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This paper strengthens the excluded-minor characterization of GF(4)-representable
matroids. In particular, it is shown that there are only finitely many 3-connected
matroids that are not GF(4)-representable and that have no U2, 6 -, U4, 6 -, P6 -, F &

7 -,
or (F &

7 )*-minors. Explicitly, these matroids are all minors of S(5, 6, 12) with rank
and corank at least 4, and P"8 , the matroid that can be obtained from S(5, 6, 12)
by deleting two elements, contracting two elements, and then relaxing the only pair
of disjoint circuit-hyperplanes. � 2000 Academic Press

1. INTRODUCTION

Kahn and Seymour had conjectured that the excluded minors for the
class of GF(4)-representable matroids are U2, 6 , U4, 6 , P6 , the non-Fano
matroid (F &

7 ), and its dual; see [4, p. 205]. It turns out that the complete
set of excluded minors for GF(4)-representability contains two more
matroids, namely P8 and P"8 ; see [1]. However, Kahn and Seymour were
almost right, as we show in the following theorem.
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Theorem 1.1. If M is a 3-connected non-GF(4)-representable matroid,
then either

(i) M has a U2, 6 -, U4, 6 -, P6 -, F &
7 -, or (F &

7 )*-minor,

(ii) M is isomorphic to P"8 , or

(iii) M is isomorphic to a minor of S(5, 6, 12) with rank and corank at
least 4.

S(5, 6, 12), which is discussed in detail in [4], is the matroid that is
represented over GF(3) by the following matrix.

\ I6 }
0 1 1 1 1 1

+ .

1 0 1 &1 &1 1
1 1 0 1 &1 &1
1 &1 1 0 1 &1
1 &1 &1 1 0 1
1 1 &1 &1 1 0

Evidently S(5, 6, 12) is self-dual. Moreover, it has a 5-transitive auto-
morphism group. P8 is the matroid that is obtained by deleting two
elements and contracting two elements from S(5, 6, 12). Now P8 has a
unique pair of disjoint circuit-hyperplanes and P"8 is obtained from P8 by
relaxing both of these circuit-hyperplanes. These observations and those
made before the theorem imply that the matroids satisfying (i), (ii), or (iii)
are not quaternary.

The following corollary is a reformulation of Theorem 1.1. For a collection
M of matroids, we denote by EX(M) the class of matroids that have no
minors isomorphic to a member of M.

Corollary 1.2. EX(U2, 6 , U4, 6 , P6 , F &
7 , (F &

7 )*) can be constructed by
taking direct sums and 2-sums of copies of P"8 , minors of S(5, 6, 12), and
quaternary matroids.

We obtain Theorem 1.1 as a consequence of the excluded-minor
characterization for quaternary matroids [1].

Theorem 1.3. A matroid M is GF(4)-representable if and only if M has
no minor isomorphic to any of U2, 6 , U4, 6 , P6 , F &

7 , (F &
7 )*, P8 , or P"8 .

Theorem 1.1. is an immediate consequence of Theorem 1.3 and the
following two theorems. Let M be a minor-closed family of matroids.
A matroid M in M is called a splitter for M if no 3-connected matroid in
M has a proper M-minor.
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FIG. 1. Some rank-3 matroids.

Theorem 1.4. P"8 is a splitter for EX(U2, 6 , U4, 6 , P6 , F &
7 , (F &

7 )*).

Theorem 1.5. If M is a 3-connected matroid in EX(U2, 6 , U4, 6 , P6 , F &
7 ,

(F &
7 )*), and M has a P8 -minor, then M is isomorphic to a minor of

S(5, 6, 12).

Using Seymour's Splitter Theorem [5, 4], Theorems 1.4 and 1.5 can be
proved by a finite case check. While we use this approach, we have
endeavoured to find elegant techniques to reduce the number of cases.

Theorem 1.6 (Splitter Theorem). Let M and N be 3-connected matroids
such that M is neither a wheel nor a whirl, N has at least four elements, and
M contains a proper N-minor. Then M has an element x such that either
M"x or M�x is 3-connected with an N-minor.

We assume that readers are familiar with elementary notions in matroid
theory, including representability, minors, duality, connectivity, and 1- and
2-sums. We use the notation and terminology of [4]. Figure 1 depicts some
well-known matroids that are referred to in the paper. We will describe P8

and P"8 in more detail in the next section.

2. DEALING WITH P8

In this section, we prove Theorem 1.5. We begin by describing some
useful properties of P8 . This matroid has a very natural geometric
representation; see Fig. 2. This representation is obtained by rotating a face
of the cube by 45 degrees. It is obvious from this description that P8 has
a transitive automorphism group. (However, there are automorphisms of
P8 that are not apparent from this description.) By this transitivity, all
single-element contractions of P8 are isomorphic to P8 �8, which is
isomorphic to the matroid P7 depicted in Fig. 2. It is also not difficult to
see that P8 is self-dual; its dual is obtained by rotating the twisted face a
further 90 degrees. Therefore every single-element deletion of P8 is
isomorphic to the dual of P7 .
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FIG. 2. Some interesting matroids.

P"8 is the matroid obtained from P8 by relaxing the circuit-hyperplanes
[1, 2, 3, 4] and [5, 6, 7, 8]. From this, it is readily seen that P"8 is self-dual
and has a transitive automorphism group, and that every single-element
contraction is isomorphic to P$7 (which is depicted in Fig. 2).

We use the following lemma [4, Proposition 11.2.16] and theorem [3]
(see also [4, p. 367]). The matroid J is a rank-4 self-dual matroid that is
not isomorphic to P8 .

Lemma 2.1. Let M be a 3-connected matroid having rank and corank at
least three. Then M has a U2, 5 -minor if and only if it has a U3, 5 -minor.

Theorem 2.2. If M is a 3-connected matroid in Ex(U2, 5 , U3, 5 , M(K4)),
then either M is a whirl, M is isomorphic to J, or M is isomorphic to a minor
of S(5, 6, 12).

Corollary 2.3. If M is a 3-connected matroid that is not isomorphic to
a minor of S(5, 6, 12), and M has a P8 -minor, then there is a minor N of
either M or M* and an element x of E(N) such that N"x is isomorphic to
P8 , and N contains either a U2, 5- or an M(K4)-minor.

Proof. Let M$ be a minimal 3-connected minor of M that has a P8 -
minor and a U2, 5-, U3, 5 -, or M(K4)-minor. By the Splitter Theorem, M$
has an element x such that M$"x or M$�x is 3-connected and has a
P8 -minor. By duality, we may assume that M$"x is 3-connected and has a
P8-minor. By minimality, M$"x has no U3, 5 -, U2, 5 -, or M(K4)-minor.
Therefore, by Theorem 2.2, M$"x is isomorphic to a minor of S(5, 6, 12).

As M$ has rank and corank at least 3, by Lemma 2.1, M$ has either a
U2, 5 - or M(K4)-minor. Suppose that M$ has rank at least 5. Then there
exists y # E(M$)&x such that M$�y has a U2, 5 - or M(K4)-minor. Now
M$"x�y is isomorphic to a minor of S(5, 6, 12) with rank and corank at
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least four. Hence, as S(5, 6, 12) has a 5-transitive automorphism group,
M$"x�y is 3-connected and has a P8 -minor. Now M$�y is an extension of
the 3-connected matroid M$�y"x, and, since M$�y"x has no U2, 5 -
or M(K4)-minor, x is not in parallel with any element of M$�y. Hence
M$�y is 3-connected. Moreover, M$�y has a P8 -minor and a U2, 5 - or
M(K4)-minor, contradicting the minimality of M$. Therefore, M$ has
rank 4.

An argument similar to that in the last paragraph establishes that the
corank of M$ is 5. Therefore, taking N to be equal to M$, we see that the
theorem holds. K

Theorem 1.5. is implied by Corollary 2.3 and the following two results.

Lemma 2.4. If M"x=P8 and M has an M(K4)-minor, then M has a
U2, 5 -, F &

7 -, or (F &
7 )*-minor.

Lemma 2.5. If M"x=P8 and M has a U2, 5-minor, then M has a U2, 6 -,
U4, 6 -, P6 , F &

7 -, or (F &
7 )*-minor.

Proof of Lemma 2.4. Suppose that M is in Ex(U2, 5 , F &
7 , (F &

7 )*). Since
M has no U2, 5 -minor and M has rank and corank at least 3, Lemma 2.1
implies that M has no U3, 5 -minor.

We show next that E(M)&x contains an element y such that M�y has
an M(K4)-minor. Suppose not. Then, as M has corank 4, M�x has an
M(K4)-minor. Therefore, E(M)&x contains elements a and b such that
M�x"a, b$M(K4). Now M"a, b, x is isomorphic to a matroid obtained
from P7* by deleting an element. Thus M"a, b, x has either two or three
disjoint series pairs. Now M"a, b has no series pairs, otherwise we could
contract an element other than x leaving an M(K4)-minor. Therefore, x is
in either two or three 3-element cocircuits of M"a, b, and any two such
cocircuits have only x in common. Thus, as M"a, b, �x$M(K4), it follows
that M"a, b is isomorphic to F 7* or (F &

7 )*. Now M certainly has no
(F &

7 )*-minor. Thus M"a, b$F 7* and so, for every y in E(M)"[x, a, b], the
matroid M�y has an M(K4)-minor. This contradiction implies that there is,
indeed, an element y of E(M)&x such that M�y has an M(K4)-minor. As
P8 has a transitive automorphism group, we may assume that y=8.

Now M�8 is an extension of P7 that has no U3, 5-minor. Furthermore, as
P7 has no M(K4)-minor and M�8 has an M(K4)-minor, M�8 is 3-connected.
It is not difficult to check that there are just three 3-connected extensions
of P7 that have no U3, 5 - and hence no U2, 5 -minor; these are depicted in
Fig. 3. Note that M2"a$F &

7 , and M3 has no M(K4)-minor. Hence
M�8$M1 . Thus, in M, the element x lies on the intersection of the planes
spanned by the circuit-hyperplanes [2, 4, 5, 8] and [1, 3, 7, 8] of P8 . We
may assume that x is not in the plane of M spanned by [1, 2, 3, 4],
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FIG. 3. Extensions of P7 with no U3, 5 -minor.

otherwise M"1, 2$(F &
7 )*. To see this, observe that if x is in the plane

spanned by [1, 2, 3, 4], then the planes [1, 2, 3, 4, x] and [2, 4, 5, 8, x] of
M imply that [2, 4, x] is a circuit of M. Similarly, the planes [1, 2, 3, 4, x]
and [1, 3, 7, 8, x] of M imply that [1, 3, x] is a circuit of M. We deduce
that [2, 4, 6, 7, x], [1, 3, 5, 6, x], [3, 4, 5, 7], and [5, 6, 7, 8] are hyperplanes
of M, and it is now not difficult to obtain the contradiction that
M"1, 2$(F &

7 )*.
Next we show that either M�1 or M�3 is 3-connected. Assume the

contrary and note that M�1"x is isomorphic to P7 , which is 3-connected.
Now, as x lies on the plane spanned by [1, 3, 7, 8], since M�1 is not 3-con-
nected, x is parallel to 3, 7, or 8 in M�1. However, as x is not in the plane
spanned by [1, 2, 3, 4], the element x is not parallel to 3 in M�1. Also x
is not parallel to 8 in M�1 since M�8 is 3-connected. Thus x is parallel to
7 in M�1, and hence [1, x, 7] is a line in M. By symmetry, as M�3 is not
3-connected, [3, x, 7] is a line in M. Thus [1, 3, 7] is a line in P8 . This
contradiction completes the proof that either M�1 or M�3 is 3-connected.
But P8 has an automorphism that swaps 1 and 2 with 3 and 4, respectively,
while fixing all other elements. Therefore, we may assume that M�1 is
3-connected.

Now M�1 is a 3-connected extension of P7 with no U3, 5-minor. Further-
more, the point x of the extension is on a 4-point line with the tip of P7 .
Thus, M�1 is isomorphic to M2 of Fig. 3. However, M2 "a$F &

7 ; a
contradiction. K

To prove Lemma 2.5, we employ methods used in [1]. For a field F, two
r_n matrices over F whose sequences of column labels coincide are equiv-
alent F-representations of a matroid if one matrix can be obtained from the
other by elementary row operations, column scalings, and applying
automorphisms of F. A matroid is uniquely representable over F if any two
F-representations of it are equivalent. If the r_n matrix (Ir | D) with
columns labelled e1 , e2 , ..., en represents a matroid M over F, it is common
to abbreviate this F-representation by specifying just the matrix D labelling
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its rows and columns by e1 , e2 , ..., er and er+1 , er+2 , ..., en , respectively.
Such a matrix D will be called a standard F-representation of M.

A matroid is stable if it cannot be expressed as the direct sum or 2-sum
of two nonbinary matroids. For our purposes, the most important examples
of stable matroids are those matroids which simplify to 3-connected
matroids. Kahn [2] proved that a quaternary matroid has a unique
GF(4)-representation if and only if it is stable. The following corollary of
Kahn's theorem is established in [1].

Proposition 2.6. Let M be a matroid, and u, v be a coindependent pair
of elements of M such that M�u, M�v, and M�u, v are all stable, and M�u, v
is connected and nonbinary. If M�u and M�v are both quaternary, then there
is a unique quaternary matroid N such that N�u=M�u and N�v=M�v.

Proof of Lemma 2.5. Since M has rank four, E(M)&x contains an
element a such that M�a has a U2, 5 -minor. Now M�a is isomorphic to
an extension of P7 . We assert that E(M)&x&a contains an element b
such that M�a, b has a U2, 5 -restriction. Suppose not. Then M�a, x has a
U2, 5 -restriction. Hence there are at least three elements of M�a that are not
on a 3- or 4-point line with x. Let b be one of these points, other than the
tip of M�a"x. Then M�a, b has a U2, 5 -restriction, as asserted.

We may assume that M has no U2, 6 -minor, so M�a, b simplifies to U2, 5 .
Hence M�a, b is stable. Now M�a and M�b are both isomorphic to exten-
sions of P7 . Hence M�a and M�b are both stable. We may assume that M�a
and M�b are both quaternary. Then, by Proposition 2.6, there is a unique
quaternary matroid N such that N�a=M�a and N�b=M�b.

Every pair of points of P8 is equivalent, under automorphism, to either
(1, 2), (1, 3) or (1, 8). Now P8 �1, 3 is binary, so no extension of P8 �1, 3 has
a U2, 5 -restriction. Hence we may assume that (a, b) is either (1, 2) or
(1, 8).

Case 1. Suppose that a=1 and b=2. Note that M"x�1, M"x�2, and
M"x�1, 2 are all stable, and that M"x�1, 2 is connected and nonbinary. So,
by Proposition 2.6, N"x is the unique quaternary matroid such that
N"x�1=M"x�1 and N"x�2=M"x�2. Therefore, N"x has the following
standard GF(4)-representation (where w2=w+1).

3 4 5 7

1
2
6
8 \

0
1
1

w+1

1
0
1

w+1

1
w
1
1

w
1
1
1 + .
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Recall that N�1, 2 has a U2, 5 -minor, so a GF(4)-representation for N can
be obtained by appending the column (:, ;, 1, w)T to the above matrix,
where : and ; are yet to be determined.

First suppose that :=;=0, and consider the following standard
GF(4)-representation of N"6.

3 4 5 7

1
2
x
8 \

0
1
1
1

1
0
1
1

1
w
1

w+1

w
1
1

w+1+ .

We see that N"6�1, N"6�2, and N"6�1, 2 are all stable, connected, and
nonbinary. Furthermore, N"6�1=M"6�1, N"6�2=M"6�2, and N"6�1, 2=
M"6�1, 2. So, by Proposition 2.6, N"6 is the unique GF(4)-representable
matroid such that N"6�1=M"6�1 and N"6�2=M"6�2. Now, [x, 6, 8] is
a triangle of N. It is also a triangle of M otherwise both [1, x, 6, 8] and
[2, x, 6, 8] are circuits of M implying the contradiction that [1, 2, 6, 8] is
dependent in M. Moreover, [5, 6, 7, 8] is a circuit in M but not in N.
Hence, [5, 7, x, 8] is dependent in M"6 although it is independent in N"6.
In particular, N"6{M"6, so, by uniqueness, M"6 is not GF(4)-represen-
table. Now M"4, 6, 7�1=N"4, 6, 7�1$U3, 5 , so M"6 is not isomorphic to
P8 since the last matroid is ternary. Also M"6, x$P7*, so M"6 is not
isomorphic to P"8 . Therefore, by Theorem 1.3, M"6 has a U2, 6 -, U4, 6 -, P6 -,
F&

7 -, or (F &
7 )*-minor, as required.

We may now assume that either :{0 or ;{0. Using the automorphism
of P8 that swaps 1, 4, and 5 with 2, 3 and 7, respectively, we may assume
that :{0. Then, it is easy to check that N"4�1, N"4�2 and N"4�1, 2 are all
stable, connected, and nonbinary. Furthermore, N"4�1=M"4�1, N"4�2=
M"4�2, and N"4�1, 2=M"4�1, 2. So, by Proposition 2.6, N"4 is the
unique GF(4)-representable matroid such that N"4�1=M"4�1 and
N"4�2=M"4�2. Now, [5, 6, 7, 8] is a circuit in M"4 but not in N"4. In
particular, N"4{M"4, so, by uniqueness, M"4 is not GF(4)-represen-
table. However, M"4, x$P7* , so M"4 is not isomorphic to P"8 . Also
M"4, 5�1, 2=N"4, 5�1, 2$U2, 5 , so M"4 is not isomorphic to P8 . There-
fore, by Theorem 1.3, M"4 has a U2, 6 -, U4, 6 -, P6 -, F &

7 -, or (F &
7 )*-minor,

as required.

Case 2. Suppose that a=1 and b=8. Note that M"x�1, M"x�8, and
M"x�1, 8 are all stable, and that M"x�1, 8 is connected and nonbinary. So,
by Proposition 2.6, N"x is the unique quaternary matroid such that
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N"x�1=M"x�1 and N"x�8=M"x�8. Therefore, N"x has the following
standard GF(4)-representation.

3 4 5 7

1
2
6
8 \

0
1
1
w

1
0
1
w

1
w+1

1
1

w
1
1
1 + .

Recall that N�1, 8 has a U2, 5 -minor, so a GF(4)-representation for N can
be obtained by appending the column (:, w, 1, ;)T to the above matrix,
where : and ; are yet to be determined.

Now, N"5, x�1 and N"5, x�8 are both 3-connected. So, it is easy to
check that N"5�1, N"5�8 and N"5�1, 8 are all stable, connected, and non-
binary. Furthermore, N"5�1=M"5�1, N"5�8=M"5�8, and N"5�1, 8=
M"5�1, 8. So, by Proposition 2.6, N"5 is the unique GF(4)-representable
matroid such that N"5�1=M"5�1 and N"5�8=M"5�8. Now, [2, 4, 6, 7] is
a circuit in M"5 but not in N"5. In particular, N"5{M"5, so, by unique-
ness, M"5 is not GF(4)-representable. However, M"5, x$P7* , so M"5 is
not isomorphic to P"8 . It is left to the reader to check that, for any
: # GF(4), the matroid N�8"5 is not isomorphic to P7 . Hence, M�8"5 is not
isomorphic to P7 , so M"5 is not isomorphic to P8 . Therefore, by
Theorem 1.3, M"5 has a U2, 6 -, U4, 6 -, P6 -, F &

7 -, or (F &
7 )*-minor, as

required. K

3. DEALING WITH P"8

In this section, we prove Theorem 1.4. The techniques are very similar to
those used in the previous section.

Since P"8 is self-dual, it suffices to prove that every 3-connected single-
element extension of P"8 contains a U2, 6 -, U4, 6 -, P6 -, F &

7 -, or (F &
7 )*-minor.

Suppose not. Then there is a 3-connected matroid M in Ex(U2, 6 , U4, 6 , P6 ,
F&

7 , (F &
7 )*) such that M"x=P"8 .

3.1. M�1, 3 has no U2, 5-restriction.

Suppose to the contrary that M�1, 3 has a U2, 5 -restriction. It is readily
seen that M�1, M�3, and M�1, 3 are all stable, connected, and nonbinary.
Then, by Proposition 2.6, there is a unique quaternary matroid N such that
N�1=M�1 and N�3=M�3. It is easily checked that N"x is uniquely
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Recall that N�1, 8 has a U2, 5 -minor, so a GF(4)-representation for N can
be obtained by appending the column (:, 1, w, ;)T to the above matrix,
where : and ; are yet to be determined.

Now, N"2, x�1 and N"2, x�8 are both 3-connected. So, it is easy to
check that N"2�1, N"2�8 and N"2�1, 8 are all stable, connected, and non-
binary. So, by Proposition 2.6, N"2 is the unique GF(4)-representable
matroid such that N"2�1=M"2�1 and N"2�8=M"2�8. Now, [3, 4, 5, 7] is
a circuit in M"2 but not in N"2. In particular, N"2{M"2, so, by unique-
ness, M"2 is not GF(4)-representable. However, M"2, x$(P$7)*, so M"2
is not isomorphic to P8 . Therefore, by Theorem 1.3, either M"2 is
isomorphic to P"8 , or M"2 has a U2, 6 -, U4, 6 -, P6-, F &

7 -, or (F &
7 )*-minor.

Thus, we may assume that M"2 is isomorphic to P"8. In particular, M"2�1
is isomorphic to P$7 . It is left to the reader to check that this implies that
;=w+1. Then M�1, 3 has a U2, 5 -restriction, contradicting (3.1). This
proves (3.2).

Let R be the matroid depicted in Fig. 4.

3.3. If M�1 is 3-connected, then it is isomorphic to R, where the 4-point line
is either [3, 7, 8, x] or [3, 5, 6, x].

Suppose M�1 is 3-connected. Then it is isomorphic to a 3-connected
extension of P$7 . Now 2 and 4 are each on only one 3-point line of M�1"x.
So, since neither M�1, 2"x nor M�1, 4"x has a U2, 6-restriction, each of 2
and 4 is on some 3- or 4-point line of M�1 with x. By (3.1), 3 is also on
some 3- or 4-point line of M�1 with x. By (3.2) and symmetry, each of 5,
6, 7, 8 is on some 3- or 4-point line of M�1 with x. Hence x is on some
3- or 4-point line with every other element of M�1. It follows that x is on
one 4-point line and two 3-point lines in M�1. There is, up to isomorphism,
just one such extension of P$7 , namely R. This proves (3.3).

If x lies on three 3-point lines in M, say [x, a1 , a2], [x, b1 , b2] and
[x, c1 , c2], then [a1 , a2 , b1 , b2], [a1 , a2 , c1 , c2], and [b1 , b2 , c1 , c2] are
all hyperplanes of P"8 . However, P"8 has no three such hyperplanes, so x is

FIG. 4. An extension of P$7 .
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Recall that N�1, 8 has a U2, 5 -minor, so a GF(4)-representation for N can
be obtained by appending the column (:, 1, w, ;)T to the above matrix,
where : and ; are yet to be determined.

Now, N"2, x�1 and N"2, x�8 are both 3-connected. So, it is easy to
check that N"2�1, N"2�8 and N"2�1, 8 are all stable, connected, and non-
binary. So, by Proposition 2.6, N"2 is the unique GF(4)-representable
matroid such that N"2�1=M"2�1 and N"2�8=M"2�8. Now, [3, 4, 5, 7] is
a circuit in M"2 but not in N"2. In particular, N"2{M"2, so, by unique-
ness, M"2 is not GF(4)-representable. However, M"2, x$(P$7)*, so M"2
is not isomorphic to P8 . Therefore, by Theorem 1.3, either M"2 is
isomorphic to P"8 , or M"2 has a U2, 6 -, U4, 6 -, P6-, F &

7 -, or (F &
7 )*-minor.

Thus, we may assume that M"2 is isomorphic to P"8. In particular, M"2�1
is isomorphic to P$7 . It is left to the reader to check that this implies that
;=w+1. Then M�1, 3 has a U2, 5 -restriction, contradicting (3.1). This
proves (3.2).

Let R be the matroid depicted in Fig. 4.

3.3. If M�1 is 3-connected, then it is isomorphic to R, where the 4-point line
is either [3, 7, 8, x] or [3, 5, 6, x].

Suppose M�1 is 3-connected. Then it is isomorphic to a 3-connected
extension of P$7 . Now 2 and 4 are each on only one 3-point line of M�1"x.
So, since neither M�1, 2"x nor M�1, 4"x has a U2, 6-restriction, each of 2
and 4 is on some 3- or 4-point line of M�1 with x. By (3.1), 3 is also on
some 3- or 4-point line of M�1 with x. By (3.2) and symmetry, each of 5,
6, 7, 8 is on some 3- or 4-point line of M�1 with x. Hence x is on some
3- or 4-point line with every other element of M�1. It follows that x is on
one 4-point line and two 3-point lines in M�1. There is, up to isomorphism,
just one such extension of P$7 , namely R. This proves (3.3).

If x lies on three 3-point lines in M, say [x, a1 , a2], [x, b1 , b2] and
[x, c1 , c2], then [a1 , a2 , b1 , b2], [a1 , a2 , c1 , c2], and [b1 , b2 , c1 , c2] are
all hyperplanes of P"8 . However, P"8 has no three such hyperplanes, so x is

FIG. 4. An extension of P$7 .
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on at most two 3-point lines of M. Furthermore, if [x, a1 , a2] and
[x, b1 , b2] are 3-point lines, then [a1 , a2 , b1 , b2] is a hyperplane of P"8 .
Therefore, since any two points of P"8 lie on some circuit-hyperplane of P"8 ,
if M has any 3-point lines, then M is obtained by adding x to some circuit-
hyperplane of P"8 , and all 3-point lines are contained in that hyperplane.
The automorphisms of P"8 act transitively on its circuit-hyperplanes, so we
may assume that the 3-point lines of M use only points from the set
[x, 2, 4, 6, 7]. Therefore, M�1, M�3, M�5 and M�8 are all 3-connected.
Therefore, by (3.3) and symmetry, each of these matroids is isomorphic to
R. Since M�1 is isomorphic to R, either [x, 1, 3, 5, 6] or [x, 1, 3, 7, 8] is a
hyperplane of M. Using the automorphism of P"8 that swaps 4, 5, and 6
with 2, 8, and 7, respectively, we may assume that [x, 1, 3, 5, 6] is a
hyperplane of M. Then M�5 is not isomorphic to R. This contradiction
completes the proof of Theorem 1.4. K
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