on only one 3-point line of $M / 1 \backslash x$. So, since neither $M / 1,2 \backslash x$ nor $M / 1,4 \backslash x$ has a $U_{2,6}$-restriction, each of 2 and 4 is on some 3 - or 4 -point line of $M / 1$ with x. By (3.1), 3 is also on some 3- or 4-point line of $M / 1$ with x. By (3.2) and symmetry, each of 5 , $6,7,8$ is on some 3 - or 4 -point line of $M / 1$ with x. Hence x is on some 3 - or 4-point line with every other element of $M / 1$. It follows that x is on one 4-point line and two 3-point lines in $M / 1$. There is, up to isomorphism, just one such extension of P_{7}^{\prime}, namely R. This proves (3.3).

If x lies on three 3 -point lines in M, say $\left\{x, a_{1}, a_{2}\right\},\left\{x, b_{1}, b_{2}\right\}$ and $\left\{x, c_{1}, c_{2}\right\}$, then $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\},\left\{a_{1}, a_{2}, c_{1}, c_{2}\right\}$, and $\left\{b_{1}, b_{2}, c_{1}, c_{2}\right\}$ are all hyperplanes of $P_{8}^{\prime \prime}$. However, $P_{8}^{\prime \prime}$ has no three such hyperplanes, so x is

FIG. 4. An extension of P_{7}^{\prime}.
on at most two 3-point lines of M. Furthermore, if $\left\{x, a_{1}, a_{2}\right\}$ and $\left\{x, b_{1}, b_{2}\right\}$ are 3 -point lines, then $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ is a hyperplane of $P_{8}^{\prime \prime}$. Therefore, since any two points of $P_{8}^{\prime \prime}$ lie on some circuit-hyperplane of $P_{8}^{\prime \prime}$, if M has any 3-point lines, then M is obtained by adding x to some circuithyperplane of $P_{8}^{\prime \prime}$, and all 3-point lines are contained in that hyperplane. The automorphisms of $P_{8}^{\prime \prime}$ act transitively on its circuit-hyperplanes, so we may assume that the 3-point lines of M use only points from the set $\{x, 2,4,6,7\}$. Therefore, $M / 1, M / 3, M / 5$ and $M / 8$ are all 3 -connected. Therefore, by (3.3) and symmetry, each of these matroids is isomorphic to R. Since $M / 1$ is isomorphic to R, either $\{x, 1,3,5,6\}$ or $\{x, 1,3,7,8\}$ is a hyperplane of M. Using the automorphism of $P_{8}^{\prime \prime}$ that swaps 4,5 , and 6 with 2,8 , and 7 , respectively, we may assume that $\{x, 1,3,5,6\}$ is a hyperplane of M. Then $M / 5$ is not isomorphic to R. This contradiction completes the proof of Theorem 1.4.

ACKNOWLEDGMENTS

Oxley and Vertigan were partially supported by grants from the National Security Agency; Vertigan was also partially supported by a grand from the Louisiana Education Quality Support Fund; Whittle was partially supported by a grant from the Marsden Fund.

REFERENCES

1. J. F. Geelen, A. M. H. Gerards, and A. Kapoor, The excluded minors for GF(4)-representable matroids, J. Combin. Theory Ser. B 79 (2000), 247-299.
2. J. Kahn, On the uniqueness of matroid representations over GF(4), Bull. London Math. Soc. 20 (1988), 5-10.
3. J. G. Oxley, A characterization of ternary matroids with no $M\left(K_{4}\right)$-minor, J. Combin. Theory Ser. B 42 (1987), 212-249.
4. J. G. Oxley, "Matroid Theory," Oxford Univ. Press, New York, 1992.
5. P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-359.
